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I. INTRODUCTION

Modeling the terrestrial wireless propagation is of imparde for the design and performance
analysis of wireless systems. In a typical mobile radio pgation scenario, the received signal
presents small scale power fluctuations, due to multipatipggation, superimposed on large
scale signal power fluctuations, also known as shadowing¢hwis due to the presence of
large obstacles between the transmitter and receiver. el scale fading results in very
rapid fluctuations around the mean signal level, while shaalp gives rise to relatively slow
variations of the mean signal level [1]. A common example @hposite fading channels is the
Nakagami-Lognormal (NL) channel. In this case, the derfsifiction is obtained by averaging
the instantaneous Nakagami-fading average power over the conditional probability adgns
function (pdf) of the log-normal shadowing, resulting in @mplicated pdf that has no closed
form expression [2].

The K [3] and generalizeds (K() distributions [4], [5], have been introduced as relatvel
simpler models to characterize composite fading chanimelshich the Lognormal distribution
is replaced by the Gamma distribution in the Rayleigh-Lagrad (RL) and NL distributions,
respectively. The: — p and then — p distributions [6] are general fading distributions fordin
of-sight (LOS) and non-line-of-sight applications, restpeely. These distributions can represent
the Rice (Nakagamm), the Nakagamim, the Rayleigh, the One-Sided Gaussian, and the Hoyt
(Nakagamig) distributions as special cases. Quite recently, a gamati@n of thex-u fading
channel, where the LOS component is shadowed, has beensppo [7]. All these models
contain the modified Bessel function of the first or seconddkiwhich complicates further

analytical performance measures. In [8], the LognormadtiBigtion was replaced by the Inverse-
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Gaussian distribution, resulting in the Rayleigh/Inve&aussian (RIGD) distribution, followed
by its generalized versions, i.e., tgedistribution [9], thex — u/Inverse Gaussian distribution
[10] and then — p/inverse Gaussian distribution [11]. The drawback of theéstributions is
their increased complexity due to the presence of the maddBiessel function of the second
kind. Recently, an interesting work has been proposed bypaitaet al. [12], where several
channel models were expressed as a mixture Ganii@) (distribution via Gauss-Quadrature
approximation. Thé\/G model is more accurate than the aforementioned alterrsatavel it has
the advantage of simplicity as well.

Finite mixtures of distributions provide a mathematicaked approach to statistical modeling
of a wide variety of random phenomena [13]. In this paper, l@rreative model, that represents
both composite and non-composite fading channels by MextdirGaussian (MoG) distributions
is presented. The approximation method is based on the &tjmecmaximization (EM) algo-
rithm, which was coined by Dempstet al. in their seminal paper [14]. The EM algorithm is
essentially a set of algorithms exceptionally useful fodifiig the maximum likelihood estimator
(MLE) of any distribution in the exponential family [15], drwidely used for the missing data
problem (i.e., modeling a mixture distribution). The maiontributions of this paper can be
summarized as:

« We propose MoG distributions to model both the envelope dmedsignal-to-noise ratio
(SNR) distributions of wireless channels. The proposedaauh is proven to accurately
model both composite and non-composite channels in a verglsiexpression.

« We determine the number of components using the Bayesianmiation criterion (BIC),
while the corresponding parameters for the mixture areuewatl using the EM algorithm.

« We demonstrate the importance and tractability of our mbgedleriving several tools for
the performance analysis of single-user communicationb as the outage probability and
raw moments. Moreover, we derive the moment generatingtibm¢MGF), of which the

symbol error rate (SER) df-branch maximal ratio combining (MRC) diversity system is
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presented for various signaling schemes. Finally, we dexivapproximation for the average
detection probability in cognitive radio networks and pdevan upper bound to the error.
« Numerical analysis and Monte Carlo simulation results aesgnted to corroborate the

derived analytical results.

The rest of this paper is organized as follows. Section Iegia brief description of several
wireless channel models of interest. In Section lIll, the Mai&ribution is introduced together
with a brief description of the EM algorithm. Section IV pee¢s a detailed comparison of
the MoG distribution to the channel models it can approxendt Section V, performance
metrics, such as the MGF, the raw moments, the amount ofdatle outage probability, and
the average channel capacity are derived using the MoGildison. Simulation results and

numerical analysis are presented in Section VI. FinallytiSecVIl concludes this work.

II. FADING CHANNELS

Radio-wave propagation through wireless channels undsrdetrimental effects characterized
by multipath fading and shadowing. Modeling of such fadif@mnels is typically a complex
process and often leads to intractable solutions. Coraditkeefforts have focused on the statis-
tical modeling which resulted in a wide range of statisticaddels for fading channels [2].

In this section, we give a brief description of some well kmoghannels that often lead to

intractable performance analysis of wireless commurooasystems.

A. The Nakagami-Lognormal Channel

The NL fading model is a mixture of Nakagamm distribution and Lognormal distribution
obtained by averaging the instantaneous Nakagarfading average power over the pdf of the

log-normal shadowing as follows

fu(a) = / " fulalo) £, (0) do, 1)
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where f,(a|o) is the Nakagamin distribution given by

2m™ 2m—1 — a?
= — m My 2
fufalo) = oot e @

where I'(.) is the gamma function [16] and: is the fading parameter, which is inversely
proportional to multipath fading severity i.e., as — oo, multipath severity diminishes. Note

here thatm = IVE;{{”V}}. The average power follows a Lognormal distribution, contributing to

shadowing at longer routes, expressed as

—(101og(c)—M)?
e 2¢2

V2moAC

where A = 1“1% M and ¢?, measured in dB, are the mean and variance of the Gaussian RV

fo (U) = 3)

V =10 log,,(o), respectively. In order to compare (2) with that of the Gars®V X = In(o),

the following relations apply [17]

X =V, 4)
My = AM,
Cx = AC.

An important remark regarding the Lognormal distributisrthat, while¢ essentially defines
different Lognormal distributions)/ is effectively a scaling factor [17]. Denotindy/,, = 10%
andz = -Z, then it is straightforward to show that

My’

fa(@My) = 5 u oM =0). ©

Therefore, it is only sufficient to perform an approximatimn M/ = 0 dB, and generalize the
results to other scaling factors.

Let £, denote the energy per symbd¥, be the single sided power spectral density of the
complex additive white Gaussian noise (AWGN) and assurfiifig:?|] = 1, whereE[.] denotes

the expectation operator. By applying the following tramsfation to (1)

v =a"7, (6)
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wherey = E[y] = f,—o is the average SNR, we obtain the NL distribution as

(8686) mm o [L’m_l _ mx *(2010%"0)2

Gre 2 da. 7
D (m)varc Jo Fromne ¢ ")

The SNR density function is not expressed in a closed fornkimgathe performance analysis

fy (z) =

of wireless communications under this particular chanmeey \complicated or intractable. Note

that the RL distribution is a special case of NL distributiwith m = 1.

B. The xk — u and n — . Fading Models

With the emergence of relatively new wireless mediums, a&kwhich occurs in underwater
acoustic [18], [19] and body communication [20]-[23] faglichannels, the wireless research
community have had a reincarnated interest in finding mooeirate and generalized fading
models that provide a better fit to new and realistic measen¢sn Consequently, new fading
models, such as the — ;» andn — p distributions, were proposed [6]. The— 1 fading model
is mostly used to represent the multipath fading with LOSdatbon and includes the following
fading models as special cases: the Nakagalifitice), the Nakagamir, the Rayleigh, and the

One-sided Gaussian. The instantaneeusy SNR distribution is expressed as [6].

p(2f) L , p
f7<x>=u<1”’—x“7exp (-0 1 (m W) ®)

wherex > 0 is the ratio between the total power of the dominant comptnand the total

power of the scattered waves,> 0 is given by = \]f:r{{yy}} Eiﬁ’)‘g and 1/, (.) is the modified

Bessel function of the first kind and order[16, eq. 8.445]. It is worth mentioning that as

tends to zero, the: — o distribution degenerates to the exact Nakagamdistribution, with

p=m= E:r{{”,y}}. Additionally, by setting = 1, the x — y distribution degenerates to the exact
Nakagamin distribution, withx = n.
Complementing the — . model, then — . model was proposed to represent NLOS multipath

environments, where it includes the Nakagamihe Nakagamm, and the One-Sided Gaussian
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distributions as special cases. The instantangods: SNR distribution is expressed as [6].

2/t s 2ph 2l
o) = YT 2exp( —x) = ( S x) )
I () HP— 250+ ol 2]

where . > 0 is given by = %Ear{g}} - %5;{{1}} (2 ) , and parameteré and H can have two

[NIES

different formats corresponding to two different physipalenomena as follows: In Format 1,

h = W and H = is interpreted as the power ratio between

the independent in-phase and quadrature components. imaE@; the in-phase and quadrature
components are correlated and have a power ratio of unity.to corresponding parameters
are defined by = gty and H = 2, where—1 < n < 1 represents the correlation between
the in-phase and quadrature components. The two formatsecabhtained from each other using
the relationnpormat1 = i;’;ﬂinzj It is worth mentioning that the — 4 distribution degenerates

to the Nakagami distribution by setting: = 0, with ¢ = /7 in Format 1 andy = ’/;—Z in

Format 2.

C. The k — p Shadowed Fading Models

The x — p Shadowed fading model, was firstly proposed as a LOS Shaddiwvgfanodel
[7], where unlike the NL formulation above, it is assumedt thaly the dominant components
of the multipath clusters are subject to random fluctuatidrse unconditional instantaneous
SNR distribution of thex — 1 Shadowed model is obtained by averaging the conditianalu

distribution over the Nakaganmidistribution as follows

/ Fe (1:6) Fi (€) de
0% (" (L+r)y\ m" o
! K)Yy\ m
_? (7) o (_ 7 ) rom © )
where © (y) £ [;F 2exp (—&2(uk +m)) 2™ H, (2M§ M) d¢, which results in the

following closed-form expression

[y (v) = Mm_m (1+ H)um (l)u_leXp (‘@) 1 (m,u; MZ) . (11)

U ()7 (s +m)™ \7 pE+m 7y
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where the function £ (., .; .) is the confluent hypergeometric function [16, eq. 9.21G1&fined

as1Fy (a,b2) = 1+ §5 + 56505 + Soimitas o

Interestingly, in a very recent work [24], it has been shotat tunder a new formulation the
x —p Shadowed fading model can representsghey distribution as a special case with= 2y,
K= 12;17’7 andm = m, where the underlined symbols belong to the ;. Shadowed model for

the sake of clarity.

[1l. THE MOG DISTRIBUTION

We consider the problem of estimating the wireless chahmlessity functions. Gaussian
mixtures [25]-[29] are often used due to the fact that thedfividual densities are efficiently
characterized by the first two moments [30], [31]. The MoGribstion is attributed to have
the Universal-approximation property, as it has been prdxeWeiners approximation theorem
[25], which states that the MoG distribution can approxierety arbitrarily shaped non-Gaussian
density. The objective of this section is to provide a unifi#adG distribution that can accurately

represent different fading channels.

A. Parameter Estimation of the MoG Distribution

Let thei™* entry of a random data vectdf = (v, .., %, ), Which represents the channel fading
amplitude of the composite models, be regarded as incomplata and modeled as a finite

mixture of Gaussians as follows
C
p(yil0) =D w;d(yi,0;), 4 >0 (12)
j=1

wherei = 1, ...,n andC represents the number of components. Edtltomponent is expressed

as
)= e _(?/i—ﬂj)z)
¢ (yl,ej) - \/ﬁﬁje p ( 27732 ) (13)
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where the weight of thg” component isv; > 0, with 3°¢' w; = 1. The parametef; = (y1;, %)
correspond to the mean and variance of fffecomponent, respectively.

Let the complete dat& be the joint probability betweel and Z, whereZ € {1,..,C} is
a hidden (latent) discrete RV that defines which Gaussianpooent the data vectdr comes
from, namely,

p(Z=j)=w;j=1,.,C. 14
Ideally, one would like to maximize the log-likelihood fuian as follows

Ovre = arg %16&5{ L (0) (15)

_ ] :
arg maxlog p (y6)

However, maximizingL (9) is not tractable and difficult to optimize [32]. Instead, tBM

algorithm solves the MLE problem by maximizing the so-aal{g-function as follows [33]
(m+1)  _ (m)
0 arg max Q (9|6’ ) (16)
= argmax By, oo [log px (X[0)],

wherem is the iteration index. The EM algorithm is performed by twerative steps, namely
the expectation steffstep), and the maximization stepl{step). We set initial guesses of the
MoG coefficients, i.ew®, (9, n© whereby in théE-step, we compute the posterior probability
(membership probability)
e (yiluﬁ-m), n§m))
P = (m)
Zz 1Wl (%‘Wz > T )

In the M-step, the coefficients are updated by differentiating hunction with respect tov,

(17)

u, andn, resulting in the following analyticalm + 1) estimates

W™ me,jzl,...,a (18)
Y = Zp iy =1, C, (19)
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Jm+1 (m me < m+1))2 ) .7 = 17 7C (20)

This iterative procedure is terminated upon convergertuat, is when|L(™) — L] < §,

where
1 < c
— Ezllog (lej ¢ <yi|:uj 1 )) ,i=1,..n, (21)
1= J]=

is the log-likelihood, and is a preset threshold.

The EM algorithm is guaranteed not to get worse as it iterates L") < L™ [14].
Hence, the loweb is set, the more accurate the approximation would be. Intiaddione can
always increase the accuracy by increasing the number opaoemts. Though, this technique
might be stuck in a local maxima, since the likelihood is agial distribution. However, one
could mitigate this problem by heuristics and multiple ialiguesses. In this regard, D al.
[32] suggest to initialize parameters in a way that breaksrsgtry in mixture models. Finally,
it is noteworthy to point out that the EM algorithm has an adage of being a completely
unsupervised learning algorithm, which makes it very coresmt for our density estimation

application. For more details, one can refer to [15], [33l aeferences therein.

B. The pdf of the Instantaneous SNR of the MoG Model

With the aid of the EM algorithm, all fading channels’ ampties can be represented as

S (=)’
Z eXp ( #) . x>0. (22)

2n;
By taking the change of variables = 722, the pdf of the instantaneous SNR of the MoG

distribution can be written as

2
XC: —exp _( %—M]) , v =>0. (23)

%
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C. Determining the optimal number of mixture components

Generally, when fitting a finite mixture distribution, thetelenination of an appropriate number
of mixture components is inevitably a necessity. Choosisgiall number of components would
yield an inaccurate representation, while a very large rerobcomponents would unnecessarily
increase the complexity of the distribution and may cause-6tting. In addition, Chen [34] has
shown that knowledge of the the number of components yiefdstar optimal convergence rate
for the estimates of a finite mixture than it would when the bemof components is unknown.

In this subsection, in order to derive an appropriate nunobenixture components, we adopt
a simple yet effective unsupervised information theoretiterion, called the BIC, which was
introduced by Gideon Schwarz in [35].

Let x = {z1,...,2.,..z0¢}, coOrrespond taM independent and identically distributedi.¢.)
samples, drawn from any of the envelope distributions of dbtual aforementioned fading

models, then the log-likelihood function of the MoG distrilon can be expressed as

M c . a2
Le <é> =InPr (m|é,C) = ;ln {; \/;#%exp (_%%)} (24)

wheref = (@1, @2, ..., W, fi1, floy ey i, Thy T2, -+, i) @re the estimated parameters ands the

corresponding number of components. The correspondingsBie can be computed as
BIC, = —2L¢ (é) +C (M), (25)

It can be seen that the BIC penalizes the model complexity dding the regularization
coefficient, C' In(M). It is worth noting that although the EM algorithm maximizéee log-
likelihood distribution, the BIC is an asymptotic approxtion to the transformation of the
Bayesiana posteriori probability, Pr(é|a;,C). As such, in a large-sample setting, the number
of components determined by the BIC is asymptotically optifinom the perspective of the

Bayesian posterior probability. Here, we select the caatdidhodel satisfying the minimum BIC
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score, satisfying asymptotically the maximum Bayesiarntgras probability as

Copt = arg Crpeljr\lf BICc.

(26)

Fig. 1 depicts the normalized BIC versus the number of coraptanfor some fading scenarios

selected from Section Il. The corresponding optimal nundfezomponents(,,,, indicated in

the legend, will be adopted in the simulations and numergsilts hereafter and will be denoted
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Fig. 2 shows the optimal number of components as a functioth@famount of fading. It

is observed that as the fading becomes more severe, therenpdquires more components to

accurately characterize the channel.
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1.6

Figure 2.  Optimal number of components versus the amourading

IV. MoG MODEL ANALYSIS AND COMPARISONS

In this section, several scenarios of the aforementiongiddechannels are approximated using
the MoG distribution, as in (23). The number of components selected automatically using
the BIC method explained in Section IlI-C. We point out thegher accuracy can be achieved by
increasing the number of components. In order to validageattturacy of the approximations,

we use two criteria of error, namely the MSE and the KL, defiasd

MSE =E|f, () - f, (2)] 27)

and

KL (1,69, £,09) = [ £ (0) log 7% a, (28)

fy (@)

respectively. Heref, (z) is the exact pdf, an(f,, (x) is the approximated pdf (MoG). The KL

divergence, also known as relative entropy, is an inforomatheoretic measure that quantifies
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the information lost wherfy(x) is used to approximatg¢, (z) [36]. Note that the MSE and KL
measures are used in several related works, see e.g., [8]129.

Fig. 3 provides the approximation results for several sgesaf the NL,x — p, n — p, and
rk — . Shadowed fading models. The corresponding number of coemsrare indicated in the
legend. As shown from the MSE and KL measures, the approiomad very accurate when
both increasing the shadowing and the multipath fading rigyvevhereas for large amount of
fading, the number of components increases. For instaocéhdn — 1. distribution, when; = 5,
and i = 10, the amount of fading and number of components wetd&21 and 3, respectively,
whereas whem = 0.7 and . = 0.4, the amount of fading and number of components increased
to 1.2999 and S8, respectively. The parameters of the approximations dnalased in Appendix

A.

18 T T T T T T

m=1, {=3dB, C=7, KL=2.2e—-4, MSE=8.0e-6
m=4, {=1dB, C=4, KL=1.1e-4, MSE=8.3e-6 |-
k=1, p=1, C=6, KL=1.6e-4, MSE=1.3e-5
k=3, p=1, C=5, KL=1.2e-4, MSE=1.0e-5 i
n=0.7, u=0.4, C=8, KL=6.1e-4, MSE=6.9e-5
n=5, p=10, C=3, KL=1.1e-4, MSE=2.3e-5 |
k=1, p=3, m=3, C=4, KL=1.2e-4, MSE=9.8e-6
Exact Distribution

16

1.4

* % O *¥ O % O

1.2

f,()

0.8

0.6

0.4

0.2

Figure 3. MoG approximation for different channel models.

Further verification of the accuracy via numerical meansddressed in section VI. The
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purpose of this approach is not to increase the accuracyecipiproximation, as it has already
been achieved in all aforementioned fading alternativas réither to provide another unifying
and simplifying distribution that has the potential of apgmating all contemporary fading,

composite and non-composite, models via the EM algorithm.

V. PERFORMANCEANALYSIS OF WIRELESS CHANNELS

The MoG distribution provides a simplifying and unifying aysis for wireless communi-
cation systems over various composite and multipath fadimgnnel models. In this section,
we first derive several performance metrics, which can bel dsethe evaluation of wireless
communication systems in a generalized manner. In paaticwe derive expressions for the
raw moments of the MoG model, the amount of fading (AF), thieage probability, the channel
capacity, and the MGF. We further derive expressions forSER performance oE-branch

MRC diversity system and the average probability of detector cognitive radio networks.

A. Moment Generating Function

By definition, the MGFAZ, (s) = E[e~*"] is given by

2
; > ] ( ‘“i) e
sl A | 9)

Applying the change of variables= 2 and after expanding the exponentials and considerable

mathematical simplifications, we get

/ - (2-8) (:c —2g2x+*;;) " 0

Z \/%771 277i

where 3; = 1 + 2n?ys. Then, after some mathematical manipulations, we obtain

oxp (Y
Mv(s):iu% p( 2"2'1)/00 exp (—22) dz, (31)
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which leads to the following expression

9=5 s () e (5) @

where(.) is the Gaussian Q-function defined @gx) = F [ exp ( 2) du.

B. Raw Moments

The n™ raw moment of the MoG distribution, by definition, is

Wim)Y,

) e N )

By taking the change of variablas= % and after some mathematical simplifications, we get

¢ o] 2n 2
= x (z — i)
E[R"] = E w7 exp | ———— | dx, (34)
ol i=1 o V2m ( 277;‘2 )

Alternatively, we can write (33) as

sz E[X?], (35)

where X; ~ N (u;,¢;) is the i’ Gaussian component. Using the MGF approach, (35) can be

expressed as
E =) w?" G =0 (36)

where My, (s) = E{e~*Xi} is the MGF of X;, which is given by

s’
My, (5) = exp (uis " 17) (37)

Equation (36) is mathematically convenient for solving finst few moments.
An alternative approach that yields a closed form exprassam be attained by following the

same method in [37], where théh raw moments ofX; are derived as

I'(4+3) v 1ol
E[X!] =n22—2 2L [ |—— — —° 38
[ ] ; ﬁ 1 1|i 2727 27]22:|’ ( )
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wherev is an even integer (note that there is no loss in generality).

By substituting (38) into (35), the’® raw moment of the MoG distribution is derived as

n+ 3 IR
Zwﬁnn%yl (\/— ) 1F1 |: n,=,— ul:| ; (39)

C. Amount of Fading

The AF measure was firstly introduced by Charash [38], as asumeaof the severity of
the fading channel. The AF requires the knowledge of only fir@ two moments in the

corresponding fading channel, where it is defined by

AF — w. (40)
E[]

By solving (39) for the first two moments, we obtain

AF_ Elclwl (:ul +6,u17]1 +3n14>
- 2
Ziczl wi (4 =+ n; )]

1. (41)

D. Outage Probability

The outage probability is a standard performance critetised over fading channels. It is
defined asF(y,,) = [ f,(x) dz. By performing the following change of variables applied to

(23)
— M

y=-—, (42)
i

=218

and after some mathematical manipulations, the CDF of (28)be written as

-
c \% %h Hi 9
%h E

/ exp (—%) dy. (43)
Further simplifications yield

roo-fulo(8)-o(5)) e
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E. Average Ergodic Channel Capacity

When only the receiver has knowledge about the channel istfatenation (CSl), the ergodic
capacityC.,, is expressed as

B

Cerg - E

/0 T +9) £ () dn (45)

where B is the channel bandwidth measured in Hertz. Unfortunatbly,exact solution of (45)
is intractable. Instead, a computationally simple and \acgurate form can be obtained by
following [39], whereln(1 + v) is expanded about the mean value of the instantaneous SNR,

E[v], using Taylor’s series, yielding

In(l1++)=In(1+E[y])+
(46)

whereo (.) is one of the Landau symbols defined fas- o (¢) means that£ — 0.
Substituting the logarithm function approximation fron6)4nto (45), a second order approx-
imation for the ergodic capacity can be evaluated. It is chdbeat the solution to (45) is obtained

by taking the expectation dh (1 + ). Hence, taking the expectation of (46), we get

E[v*] — E? [7]

Cory e 5= (4 ER) - S

In2 (47)

whereE [y"] is evaluated using (39).

F. Symbol Error Analysis

In order to further demonstrate the significance of the Mo&riiution, we study the perfor-
mance of independent but not identically distributéd.¢.d.) L-branch MRC diversity receiver
over various composite and non-composite fading scenafios MRC scheme is the optimal

combining scheme at the expense of increased complexigrenthe receiver requires knowledge
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of all channel fading parameters [2]. Here, the receiverssumall received instantaneous SNR

replicas~, as follows

L
Tmre = Z Ve (48)
k=1
The corresponding MGF is thus
L
L
My, o () = Bfe™ 2k} = [ 0, (), (49)
k=1

wherelM, (s) is derived in (32). The SERY; (E), for coherent binary signals, can be computed

as follows [2]
Py (B) =By [Q (V290 )| (50)

where g is some constant resembling several coherent binary sigeath as coherent binary
phase shift keying (BPSK) and coherent orthogonal binaegudency shift keying (BFSK)
corresponding tgg = 1 andg = % , respectively. By substituting the Q-function by its ddfom

in [2, eq. 4.2], the SER is written as

gry]\fRC
/ / ( sin? ( )) Frssne (Varre) @Vasne 0. (51)

The inner infinite integral in (51) is the equivalent MGF d&ed in (49), yielding

/H (Sm2 )d@ (52)

where M, (.) was derived in (32). Following a similar approach, and byjzitig [2, eq. 8.23]

and [2, eq. 8.12], the SER expressions ldrPSK and squard/-QAM signaling schemes are

given, respectively, by

1 (MMl)7r Sln2 (LI)
P, (E) = i 1145, ( S (0) ) do, (53)
4 (VM =1 3 9QAM VM —1 i 9QAM
P. (B) W< VT )[/ 112, (i) ( VT >/ [ (st ) )
(54)

June 24, 2015 DRAFT



20

G. Probability of detection

Cognitive radio (CR) is a promising technology that can ekeathe performance of wireless
communications [40]. The basic concept behind opportiniBR, is that a secondary user
is allowed to use the spectrum, which is assigned to a liceqsanary user (PU), when
the channel is idle [41]. The CR users perform spectrum Bgnsi order to identify idle
spectrum. Energy detection is the most common sensing itgehin CR networks, due to its
low implementation complexity and no requirements for kiemlge of the signal [42]. Several
studies have been devoted to the analysis of the perfornairesgergy detection-based spectrum
sensing for different communication and fading scenard.[The probability of detection?,
is an important performance evaluation metric represgritie probability that an active PU is
detected by the CR node. Over fading channels, the averdgetida probability is evaluated

by averaging the AWGN channél, over the SNR distribution as follows:
7i- [ Q. (VELVA) £, () d (55)
0

where @, <\/2_, \/X> is the probability of detection over AWGN channel wih, (., .) being
the generalized Marcum-Q function [44]. Moreovgiis a predefined energy detection threshold,
u is the time bandwidth product which corresponds to the nurobsamples of either the in-
phase {) or the quadrature(f) component, and = 0‘% is the received SNR, whetg, is the
signal energy N, the one-sided noise power spectral density, and the chaaireE [|?|] =

The Marcum Q-function can be expressed as [45]

Qu<\/7,\/7>—6_727 Ln) (56)

I'(u+mn)

By substituting (23) and (56) in (55), we obtain
c _ #7,22 (1 ;) o N _ 5 2n+1
2n; i +2 I'(u+n,3)L2n+1)(Fnd) > — 1
Z D—(2n+1) 77—

V2 oo nT(u+n) (290 + 1)%—2+1 27 + 1
(57)
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where D,, (i) is the parabolic cylinder function [16].

The truncation of the infinite series in (57) generates thieang error

i

1-—1 2nt1
c w( 4%%2) oo T(utn3)TEn+1)(n?) "2

6@ =Y = Zn:pﬂ n!F(Hn)(ﬁnngl)znzﬂ D_on+1) (—NT—QH) (58)

Hf

_ 1— 2n+
B ZC wie 2m§< 4w?+2> Zoo [ (u+n,3 )T(2n+1)(Fn ) D B s
1

n!T'(u+n) (2’ynL —l—l)

1

2n+1
o T (u+n,3)T(2n+1)(Fn )—2—D _ s 59
=0 T (utn) @32 41) T —@na) \ T S (59)

Since thel” (a, z) function is monotonically decreasing with respect:tghus,T’ (u +n, %) <

I' (u 4+ n). Hence, the infinite sum in (59) can be upper bounded by:

2n+1

B = T(2n+1) n? 2
T=2 n! (277;3 +1

n=0

Hi
D_ (o, —_— (60)
ey ( niv/ 277 + 1)

By expressing the parabolic cylinder function in terms @& tonfluent hypergeometric function

according to [16, eq. (9.240)], one obtains

2n+1

_ s »
= 27 \277 +1

1 11 10 ) V20 ( 3 1 )

—F (n+ =, =, L + Fi{n+1, ———

nl' 1( 2222292+ 1)) T (n+ L) my/E+1 27 27 (2907 + 1)
(61)

By expanding the involved hypergeometric functions an@rasiome algebraic manipulations,

the following equality is valid

T4 ' B 2041
4n2(2m7 +1) % 7 < (2777?4_1)) (n + Q)F(n + 2) 77712 2
T _\/76 Z 1 | | 47n2 + 92
0o 5 2 n! n; +
( w )Z | i
LY e Z 2E ) (n+2)T(n+2) ( ; ) :
17“/27772.24—1 - % 7! n! 4m? + 2
(62)
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By recalling thatr = z!/(x — 1)! and with the aid of the Pochhammer symbol identities, it

follows that

ug

77”72 T an2(@yn2+1) § : § : (5) +i ( )" 4m7+2 2n7 (2yn7+1)
1 T 1
(3

i+ 2" ), (D n! il

(63)

o oo 2 \" p? ‘
" V2 Z Z (1),4: B)n (47’7?“) (277?(27?7?“))
i/ 2777? +17= i=0 (%)z (1)” n! !

Importantly, the above infinite series can be expressedased-form in terms of the Humbert

U, function [46] yielding

2
wje a0 yrn? 1.1 yrn? u?
< — U | -,3, 5, 1; - -
; Z Vo |\ 4z +2 (2’ [270 A+ 27 207 (27 + 1)

=02 2
= VT; o
+ i /771-\1]1 ( 5y ; )

4777 + 27 207 (29m? 4 1)

2

B 647M2<2%i2+1) r (U +n, 2) I (2n + 1) (7772) D (2n41) ( i )
n

= D (u+n) @2 +1)7 2 + 1

(64)
VI. SIMULATION RESULTS

In this section, we present some analytical and simulatsolts for the outage probability,
the average ergodic capacity, the SER of MRC scheme and #rage/detection probability for
cognitive radio.

Fig. 4 and 5 depict the outage probability, as in (44), vetsasthreshold SNRy,, and the
average SNRy, respectively. Two NL scenarios are considered in Fig. 4eretthe multipath

severity is reduced fromn = 1 to m = 3, and twox — p scenarios are considered in Fig.
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5, where the control parameter is increased fromx = 1 to x = 3. Here, one can notice
how accurate the approximation is. Also, it is very notidedibw the multipath fading severity

affects the outage probability performance.

1k
0.8 - N 8
7 =0dB % (Analytical) m=1,{=1 dB
. 7& . +  (Analytical) m=3,(=1 dB
£ 7=5 K Simulation
% 3
o 0.6 il
g 06
a
(3]
j=2
8
I
0.4
0.2
0= — e i i
0 2 4 6 8 10 12 14 16 18 20

Threshold SNR Yin (dB)

Figure 4. Analytical and simulated outage probability wers,;, for two scenarios.

Fig. 6 depicts the capacity, as in (47), for some selectedaswes from then — pu, Kk — p
and x — p Shadowed fading models. As shown, the severe NLOS configaraf then —
scenario exhibits the worse capacity. In addition, one @mntbat introducing the Nakagam-
shadowing to the: — p distribution has worsened the capacity. The term simulateders to
cross-validating the results via the recursive adaptivgson quadrature method performed by

the aid of a mathematical package.
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Figure 5. Analytical and simulated outage probability wesr§ for two scenarios.
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Figure 6. Analytical and simulated ergodic capacity,% =
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Fig. 7 illustrates the analytical SER of the BPSK signalinbesne for various NL scenarios,
including mild and severe fading cases in both shadowingnanltipath. The solid squared line
represents the corresponding Monte Carlo simulation. fuige noticeable how the multipath
severity plays greater role in determining the SER, wherebagrved, incrementing. by only
1 yields a SER performance improvement of about an order ohrhade at observed mid-range
average SNR values. On the other hand, increasgifrgm 1 to 3 dB, while fixing m, yields a

very similar SER performance.

*  (Analytical) m=1,{=1 dB
O (Analytical) m=1,{=2 dB
7 A (Analytical) m=1,{=3 dB

078 . (Analytical) m=2.¢=1 dB

+  (Analytical) m=3,{=1 dB
—+H— Monte Carlo Simulation
g T I
10
0 5 10 15

Average SNR 7 (dB)

Figure 7. Analytical and simulation SER of 2-branch MRC déity receiver for BPSK signaling scheme for RL and NL

fading channels.

Fig. 8 features the analytical SER of the 16-QAM signalingesne for various.— . Shadowed
fading scenarios, where the control parameteaind the shadowing severity parameterare
varied. Here,L corresponds to the number of antennas, and it is noticehbteour model is

still very accurate for high antenna diversity order.
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SER

(Analytical) k=1,u=1,m=1 (L=1)
(Analytical) k=1,u=3,m=1 (L=1)
(Analytical) k=1,p=1,m=3 (L=1)

*
5 *
1
O  (Analytical) k=1,p=1,m=1 (L=2)
@)
@)

10

(Analytical) K=1,u=3,m=1 (L=2)| ... ........ociiirerrirers, ]

(Analytical) k=1,p=1,m=3 (L=2)
—+&— Monte Carlo Simulation

-7

10 Il |
5 10 15 20

Average SNR Yo (dB)

10

Figure 8. Analytical and simulation SER &fbranch MRC diversity receiver for 16-QAM signaling schefoe for various

x — 1 Shadowed fading scenarios.

*  Proposed expression, m=2, {=3 dB, C=4
+  Proposed expression, m=4, (=1 dB, C=4

0811 o Theoretical NL : ]

I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P

Figure 9. ROC curves for Nakagami-Lognormal channel wits 3 and%y = 5 dB
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Fig. 9 depicts the receiver operating characteristic (RO@ye, whereP; evaluated using
(57) is compared to the theoretical expression from (55sstuiting £, (v) by the NL fading
channel pdf. These curves, depictiffg versus the probability of false alarn#(), are essential
for the performance evaluation of the CR. We consider a singér performing spectrum sensing
over NL channel wheren is the Nakagamin fading parameter an¢?, measured in dB, is the
variance of the Gaussian random variable definedVby- 10logio(c), Where o corresponds
to the Lognormal shadowing. The parameters for the MoG ildigion are calculated via the
EM algorithm and are provided in Appendix A. It can be obsdrteat, for both cases, the
approximation is very accurate over all the valuesiof)( Moreover, by evaluating the truncation
error upper bound using (64), we conclude that althoughrinecation error depends on many
parameters, considering the practical case wiigre- 0.1 and truncating the series at= 12

ensures that the error does not excéd® for the considered channels.

VIlI. CONCLUSION

In this paper, the MoG distribution has been considered tragtterize the amplitude and
the SNR statistics for wireless propagation. The parammeatethe mixtures are evaluated by the
means of the EM algorithm and the MSE and KL have been evaluatehallenge the proposed
model’s accuracy. The proposed distribution enjoys bathmp#city and accuracy and we have
shown that the proposed pdf expression can accuratelysepra wide range of both composite
and non-composite channels. It should be highlighted thatadopted approach provides a
generalized distribution for wireless communication sgst where all channels can be modeled
with the same analytical expression. Several analyticalst@ssential for the evaluation of
performance analysis of digital communications were priesk This new model can be applied
to various scenarios including, diversity systems, coafpex communications, and cognitive

radio networks.
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APPENDIX A

MoOG PARAMETERS FORSELECTED SCENARIOS

The following tables provide the approximation parametersall scenarios presented in the

paper.

Table |

MOG PARAMETERS FORRL FADING CHANNEL WITH ¢ = 3dB AND Clpe = 7

1 wj i i

1| 0.24621 | 0.76637| 0.1888

2| 0.28164 | 1.0954 | 0.27482

0.15143 | 1.5254 | 0.39455

0.077823| 0.26911| 0.088815

0.025355| 2.0441 | 0.59471

(o2 T I &2 B I S @V}

0.19662 | 0.48573| 0.14066

7 | 0.020909| 0.11846| 0.050183

Table Il

MoOG PARAMETERS FORNL FADING CHANNELWITH m =2, = 1dB AND Copt = 4

1 w; i i

1| 0.11009| 0.48576| 0.14483

0.14047| 1.3455 | 0.34267

0.37935| 1.0845 | 0.25099

AW N

0.37009 | 0.77746| 0.19545
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Table 111

7 w; i ni

1| 0.31126| 0.88351| 0.14927

2 | 0.13366| 1.2306 | 0.25803

3| 0.39008| 1.0756 | 0.19479

4 0.165 | 0.67541| 0.1405
Table IV

MOG PARAMETERS FORNL FADING CHANNEL WITH m = 4, ¢ = 1dB AND Cypy = 4

MOG PARAMETERS FORk — i FADING CHANNEL WITH k = 1, gt = 0.5 AND Clopy = 10

i w; i i 1 w; i i

1 | 0.005263| 0.0052273| 0.0032608| 6 0.1401 | 0.39636 | 0.11622

2 | 0.050502| 0.11458 | 0.038823 | 7 | 0.013249| 0.020352| 0.0089878

3| 0.18712 1.4475 0.3582 8 | 0.22111 | 0.6682 0.18341

4 | 0.21379 1.0393 0.24872 | 9 | 0.026951| 0.052855| 0.019739

5| 0.054249| 1.8764 0.48797 | 10 | 0.087675| 0.22199 | 0.069679
Table V

MOG PARAMETERS FORk — 1 FADING CHANNEL WITH £ =3, t = 1 AND Clopt = 5

ws

i

i

0.248

1.2295

0.29068

0.23197

0.59067

0.17727

0.017972

0.24425

0.099698

0.2658

1.0976

0.20736

g~ W N

0.23626

0.86379

0.16438
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Table VI

MOG PARAMETERS FOR? — i FADING CHANNEL WITH 7 = 0.5, 1 = 0.2 AND Copy = 14

{ w; i i ( w; i i

1 0.092351 0.21051 | 0.061239| 8 0.17858 0.58555 0.15984

2 0.030907 | 0.034416| 0.012126| 9 | 0.0052011| 0.00092585| 0.00068077
3 0.063814 | 0.12078 | 0.036005| 10 | 0.0091546| 0.0047069 | 0.0022762
4 0.092301 1.8163 0.41813 | 11 0.11756 1.352 0.28677

5 | 0.00030556| 4.5372 0.47284 | 12 | 0.019634 0.014034 0.0055603
6 0.1304 0.35591 | 0.10026 | 13 | 0.029039 2.5233 0.61922
7 0.18817 0.92188 | 0.22362 | 14 | 0.042591 | 0.067048 0.021155

Table VI

1 wj i i

1] 0.32677| 1.063 0.13602

2 | 0.32789| 0.89548| 0.099855

3 | 0.34533| 1.0116 | 0.10407
Table VIII

1 w; i i

1| 0.40871 | 0.86626| 0.18319
2| 0.40942 | 1.111 | 0.22912
3 | 0.049081| 1.4037 | 0.25915
4 | 0.13279 | 0.61749| 0.15039

MOG PARAMETERS FOR7 — it FADING CHANNEL WITH 7 = 5, ;t = 10 AND Copr = 3

MOG PARAMETERS FORk — it SHADOWED FADING CHANNELWITH Kk = 1, =3, m = 3 AND Copt = 4
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