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Abstract

In this paper, we consider a unified approach to model wireless channels by a mixture of Gaussian

(MoG) distributions. The proposed approach provides an accurate approximation for the envelope and

the signal-to-noise ratio (SNR) distributions of wirelesschannels. Simulation results have shown that

our model can accurately characterize multipath fading andcomposite fading channels. We utilize the

well known expectation-maximization algorithm to estimate the parameters of the MoG distribution and

further utilize the Bayesian information criterion to determine the number of mixture components auto-

matically. We employ the Kullback-Leibler divergence and the mean square error criteria to demonstrate

that our distribution provides both high accuracy and low computational complexity. Additionally, we

provide closed-form expressions or approximations for several performance metrics used in wireless

communication systems, including the moment generating function, the raw moments, the amount of

fading, the outage probability, the average channel capacity, and the probability of energy detection for

cognitive radio. Numerical Analysis and Monte-Carlo simulation results are presented to corroborate

the analytical results.
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I. INTRODUCTION

Modeling the terrestrial wireless propagation is of importance for the design and performance

analysis of wireless systems. In a typical mobile radio propagation scenario, the received signal

presents small scale power fluctuations, due to multipath propagation, superimposed on large

scale signal power fluctuations, also known as shadowing, which is due to the presence of

large obstacles between the transmitter and receiver. The small scale fading results in very

rapid fluctuations around the mean signal level, while shadowing gives rise to relatively slow

variations of the mean signal level [1]. A common example of composite fading channels is the

Nakagami-Lognormal (NL) channel. In this case, the densityfunction is obtained by averaging

the instantaneous Nakagami-m fading average power over the conditional probability density

function (pdf) of the log-normal shadowing, resulting in a complicated pdf that has no closed

form expression [2].

TheK [3] and generalized-K (KG) distributions [4], [5], have been introduced as relatively

simpler models to characterize composite fading channels,in which the Lognormal distribution

is replaced by the Gamma distribution in the Rayleigh-Lognormal (RL) and NL distributions,

respectively. Theκ− µ and theη − µ distributions [6] are general fading distributions for line-

of-sight (LOS) and non-line-of-sight applications, respectively. These distributions can represent

the Rice (Nakagami-n), the Nakagami-m, the Rayleigh, the One-Sided Gaussian, and the Hoyt

(Nakagami-q) distributions as special cases. Quite recently, a generalization of theκ-µ fading

channel, where the LOS component is shadowed, has been proposed in [7]. All these models

contain the modified Bessel function of the first or second kind, which complicates further

analytical performance measures. In [8], the Lognormal distribution was replaced by the Inverse-
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Gaussian distribution, resulting in the Rayleigh/InverseGaussian (RIGD) distribution, followed

by its generalized versions, i.e., theG-distribution [9], theκ − µ/Inverse Gaussian distribution

[10] and theη − µ/Inverse Gaussian distribution [11]. The drawback of thesedistributions is

their increased complexity due to the presence of the modified Bessel function of the second

kind. Recently, an interesting work has been proposed by Atapattu et al. [12], where several

channel models were expressed as a mixture Gamma (MG) distribution via Gauss-Quadrature

approximation. TheMG model is more accurate than the aforementioned alternatives, and it has

the advantage of simplicity as well.

Finite mixtures of distributions provide a mathematical-based approach to statistical modeling

of a wide variety of random phenomena [13]. In this paper, an alternative model, that represents

both composite and non-composite fading channels by Mixture of Gaussian (MoG) distributions

is presented. The approximation method is based on the expectation-maximization (EM) algo-

rithm, which was coined by Dempsteret al. in their seminal paper [14]. The EM algorithm is

essentially a set of algorithms exceptionally useful for finding the maximum likelihood estimator

(MLE) of any distribution in the exponential family [15], and widely used for the missing data

problem (i.e., modeling a mixture distribution). The main contributions of this paper can be

summarized as:

• We propose MoG distributions to model both the envelope and the signal-to-noise ratio

(SNR) distributions of wireless channels. The proposed approach is proven to accurately

model both composite and non-composite channels in a very simple expression.

• We determine the number of components using the Bayesian information criterion (BIC),

while the corresponding parameters for the mixture are evaluated using the EM algorithm.

• We demonstrate the importance and tractability of our modelby deriving several tools for

the performance analysis of single-user communications such as the outage probability and

raw moments. Moreover, we derive the moment generating function (MGF), of which the

symbol error rate (SER) ofL-branch maximal ratio combining (MRC) diversity system is
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presented for various signaling schemes. Finally, we derive an approximation for the average

detection probability in cognitive radio networks and provide an upper bound to the error.

• Numerical analysis and Monte Carlo simulation results are presented to corroborate the

derived analytical results.

The rest of this paper is organized as follows. Section II gives a brief description of several

wireless channel models of interest. In Section III, the MoGdistribution is introduced together

with a brief description of the EM algorithm. Section IV presents a detailed comparison of

the MoG distribution to the channel models it can approximate. In Section V, performance

metrics, such as the MGF, the raw moments, the amount of fading, the outage probability, and

the average channel capacity are derived using the MoG distribution. Simulation results and

numerical analysis are presented in Section VI. Finally Section VII concludes this work.

II. FADING CHANNELS

Radio-wave propagation through wireless channels undergoes detrimental effects characterized

by multipath fading and shadowing. Modeling of such fading channels is typically a complex

process and often leads to intractable solutions. Considerable efforts have focused on the statis-

tical modeling which resulted in a wide range of statisticalmodels for fading channels [2].

In this section, we give a brief description of some well known channels that often lead to

intractable performance analysis of wireless communication systems.

A. The Nakagami-Lognormal Channel

The NL fading model is a mixture of Nakagami-m distribution and Lognormal distribution

obtained by averaging the instantaneous Nakagami-m fading average power over the pdf of the

log-normal shadowing as follows

fα (α) =

ˆ ∞

0

fα (α|σ) fσ (σ) dσ, (1)
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wherefα(α|σ) is the Nakagami-m distribution given by

fα (α|σ) =
2mm

σmΓ (m)
α2m−1e−mα2

σ , (2)

where Γ(.) is the gamma function [16] andm is the fading parameter, which is inversely

proportional to multipath fading severity i.e., asm → ∞, multipath severity diminishes. Note

here thatm = E
2{γ}

Var{γ} . The average powerσ follows a Lognormal distribution, contributing to

shadowing at longer routes, expressed as

fσ (σ) =
e

−(10 log(σ)−M)2

2ζ2

√
2πσλζ

, (3)

whereλ = ln 10
10

, M and ζ2, measured in dB, are the mean and variance of the Gaussian RV

V = 10 log10(σ), respectively. In order to compare (2) with that of the Gaussian RVX = ln(σ),

the following relations apply [17]

X = λV,

MX = λM,

ζX = λζ.

(4)

An important remark regarding the Lognormal distribution is that, whileζ essentially defines

different Lognormal distributions,M is effectively a scaling factor [17]. DenotingMn = 10
M
10

andx = σ
Mn

, then it is straightforward to show that

fα (αMn) =
1

Mn

fα (α|M = 0) . (5)

Therefore, it is only sufficient to perform an approximationfor M = 0 dB, and generalize the

results to other scaling factors.

Let Es denote the energy per symbol,N0 be the single sided power spectral density of the

complex additive white Gaussian noise (AWGN) and assumingE [|α2|] = 1, whereE[.] denotes

the expectation operator. By applying the following transformation to (1)

γ = α2γ, (6)
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whereγ = E[γ] = Es

N0
is the average SNR, we obtain the NL distribution as

fγ (x) =
(8.686)mm

Γ (m)
√
2πζ

ˆ ∞

0

xm−1

γmσm+1
e−

mx
γσ e

−(20 logσ)2

2ζ2 da. (7)

The SNR density function is not expressed in a closed form, making the performance analysis

of wireless communications under this particular channel very complicated or intractable. Note

that the RL distribution is a special case of NL distributionwith m = 1.

B. The κ− µ and η − µ Fading Models

With the emergence of relatively new wireless mediums, suchas which occurs in underwater

acoustic [18], [19] and body communication [20]–[23] fading channels, the wireless research

community have had a reincarnated interest in finding more accurate and generalized fading

models that provide a better fit to new and realistic measurements. Consequently, new fading

models, such as theκ− µ andη − µ distributions, were proposed [6]. Theκ− µ fading model

is mostly used to represent the multipath fading with LOS condition and includes the following

fading models as special cases: the Nakagami-n (Rice), the Nakagami-m, the Rayleigh, and the

One-sided Gaussian. The instantaneousκ− µ SNR distribution is expressed as [6].

fγ (x) =
µ
(

1+κ
γ

)
µ+1
2

κ
µ−1
2 exp (µκ)

x
µ−1
2 exp

(

−µ (1 + κ)

γ
x

)

Iµ−1

(

2µ

√

κ (1 + κ) x

γ

)

, (8)

whereκ > 0 is the ratio between the total power of the dominant components and the total

power of the scattered waves,µ > 0 is given byµ = E
2{γ}

Var{γ}
(1+2κ)

(1+κ)2
, and Iµ (.) is the modified

Bessel function of the first kind and orderµ [16, eq. 8.445]. It is worth mentioning that asκ

tends to zero, theκ − µ distribution degenerates to the exact Nakagami-m distribution, with

µ = m = E
2{γ}

Var{γ} . Additionally, by settingµ = 1, theκ− µ distribution degenerates to the exact

Nakagami-n distribution, withκ = n.

Complementing theκ−µ model, theη−µ model was proposed to represent NLOS multipath

environments, where it includes the Nakagami-q, the Nakagami-m, and the One-Sided Gaussian
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distributions as special cases. The instantaneousη − µ SNR distribution is expressed as [6].

fγ (x) =
2
√
πµµ+ 1

2hµ

Γ (µ)Hµ− 1
2γµ+ 1

2

xµ− 1
2 exp

(

−2µhx

γ

)

Iµ− 1
2

(

2µH

γ
x

)

, (9)

whereµ > 0 is given byµ = 1
2

E
2{γ}

Var{γ} + 1
2

E
2{γ}

Var{γ}
(

H
h

)2
, and parametersh andH can have two

different formats corresponding to two different physicalphenomena as follows: In Format 1,

h = 2+η−1+η

4
and H = η−1−η

4
, where 0 < η < ∞ is interpreted as the power ratio between

the independent in-phase and quadrature components. In Format 2, the in-phase and quadrature

components are correlated and have a power ratio of unity. The two corresponding parameters

are defined byh = 1
1−η2

andH = η

1−η2
, where−1 < η < 1 represents the correlation between

the in-phase and quadrature components. The two formats canbe obtained from each other using

the relationηFormat1 =
1−ηFormat2

1+ηFormat2
. It is worth mentioning that theη − µ distribution degenerates

to the Nakagami-q distribution by settingµ = 0, with q =
√
η in Format 1 andq =

√

1−η

1+η
in

Format 2.

C. The κ− µ Shadowed Fading Models

The κ − µ Shadowed fading model, was firstly proposed as a LOS Shadow fading model

[7], where unlike the NL formulation above, it is assumed that only the dominant components

of the multipath clusters are subject to random fluctuations. The unconditional instantaneous

SNR distribution of theκ− µ Shadowed model is obtained by averaging the conditionalκ− µ

distribution over the Nakagami-m distribution as follows

fγ (γ) =

ˆ ∞

0

fγ|ξ (γ; ξ) fξ (ξ) dξ

=
µ (1 + κ)

µ+1
2

γκ
µ−1
2

(

γ

γ

)
µ−1
2

exp

(

−µ(1 + κ)γ

γ

)

mm

Γ (m)
Θ (γ) ,

(10)

where Θ (γ) ,
´∞
0

2 exp (−ξ2(µκ+m)) ξ2m−µIµ−1

(

2µξ
√

κ(1+κ)γ
γ

)

dξ, which results in the

following closed-form expression

fγ (γ) =
µµmm (1 + κ)µ

Γ (µ) γ (µκ+m)m

(

γ

γ

)µ−1

exp

(

−µ (1 + κ) γ

γ

)

1F1

(

m,µ;
µ2κ(1 + κ)

µκ+m

γ

γ

)

, (11)
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where the function1F1 (., .; .) is the confluent hypergeometric function [16, eq. 9.210.1],defined

as 1F1 (a, b; z) = 1 + a
b
z
1!
+ a(a+1)

b(b+1)
z2

2!
+ a(a+1)(a+2)

b(b+1)(b+2)
z3

3!
+ ....

Interestingly, in a very recent work [24], it has been shown that under a new formulation the

κ−µ Shadowed fading model can represent theη−µ distribution as a special case withµ = 2µ,

κ = 1−η

2η
, andm = m, where the underlined symbols belong to theκ− µ Shadowed model for

the sake of clarity.

III. T HE MOG DISTRIBUTION

We consider the problem of estimating the wireless channels’ density functions. Gaussian

mixtures [25]–[29] are often used due to the fact that their individual densities are efficiently

characterized by the first two moments [30], [31]. The MoG distribution is attributed to have

the Universal-approximation property, as it has been proven by Weiners approximation theorem

[25], which states that the MoG distribution can approximate any arbitrarily shaped non-Gaussian

density. The objective of this section is to provide a unifiedMoG distribution that can accurately

represent different fading channels.

A. Parameter Estimation of the MoG Distribution

Let theith entry of a random data vectorY = (y1, .., yn), which represents the channel fading

amplitude of the composite models, be regarded as incomplete data and modeled as a finite

mixture of Gaussians as follows

p(yi|θ) =
C
∑

j=1

ωjφ(yi, θj), yi ≥ 0 (12)

wherei = 1, ..., n andC represents the number of components. Eachjth component is expressed

as

φ (yi,θj) =
1√
2πηj

exp

(

−(yi − µj)
2

2η2j

)

, (13)
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where the weight of thejth component isωj > 0, with
∑C

j ωj = 1. The parameterθj =
(

µj, η
2
j

)

correspond to the mean and variance of thejth component, respectively.

Let the complete dataX be the joint probability betweenY andZ, whereZ ∈ {1, .., C} is

a hidden (latent) discrete RV that defines which Gaussian component the data vectorY comes

from, namely,

p (Z = j) = ωj, j = 1, .., C. (14)

Ideally, one would like to maximize the log-likelihood function as follows

θMLE = argmax
θ∈Θ

L (θ) (15)

= argmax
θ∈Θ

log p (y|θ) .

However, maximizingL (θ) is not tractable and difficult to optimize [32]. Instead, theEM

algorithm solves the MLE problem by maximizing the so-called Q-function as follows [33]

θ(m+1) = argmax
θ∈Θ

Q
(

θ|θ(m)
)

(16)

= argmax
θ∈Θ

EX|y,θ(m) [log pX (X|θ)] ,

wherem is the iteration index. The EM algorithm is performed by two iterative steps, namely

the expectation step (E-step), and the maximization step (M-step). We set initial guesses of the

MoG coefficients, i.e.ω(0), µ(0), η(0), whereby in theE-step, we compute the posterior probability

(membership probability)

ρ
(m)
ij =

ω
(m)
j φ

(

yi|µ(m)
j , η

(m)
j

)

∑C

l=1 ω
(m)
l φ

(

yi|µ(m)
l , η

(m)
l

) . (17)

In theM-step, the coefficients are updated by differentiating theQ-function with respect toω,

µ, andη, resulting in the following analytical(m+ 1)th estimates

ω
(m+1)
j =

1

n

n
∑

i=1

ρ
(m)
ij , j = 1, ..., C, (18)

µ
(m+1)
j =

1

n
(m)
j

n
∑

i=1

ρ
(m)
ij yi, j = 1, ..., C, (19)
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η
(m+1)
j =

1

n
(m)
j

n
∑

i=1

ρ
(m)
ij

(

yi − µ
(m+1)
j

)2

, j = 1, .., C. (20)

This iterative procedure is terminated upon convergence, that is when
∣

∣L(m+1) − L(m)
∣

∣ < δ,

where

L(m) =
1

n

n
∑

i=1

log

(

C
∑

j=1

ω
(m)
j φ

(

yi|µ(m)
j , η

(m)
j

)

)

, i = 1, ..., n, (21)

is the log-likelihood, andδ is a preset threshold.

The EM algorithm is guaranteed not to get worse as it iterates, i.e. L(m+1) ≤ L(m) [14].

Hence, the lowerδ is set, the more accurate the approximation would be. In addition, one can

always increase the accuracy by increasing the number of components. Though, this technique

might be stuck in a local maxima, since the likelihood is a marginal distribution. However, one

could mitigate this problem by heuristics and multiple initial guesses. In this regard, Doet al.

[32] suggest to initialize parameters in a way that breaks symmetry in mixture models. Finally,

it is noteworthy to point out that the EM algorithm has an advantage of being a completely

unsupervised learning algorithm, which makes it very convenient for our density estimation

application. For more details, one can refer to [15], [33], and references therein.

B. The pdf of the Instantaneous SNR of the MoG Model

With the aid of the EM algorithm, all fading channels’ amplitudes can be represented as

fα (x) =
C
∑

j=1

ωj√
2πηj

exp

(

−(x− µj)
2

2η2j

)

, x ≥ 0. (22)

By taking the change of variablesγ = γ x2, the pdf of the instantaneous SNR of the MoG

distribution can be written as

fγ (γ) =

C
∑

j=1

ωj√
8πγηj

1√
γ
exp







−
(
√

γ

γ
− µj

)2

2η2j






, γ ≥ 0. (23)
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C. Determining the optimal number of mixture components

Generally, when fitting a finite mixture distribution, the determination of an appropriate number

of mixture components is inevitably a necessity. Choosing asmall number of components would

yield an inaccurate representation, while a very large number of components would unnecessarily

increase the complexity of the distribution and may cause over-fitting. In addition, Chen [34] has

shown that knowledge of the the number of components yields afaster optimal convergence rate

for the estimates of a finite mixture than it would when the number of components is unknown.

In this subsection, in order to derive an appropriate numberof mixture components, we adopt

a simple yet effective unsupervised information theoreticcriterion, called the BIC, which was

introduced by Gideon Schwarz in [35].

Let x = {x1, ..., xz, ..xM}, correspond toM independent and identically distributed (i.i.d.)

samples, drawn from any of the envelope distributions of theactual aforementioned fading

models, then the log-likelihood function of the MoG distribution can be expressed as

LC

(

θ̂

)

= lnPr
(

x|θ̂, C
)

=

M
∑

z=1

ln

{

C
∑

i=1

ω̂i√
2πη̂2i

exp

(

−(xz − µ̂i)
2

2η̂2

)}

(24)

whereθ̂ = [ω̂1, ω̂2, ..., ω̂C , µ̂1, µ̂2, ..., µ̂C , η̂1, η̂2, ..., η̂C ] are the estimated parameters andC is the

corresponding number of components. The corresponding BICscore can be computed as

BICC = −2LC

(

θ̂

)

+ C ln (M) . (25)

It can be seen that the BIC penalizes the model complexity by adding the regularization

coefficient,C ln(M). It is worth noting that although the EM algorithm maximizesthe log-

likelihood distribution, the BIC is an asymptotic approximation to the transformation of the

Bayesiana posteriori probability, Pr(θ̂|x, C). As such, in a large-sample setting, the number

of components determined by the BIC is asymptotically optimal from the perspective of the

Bayesian posterior probability. Here, we select the candidate model satisfying the minimum BIC

June 24, 2015 DRAFT
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score, satisfying asymptotically the maximum Bayesian posterior probability as

Copt = arg min
C∈N

BICC . (26)

Fig. 1 depicts the normalized BIC versus the number of components for some fading scenarios

selected from Section II. The corresponding optimal numberof components,Copt, indicated in

the legend, will be adopted in the simulations and numericalresults hereafter and will be denoted

by C.
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Figure 1. Normalized BIC versus the number of components

Fig. 2 shows the optimal number of components as a function ofthe amount of fading. It

is observed that as the fading becomes more severe, the mixture requires more components to

accurately characterize the channel.
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Figure 2. Optimal number of components versus the amount of fading

IV. M OG MODEL ANALYSIS AND COMPARISONS

In this section, several scenarios of the aforementioned fading channels are approximated using

the MoG distribution, as in (23). The number of components was selected automatically using

the BIC method explained in Section III-C. We point out that higher accuracy can be achieved by

increasing the number of components. In order to validate the accuracy of the approximations,

we use two criteria of error, namely the MSE and the KL, definedas

MSE = E

[

f̂γ (x)− fγ (x)
]

(27)

and

KL
(

fγ (x) , f̂γ (x)
)

=

ˆ ∞

0

fγ (x) log
fγ (x)

f̂γ (x)
dx, (28)

respectively. Here,fγ (x) is the exact pdf, and̂fγ (x) is the approximated pdf (MoG). The KL

divergence, also known as relative entropy, is an information theoretic measure that quantifies
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the information lost when̂fγ(x) is used to approximatefγ (x) [36]. Note that the MSE and KL

measures are used in several related works, see e.g., [8], [9], [12].

Fig. 3 provides the approximation results for several scenarios of the NL,κ− µ, η − µ, and

κ− µ Shadowed fading models. The corresponding number of components are indicated in the

legend. As shown from the MSE and KL measures, the approximation is very accurate when

both increasing the shadowing and the multipath fading severity, whereas for large amount of

fading, the number of components increases. For instance, for theη−µ distribution, whenη = 5,

andµ = 10, the amount of fading and number of components were0.0721 and3, respectively,

whereas whenη = 0.7 andµ = 0.4, the amount of fading and number of components increased

to 1.2999 and8, respectively. The parameters of the approximations are tabulated in Appendix

A.
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0
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1.4

1.6
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f γ(x
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m=1, ζ=3dB, C=7, KL=2.2e−4, MSE=8.0e−6
m=4, ζ=1dB, C=4, KL=1.1e−4, MSE=8.3e−6
κ=1, µ=1, C=6, KL=1.6e−4, MSE=1.3e−5
κ=3, µ=1, C=5, KL=1.2e−4, MSE=1.0e−5
η=0.7, µ=0.4, C=8, KL=6.1e−4, MSE=6.9e−5
η=5, µ=10, C=3, KL=1.1e−4, MSE=2.3e−5
κ=1, µ=3, m=3, C=4, KL=1.2e−4, MSE=9.8e−6
Exact Distribution

Figure 3. MoG approximation for different channel models.

Further verification of the accuracy via numerical means is addressed in section VI. The
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purpose of this approach is not to increase the accuracy of the approximation, as it has already

been achieved in all aforementioned fading alternatives, but rather to provide another unifying

and simplifying distribution that has the potential of approximating all contemporary fading,

composite and non-composite, models via the EM algorithm.

V. PERFORMANCE ANALYSIS OF WIRELESSCHANNELS

The MoG distribution provides a simplifying and unifying analysis for wireless communi-

cation systems over various composite and multipath fadingchannel models. In this section,

we first derive several performance metrics, which can be used for the evaluation of wireless

communication systems in a generalized manner. In particular, we derive expressions for the

raw moments of the MoG model, the amount of fading (AF), the outage probability, the channel

capacity, and the MGF. We further derive expressions for theSER performance ofL-branch

MRC diversity system and the average probability of detection for cognitive radio networks.

A. Moment Generating Function

By definition, the MGFMγ (s) = E [e−sγ ] is given by

Mγ (s) =
C
∑

i=1

ωi√
8γπηi

ˆ ∞

0

1√
γ
exp






−

(
√

γ

γ
− µi

)2

2η2i






e−γs dγ. (29)

Applying the change of variablesx =
√

γ

γ
, and after expanding the exponentials and considerable

mathematical simplifications, we get

Mγ (s) =
C
∑

i=1

ωi√
2πηi

ˆ ∞

0

exp



−
(2− βi)

(

x2 − 2µi

β
x+

µ2
i

β

)

2η2i



 dx, (30)

whereβi = 1 + 2η2i γs. Then, after some mathematical manipulations, we obtain

Mγ (s) =
C
∑

i=1

ωi exp

(

µ2
i ( 1

β
−1)

2η2i

)

√
βiπ

ˆ ∞

−µi
ηi

√

2β

exp
(

−z2
)

dz, (31)
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which leads to the following expression

Mγ (s) =
C
∑

i=1

ωi√
βi

exp

(

µ2
i s

βi

)

Q

(

− µi

ηi
√
βi

)

, (32)

whereQ(.) is the Gaussian Q-function defined asQ (x) = 1√
2π

´∞
x

exp
(

−u2

2

)

du.

B. Raw Moments

Thenth raw moment of the MoG distribution, by definition, is

E [γn] =
C
∑

i=1

ωi√
8γπηi

ˆ ∞

0

γn

√
γ
exp






−

(
√

γ

γ
− µi

)2

2η2i






dγ. (33)

By taking the change of variablesx =
√

γ

γ
, and after some mathematical simplifications, we get

E [γn] =

C
∑

i=1

ωiγ
n

ˆ ∞

0

x2n

√
2πηi

exp

(

−(x− µi)
2

2η2i

)

dx, (34)

Alternatively, we can write (33) as

E [γn] =
C
∑

i=1

ωiγ
n
E
[

X2n
i

]

, (35)

whereXi ∼ N (µi, ζi) is the ith Gaussian component. Using the MGF approach, (35) can be

expressed as

E [γn] =
C
∑

i=1

ωiγ
n d (2n)MXi

(s)

ds(2n)
|s=0, (36)

whereMXi
(s) = E{e−sXi} is the MGF ofXi, which is given by

MXi
(s) = exp

(

µis +
η2i s

2

2

)

(37)

Equation (36) is mathematically convenient for solving thefirst few moments.

An alternative approach that yields a closed form expression can be attained by following the

same method in [37], where thevth raw moments ofXi are derived as

E [Xv
i ] = ηvi 2

v
2
Γ
(

v
2
+ 1

2

)

√
π

1F1

[

−v

2
,
1

2
,− µ2

i

2η2i

]

, (38)
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wherev is an even integer (note that there is no loss in generality).

By substituting (38) into (35), thenth raw moment of the MoG distribution is derived as

E [γn] =

C
∑

i=1

ωiγ
nη2ni 2n

Γ
(

n + 1
2

)

√
π

1F1

[

−n,
1

2
,− µ2

i

2η2i

]

, (39)

C. Amount of Fading

The AF measure was firstly introduced by Charash [38], as a measure of the severity of

the fading channel. The AF requires the knowledge of only thefirst two moments in the

corresponding fading channel, where it is defined by

AF =
E [γ2]− E [γ]2

E [γ]2
. (40)

By solving (39) for the first two moments, we obtain

AF =

∑C
i=1 ωi (µ

4
i + 6µ2

i η
2
i + 3η4i )

[

∑C
i=1 ωi (µ2

i + η2i )
]2 − 1. (41)

D. Outage Probability

The outage probability is a standard performance criterionused over fading channels. It is

defined asF (γth) =
´ γth
0

fγ(x) dx. By performing the following change of variables applied to

(23)

y =

√

x
γ
− µi

ηi
, (42)

and after some mathematical manipulations, the CDF of (23) can be written as

F (γth) =
C
∑

i=1

ωi√
π

ˆ

√
γth
γ

−µi

ηi

−µi
ηi

exp

(

−y2

2

)

dy. (43)

Further simplifications yield

F (γth) =

C
∑

i=1

ωi



Q

(

−µi

ηi

)

−Q





√

γth
γ

− µi

ηi







 , (44)
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E. Average Ergodic Channel Capacity

When only the receiver has knowledge about the channel stateinformation (CSI), the ergodic

capacityCerg is expressed as

Cerg =
B

ln 2

ˆ ∞

0

ln (1 + γ) fγ (γ) dγ. (45)

whereB is the channel bandwidth measured in Hertz. Unfortunately,the exact solution of (45)

is intractable. Instead, a computationally simple and veryaccurate form can be obtained by

following [39], whereln(1 + γ) is expanded about the mean value of the instantaneous SNR,

E[γ], using Taylor’s series, yielding

ln (1 + γ) = ln (1 + E [γ]) +

∞
∑

w=1

(−1)w−1

w

(γ − E [γ])w

(1 + E [γ])w

≈ ln (1 + E [γ]) +
γ − E [γ]

1 + E [γ]
+

(γ − E [γ])2

2 (1 + E [γ])2
+ o

[

(x− E [γ])2
]

.

(46)

whereo (.) is one of the Landau symbols defined asf = o (φ) means thatf
φ
→ 0.

Substituting the logarithm function approximation from (46) into (45), a second order approx-

imation for the ergodic capacity can be evaluated. It is noted that the solution to (45) is obtained

by taking the expectation ofln (1 + γ). Hence, taking the expectation of (46), we get

Cerg ≈
B

ln 2

[

ln (1 + E [γ])− E [γ2]− E
2 [γ]

2 (1 + E [γ])2

]

, (47)

whereE [γn] is evaluated using (39).

F. Symbol Error Analysis

In order to further demonstrate the significance of the MoG distribution, we study the perfor-

mance of independent but not identically distributed (i.n.i.d.) L-branch MRC diversity receiver

over various composite and non-composite fading scenarios. The MRC scheme is the optimal

combining scheme at the expense of increased complexity, where the receiver requires knowledge

DRAFT June 24, 2015



19

of all channel fading parameters [2]. Here, the receiver sums up all received instantaneous SNR

replicasγk as follows

γ
MRC

=

L
∑

k=1

γ
k
. (48)

The corresponding MGF is thus

Mγ
MRC

(s) = E{e−s
∑L

k=1 γk} =

L
∏

k=1

Mγ
k
(s) , (49)

whereMγ
k
(s) is derived in (32). The SER,Ps (E), for coherent binary signals, can be computed

as follows [2]

Ps (E) = Eγ
MRC

[

Q
(

√

2gγ
MRC

)]

, (50)

whereg is some constant resembling several coherent binary signals, such as coherent binary

phase shift keying (BPSK) and coherent orthogonal binary frequency shift keying (BFSK)

corresponding tog = 1 andg = 1
2

, respectively. By substituting the Q-function by its definition

in [2, eq. 4.2], the SER is written as

Ps (E) =
1

π

ˆ π
2

0

ˆ ∞

0

exp

(

− g γ
MRC

sin2 (θ)

)

fγ
MRC

(γ
MRC

) dγ
MRC

dθ. (51)

The inner infinite integral in (51) is the equivalent MGF derived in (49), yielding

Ps (E) =
1

π

ˆ π
2

0

L
∏

k=1

Mγ
k

(

g

sin2 (θ)

)

dθ, (52)

whereMγ
k
(.) was derived in (32). Following a similar approach, and by utilizing [2, eq. 8.23]

and [2, eq. 8.12], the SER expressions forM-PSK and squareM-QAM signaling schemes are

given, respectively, by

Ps (E) =
1

π

ˆ

(M−1)π
M

0

L
∏

k=1

Mγ
k

(

sin2
(

π
M

)

sin2 (θ)

)

dθ, (53)

Ps (E) =
4

π

(√
M − 1√
M

)[

ˆ π
2

0

L
∏

k=1

Mγ
k

(

gQAM

sin2 (θ)

)

dθ −
(√

M − 1√
M

)

ˆ π
4

0

L
∏

k=1

Mγ
k

(

gQAM

sin2 (θ)

)

dθ

]

,

(54)

whereg
QAM

= 3
2
(M − 1).
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G. Probability of detection

Cognitive radio (CR) is a promising technology that can enhance the performance of wireless

communications [40]. The basic concept behind opportunistic CR, is that a secondary user

is allowed to use the spectrum, which is assigned to a licensed primary user (PU), when

the channel is idle [41]. The CR users perform spectrum sensing in order to identify idle

spectrum. Energy detection is the most common sensing technique in CR networks, due to its

low implementation complexity and no requirements for knowledge of the signal [42]. Several

studies have been devoted to the analysis of the performanceof energy detection-based spectrum

sensing for different communication and fading scenarios [43]. The probability of detection,Pd

is an important performance evaluation metric representing the probability that an active PU is

detected by the CR node. Over fading channels, the average detection probability is evaluated

by averaging the AWGN channelPd over the SNR distribution as follows:

Pd =

∞̂

0

Qu

(

√

2γ,
√
λ
)

fγ (γ) dγ, (55)

whereQu

(√
2γ,

√
λ
)

is the probability of detection over AWGN channel withQu (., .) being

the generalized Marcum-Q function [44]. Moreover,λ is a predefined energy detection threshold,

u is the time bandwidth product which corresponds to the number of samples of either the in-

phase (I) or the quadrature (Q) component, andγ , α2Es

N0
is the received SNR, whereEs is the

signal energy,N0 the one-sided noise power spectral density, and the channelgainE [|α2|] = 1.

The Marcum Q-function can be expressed as [45]

Qu

(

√

2γ,
√
λ
)

= e−γ

∞
∑

n=0

γn

n!

Γ
(

u+ n, λ
2

)

Γ (u+ n)
. (56)

By substituting (23) and (56) in (55), we obtain

Pd ≃
C
∑

i=1

wie
− µi

2

2ηi
2

(

1− 1

4γη2
i
+2

)

√
2πγηi

∞
∑

n=0

Γ
(

u+ n, λ
2

)

Γ (2n + 1) (γη2i )
2n+1

2

n!Γ (u+ n) (2γη2i + 1)
2n+1

2

D−(2n+1)

(

−µi

ηi
√

2γη2i + 1

)

(57)
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whereDn (i) is the parabolic cylinder function [16].

The truncation of the infinite series in (57) generates the following error

ǫt =
∑C

i=1
wie

−
µi

2

2ηi
2

(

1− 1
4γη2

i
+2

)

√
2πγηi

∑∞
n=p+1

Γ(u+n,λ
2 )Γ(2n+1)(γη2i )

2n+1
2

n!Γ(u+n)(2γη2i +1)
2n+1

2
D−(2n+1)

(

− µi

ηi
√

2γη2i +1

)

(58)

=
∑C

i=1
wie

−
µi

2

2ηi
2

(

1− 1
4γη2

i
+2

)

√
2πγηi

[

∑∞
n=0

Γ(u+n,λ
2 )Γ(2n+1)(γη2i )

2n+1
2

n!Γ(u+n)(2γη2i +1)
2n+1

2
D−(2n+1)

(

− µi

ηi
√

2γη2i +1

)

−∑p

n=0

Γ(u+n,λ
2 )Γ(2n+1)(γη2i )

2n+1
2

n!Γ(u+n)(2γη2i +1)
2n+1

2
D−(2n+1)

(

− µi

ηi
√

2γη2i +1

)

]

(59)

Since theΓ (a, x) function is monotonically decreasing with respect tox, thus,Γ
(

u+ n, λ
2

)

≤

Γ (u+ n). Hence, the infinite sum in (59) can be upper bounded by:

τ =

∞
∑

n=0

Γ(2n+ 1)

n!

(

γη2i
2γη2i + 1

)
2n+1

2

D−(2n+1)

(

− µi

ηi
√

2γη2i + 1

)

(60)

By expressing the parabolic cylinder function in terms of the confluent hypergeometric function

according to [16, eq. (9.240)], one obtains

τ =
√
πe

− µ2i
4η2

i
(2γη2

i
+1)

∞
∑

n=0

Γ(2n+ 1)

n!2
2n+1

2

(

γη2i
2γη2i + 1

)
2n+1

2

×
[

1

n!
1F1

(

n +
1

2
,
1

2
,

µ2
i

2η2i (2γη
2
i + 1)

)

+

√
2µi

Γ
(

n+ 1
2

)

ηi
√

2γη2i + 1
1F1

(

n+ 1,
3

2
,

µ2
i

2η2i (2γη
2
i + 1)

)

]

(61)

By expanding the involved hypergeometric functions and after some algebraic manipulations,

the following equality is valid

τ =
√
πe

− µ2i
4η2

i
(2γη2

i
+1)

∞
∑

n=0

∞
∑

i=0

(

n+ 1
2

)

i
(

1
2

)

i

(

µ2
i

2η2i (2γη
2
i +1)

)i

i!

(n+ 2)Γ(n+ 2)

n!

(

γη2i
4γη2i + 2

)
2n+1

2

+
µi

√
2π

ηi
√

2γη2i + 1
e
− µ2i

4η2
i
(2γη2

i
+1)

∞
∑

n=0

∞
∑

i=0

(n+ 1)i
(

3
2

)

i

(

µ2
i

2η2i (2γη
2
i +1)

)i

i!

(n+ 2)Γ(n+ 2)

n!

(

γη2i
4γη2i + 2

)
2n+1

2

(62)
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By recalling thatx = x!/(x − 1)! and with the aid of the Pochhammer symbol identities, it

follows that

τ =

√

γπη2i
4γη2i + 2

e
− µ2i

4η2
i
(2γη2

i
+1)









∞
∑

n=0

∞
∑

i=0

(

1
2

)

n+i
(3)n

(

1
2

)

i
(1)n

(

γη2i
4γη2i +2

)n

n!

(

µ2
i

2η2i (2γη
2
i +1)

)i

i!

+
µi

√
2

ηi
√

2γη2i + 1

∞
∑

n=0

∞
∑

i=0

(1)n+i (3)n
(

3
2

)

i
(1)n

(

γη2i
4γη2i +2

)n

n!

(

µ2
i

2η2i (2γη
2
i +1)

)i

i!









(63)

Importantly, the above infinite series can be expressed in closed-form in terms of the Humbert

Ψ1 function [46] yielding

ǫt <

C
∑

i=1

wie
− µi

2

2ηi
2

√
2πγηi









√

γπη2i
4γη2i + 2

Ψ1

(

1

2
, 3,

1

2
, 1;

γπη2i
4γη2i + 2

,
µ2
i

2η2i (2γη
2
i + 1)

)

+ µi

√

γπΨ1

(

1, 3,
3

2
, 1;

γπη2i
4γη2i + 2

,
µ2
i

2η2i (2γη
2
i + 1)

)

− e

µi
2

4ηi
2(2γη2i +1)

p
∑

n=0

Γ
(

u+ n, λ
2

)

Γ (2n+ 1) (γη2i )
2n+1

2

n!Γ (u+ n) (2γη2i + 1)
2n+1

2

D−(2n+1)

(

−µi

ηi
√

2γη2i + 1

)









(64)

VI. SIMULATION RESULTS

In this section, we present some analytical and simulation results for the outage probability,

the average ergodic capacity, the SER of MRC scheme and the average detection probability for

cognitive radio.

Fig. 4 and 5 depict the outage probability, as in (44), versusthe threshold SNRγ
th

and the

average SNRγ, respectively. Two NL scenarios are considered in Fig. 4, where the multipath

severity is reduced fromm = 1 to m = 3 , and twoκ − µ scenarios are considered in Fig.
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5, where the control parameterκ is increased fromκ = 1 to κ = 3. Here, one can notice

how accurate the approximation is. Also, it is very noticeable how the multipath fading severity

affects the outage probability performance.
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(Analytical) m=1,ζ=1 dB

(Analytical) m=3,ζ=1 dB
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γ = 0dB

γ = 5dB

γ = 10dB

γ = 20dB

Figure 4. Analytical and simulated outage probability versus γth for two scenarios.

Fig. 6 depicts the capacity, as in (47), for some selected scenarios from theη − µ, κ − µ

and κ − µ Shadowed fading models. As shown, the severe NLOS configuration of the η − µ

scenario exhibits the worse capacity. In addition, one can see that introducing the Nakagami-m

shadowing to theκ − µ distribution has worsened the capacity. The term simulation refers to

cross-validating the results via the recursive adaptive simpson quadrature method performed by

the aid of a mathematical package.
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Figure 5. Analytical and simulated outage probability versus γ for two scenarios.
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Figure 6. Analytical and simulated ergodic capacity, B=1
2
.
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Fig. 7 illustrates the analytical SER of the BPSK signaling scheme for various NL scenarios,

including mild and severe fading cases in both shadowing andmultipath. The solid squared line

represents the corresponding Monte Carlo simulation. It isquite noticeable how the multipath

severity plays greater role in determining the SER, where asobserved, incrementingm by only

1 yields a SER performance improvement of about an order of magnitude at observed mid-range

average SNR values. On the other hand, increasingζ from 1 to 3 dB, while fixing m, yields a

very similar SER performance.
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Figure 7. Analytical and simulation SER of 2-branch MRC diversity receiver for BPSK signaling scheme for RL and NL

fading channels.

Fig. 8 features the analytical SER of the 16-QAM signaling scheme for variousκ−µ Shadowed

fading scenarios, where the control parameterµ and the shadowing severity parameterm are

varied. Here,L corresponds to the number of antennas, and it is noticeable that our model is

still very accurate for high antenna diversity order.
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Figure 8. Analytical and simulation SER ofL-branch MRC diversity receiver for 16-QAM signaling schemefor for various

κ− µ Shadowed fading scenarios.
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Figure 9. ROC curves for Nakagami-Lognormal channel withu = 3 andγ = 5 dB
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Fig. 9 depicts the receiver operating characteristic (ROC)curve, wherePd evaluated using

(57) is compared to the theoretical expression from (55) substituting fγ(γ) by the NL fading

channel pdf. These curves, depictingPd versus the probability of false alarm (Pf ), are essential

for the performance evaluation of the CR. We consider a single user performing spectrum sensing

over NL channel wherem is the Nakagami-m fading parameter andζ2, measured in dB, is the

variance of the Gaussian random variable defined byV = 10log10(σ), whereσ corresponds

to the Lognormal shadowing. The parameters for the MoG distribution are calculated via the

EM algorithm and are provided in Appendix A. It can be observed that, for both cases, the

approximation is very accurate over all the values of (Pf ). Moreover, by evaluating the truncation

error upper bound using (64), we conclude that although the truncation error depends on many

parameters, considering the practical case wherePf = 0.1 and truncating the series atn = 12

ensures that the error does not exceed0.08 for the considered channels.

VII. CONCLUSION

In this paper, the MoG distribution has been considered to characterize the amplitude and

the SNR statistics for wireless propagation. The parameters of the mixtures are evaluated by the

means of the EM algorithm and the MSE and KL have been evaluated to challenge the proposed

model’s accuracy. The proposed distribution enjoys both simplicity and accuracy and we have

shown that the proposed pdf expression can accurately represent a wide range of both composite

and non-composite channels. It should be highlighted that the adopted approach provides a

generalized distribution for wireless communication systems where all channels can be modeled

with the same analytical expression. Several analytical tools essential for the evaluation of

performance analysis of digital communications were presented. This new model can be applied

to various scenarios including, diversity systems, cooperative communications, and cognitive

radio networks.
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APPENDIX A

MOG PARAMETERS FORSELECTED SCENARIOS

The following tables provide the approximation parametersfor all scenarios presented in the

paper.

Table I

MOG PARAMETERS FORRL FADING CHANNEL WITH ζ = 3dB AND Copt = 7

i wi µi ηi

1 0.24621 0.76637 0.1888

2 0.28164 1.0954 0.27482

3 0.15143 1.5254 0.39455

4 0.077823 0.26911 0.088815

5 0.025355 2.0441 0.59471

6 0.19662 0.48573 0.14066

7 0.020909 0.11846 0.050183

Table II

MOG PARAMETERS FORNL FADING CHANNEL WITH m = 2, ζ = 1dB AND Copt = 4

i wi µi ηi

1 0.11009 0.48576 0.14483

2 0.14047 1.3455 0.34267

3 0.37935 1.0845 0.25099

4 0.37009 0.77746 0.19545
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Table III

MOG PARAMETERS FORNL FADING CHANNEL WITH m = 4, ζ = 1dB AND Copt = 4

i wi µi ηi

1 0.31126 0.88351 0.14927

2 0.13366 1.2306 0.25803

3 0.39008 1.0756 0.19479

4 0.165 0.67541 0.1405

Table IV

MOG PARAMETERS FORκ− µ FADING CHANNEL WITH κ = 1, µ = 0.5 AND Copt = 10

i wi µi ηi i wi µi ηi

1 0.005263 0.0052273 0.0032608 6 0.1401 0.39636 0.11622

2 0.050502 0.11458 0.038823 7 0.013249 0.020352 0.0089878

3 0.18712 1.4475 0.3582 8 0.22111 0.6682 0.18341

4 0.21379 1.0393 0.24872 9 0.026951 0.052855 0.019739

5 0.054249 1.8764 0.48797 10 0.087675 0.22199 0.069679

Table V

MOG PARAMETERS FORκ− µ FADING CHANNEL WITH κ = 3, µ = 1 AND Copt = 5

i wi µi ηi

1 0.248 1.2295 0.29068

2 0.23197 0.59067 0.17727

3 0.017972 0.24425 0.099698

4 0.2658 1.0976 0.20736

5 0.23626 0.86379 0.16438
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Table VI

MOG PARAMETERS FORη − µ FADING CHANNEL WITH η = 0.5, µ = 0.2 AND Copt = 14

i wi µi ηi i wi µi ηi

1 0.092351 0.21051 0.061239 8 0.17858 0.58555 0.15984

2 0.030907 0.034416 0.012126 9 0.0052011 0.00092585 0.00068077

3 0.063814 0.12078 0.036005 10 0.0091546 0.0047069 0.0022762

4 0.092301 1.8163 0.41813 11 0.11756 1.352 0.28677

5 0.00030556 4.5372 0.47284 12 0.019634 0.014034 0.0055603

6 0.1304 0.35591 0.10026 13 0.029039 2.5233 0.61922

7 0.18817 0.92188 0.22362 14 0.042591 0.067048 0.021155

Table VII

MOG PARAMETERS FORη − µ FADING CHANNEL WITH η = 5, µ = 10 AND Copt = 3

i wi µi ηi

1 0.32677 1.063 0.13602

2 0.32789 0.89548 0.099855

3 0.34533 1.0116 0.10407

Table VIII

MOG PARAMETERS FORκ− µ SHADOWED FADING CHANNEL WITH κ = 1, µ = 3, m = 3 AND Copt = 4

i wi µi ηi

1 0.40871 0.86626 0.18319

2 0.40942 1.111 0.22912

3 0.049081 1.4037 0.25915

4 0.13279 0.61749 0.15039
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