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Downlink Channel Estimation for Massive MIMO

Systems Relying on Vector Approximate Message

Passing
Sheng Wu, Haipeng Yao, Chunxiao Jiang, Xi Chen, Linling Kuang, and Lajos Hanzo

Abstract—To reduce the pilot overhead of downlink channel
estimation in massive multiple-input–multiple-output (MIMO)
systems, a sparse recovery algorithm relying on the vector
approximate message passing (VAMP) technique is proposed.
More specifically, an a-priori channel model characterized by
a multivariate Bernoulli-Gaussian distribution is invoked for
exploiting the common sparsity of massive MIMO channels, and
the VAMP technique is used for jointly estimating the spatially
correlated channels. Moreover, the hyperparameters of the a-
priori model are learned by invoking the expectation maximiza-
tion (EM) algorithm. Our numerical results demonstrate that the
proposed algorithm is capable of reducing the pilot overhead by
50% in massive MIMO systems.

Index Terms—Block sparsity, Channel estimation, Massive
MIMO, OFDM, Vector Approximate Message Passing.

I. INTRODUCTION

To maximize the gain of massive multiple-input–multiple-

output (MIMO) systems, having accurate channel state in-

formation (CSI) at the base station (BS) is essential [1].

In frequency division duplex (FDD) systems, the CSI is

typically obtained by downlink (DL) channel estimation and

then fed back to the BS [2], [3]. However, the conventional

least squares channel estimation method requires a high pilot

overhead that increases linearly with both the number of BS

antennas and the length of channel impulse response (CIR),

and becomes inefficient in massive MIMO systems.

In recent years, compressed sensing (CS) based channel

estimation has attracted much attention due to its ability to

reduce required pilots. In [4], the sparsity of the massive

MIMO CIR taps was exploited by Rao and Lau. As a further

advance, Rao and Lau [5] studied CS-based channel estimation

in the presence of temporal correlation. Gao et al. [1] proposed

an adaptive structured subspace pursuit based algorithm for

exploiting both the common spatial and temporal sparsity

in massive MIMO channels. Then, a distributed CS-based
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algorithm was studied by Gong et al. [6] for leveraging

common sparsity in doubly-selective channels. Furthermore,

a turbo-CS algorithm relying on the Markov chain prior was

proposed by Chen et al. [7] for estimating MIMO channels

that are structured sparse in the angular domain. Moreover,

many message passing algorithms [8], [9], [10], [11], [12] have

been applied to MIMO channel estimation. Mo et al. used the

generalized AMP (GAMP) algorithm for exploiting the joint

sparsity of the mmWave MIMO channel both in the angle

and in the delay domain [13]. Huang et al. [14] proposed an

iterative channel estimation algorithm based on the least square

estimation and sparse message passing algorithm invoked for

mmWave MIMO systems.

Against this background, we exploit the common sparsity

of massive MIMO channels in the delay domain and conceive

a channel estimator that intrinsically amalgamates the vector

approximate message passing (VAMP) technique of Rangan et

al. [12] and the EM algorithm [15] of Neal and Hinton. Specif-

ically, an a-priori channel model characterized by a multivari-

ate Bernoulli-Gaussian distribution is employed for exploiting

the common sparsity, and the VAMP relying in a non-separable

denoiser is used for jointly estimating the spatially correlated

channels. At the same time, the hyperparameters of the model

are learned by invoking the expectation maximization (EM)

algorithm. Our numerical results demonstrate that the proposed

algorithm can reduce the pilot overhead of massive MIMO

systems by up to 50%, while maintaining superior performance

approaching the idealized bound relying on perfectly known

channel supports and hyperparameters.

Throughout the paper, the superscript T denotes the trans-

pose operation, and H represents the conjugate transpose oper-

ation. ‖·‖2 and ‖·‖F return the Euclidean norm and Frobenius

norm of a vector or a matrix, respectively. NC(x, x̂,Σ) repre-

sents the Gaussian distribution function of a complex random

vector x with mean x̂ and covariance matrix Σ. Furthermore,

〈·〉 is the empirical averaging operation 〈x〉 = N−1
∑N

n=1
xn,

and I is an identity matrix. Finally, Tr (·) returns the trace of

a matrix, and Diag (·) creates a diagonal matrix with a vector

or get the diagonal elements of a matrix.

II. SYSTEM MODEL

Consider a FDD massive MIMO-OFDM system employing

K OFDM subcarriers, where the BS has M antennas, while

each user has only one antenna. Let hm· = [hm1, . . . , hmL]T

denote the DL CIR taps from the mth transmit antenna (TA)
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to a user, where hml denotes the lth CIR tap and L denotes

the length of CIR taps. According to the analysis in [16], hm·

and hm′ ·,∀m′ , m tend to share an identical support set in

the delay domain if
dmax

C
≤ 1

10BW
, where dmax is the farthest

distance between the TAs, C is the speed of light, and BW

is the signal bandwidth. All the lth DL CIR taps from the M

TAs to the user are denoted by h ·l = [h1l, . . . , hMl]
T. Due to

having a limited number of CIR-tap clusters, h ·l is spatially

correlated. Therefore, the Kronecker product correlation model

[17][18] is applied for characterizing h ·l , which is formulated

as h ·l = (Raz
l
⊗ Rel

l
)

1
2 hiid

l , where Raz
l
⊗ Rel

l
denote the

Kronecker product of the azimuth correlation matrix Raz
l

and

the elevation correlation matrix Rel
l

, while hiid
l ∈ C

M×1 obeys

the Gaussian distribution NC(hiid
l ; 0, αl I ), where αl is the

variance of the lth CIR tap.

The pilot sequences transmitted over different TAs are

randomly and independently generated, denoted by xm ∈

C
N×1,∀m, but occupy the same subcarriers indexed by the

set P. Let y ∈ CN×1 denote the samples after discarding the

cyclic prefix and the fast Fourier transformation (FFT) at the

receiver, then

y =

M
∑

m=1

Ψmhm· +̟ =

L
∑

l=1

Φlh ·l +̟ = Φh +̟, (1)

where Ψm = diag{xm}FP ∈ C
N×L , FP ∈ C

N×L is comprised

of the first L columns of the K-point discrete Fourier transfor-

mation (DFT) matrix and the N rows of the K-point DFT ma-

trix specified by the indices in set P, ̟ = [̟1 · · ·̟ML]T ∈

C
ML×1 is the complex Gaussian noise obeying the distribution

p(̟) ∼ NC(0, σI ), Φl = [ϕ1l · · · ϕMl] ∈ C
N×M stacks ϕml

being the lth column of matrix Ψm, Φ = [Φ1 · · ·ΦL] ∈

C
N×ML , and h = [hT

·1 · · · h
T
·L]T ∈ CML×1.

III. SPARSE CHANNEL ESTIMATION RELYING ON VAMP

To characterize the common sparsity of h, i.e., all the CIR

taps in h ·l,∀l are either zero simultaneously or non-zero simul-

taneously, a multivariate Bernoulli-Gaussian a-priori model

[19] is employed:

p(h; θp) =

L
∏

l=1

[

λlNC(h ·l; 0, τl I ) + (1 − λl)δ(h ·l)
]

, (2)

where θp , [λ1, · · · , λL, τ1, · · · , τL]T contains the hyperpa-

rameters of the a-priori channel model, λl ∈ (0, 1) denotes the

a-priori sparsity ratio of h ·l , τl denotes the a-priori variance of

every CIR tap in h ·l when h ·l are non-zero, and δ (·) denotes

the Dirac delta function. Note that as the spatial correlation

matrix Raz
l
⊗Rel

l
is different across tap index l, modeling each

h ·l with a different a-priori covariance matrix in (2) would

lead to overfitting, and modeling all the h ·l by a common

a-priori covariance matrix would not yield any performance

gain. In view of this, the proposed prior model (2) does not

capture the amplitude correlation among the taps in h ·l . As the

random noise ̟ in (1) is Gaussian, the likelihood function of

h is written as

p(y | h;σ) = NC(y;Φh, σI ). (3)

h

p (h; p) p (y j h;¾)

Figure 1: Factor graph for DL channel estimation.

For the channel estimation, the a-posteriori distribution of h

can be approximately calculated by the VAMP [12], and then

we can get the a-posteriori mean of h as its estimate. However,

the VAMP desires the specification of the hyperparameters in

the a-priori model (2) and the likelihood function (3), i.e.,

θ ,
[
θp, σ

]T
. To this end, the EM algorithm is used to get

the specification of hyperparameters,

Q (θ) , E
{
lnp(y | h;σ) + lnp(h; θp)

}
, (4)

θ (i) = argmax
θ

Q (θ) , (5)

where the expectation in (4) is w.r.t the a-posteriori distribu-

tion of h (as shown in the following (12)) that is approximately

calculated by the VAMP, and the specification of hyperparam-

eters θ (i) is updated in the maximization step as shown by

(5).

Fig. 1 shows the factor graph (for more details on factor

graph, please refer to [20]) corresponding to the factorization

p(y, h; θp, σ) = p(h; θp)p(y | h;σ), which is comprised of

the only variable node h, and two function nodes, namely

p(h; θp) and p(y | h;σ). Upon invoking the VAMP and the

specification of the hyperparameters, the a-posteriori proba-

bility of h at the variable node h at the ith iteration is given

by

βh (i, h) ,
NC(h, r (i), γ−1

r (i)I )
∏L

l=1
p(h ·l; θp(i − 1))

∫

h
NC(h, r (i), γ−1

r (i)I )
∏L

l=1
p(h ·l; θp(i − 1))

=

L
∏

l=1

(1 − πl (i))δ(h ·l) + πl (i)NC(h ·l; µl (i), Σl (i)), (6)

where we have

µl (i) =
τl (i)γr (i)

1 + τl (i)γr (i)
r l (i), (7)

Σl (i) =
τl (i)

1 + τl (i)γr (i)
I, (8)

πl (i) =
λl (i)

λl (i) + (1 − λl (i))
NC (r l (i);0,γ−1

r (i)I )

NC (r l (i);0,(τl (i)+γ−1
r (i))I )

, (9)

in terms of r (i) , [rT
1

(i), . . . , rT
L

(i)]T ∈ CML×1, r l (i) ,

[r(l−1)M+1(i), . . . , rlM (i)]T ∈ CM×1, and γr (i) defined in Tab.

I. Then, the a-posteriori mean and covariance matrix of h ·l
w.r.t (6) are given by

ĥ ·l (i) = πl (i)µl (i), (10)

Ch ·l (i) = πl (i)Σl (i) + πl (i)(1 − πl (i))µl (i)µ
H
l (i). (11)

The operations of (6)-(11) show that our proposed algorithm

uses an inseparable denoiser, which is different from the

separable denoiser studied by most VAMP.

Then, the message emanating from the variable node

h to the function node p(y | h;σ) is written as
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NC(h; q(i), γ−1
q (i)I ) by the principle of expectation propaga-

tion (EP) [12], where q(i) and γq (i) are also defined in Tab.

I. At the function node p(y | h;σ) on the factor graph, the

a-posteriori probability of h is given by

βy (i, h) = NC(h; q(i), γ−1
q (i)I )p(y | h;σ(i − 1))

∝ NC(h; ĥy (i),V y (i)), (12)

ĥy (i) = V y (i)(σ−1(i − 1)ΦHy + γq (i)q(i)), (13)

V y (i) = γ−1
q (i)

(

I − VDiag

(

|s |2

|s |2 + σ(i − 1)γq (i)

)

V
H
)

,

(14)

where the last line of (14) is obtained by the singular value

decomposition (SVD) of Φ, i.e., Φ = UDiag
(

s
)

V
H

and

ΦHΦ = VDiag
(

��s��
2
)

V
H

.

A. EM Learning of Hyperparameters

As mentioned above, the hyperparameters used for the a-

priori model (2) and likelihood function (3) are learned by the

EM. However, it is a challenge to perform the maximization

jointly as formulated in (5). Therefore, we maximize these

hyperparameters one by one [15].

Following the approach developed by Vila and Schniter

[21], we have ∂Q (θ) /∂σ = σ−2

y − Φĥ f (i)


2
2 +

σ−2Tr(ΦV f (i)ΦH) − σ−1ML, where Q (θ) is calculated by

(4) and (12). Then, to make the derivative ∂Q(θ)/∂σ zero,

the a-priori variance of noise is updated by

σ(i) = N−1

y −Φĥ f (i)


2
2

+ N−1σ(i − 1)Sum

(

|s |2

|s |2 + σ(i − 1)γq (i)

)

. (15)

Similarly, the derivation ∂Q (θ) /∂λl is given by Q (θ) /∂λl =

(πl (i) − λl (i))/λl (i)/(1 − λl (i)), and then the sparsity ratio is

updated by

λl (i) = πl (i). (16)

Finally, the derivation of Q(θ) w.r.t the a-priori variance τl
leads to ∂Q (θ) /∂τl = µH

l
(i)µl (i)/τ

2
l
+ Mτl (i − 1)/τ2

l
/(1 +

τl (i − 1)γr (i)) + M/τl . Then, τl is updated by

τl (i) =
τl (i − 1)

1 + γr (i)τl (i − 1)
+

µH
l

(i)µl (i)

M
. (17)

The proposed channel estimation algorithm is termed as

“EM-BBG-VAMP”, as shown by Tab. I. At the beginning

of iterations, the a-priori variance of noise is guessed to

be σ (0) = ‖y‖2
2
/N/(SNR0

+ 1), where the signal-to-noise

ratio (SNR) SNR0
is empirically set to 0 dB. Following the

suggestion given by [21], the initial sparsity ratio could be set

to

λl (0) =
N

ML
max
a>0

1 − 2 N
ML

[
(1 + a2)B(−a) − b(a)

]

1 + a2 − 2
[

(1 + a2)B(−a) − b(a)
] , (18)

where B(·) and b(·) denote the cumulative distribution func-

tion and the probability density function of the standard

Gaussian distribution, respectively. The a-priori variance τl
is set to τl (0) = (‖y‖2

2
−Nσ (0))/λl (0) /‖Φ‖2

F
,∀l. After Imax

Table I: The proposed channel estimation algorithm.

for i = 1, . . . , Imax do

µl (i) =
τl (i)γr (i)

1+τl (i)γr (i) r l (i); Σl (i) =
τl (i)

1+τl (i)γr (i) I ;

ĥ ·l (i) = πl (i)µl (i);

πl (i) =
λl (i)

λl (i)+(1−λl (i))
NC (r l (i);0,γ−1

r (i)I )

NC (r l (i);0, (τl (i)+γ−1
r (i))I )

;

νl (i) =
〈

Diag
(

πl (i)Σl (i) + πl (i)(1 − πl (i))µl (i)µH
l

(i)
)

〉

;

η1 (i) = L
/

∑L
l=1

νl (i) ; γq (i) = η1 (i) − γr (i);

q(i) =
(

η1 (i)ĥ(i) − γr (i)r (i)
) /

γq (i) ;

V y (i) = σ(i − 1)UH
(

Λ + σ(i − 1)γq (i)
)−1

U ;

ĥy (i) = V y (i)
(

σ−1 (i − 1)ΦHy + γq (i)q(i)
)

;

ν2 (i) =
〈

Diag
(

V y (i)
)

〉

; η2 (i) = 1
/

ν2 (i) ;

γr (i) = η2 (i) − γq (i); r (i) =
(

η2 (i)ĥy (i) − γq (i)q
)

/

γr (i) ;

Update the sparse ratio λl (i) by (16), the noise power σ(i) by (15),
and the a-priori variance τl (i) by (17).

end for

Table II: Complexity comparison.

Algorithm Number of floating point operations

SP O(MNL +MNN2
s +MNN3

s )

DSAMP O(MNL +MNi2s +MNi3s )

EM-BBG-EP O(M3L +MNL)
EM-BG-GAMP O(MNL)
EM-BBG-VAMP O(MNL)

iterations, the algorithm gives ĥ f (Imax) as the a-posteriori

estimate of the MIMO channel. Tab. II compares the com-

plexity defined by the number of floating point operations

for the proposed EM-BBG-VAMP, for the subspace pursuit

(SP) [22], for the distributed sparsity based adaptive matching

pursuit (DSAMP) of Gao et al. [23], for the EM-BBG-EP [19],

and for the EM-BG-GAMP [21], where Ns is the number of

supports of hm·, and is ≤ Ns is the index of the current stage.

Note that since the SVD only has to be executed offline once,

the complexity of SVD is not included in Tab. II.

IV. NUMERICAL SIMULATIONS

Consider a FDD massive MIMO-OFDM system having M

BS TAs and K = 4096 OFDM subcarriers. The spatially

correlated 3D channel model proposed in [18] is employed,

and the detailed setting of the model parameters is identical

to that of [19], which is omitted here owing to the page-

limit. Moreover, the idealized Oracle-LMMSE relying on

perfectly known supports and perfectly known noise variance

is considered as a benchmark to provide the best performance

bound.

Fig. 2(a) shows the relationship between the normalized

mean square error (NMSE) of channel estimation and the

SNR, when M = 64 and the pilot overhead is N = 1024.

It is shown that the NMSE of EM-BBG-VAMP may match

the oracle-bound provided by Oracle-LMMSE, when the SNR

varies between 5 dB and 35 dB. On the other hand, the EM-

BBG-EP joins the oracle-bound at SNR = 10 dB, while the

EM-BG-GAMP requires 32.5 dB for approaching the oracle-

bound. When the target of NMSE is -15 dB, the EM-BBG-

VAMP gets about 12.5 dB gain over the EM-BG-GAMP. Fig.

2(b) gives the results for the case of N = 1024 and M = 128,
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(b) M = 128, N = 1024.

Figure 2: The NMSE versus SNR.

where the performance of EM-BBG-EP has not been evaluated

due to its excessive complexity. We can find that the proposed

EM-BBG-VAMP still matches the oracle-bound, considerably

outperforming the SP, the DSAMP, and the EM-BG-GAMP.
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Figure 3: The NMSE versus pilot overhead.

Fig. 3(a) shows the NMSE versus the pilot overhead for

M = 64 and SNR = 30 dB. The EM-BBG-VAMP matches

the oracle-bound even when the pilot overhead is as low as

N = 512, while the EM-BBG-EP merges with the oracle-

bound at N = 640. Both the DSAMP and EM-BG-GAMP

merge with the oracle-bound at N = 1152, and the SP at

N = 1408. As shown in Fig. 3(b), the required pilot overhead

for EM-BBG-VAMP to get the targeted NMSE = -15dB is

about 50% of that of the DSAMP and EM-BG-GAMP.
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Figure 4: The NMSE versus iteration times.

Fig. 4(a) shows the performance of EM-BBG-VAMP and

EM-BG-AMP with different iteration times in the case of

N = 2048 and M = 64. When SNR = 25 dB, the number of

iterations that the EM-BBG-VAMP requires to converge is less

than 20, which is the same as that of the case of SNR = 35 dB.

However, the EM-BG-AMP requires more than 60 iterations

to converge at SNR = 25 dB, and more than 90 iterations at

SNR = 35 dB. In the case of N = 4096 and M = 128, as

shown by Fig. 4(b), the EM-BBG-VAMP requires less than

20 iterations to converge, while other algorithms require more

than 60 iterations to converge.

V. CONCLUSION

We have proposed an EM-BBG-VAMP algorithm relying

on the vector message passing technique for the DL channel

estimation of massive MIMO systems. The proposed algorithm

is capable of reducing the number of pilots in the massive

MIMO system by about 50%, compared to the SP algorithm,

the EM-BG-GAMP algorithm, and the DSAMP algorithm.
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