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Abstract—Cellular uplink analysis has typically been under-
taken by either a simple approach that lumps all interference
into a single deterministic or random parameter in a Wyner-
type model, or via complex system level simulations that often
do not provide insight into why various trends are observed.
This paper proposes a novel middle way using point processes
that is both accurate and also results in easy-to-evaluate integral
expressions based on the Laplace transform of the interference.
We assume mobiles and base stations are randomly placed in
the network with each mobile pairing up to its closest base
station. Compared to related recent work on downlink analysis,
the proposed uplink model differs in two key features. First,
dependence is considered between user and base station point
processes to make sure each base station serves a single mobile
in the given resource block. Second, per-mobile power control
is included, which further couples the transmission of mobiles
due to location-dependent channel inversion. Nevertheless, we
succeed in deriving the coverage (equivalently outage) probability
of a typical link in the network. This model can be used to
address a wide variety of system design questions in the future.
In this paper we focus on the implications for power control
and see that partial channel inversion should be used at low
signal-to-interference-plus-noise ratio (SINR), while full power
transmission is optimal at higher SINR.

I. INTRODUCTION

Modern cellular networks are evolving from voice-oriented
to ubiquitous mobile-broadband data networks. While the
downlink of these networks typically drives their bandwidth
and speed requirements, improvements in uplink performance
are increasingly important due to symmetric traffic applica-
tions like social networking, video-calls, and real-time gen-
eration and sharing of media content. A complete analytical
framework for the cellular uplink requires several fundamental
changes to the system model compared to the downlink,
nearly all of which make analysis more difficult. While in-
terference in the downlink comes from the fixed locations,
in the uplink, interference is generated by mobile devices
distributed throughout the network. A second distinction is
the use of location dependent power control, which makes
the transmit power highly variable, and therefore significantly
changes the interference statistics compared to the downlink.
Additionally, for the uplink, both a maximum power constraint
and consideration of average transmit power are especially
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important for battery powered user devices. These constraints
and their interdependence have made analysis of the uplink
very challenging using traditional approaches. Using tools
from stochastic geometry and point process theory, this work
presents to our knowledge the first non-trivial tractable model
for determining the fundamental metric of uplink performance,
the complete SINR distribution, which immediately gives
coverage and outage probability, and allows rate to be easily
computed as well.

A. Uplink Modeling Approaches

One approach for analysis of the uplink has been to use the
Wyner model [2]. It is attractive for its analytical simplicity,
wherein gains between users and base stations are normalized
by the desired link and inter-cell interference is either a con-
stant value or a single random variable to account for fading.
Historically popular for evaluating the performance of code
division multiple access (CDMA) based networks, this model
is still used to evaluate performance from an information-
theory perspective including multi-cell processing techniques
[3]–[8]. However, in [9] the applicability and accuracy of
the model is shown to be limited to scenarios where the
interference can be spatially averaged, for example a CDMA
network under high load. This type of interference averaging
approach wherein inter-cell interference is assumed to be fixed
is not a valid assumption for modern cellular systems where
typically only a single user per cell (or sector) is active in a
given resource block.

On the other extreme from the Wyner model, base sta-
tions are commonly modeled in a deterministic grid-based
deployment, e.g., the popular hexagonal grid model. This
approach does not lead to a tractable framework and results
are based upon several simplifying approximations followed
by exhaustive Monte Carlo simulations. Perhaps more impor-
tantly, the grid model – which was always highly idealized –
is particularly out-of-touch with ongoing deployments, which
have highly variable cell sizes and opportunistic placement of
new towers [10], [11].

The inadequacy of existing approaches has led to an in-
creased interest in the use of random spatial models for the
network topology [12]. An advantage of this new approach
is the ability to derive tractable expressions leading to more
general performance characterizations and intuition [13]–[21].
In our recent work [15], we showed that a completely random
(Poisson) placement of base stations was about as accurate as
a grid model, and sometimes more so, when compared to a
large modern cellular network. Recent work in [22] further
illustrated that this model can provide more accurate SINR
statistics for actual urban deployments. While this approach

ar
X

iv
:1

20
3.

13
04

v3
  [

cs
.I

T
] 

 2
1 

M
ar

 2
01

3



2

has mostly been applied to the downlink, recent work has
also attempted to extend this to the uplink by deriving some
approximate results for interference limited networks [23]. Un-
der assumptions of multiple users per base station, transmitting
on the same frequency in CDMA-style, and averaged transmit
power for the interference, the authors of [23] derive analytical
expressions for average spectral efficiency as the numbers of
antennas, base stations, and users grow asymptotically large.

B. Power Control

Power control in various forms has been one of the key
system design features for past, current, and proposed wireless
standards [24], [25]. Fast uplink power control has been
an especially important feature in CDMA-based networks
[26]–[29]. One reason for this is to mitigate the “near-far”
problem that occurs when a base station cannot decode the
signals of cell-edge users due to the much greater received
power (and thus interference) caused by cell-interior users.
For modern orthogonal frequency division multiple access
(OFDMA) based cellular networks, due to the orthogonality
of per-cell resources removing intra-cell interference and the
aggressive use of adaptive modulation and coding techniques,
fast power control is not as important of a feature. Instead,
slow power control is typically considered, which attempts
to overcome pathloss and large-scale fading (shadowing). For
example, the 3GPP-LTE standard supports the utilization of
open and closed-loop fractional power control in the uplink
[30], [31]. While having an impact on coverage and rate, both
by overcoming path loss and reshaping the distribution of the
interference power, power control is also an important factor
for battery utilization. Without a tractable analytical model it
is difficult to gain intuition or derive quantitative results from
a system/network design perspective due to the complicated
relationship between the relevant system parameters.

Recent work on the use of power control in modern
OFDMA-based networks has focused on evaluating perfor-
mance of different power control algorithms for a given set
of system parameters via intensive simulations. The authors
of [32] evaluated the impact of the maximum transmit power
on open and closed-loop algorithms. In [33], the authors
investigate the use of fractional power control in the uplink
as a method for maintaining constant interference power at
the base station. Maintaining constant interference power is of
interest for many practical receiver algorithms which attempt
to mitigate the impact of the interference but typically require
either knowledge of the interference power or require it to be
roughly constant. However, these studies, along with several
earlier ones in [34], [35], utilize the standard regular hexagonal
model for base station locations and the results are produced
via simulation, which limits the scope to a limited set of
possible design parameters.

Very recent work by the authors of [36] proposes an
analytical approach to this problem, with a particular goal of
giving insight into the selection of fractional power control
parameters. They consider a grid deployment for the base
station locations and utilize a so-called “fluid” model which
approximates the interference received in the center cell as

coming from outside cells with the base stations located on
rings of fixed radii [37]. Under these assumptions they derive
expressions for the SINR and spectral efficiency for users
located at relative cell-edge and cell-center locations, and use
them to infer optimal power control parameters.

C. Contributions

The main contribution of this work is the derivation of
uplink coverage probability for a randomly chosen mobile user
with fractional power control, which is a general power con-
trol framework that incorporates virtually all modern cellular
systems. We model the locations of the mobile users as a
realization of the Poisson Point Process (PPP) and then assume
that the base station corresponding to each mobile user is
located uniformly in its Voronoi cell [38]. The uplink analysis
is significantly more involved than its downlink counterpart
because of this location dependence. Furthermore, the transmit
power of a mobile in the uplink depends upon the distance
to its associated base station due to the fractional power
control. It turns out that the random variables denoting this
distance for each mobile user are identically distributed but
not independent in general. This dependence is not easy
to model accurately and hence leads to further technical
challenges in the derivation of coverage probability. However,
we demonstrate that this dependence is weak and can be
ignored, which improves the tractability of the system model
with minimal impact on the accuracy of the results. Under this
assumption, we derive analytical expression for the coverage
probability of a randomly chosen mobile user. We further
show that the same framework can be used to derive uplink
coverage probability of a “regular” base station deployment
by considering appropriate distribution of the distances of the
interfering mobiles to their serving base stations. Interestingly,
this analytical result closely approximates the coverage prob-
ability computed numerically for the hexagonal grid model.
We comment more on these observations in Section III.

After a discussion of the derived expressions for coverage
and average rate, we present system design guidelines com-
paring downlink and uplink coverage, and evaluate coverage
probability and transmit power utilization as a function of the
power control parameters. These results quantify the tradeoff
between improved cell-edge SINR for low and moderate
values of the fractional power control factor with significant
overall power reduction available if power control is more
aggressively applied. In the next section, we give our system
model and discuss important underlying assumptions.

II. SYSTEM MODEL

A. System Setup and Modeling Assumptions

We consider the uplink of a cellular network utilizing an
orthogonal multiple access technique composed of a single
class of base stations, macro base stations for example, and
focus on the received SINR at a randomly chosen base station.
Fig. 1 gives a visual representation of the uplink system model
and relationship between system parameters. The mobile user
locations are assumed to form a realization of a homogeneous
two-dimensional spatial PPP [38] with density λ. The spatial
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Fig. 1. Visual system model example giving the SINR at the typical base
station, focusing on the serving mobile and two interfering mobiles in adjacent
cells.

PPP corresponds to a uniform distribution of users in the
network, which is the baseline assumption for many cellular
system studies [39]. We assume that a mobile user is connected
to the closest base station, corresponding to an association
metric of max-received power averaged over fading, and that
each base station has an active uplink user scheduled. Under
such an assumption, it is reasonable to assume that each
base station is uniformly distributed in the Voronoi cell of
its corresponding mobile user. We perform analysis on a
randomly chosen base station. The distance of this base station
to the closest mobile is denoted by a random variable R. For
tractability, we will approximate this choice with a case where
the analysis is performed on a point uniformly chosen in R2.
It is worth noting that there is a subtle difference between
the random choice of a base station and a point uniformly
chosen in R2 due to coupling induced by the dependence in
the mobile and the base station point processes. To understand
this difference, recall that a uniformly chosen point is biased
to lie in bigger Voronoi cells more frequently, whereas there
is no such bias when a base station is chosen randomly from
the set of base stations defined as above. Nevertheless, we
show that this base station selection approximation is tight in
the context of the performance metrics of coverage and rate
considered in this paper. The assumption is formally stated
next.

Assumption 1: For tractability, we approximate the choice
of a randomly chosen BS from a set of BSs defined such that
exactly one BS falls in the Voronoi cell of each mobile by a
point uniformly chosen in R2.

Under the above assumption, the random variable R can be
shown to be Rayleigh distributed. The proof follows from the
null probability of a two dimensional PPP [38] as follows:

P[R > r] = P[No mobile in circle of area πr2] = e−λπr
2

,
(1)

from which the probability density function (pdf) of R follows:

fR(r) = 2πλre−λπr
2

, r ≥ 0. (2)

To model uplink interference, the randomly chosen base
station is assumed to be located at the origin, which follows
from the the translation invariance of the point process under
Assumption 1. We denote the set of interfering mobiles by
Z , the distance of an interfering mobile z ∈ Z to the base
station of interest by Dz , and the distance of the interfering
mobile to its serving base station by Rz . It should be noted
that the random variables {Rz}z∈Z are identically distributed
but not independent in general. The dependence is induced by
the structure of Poisson-Voronoi tessellation and the restriction
that only one base station can lie in each Voronoi cell. To
visualize this dependence, recall a simple fact that the presence
of a base station in a particular Voronoi cell forbids the
presence of any other base station in that cell. However, as
discussed in detail in the next section, this dependence is weak,
which motivates the following independence assumption.

Assumption 2 (Independence Assumption): We assume that
the random variables {Rz}z∈Z are independent and identically
distributed (i.i.d.).
For the marginal distribution of Rz , we make the following
assumption, which lends tractability to uplink analysis both in
the case of non-uniform and regular coverage regions. Both
these cases will be discussed in detail in the next section.

Assumption 3 (Distribution of Rz): The random variable
Rz is modeled as:

(a) Rayleigh distributed in the case when we study “ir-
regular” deployment of base stations, i.e., non-uniform
coverage regions, and,

(b) distance of a point uniformly distributed over a circle
of fixed radius from its center when we study regular
deployment of the base stations, in particular the one
corresponding to the hexagonal grid model.

The Rayleigh distribution is motivated by the same null
probability argument given in the case of R. Further details,
e.g., the radius of the circle, and the motivation behind the
second case will be given in the next section.

B. Channel Model

To model the channel, the path loss is assumed to be
inversely proportional to distance with the path loss exponent
given by α. We consider small-scale Rayleigh fading between
the mobiles and the base station under consideration, and a
constant baseline mobile transmit power of µ−1. Thus the re-
ceived power of the desired signal at the serving base station is
given by gR−α(ε−1), where g is i.i.d. exponentially distributed
with mean µ−1. The noise power is assumed to be σ2. Next,
we assume that all the mobiles utilize distance-proportional
fractional power control of the form Rαεz , where ε ∈ [0, 1]
is the power control factor. Thus, as a user moves closer
to the desired base station, the transmit power required to
maintain the same received signal power decreases, which is an
important consideration for battery-powered mobile devices.
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Under this system model, the associated SINR at a base station
located at origin is

SINR =
gRα(ε−1)

σ2 + IZ
, (3)

where for an interfering set of mobiles Z ,

IZ =
∑
z∈Z

(Rαz )
ε
gzDz

−α. (4)

If ε = 1, the numerator of (3) becomes g, with the pathloss
completely inverted by the power control, and if ε = 0 no
channel inversion is performed and all the mobiles transmit
with the same power.

C. Summary of Special Cases

To validate the assumptions and highlight the importance of
this model, we will compare the proposed model with various
other approaches and special cases. For clarity, we describe
all these approaches and special cases below:

PPP: This corresponds to the proposed model without any
assumptions, i.e., mobile locations correspond to a spatial
PPP with a single base station dropped uniformly within the
Voronoi cell of each mobile. Due to dependence induced by
the structure of Poisson-Voronoi tessellation, direct analysis of
this approach is daunting and hence not given. The numerical
results will be provided for this case to validate various
approximations leading to the following special cases.

PPP-Rayleigh: Setup is the same as the PPP case described
above. For tractability we assume R is Rayleigh distributed
along with Assumptions 2 and 3(a), i.e., {Rz} are i.i.d.
Rayleigh distributed. This case leads to the main result corre-
sponding to the irregular base station deployment studied in
Section III-A.

PPP-Uniform: This case differs from PPP-Rayleigh only
in terms of the distribution of Rz , which is as defined in
assumption 3(b). In other words, we assume that the serving
BS is located uniformly in a circle centered at the mobile user.
This case leads to the main result corresponding to the regular
base station deployment studied in Section III-B.

Grid: To compare the results of the proposed tractable
model, we consider the popular grid model, where the base
stations are located on the centers of a hexagonal grid and one
mobile user is distributed uniformly in each cell. Since this
model does not lead to tractable expressions, it is evaluated
via Monte-Carlo simulations.

Log-normal: This approach approximates inter-cell inter-
ference as a log-normal random variable with parameters
determined through a numerical fit using simulations of the
grid model. It has been utilized in previous works on coverage
and capacity analysis for cellular networks due to favorable
empirical evidence and its relative simplicity [40], [41].

III. COVERAGE PROBABILITY

The probability of coverage can be formally defined as
the complementary cumulative distribution function (ccdf) of
SINR as:

pc = P[SINR > T ], (5)
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Fig. 2. A comparison of the CCDFs of Rz both for the PPP and a grid
model with their respective approximations for λ = 1/4. Also included is the
CCDF of Rz for a set of real base station locations of an urban 4G network.

which is the probability that the uplink SINR at a randomly
chosen base station is greater than the target SINR T . It can
also be visualized as being the average area or the average
fraction of users in coverage. As noted earlier, we perform
analysis on a randomly chosen base station assumed to be
located at the origin that connects to the closest mobile user.
Under assumption 1, the distribution of the distance of the
closest mobile from the randomly chosen base station R can be
approximated by the Rayleigh distribution given by (2). As we
discuss in detail for Rz later in this section, this approximation
is tight and does not affect the accuracy of our results.

The net interference at a randomly chosen base station is
the sum of the powers from all the transmitting mobiles lying
farther than R. Under the power control model described in
the previous section, this power depends upon the distance
of a mobile to its corresponding base station and the power
control factor ε ∈ [0, 1]. For a mobile z ∈ Z , we denote its
distance to the corresponding base station as Rz . Although
the random variables {Rz}z∈Z are identically distributed,
they are not independent in general. However, as shown
later in this section, this dependence is weak and we will
henceforth assume each Rz to be i.i.d. (Assumption 2). Under
this independence assumption, we first derive the coverage
probability for the general distribution of Rz and then use this
general result to study two particular scenarios corresponding
to non-uniform and regular coverage regions. The main uplink
coverage probability result of this paper is stated in Theorem 1.

Theorem 1 (Uplink coverage for i.i.d. Rz): The uplink
coverage probability is given by:

pc(T, λ, α, ε)

= 2πλ

∫ ∞
0

re−πλr
2−µTrα(1−ε)σ2

LIz

(
µTrα(1−ε)

)
dr, (6)

where the Laplace transform of the interference is given by
LIz (s) =

exp

(
−2πλ

∫ ∞
r

(
1− ERz

[
µ

µ+ sRαεz x
−α

])
xdx

)
. (7)
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Proof: Starting from the definition of pc and SINR,
pc(T, λ, α, ε)

=

∫ ∞
0

P (SINR > T ) fR(r)dr (8)

=

∫ ∞
0

P

(
g
(
rα(ε−1)

)
σ2 + IZ

> T

)
2πλre−πλr

2

dr (9)

=

∫ ∞
0

P
(
g >

T (σ2 + IZ)

rα(ε−1)

)
2πλre−πλr

2

dr (10)

(a)
=

∫ ∞
0

2πλre−πλr
2

e−µTr
α(1−ε)σ2

EIz
[
e−µTr

α(1−ε)Iz
]

dr

(11)
(b)
=

∫ ∞
0

2πλre−πλr
2

e−µTr
α(1−ε)σ2

LIz

(
µTrα(1−ε)

)
dr,

(12)

where (a) follows from the fact that g ∼ exp(µ) and (b) fol-
lows from the definition of Laplace transform of interference
LIz (s) = EIz [e−sIz ]. To complete the proof, we now derive
an expression for LIz (s) below:

LIz (s)

= EIz

[
exp

(
−
∑
z∈Z

sRαεz gzD
−α
z

)]
(13)

= ERz,gz,Dz

[∏
z∈Z

exp
(
−sRαεz gzD−αz

)]
(14)

(a)
= ERz,Dz

[∏
z∈Z

Egz
[
exp

(
−sRαεz gzD−αz

)]]
(15)

(b)
= EDz

[∏
z∈Z

ERz
[

µ

µ+ sRαεz D
−α
z

]]
(16)

(c)
= exp

(
−2πλ

∫ ∞
r

(
1− ERz

[
µ

µ+ sRαεz x
−α

])
xdx

)
,

(17)

where (a) follows from the independence of gz , (b) fol-
lows from the independence of Rz and from the fact that
gz ∼ exp(µ), and (c) follows from the Probability Generating
Functional (PGFL) of a PPP [38].

The coverage probability expression can be simplified for
the full power control case (ε = 1) in the interference-limited
scenario (inter-mobile interference dominates thermal noise),
which is stated as the following corollary of Theorem 1.

Corollary 1: The uplink coverage probability for the full
power control case (ε = 1) assuming no noise (σ2 = 0) is
given by

pc(T, λ, α, ε = 1) =

∫ ∞
0

2πλre−πλr
2

LIz (T ) dr, (18)

where LIz (s) is a function of r and is given by (17) with
ε = 1 and µ = 1, where µ = 1 is due to the fact that when
noise power is negligible, the SINR distribution is no longer
a function of µ.
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Fig. 3. Joint densities of Rz1 and Rz2 for the actual PPP model (left) and
under the independence assumption (right). Rz1 and Rz2 are the distances
of the mobiles to their respective base stations in two neighboring Voronoi
cells.
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PPP model (left) and under the independence assumption (right). Rz1 and
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A. Distribution of Rz and Comments on Independence As-
sumption

After deriving the coverage probability expressions for
general Rz , we now derive the distribution of Rz for the PPP
model under the independence assumption. As mentioned in
the previous section, each base station is randomly located
in the Voronoi cell of its corresponding mobile. Therefore,
as was done in case of R, Rz can also be approximated by
the distance of a randomly chosen point in R2 to its closest
base station and hence its distribution can be approximated by
Rayleigh distribution (as derived for R):

fRz (rz) = 2πλrze
−λπr2z , rz ≥ 0 (19)

The CCDF of Rz is then P[Rz > rz] = e−λπr
2
z , which is

shown to be a tight fit for the numerical estimate for the
PPP model in Fig. 2. This corresponds to the Assumption
3(a) mentioned in the previous section and will be used to
specialize Theorem 1 for the case of non-uniform coverage
regions, i.e., irregular base station deployment. Although Fig. 2
shows that our approximations for the distributions of R and
Rz are tight, it does not provide any insight into the extent
of dependence between random variables {Rz}z∈Z which is
defined by their joint distribution. Since it is hard to gain
insights from the complete joint distribution of {Rz}z∈Z ,
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we study a simplified case of the joint distribution of two
random variables Rz1 and Rz2 , which are the distances of the
mobiles to their respective base stations in two neighboring
Voronoi cells. Since the dependence is expected to be strongest
for the neighboring cells, this study can be thought of as
a worst case study. We numerically compute the joint pdf
fRz1 ,Rz2 (rz1 , rz2) for the actual PPP model and compare it
with the joint pdf derived under the independence assumption
in Fig. 3. It should be noted that the joint pdf under the
independence condition follows directly from (19) and is given
by: fRz1 ,Rz2 (rz1 , rz2) =

(2πλ)2rz1rz2e
−λπ(r2z1+r

2
z2

), rz1 ≥ 0, rz2 ≥ 0. (20)

From Fig. 3, we note that the two joint densities are surpris-
ingly similar, with the pdf slightly more dispersed in the case
of the independence assumption, which is the expected direct
result of independence. For better visualization, we also pro-
vide the top view of the joint densities in Fig. 4, which leads
to the same conclusion. The correlation coefficient ρRz1 ,Rz2
is numerically computed to be 0.07 for this simulation setup.

After validating the independence assumption, we now use
the density of Rz , given by (19), to derive the Laplace
transform of interference for the PPP case, which is given
by:

LIz (s) =

exp

−2πλ

∞∫
r

1−
∞∫
0

µ

µ+ su
αε
2 x−α

πλe−λπudu

xdx

 .

(21)

We plot the uplink coverage probability using this expression
of the Laplace transform and compare it with the numerically
computed coverage probability for a simulated PPP under true
power control (without independence assumption) in Fig. 5(a)
and Fig. 5(b) with no noise and λ = .25 for α = 4,
ε = 1 and α = 3.25, ε = .75 respectively. We note that the
analytical result derived under the independence assumption
closely approximates the true power control result for a PPP
as well as the results based on simulations utilizing a set of
actual base station locations compared to simulations using
the grid model.

The results in Fig. 5(a) and Fig. 5(b) are also further
compared with a model which approximates inter-cell in-
terference as a log-normal random variable with parameters
determined through a numerical fit of the grid model. The log-
normal approximation does not capture the shape of the SINR
distribution as accurately as the proposed model. Approaches
that combine the interference into a single term that must
be empirically estimated cannot be easily parameterized as
a function of key network features such as pathloss exponent,
base station/user density, or fractional power control. However,
since the proposed model is a function of these system
parameters, we show in Sec. IV that it can be used to give
insights into system design and performance trends.

B. Comments on Regular (Grid) Model
Grid models are used to model more “regular” base station

locations. The most popular model used in prior work places
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Fig. 5. A comparison of the uplink coverage probability for the proposed
model with simulations for the grid and the PPP models. Also included is the
result using a set of actual base station locations and results using a log-normal
approximation for the interference.

the base stations on a hexagonal grid. While this model has
been extremely helpful in the numerical studies of macro-
cellular networks, it does not provide analytical tractability.
In this subsection, we show that the random spatial model for
the mobile user locations along with an appropriately chosen
distribution of Rz provides a generative model that enables
us to derive analytical expression for the coverage probability
that closely approximates the numerically computed results for
the grid model.

Approximating hexagons as circles with the same area λ−1,
we assume that each base station is located uniformly in a
circle of radius 1√

πλ
around its corresponding mobile. The

radius value is evaluated from the density of the mobile users
assuming there is one base station per mobile user. It is
important to note that the only difference between this and
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the PPP-Rayleigh model studied in the previous subsection is
the distribution of Rz . The difference is formally stated in
Assumption 3 in the previous section. The density of Rz for
this case can be easily evaluated as:

fRz (rz) = 2πλrz, rz ∈
[
0,

1√
πλ

]
. (22)

As shown in Fig. 2, this closely approximates the distribution
of Rz in a grid model. Using this density of Rz , we can now
compute the Laplace transform of interference which can be
expressed as: LIz (s) =

exp

(
−2πλ

∫ ∞
r

(
1−

∫ 1√
πλ

0

µ

µ+ suαεx−α
2πλudu

)
xdx

)
.

(23)
While our results hold for general pathloss exponents α, power
control exponents ε, and different noise powers σ2, in the
case of α = 4 µ = 1, and ε = 1, the expression for the
Laplace transform can be found in closed-form. In this case,
closely corresponding to an interference-limited urban cellular
deployment scenario [31], the Laplace transform is given as

LIz (T ) = exp

−πλ
2
r2 +

π2λ2 arctan
( √

T
πλr2

)
2
√
T

 r4

−
√
T

2
arctan

(
πλr2√
T

))
. (24)

We compare the coverage probability derived using this
Laplace transform with the numerically computed coverage
probability using true power control in a grid model in
Fig. 5(a) and Fig. 5(b) with λ = .25 and σ2 = 0 for
α = 4, ε = 1 and α = 3.25, ε = .75. Surprisingly,
we note that the analytical result derived using a random
spatial model under the independence assumption in both
cases closely approximates the true power control result for
a hexagonal grid model even compared to the log-normal
interference approximation. As with the PPP model, a crucial
step is to appropriately choose the distribution of Rz . Thus,
while utilizing the same underlying random spatial model for
the mobile user locations, we are able to “tune” the results
to fit a range of highly non-uniform to very regular network
topologies.

IV. SYSTEM DESIGN APPLICATIONS

Based on the framework developed in Sec. III, we analyze
performance metrics in the context of realistic parameters for
modern networks and gain insight into the system design. Here
we primarily focus on the scenario of Sec. III-A where the
base station is located uniformly in the Voronoi cell of its
corresponding mobile user and the distance to the nearest base
station is Rayleigh distributed. This is useful in capturing the
non-uniform topology of many modern network deployments,
although similar analysis could be performed for networks
with regular topology as discussed in detail in the previous
section.
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Fig. 6. Average user rate as a function fractional power control parameter
ε for pathloss exponents α = 2.5, 3.25, and 4, λ = .24, µ−1 = 200 mW,
and with no noise or with σ2 = −104dBm.
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Fig. 7. A comparison of the coverage probability for the downlink with
40W transmit power and the uplink utilizing fractional power control with
ε = .6, .8 and 1, and a max transmit power of 200 mW.

A. Average rate

The use of link-adaptive algorithms in modern cellular
networks allows the average SINR to be directly related to av-
erage data rate for mobile users. A straightforward application
of the results of Sec. III is to determine analytical expressions
for user rate under different stochastic power control models as
a function of the key uplink parameters, something previously
not possible with deterministic network topology models.

Assuming adaptive modulation and coding, we define the
average data rate based upon the Shannon capacity expression,
τ̄ (λ, α, ε) = E [ln (1 + SINR)], integrating over the SINR and
fading distributions. For the sake of convenience, we give the
results in units of nats/Hz, where 1 bit = loge(2) nats.

Theorem 2 (Uplink average rate): The average rate of a
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randomly chosen uplink user is given by τ̄(λ, α, ε) =∫ ∞
0

2πλre−πλr
2

∫ ∞
0

e
−σ2µ et−1

rα(ε−1) LIz

(
µ
et − 1

rα(ε−1)

)
dtdr,

(25)
where LIz (s) is given by (17).

Proof: Starting from the definition of τ̄ and SINR,
τ̄(λ, α, ε)

= E [ln (1 + SINR)]

=

∫ ∞
0

∫ ∞
0

P [ln (1 + SINR) > t] dtfR(r)dr (26)

=

∫ ∞
0

fR(r)

∫ ∞
0

P

[
ln

(
1 +

g
(
rα(ε−1)

)
σ2 + IZ

)
> t

]
dtdr

=

∫ ∞
0

fR(r)

∫ ∞
0

P
[
g >

(et − 1) (σ2 + IZ)

rα(ε−1)

]
dtdr

=

∫ ∞
0

fR(r)

∫ ∞
0

e−sσ
2

LIz (s) dtdr,

where fR(r) = 2πλre−πλr
2

and s = µ et−1
rα(ε−1) . The derivation

of LIz (s) follows from Theorem 1 and has either the form
of (21) or (23) depending on whether the random variable Rz
is used to model regular or irregular network.

In Fig. 6, we plot the average user rate expressions using
the Rayleigh assumption for Rz as a function of ε for pathloss
values of α = 2.5, 3.25, and 4, transmit power µ−1 = 200
mW, and no noise or σ2 = −104dBm. The average rate
increases with α over all values of ε. Since the computed
average rates are for a randomly chosen user anywhere in the
network, the effects of power control on the high, medium,
and low SINR users is combined into a single value. Thus
as ε increases, the rate decreases due to the loss in rate for
some users whose transmit power is reduced, which is not
overcome on average by the reduction in interference and
increased rate for other users, especially those near the cell-
edge. We also note that for a dense deployment with λ = .24
base station/km2, the no noise approximation is very tight.

TABLE I
SYSTEM PARAMETERS

Bandwidth 10 MHz
base station density .24 BS/km2

User distribution uniform
Pathloss (dB) 37 log(d), d = distance in meters
Downlink Tx Power 45 dBm (30 W)
Uplink Max Tx Power 23 dBm (200 mW)
FPC ε 0.6, 0.8, 1.0
Noise Power Density -174 dBm/Hz

B. Downlink vs. Uplink Coverage

Another immediate application of the model is to consider
the difference in coverage between the downlink and the up-
link for the same network topology. We consider the randomly
chosen user’s SINR distribution in the downlink based on
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Fig. 8. A plot of the uplink coverage probability for a PPP network with
stochastic fractional power control and a range of ε values.

the model presented in [15] for a network whose BSs are
distributed according to a PPP with density λ. Before we make
the comparison, it is important to highlight that the base station
distribution in the proposed uplink model is not PPP, simply
by the way it is constructed from the point process of the
mobiles. Although an interesting problem in itself, the goal is
not to characterize the base station point process and hence
we numerically compare the downlink SINR distribution of
the following two cases to justify the direct comparison of the
uplink results proposed in this paper with the downlink results
of [15]:
• Downlink: User-PPP: This corresponds to the case where

we start with the base station locations that result from the
proposed uplink location model, i.e., the mobiles form a PPP
and each base station is located uniformly in the Voronoi
cell of the mobile it is serving. The downlink SINR is then
numerically evaluated at a randomly chosen mobile user
assuming all the base stations transmit at the same power.

• Downlink: BS-PPP: In this case, we consider the randomly
chosen user’s SINR distribution in the downlink based
on the model presented in [15] where the base station
locations are modeled as a PPP with density λ. The coverage
probability assuming all the base stations transmit at the
same power is

pc(T, λ, α) = πλ

∫ ∞
0

e−πλv(1+ρ(T,α))−µTσ
2vα/2dv, (27)

where
ρ(T, α) = T 2/α

∫ ∞
T−2/α

1

1 + uα/2
du. (28)

In Fig. 7, we plot the SINR distribution for both these
cases and observe that the two models are close enough to
facilitate the direct comparison of the downlink analytical
results derived in [15] and the uplink ones derived in this
paper.

The downlink coverage probability, which assumes constant
power transmissions across the network, has two major terms.
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The first term is based on ρ(T, α) and is not dependent
on transmit power and represents the interference-limited
contribution to the SINR, while the second term depends on
the noise power σ2 and transmit power µ−1, representing the
noise-limited part of the SINR. However, the use of fractional
power control in the uplink significantly changes the shape
of the distribution of the interference power. This can be
seen in both the noise-limited term with σ2 and the Laplace
transform of the interference, which are dependent on ε and
the distribution of Rz since the transmit powers of the mobiles
throughout the network are not constant, but highly variable
unlike the downlink.

Fig. 7 plots the two cases with the system parameters given
in Table I, which are standard assumptions for a LTE-based
cellular network [36], [39], [42]. We first note that the gap
between the downlink results based on the BS-PPP and User-
PPP assumptions is not very large which is reasonable given
the prior evaluation of Assumption 2(a). Secondly we consider
the disparity between the SINR distributions, especially for
large SINR values. One reason for the uplink’s lower coverage
is due to the mismatch in transmit power compared to the
downlink. Additionally at the high SINR values, the use of
larger ε values also impacts the coverage probability since
the users closest to their serving base stations greatly reduce
their transmit power relative to the users at the cell-edge. The
impact of ε is investigated in further detail in the following
section.

The notion of disparate uplink and downlink coverage
regions has fundamental consequences on the system design
of cellular networks, different from those of wireless LANs,
for example, which have much smaller coverage regions and
typically do not have as significant hardware distinctions
between the different network devices. For example, scenarios
wherein the mobile user may be able to decode the downlink
transmissions, but unable to connect via the uplink will impact
handoff algorithms between base stations. One advantage of
having a unified framework for uplink and downlink coverage
is the ability to evaluate and optimize as function of the
relevant system parameters. The aim may be to determine
network and system parameters such that the uplink and down-
link are balanced or investigating tradeoffs between capacity
and coverage enhancements at the base station and mobile
terminal, respectively.

C. Fractional Power Control

As mentioned previously, the primary motivations for frac-
tional power control in the cellular uplink are to provide
beneficial coverage improvements for the lowest-percentile
users, who are typically at the cell-edge, and to manage
average transmit power of battery-powered mobile devices.
In practical cellular systems such as LTE, fractional power
control parameters are network-specific and not user-specific,
thus there needs to be some optimization performed to select
parameters that can provide acceptable performance for the
majority of users and provide a high overall system capacity
[30], [31]. Fig. 8 gives the coverage probability distributions
as a function of the fractional power control factor ε for a

network topology given by Table I. The baseline case of fixed
transmit power for all users (ε = 0) does not provide the
lowest overall coverage probabilities, but does provide the
greatest coverage probability for the highest SINR thresholds.
The largest coverage probability for users in the lower 50
percentile is given by ε = 0.25, followed by ε = 0.5, giving
gains over fixed transmit power before crossing below the
ε = 0 curve at 5 and 0 dB respectively. We also note that
for the very low SINR thresholds < −10 dB, the difference
in coverage probability for ε = 0, 0.25, and 0.5 is negligible.
As ε increases, the coverage probability curves shift lower with
ε = .75 providing much lower coverage probability than fixed
transmit power, especially for SINR thresholds > 5 dB. Full
pathloss inversion, ε = 1 power control shows an even more
significant reduction in coverage across all SINR thresholds.

In Fig. 9, we plot the value of ε that maximizes the coverage
probability for a given SINR target T , denoted as ε̂ for α =
2.5, 3.2, and 3.7. In other words, the value of ε̂ is determined
according to ε̂(T, α, λ) =

arg max
ε

2πλ

∫ ∞
0

re−πλr
2−µTrα(1−ε)σ2

LIz

(
µTrα(1−ε)

)
dr,

(29)
where the Laplace transform of the interference is given by
(7).

This gives insight into the selection of ε from coverage
probability maximization perspective. An interesting observa-
tion is that there are two distinct regions denoted in each plot
by plateaus of near constant ε̂. For users with low SINR a
moderate value of ε = .25 to .3 provides the greatest gains
while for users with high SINR, the SINR is maximized by
transmitting with the maximum power and ε = 0. We note
that there is some sensitivity to the pathloss exponent α, in
all three cases, the transition between the two regions is fairly
steep in its slope, with an approximately 5 dB range, while as
α increases the ε̂ for the low SINR region decreases while the
SINR transition threshold between the two regions increases
slightly. Additionally, this dual-regime behavior for fractional
power control in uplink cellular networks differs from the be-
havior of power control in other classes of wireless networks,
notably ad-hoc wireless networks, which were shown to have
an optimal value of ε = .5 [43], [44].

These observed effects of fractional power control in Fig.
8 and Fig. 9 can be understood by focusing on the gains
perceived by users close to their desired base station relative
to those at the edge and their interdependency. Cell-interior
users typically experience good RF conditions and are not as
susceptible to interference as users at the cell edge. Instead,
they are more noise-limited which means a reduction in
their transmit power reduces their achievable SNR. This is
especially true under pathloss-based power control, since high
values of ε reserve the greatest transmit power for users with
large pathloss. Thus transmitting at full power (ε = 0) is the
SINR-optimizing strategy.

Cell-edge users, however, are more fundamentally interfer-
ence limited, and the use of pathloss-proportional power con-
trol results in a decrease in the transmit power of interfering
cell-center users and a relative increase in their transmit power
(to overcome the larger cell-edge pathloss) benefiting their
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SINR. This disparity becomes more pronounced with high
ε. As a result, there is a complex trade off in the reduction of
interference from neighboring cell-center users and increased
interference by mobiles at the cell edge, which gives rise to the
observed intermediate range of ε values providing the highest
gains for the majority of users. In effect, full-inversion power
control performs a reordering of SINRs between cell-edge and
cell-interior users which does not provide system-wide gains.
An advantage of the PPP uplink cellular model is that it cap-
tures the relevant system and topology parameters necessary
for system designers to determine operating thresholds for a
given range of parameters.

Fig. 10 gives the overall transmit power utilization of
mobiles in the network as a function of ε with a maximum
transmit power of 23 dBm and an average transmit power of
µ−1 = 10 dBm. Clearly the transmit powers of the mobile
users are greatly reduced with the introduction of power
control. For high values of ε we note that 10-15% of the
users have transmit power less than 0 dBm, which is a 23 dB
reduction in power compared to the maximum transmit power.
For this reason, proposed system guidelines for the uplink may
wish to choose ε to balance the metrics of coverage and battery
utilization.
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V. CONCLUSION

This work has presented tractable expressions for the cov-
erage probability and average rate in the cellular uplink,
which are applicable both to uniform and irregular network
topologies. The expressions are based on a novel analytical
model utilizing the spatial Poisson process and are solely a
function of the network topology and system design parame-
ters including SINR targets, base station density, and fractional
power control parameters. The presented results provide in-
sight into the differences of downlink and uplink performance
expectations and the tradeoff between using fractional power
control to benefit cell-edge users and reducing overall power
utilization by mobiles.
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Fig. 10. The CCDF of the average transmit power per mobile as a function
of ε with λ = .24, Pmax = 23dBm, µ−1 = 10dBm, and α = 3.7 pathloss
factor.

A major arena for future work is to understand how these
dynamics are enhanced or differ for heterogeneous network
topologies [18], [45]. The nested and overlapping nature of
coverage regions for multiple tiers of access points is expected
to have a large impact on the overall interference distribution
and a range of hardware requirements and use cases may lead
to unique system design tradeoffs not experienced in single-
tier networks.
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