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Abstract—We design a framework for truthful double multi-
channel spectrum auctions where each seller (or buyer) can sell 
(or buy) multiple spectrum channels based on their individual 
needs. Open, market-based spectrum trading motivates existing 
spectrum owners (as sellers) to lease their selected idle spectrum 
channels to new spectrum users (as buyers) who need the 
spectrum desperately. The most significant requirement is how to 
make the auction economic-robust (truthful in particular) while 
enabling spectrum reuse to improve spectrum utilization. 
Additionally, in practice, both sellers and buyers would require 
to trade multiple channels at one time, while guaranteeing their 
individual profitability. Unfortunately, none of the existing 
designs can meet all these requirements simultaneously. We 
address these requirements by proposing True-MCSA, a 
framework for truthful double multi-channel spectrum auctions. 
True-MCSA takes as input any reusability-driven spectrum 
allocation algorithm, introduces novel virtual buyer group (VBG) 
splitting and bidding algorithms, and applies a winner 
determination and pricing mechanism to achieve truthfulness 
and other economic properties while improving spectrum 
utilization and successfully dealing with multi-channel requests 
from both buyers and sellers.  Our results show that the auction 
efficiency is impacted by the economic factors with efficiency 
degradations within 30%, under different experimental settings. 
Furthermore, the experimental results indicate that we can 
improve the auction efficiency by choosing a proper bidding 
algorithm and using a base bid. True-MCSA makes an important 
contribution on enabling spectrum reuse to improve auction 
efficiency in multi-channel cases. 
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I.  INTRODUCTION  

The demand for radio spectrum use has been growing 
rapidly with the dramatic development of the mobile 
telecommunication industry in the last decades. However, the 
growth of wireless networks has been hampered by the 
previous inefficient spectrum distribution. In the past decade, 
the FCC (Federal Communications Commission) and its 
counterparts across the world have been using single-sided 
auctions to assign spectrum to wireless service providers in 
terms of predetermined national/regional long-term leases. The 
static allocations have led to an artificial shortage of spectrum: 
new wireless applications starve for spectrum, while large 
chunks of it remain idle most of the time under their current 
owners. This allocation inefficiency has prompted a wide 
interest in an open, marked-based approach for redistributing 
the spectrum where new users can gain access to the spectrum 
they desperately need and existing owners can gain financial 
incentives to “lease” their idle spectrum. Additionally, as the 

development of multi-radio wireless networks, which is 
regarded as an enabling technology of next generation wireless 
network communications, the multi-channel requirement from 
one single user in the spectrum distribution becomes more and 
more popular. 

Spectrum auctions are among the best-known market-based 
spectrum allocation mechanisms due to their perceived fairness 
and allocation efficiency: everyone has an equal opportunity to 
win and the spectrum channels are sold to bidders who value 
them the most. Unlike conventional FCC-style auctions that 
target long-term national/regional leases to service providers, 
the spectrum auctions we addressed in this paper allow sellers 
to lease their idle spectrum channels to buyers that can be small 
wireless networks, individual infrastructure networks or home 
networks, and provide a promising solution for efficient 
dynamic spectrum redistributions. There have been some 
researches [1-4] for the spectrum auctions targeting spectrum 
redistribution. However, none of them provides a truthful 
double multi-channel spectrum auction solution. 

In this paper, we propose a framework for TRUthful 
doublE Multi-Channel Spectrum Auctions (True-MCSA) 
where each seller or buyer requests arbitrary number of 
spectrum channels to sell or buy based on their individual 
needs. True-MCSA takes as input any reusability-driven 
spectrum allocation algorithm, introduces novel virtual buyer 
group (VBG) splitting and bidding algorithms, and applies a 
novel winner determination and pricing mechanism to achieve 
truthfulness and other economic properties while improving 
spectrum utilization and successfully dealing with multi-
channel requests from both buyers and sellers. True-MCSA 
provides a simple framework to address truthful double multi-
channel spectrum auctions with spectrum reuse. 

The paper makes the following key contributions. 

(1) We propose a framework, True-MCSA, for truthful 
double multi-channel spectrum auctions. In True-MCSA, we 
successfully deal with multi-channel requests from both sellers 
and buyers by introducing virtual buyer group (VBG) splitting 
and bidding together with applying a novel winner 
determination and pricing mechanism. True-MCSA provides 
an efficient and trust-worthy environment for spectrum sellers 
and buyers to trade arbitrary number of spectrum channels. 
Through the auctions, each seller sells all the channels it bid if 
winning, sells none if losing; each buyer buys at most the 
number of channels it bid if winning, buy nothing if losing. 

(2) We formally prove that True-MCSA is of three key 
economic-properties, namely individual rationality, ex-post 



budget balance and truthfulness for both sellers and buyers. 
These properties ensure that the auctions are economic-robust, 
the auctioneer have incentives to setup an auction while the 
bidders have incentives to bid in the auction. 

(3) We do extensive experiments to show the auction 
efficiency compared to that of the pure allocation (PA) 
algorithm, and the impacts of different bidding algorithms, 
different bidding patterns and different buyer distributions on 
the auction efficiency.  

The rest of paper is organized as follows: Section II is the 
preliminaries; Section III describes the concept and design of 
Ture-MCSA; in section IV, we carry out extensive simulation 
experiments to evaluate the performance of our design; Section 
V introduces the related works; finally, Section VI is the 
conclusions and future works. 

II. PRELIMINARIES 

In this section, we provide the problem model of the double 
multi-channel spectrum auction, and discuss our design goals 
to implement the auction. 

A. Problem Model 

We consider a single-round double multi-channel spectrum 
auction with one auctioneer, M sellers, and N  buyers. We 
assume that each seller contributes multiple distinct channels 
and each buyer requests multiple channels. The auction is 
sealed-bid and private. Bidders submit their bids privately to 
the auctioneer without any knowledge of others. 

For a seller m , its bid is denoted by( , )
m m
s c  ( 0

m
s   and 

1
m
c  ), meaning that m  require the minimum per-channel 

payment
m
s to sell 

m
c  channels; s

m
v and t

m
c are its true 

valuation of each channel and true number of channels 
provided; s

m
p is the per-channel payment received if it wins the 

auction; and its utility is ( )s w s s

m m m m
u c p v   if it wins 

w

m
c ( w

m m
c c 1 )channels in the auction, and 0 otherwise. For 

a buyern , its bid is denoted by( , )
n n
b d  ( 0

n
b   and 1

n
d  ), 

which represents that the buyer is willing to pay the maximum 
price 

n
b for each channel, and it requires 

n
d channels; b

n
v and 

t

n
d are its true valuation of each channel and true number of 

channels requested; b

n
p is the per-channel price it pays if it wins 

the auction; and its utility is ( )b w b b

n n n n
u d p v   if it wins 

w

n
d ( w

n n
d d 1 )channels in the auction, and 0 otherwise. 

Note that in the auctions, we assume that both sellers and 
buyers can bid the per-channel price untruthfully, while the 
buyers can also bid the number of channels requested 
untruthfully and the sellers always bid the true number of 
channels he can provide. We assume that when w t

n n
d d , the 

utility of each extra channel for buyers is not more than zero. 

B. Design Goals 

Our first design goal is to exploit the spatial reusability of 
radio spectrum. Unlike conventional goods, spectrum is 
reusable among bidders subjecting to the spatial interference 
constraints: bidders in close proximity cannot use the same 
spectrum frequency simultaneously but well-separated bidders 
can. In the case of multi-channel spectrum auctions, different 
buyer request quite different number of spectrum channels, 
how to exploit and maximize the spatial reusability is 
challenging.  

Our second design goal is to ensure economic-robustness of 
the auctions. Truthfulness, individual rationality and budget 
balance are the three critical properties required to design 
economic-robust double auctions [1][5][6]. Although TRUST 
proposed by [1] has well achieved all the three properties in 
one-channel spectrum auctions, how to achieve these economic 
properties in multi-channel spectrum auctions has not been 
addressed. In the multi-channel spectrum auctions, both sellers 
and buyers request different numbers of channels, which makes 
it challenging to design the auction process (i.e. determination 
of winners and prices) and to achieve economic robustness. 

We now define the three economic properties in double 
multi-channel spectrum auctions: 

(1) Truthfulness. A double multi-channel spectrum auction 
is truthful if no matter how other players bid, no seller m  or 
buyer n  can improve its own utility by biding untruthfully 
( s

m m
s v  for sellers and b

n n
b v or t

n n
d d  or both for buyers). 

Truthfulness is essential to avoid market manipulation and 
ensure auction fairness and efficiency. In untruthful auctions, 
selfish bidders can manipulate their bids to game the system to 
increase their utilities but decrease others’. In truthful auctions, 
the dominate strategy for bidders is to bid truthfully, thereby 
eliminating the fear of market manipulation and the overhead 
of strategizing over others. With the true valuations, the 
auctioneer can allocate spectrum efficiently to buyers who 
value it the most. 

(2) Individual Rationality. A double multi-channel 
spectrum auction is individual rational if no winning seller is 
paid less than its bid and no winning buyer pays more than its 
bid: 

,s w w b w w

m n m n n n n n
p c s c p d b d                                  (1) 

Here, we assume the pricing is uniform for each seller m  
and buyern , which is in accordance with our design. 

This property guarantees non-negative utilities for bidders 
who bid truthfully, providing them incentives to participate. 

(3) Ex-post Budget Balance. A double multi-channel 
spectrum auction is ex-post budget balanced if the auctioneer’s 
profit 0  . The profit is defined as the difference between 
the revenue collected from buyers and the expense paid to 
sellers: 

1 1

= 0
N M

b w s w

n n m n
n m

p d p c
 

                                        (2) 



This property ensures that the auctioneer has incentives to 
set up the auction.  

III. TRUE-MCSA: CONCEPT AND DESIGN 

In this section, we first describe the concept of designing 
True-MCSA, then present the design in detail, finally, prove 
the auction properties that our design satisfies. 

A. Concept 

The most challenging problem in designing True-MCSA is 
how to deal with the multi-channel requirements of both buyers 
and sellers, while guaranteeing that the double spectrum 
auctions are truthful, and the reuse of spectrum is well 
exploited. We borrow ideas from McAfee’s design [7] and 
TRUST [1], and propose a novel auction framework that meets 
all the above requirements. Specifically, we form buyer groups 
independently on buyer bids to exploit the reuse of spectrum; 
design VBG splitting and VBG bidding algorithms to solve the 
problem of multi-channel bidding; bring forward a novel 
winner determination mechanism to ensure truthful double 
spectrum auctions. 

(1) Bid-independent Buyer Grouping 

The first question is how to group multiple conflict-free 
buyers together so that they can be assigned the same channels. 
This spectrum allocation process can be dependent on the bids, 
like VERITAS [2]. However, a bid-dependent allocation 
allows bid manipulation and makes the auctions untruthful [1]. 
Therefore, we take the same policy as TRUST, and form the 
buyer groups based on their interference conditions but 
independent of their bids. The buyer grouping initially exploits 
the special reuse of spectrum among buyers located in different 
places. 

(2) Virtual Buyer Group (VBG) Splitting and Bidding 

After forming buyer groups, we can not directly treat each 
buyer group as a super buyer like TRUST, for in multi-channel 
scenarios each buyer in the group may request quite different 
number of channels and it is hard to determine the group bid 
and how many channels the buyer group should buy. Our basic 
idea is, for each buyer group, we should first properly split it 
into several VBGs in which each buyer merely request one 
channel, and then regard each VBG as a super buyer to bid.  

Based on the basic idea, we form VBGs from a buyer group 
like this: the first VBG is obtained by gathering buyers 
requesting the first channels in the buyer group; the second one 
is obtained by gathering buyers requesting the second channels 
in the buyer group; …and son on. In this way, a buyer group is 
split into K  VBGs, where K  is the maximum number of 
channels requested by the buyers in the buyer group. Finally, a 
VBG is treated as a super buyer and the problem settings are 
reduced to those in McAfee’s design.  

Though we have split buyer groups into VBGs and reduced 
the problem settings to simpler ones, it is far from enough to 
achieve truthfulness. The next question encountered is how to 
design the bidding for each VBG to participate in the auctions. 
As discriminatory pricing leads to untruthful auctions [1], 
uniform pricing should be used to charge buyers in each VBG 

if it is winning. Additionally, VBGs derived from the same 
buyer group contains the buyers from the same buyer set. 
Making use of the above considerations, we design the 
methods of VBG bidding. In Section III-B, two methods of 
VBG bidding are proposed. 

Through the VBG splitting and bidding, we convert the 
problem of multi-channel auctions to that of single-channel 
auctions, and thus properly solve the multi-channel request 
problems. Furthermore, as we will see in Section III-B, the 
VBG splitting and bidding also answers the question of how 
many channels a buyer group should buy while maximizing the 
spectrum reuse and auction efficiency. 

(3) Winner Determination 

To avoid the bid manipulation and ensure the economic-
robustness of the spectrum auctions, the winner determination 
should lead to the following results: (1) the price charged to the 
winning buyers is not more than and independent on the per-
channel bid of each winning buyer; (2) the price paid to the 
winning sellers is not less than and independent on the per-
channel bid of each winning seller; (3) the pricing mechanisms 
for both buyers and sellers should be uniform globally or 
locally. In Section III-B, we provide a novel winner 
determination that meets the above condition all and properly 
deals with the multi-channel scenarios. 

B. Design 

Now, we present the design of True-MCSA in details. 
During the presentation, the following example is used to 
illustrate the auction process.  

An Example: In an auction, we assume that the seller set 
S and the buyer set B with their bids are as follows: 

1 2 3 4 5
{ (3,1), (4,2), (5, 3), (6,2), (11,2)}S S S S S S  

1 2 3 4 5

6 7

{ (10, 3), (8,5), (5,1), (3,2), (11,2),

(9, 4), (5,1)}

B B B B B B

B B


 

We will discuss how the example auction proceeds in each 
step of True-MCSA.  

True-MCSA consists of the following four steps. 

Step I: Buyer Group Formation 

We assume that all the sellers’ channels are available to all 
the buyers and use conflict graph to describe the interference 
condition among buyers. Buyers that do not interfere with each 
other are grouped into the same group and can be assigned to 
the same channels. The group formation is performed privately 
by the auctioneer before the actual auction and kept 
confidential to the buyers. Modeling the interference condition 
as conflict graph, the group formation is equivalent to finding 
the independent sets of the conflict graph [8][9]. It is noted that 
the group formation only forms buyer groups, but not assigns 
specific channels to buyers. 

Example Illustration: In this step, we just simply assume 
that the buyers are grouped into two groups: 

1 1 2 3 4
{ , , , }G B B B B  and

2 5 6 7
{ , , }G B B B .  



Step II: VBG Splitting and Bidding 

Buyers in groups request to buy multiple channels. We 

denote the bid of buyer i  by( , )
i i
b d , where

i
b is the per-channel 

bid and
i
d is the number of channels requested. Assuming that 

buyer i  belongs to group
n
G , the maximal number of channels 

requested in the group is denoted by max
n

n ii G
K d


 . Thus, we 

can split the buyer group
n
G  into 

n
K VBGs in which each 

buyer requests only one channel as follows: 

The st1 VBG consists of the buyers in group
n
G who request 

their st1 channel; 

the nd2  VGB consists of the buyers in group
n
G who 

request their nd2 channel; 

… 

the th

n
K  VBG consists of the buyers in group

n
G who 

request their th

n
K  channel. 

Fig.1 illustrates the VBG splitting procedures. Buyer group 
G = {1, 2, 3, 4} is split into 5 VBGs according to the number 
of requested channels of each buyer. Since the VBGs with 
lower indexes are always the super sets of those with higher 
indexes and thus have higher bids, they have greater 
probabilities to win in the auction. In other words, buyers in the 
buyer group tend to win the first several channels while losing 
the last ones. The reason is that as the increase of the number 
of channels the buyer group wins, the spectrum reuse decreases 
in the group, and the auction should find a proper traded 
channel number for each buyer group by bid competition 
among VBGs derived from all the buyer groups, maximizing 
the total spectrum reuse and the auction efficiency. 

 

 
Fig. 1 A Virtual Buyer Group Splitting Illustration. 

 
The VBG splitting equivalently transforms a buyer group to 

a number of virtual buyer groups, decomposing the 
complicated multi-channel requesting cases to simple one-
channel requesting ones. 

After splitting buyer groups into VBGs, we get to design 
the VBG bidding algorithms. But before this, we should first 
introduce the notion of critical buyers as follows. 

Definition: A Critical Buyer is a buyer whose per-channel 
bid determines the per-channel price for the buyers in its buyer 
group. 

From the definition, we can see that a critical buyer 
determines the bid of each VBG derived from its buyer group. 
However, the critical buyer of a group is not determined until 
the design criterion of VBG bidding is chosen. 

The notion of critical buyers plays a key role in our design 
of VBG bidding. With this notion, we design two methods for 
VBG bidding, namely member-minimized biding and group-
maximized bidding. The main difference of the two VBG 
bidding methods is to choose different critical buyers to meet 
different design goals. 

 

Algorithm 1 VBG Splitting and MMIN Bidding 

1: Function VBGSplitMMBid(
n
G ) 

2:    
min

min
n
ii G

b b


  

3:    
min

argmin
n

i
i G

i b


  // critical buyer 

4:    '

min
= { }
n n
G G i  

5:    
'

=max
n

n i
i G

K d


 

6:    =nG   // set of VBGs derived from group 
n
G  

7:    =n   // set of bids corresponding to nG  

8:    for 1
n

i K   do 

9:        =n
i
G   //  thi VBG 

10:        foreach '

n
j G  do 

11:            if 
j
d i  then 

12:                = {j}n n

i i
G G   

13:            end if 
14:        end foreach 
15:        

min
| |n n

i i
b G    

16:        = { }n n n

i
G G G  

17:        = { }n n n

i
    

18:    end for 

 

1) Member-Minimized (MMIN) Biding 

MMIN bidding targets to maximize the number of buyers 
selected in each buyer group to participate in the winner 
determination. In MMIN bidding, the critical buyer in buyer 
group 

n
G is identified to be the buyer with minimal per-

channel bid in the group (if more than one, one is randomly 



selected) and the per-channel bid is denoted by
min
b . The 

critical buyer is then eliminated from each VBG derived from 

n
G  if existing. Then, the bid of each VBG is calculated by 

multiplying 
min
b to the number of its virtual buyers after 

eliminating. 

min
| |n

l l
b G                                                              (3) 

Algorithm 1 shows the algorithm of VBG splitting and 
bidding using MMIN bidding. The algorithm outputs the 
set nG of VBGs derived from buyer group 

n
G  and its 

corresponding bid set n . 

2) Group-Maximized (GMAX) Bidding 

GMAX bidding aims to maximize the first VBG bid by 
selecting a proper critical buyer. The bid of the first VBG of 
buyer group

n
G is defined as 

'
1

1
, 2

max ( -1)
n i

i G i
b i

 
  , with 

'
1 , 2

argmax ( -1)
n

n i
i G i

I b i
 

       (4) 

Where '

1
G n is obtained from the first VBG

1
Gn by sorting its 

buyers in non-increasing order in term of per-channel bid 
and i is the buyer rank starting from 1. Then buyer

n
I in '

1
G n is 

the critical buyer. The buyers in buyer group
n
G  with per-

channel bids smaller than that of the critical buyer, together 
with the critical buyer itself are eliminated for their low bids, 
from each VBG derived from

n
G . Doing this guarantees that 

the first VBG bids a maximized bid and the entire VBGs bid 
independently on the per-channel bid of each buyer left after 

eliminating. The bids of other VBGs of buyer group 
n
G can be 

calculated by multiplying the number of their buyers to the per-
channel bid of the critical buyer.  

It is obvious that all the buyer groups containing only one 
buyer will be eliminated from participation in the winner 
determination. 

 
Tab.1 The Procedure of VBG Splitting and Bidding  

Group VBG Member Set Selected Set Bid
G11 {B1(10), B2(8), B3(5), B4(3)} { B1(10), B2(8), B3(5)} 9 
G12 { B1(10), B2(8), B4(3)} { B1(10), B2(8)} 6 
G13 { B1(10), B2(8)} { B1(10), B2(8)} 6 
G14 { B2(8)} { B2(8)} 3 

G1 

(B4) 

G15 { B2(8)} { B2(8)} 3 
G21 { B5(11), B6(9), B7(5)} { B5(11), B6(9)} 10 
G22 { B5(11), B6(9)} { B5(11), B6(9)} 10 
G23 { B6(9)} { B6(9)} 5 

G2 

(B7) 
G24 { B6(9)} { B6(9)} 5 

 

Example Illustration: In this step, we use MMIN bidding 
as example. The critical buyers in both 

1
G and 

2
G are identified 

to be 
4
B and

7
B , respectively; then the two groups are split into 

VBGs according to the buyers’ requested numbers of channels 

and critical buyers 
4
B and 

7
B  are eliminated from these VBGs; 

finally, the bid of each VGB is calculated by multiplexing the 
size of selected set to the per-channel bid of its buyer group’s 
critical buyer, as illustrated in Tab. 1. 

 

Algorithm 2 Winner Determination 

1:    Preconditions: 
2:    

1 2 1 2
{ , ,..., }, . . ...

M M
S s s s s t s s s     

3:    
1 2
{ , ,..., }

M
C c c c is the set of requested number for S  

4:    
1 2 1 2

{ , ,..., }, . . ...
K K
s t           

5:    Function WinnerDetermine(S ,C , ) 

6:        
1

M

ii
L c


   

7:        for 1 min{ , }i L K   do 

8:            
10

1+arg max { }
h

llh M
j c i

 
   

9:            
1 1

i

ll
sum 


   

10:           
2 j

sum i s   

11:           if 
1 2

sum sum  then 
12:               break 
13:           end if 
14:       end for 
15:       1i i   // last profitable trade 

16:       
10 -1

arg max { }
h

llh M
j c i

 
   // last seller winner 

17:       
1

j

ll
k c


   // last buyer winner 

 

Step III: Winner Determination 

In this step, we determine the winning VBGs that would 
buy spectrum channels. We assume that spectrum channels are 
homegenious. In the multi-channel spectrum auction, a seller 
provides multiple channels and bids a per-channel bid, that is 

bidding( , )
m m
s c . The sellers’ per-channel bids are sorted by in 

non-decreasing order and the buyer (namely VBG in this step) 
bids are sorted by VBG bid in non-increasing order: 

1 2

1 2

: ...

: ...
M

K

S s s s

   
  
  

                                             (5) 

In the case of ties, the ordering is random, with each tied 
seller or buyer bidder having an equal probability of being 
ordered prior to the other one. 

Let
1

M

ii
L c


  is the total number of channels provides by 

sellers,
10 -1

( ) 1+arg max { }
h

llh M
j i c i

 
  is the seller in the thi  

trade, the last profitable trade 'k is defined as: 

'

1
min{ , }
argmax{ }

i

i jl
i L K

k i s



                                    (6) 



Then the auction winners are the first
'( ) 1 '

1
-1

j k

ll
k c k




   

VBGs in   and the first ( )j k ( '( ) 1j k  ) sellers in S . The 
winning sellers lease channels to the winning VBGs, one for 
each one. For each winning buyer, the number of channels he 
buys is the number of winning VBGs to which he belongs to; 
for each winning seller, the number of channels he sells is 
always the number of channels he bids. The winner 
determining process is described in Algorithm 2. 

Example Illustration: Tab. 2 shows the procedure of 
winner determination. In order to make presentation simple, we 
rewrite each seller as many times as the number of channels it 
bid and sort the sellers in non-decreasing order in term of per-
channel bid. Then, all the VBGs are sorted in non-increasing 
order in term of VBG bid. According to the bid accumulation 
(bid acc.), at the place of (S4, G14), Equation (6) is satisfied. 
Thus, we get the last trade '=8k , the last winning seller =3j , 
and the last winning VBG =1+2+3=6k . So the number of 
winning VBGs is 6, and the number of winning sellers is 3. 
The shaded cells in the table indicate that the last two profitable 
trades are sacrificed for truthfulness. The results (WS: Winning 
Sellers, WVBG: Winning Virtual Buyer Groups, WB: Winning 
Buyers) of winner determination are summarized in the last 
three rows of Tab. 1, where the winning channel number and 
the requesting channel number are separated by “/”, e.g. 
B2(8,3/5) means that B2 bids a per-channel bid 8 and win 3 
channels out of 5 requesting channels. 

 
Tab. 2 The Procedure of Winner Determination 

NO. 1 2 3 4 5 6 7 8 9 10 
Sellers S1 S2 S2 S3 S3 S3 S4 S4 S5 S5 
Bids 3 4 4 5 5 5 6 6 11 11 
Bid-
Acc. 

3 8 12 20 25 30 42 48 99 110

VBGs G21 G22 G11 G12 G13 G23 G24 G14 G15 - 
Bids 10 10 9 6 6 5 5 3 3 - 
Bid-
Acc. 

10 20 29 35 41 46 51 54 57 - 

WS S1, S2, S3 
WVBG G21, G22, G11, G12, G13, G23 Res 

WB B1(10,3/3), B2(8,3/5), B3(5, 1/1), B5(11, 2/2), B6(9, 3/4) 

 
Step IV: Pricing 

Each buyer in the same winning VBG is charged an even 

share of the VBG bid and each channel is paid by the price
( )j k
s . 

Then, each buyer is charged the sum of what it is charged in all 
the winning VBGs it belongs to and each seller is paid by the 
product of multiplying the number of winning channels he bid 

to the price
( )j k
s . 

 
Tab. 3 The Utility Calculation of Each Seller and Buyer 

Seller   S1 S2 S3 - - 
Pay. 6×1=6 6×2=12 6×3=18 - - 

Util. 6-3=3 (6-4)×2=4 (6-5)×3=3 - - 

Buyer B1 B2 B3 B5 B6 
Charg. 3×3=9 3×3=9 3×1=3 5×2=10 5×3=15 

Util. (10-3)×3=21 (8-3)×3=15 5-3=2 (11-5)×2=12 (9-5)×3=12 

 

Example Illustration: Tab. 3 lists the calculation of utility 
for each seller and buyer. It is obvious that the utility of each 

seller and buyer is positive, so the individual rationality is 
satisfied. From Tab. 2, we can see that ex-post budget balance 
is also satisfied. 

C. Proof of Auction Properties 

In this section, we prove that True-MCSA satisfies the 
properties of ex-post budget balance, individual rationality and 
truthfulness for both sellers and buyers. We only prove the case 
when using MMIN VBG bidding, while the proof of the case 
when using GMAX VBG bidding is similar and we omit it for 
limitation of space. 

1) Proof of Ex-post Budget Balance: 

Theorem 1: True-MCSA is ex-post budget balanced 
i.e. 0  .  

Proof: Becausek is the number of winning VBGs and the 
number of the channels traded in the auctions, and k  

satisfies
( )1

k

i j ki
k s


  , thus

( )1
- 0

k

i j ki
k s


    . □ 

2) Proof of Individual Rationality: 

Theorem 2: True-MCSA is individual rational. 

Proof: By the definition of individual rationality, we need 
to show that no winning seller will be paid less than its bid, and 
no winning buyer will be charged more than its bid. 

First, because True-MCSA sorts seller’s per-channel bids in 
a non-decreasing order and pays each winning sellerm with 
last profitable seller ( )j k ’s per-channel bid, the payment to 

m is 
( )

s w w w

m m j k m m m
p c s c s c     , where w

m
c  is the number of 

channels that sellerm manages to sell and it always satisfies 
w

m m
c c in True-MCSA. Second, for each winning buyern , 

the per-channel price charged to n is 
min

=b
n n
p b b , where 

min
b is the smallest buyer per-channel bid in n ’s buyer group. 

Then, the price charged to buyer n is b w w

n n n n
p d b d   , 

where w

n
d is the number of channels that buyern wins. □ 

3) Proof of Truthfulness:  

To prove True-MCSA’s truthfulness, we need to show that 
for any buyer n  or sellerm , it can not improve its utility by 
bidding other than its true valuation. For this, we first show that 
its winner determination is monotonic for both sellers and 
buyers and the pricing is bid-independent. Using these two 
claims, we then prove the truthfulness. 

(1) Monotonic winner determination 

The following two lemmas summarize the monotonicity of 
True-MCSA’s winner determination. 

Lemma 1: Given 
1

{( , )}M
m m m
s c  and

1 1 1 1
{( , ),...,( , ),

n n
b d b d   

1 1
( , ),...,( , )}
n n N N
b d b d  , if buyer n wins w

n
d ( 0 w

n n
d d  ) 

channels by bidding ( , )
n n
b d , then, by bidding ' '( , )

n n
b d  



with '

n n
b b and '

n n
d d , buyern  also wins the same number 

of channels. 

Proof: Since buyer n  wins w

n
d  channels by bidding 

( , )
n n
b d , it is not eliminated from its buyer group and w

n
d  of its 

VBGs win the auction. When bidding ' '( , )
n n
b d with '

n n
b b and 

'

n n
d d , buyer n is still not eliminated from its buyer group 

and the bids of its first 
n
d  VBGs remain the same as before, 

while the bids of its last '( )
n n
d d VBGs must be not greater 

than that of its th

n
d VBG. So, it must be that the same 

w

n
d ( 0 w

n n
d d  ) of its VBGs win the auction. Lemma 1 holds. 

□ 

Lemma 2: Given
1

{( , )}N
n n n
b d  and

1 1 1 1
{( , ),...,( , ),

m m
s c s c   

1 1
( , ),...,( , )}
m m M M
s c s c  , if seller m wins the auction by 

bidding ( , )
m m
s c , then, by bidding '( , )

m m
s c with '

m m
s s , 

sellerm also wins the auction. 

Proof: Since sellers are ranked in non-decreasing order in 
term of per-channel bid, seller m wins the auction by 
bidding ( , )

m m
s c , it must also win by bidding '( , )

m m
s c  

with '

m m
s s . □ 

(2) Bid-independent pricing 

We show that the pricing is bid-independent for both 
winning buyers and sellers. 

Lemma 3: Given 
1

{( , )}M
m m m
s c  and

1 1 1 1
{( , ),...,( , ),

n n
b d b d   

1 1
( , ),...,( , )}
n n N N
b d b d  , if buyer n wins the same number 
w

n
d 0 w

n n
d d （ ）of channels by bidding ( , )

n n
b d and ' '( , )

n n
b d , 

then the utility b

n
u  for n is the same for both.  

Proof: It is easy to show that the bids of all the winning 
VGBs of buyer n remain the same in both cases, then the 
utility b

n
u  for n is the same for both. □ 

Lemma 4: Given 
1

{( , )}N
n n n
b d  and

1 1 1 1
{( , ),...,( , ),

m m
s c s c   

1 1
( , ),...,( , )}
m m M M
s c s c  , if seller m wins the auction by 

bidding ( , )
m m
s c and '( , )

m m
s c , then the payment s

m
p  to m is the 

same for both.  

Proof: The proof is similar to that of Lemma 3. □ 

 
 

Tab. 4 Four possible auction results when bidding truthfully and 
untruthfully, where X means the bidder loses and √ means it wins. 

Case 1 2 3 4 
The bidder lies X X √ √ 

The bidder bids truthfully X √ X √ 

 

 
(3) True-MCSA’s truthfulness 

Using the above claims, we now prove the main results on 
True-MCSA’s truthfulness. 

Theorem 3: True-MCSA is truthful for buyers. 

Proof: We need to show that any buyer n cannot obtain 
higher utility by bidding ' '( , )

n n
b d , where ' b

n n
b v or ' t

n n
d d  or 

both. Table 4 lists the four possible auction results for one 
buyer when it bids truthfully and untruthfully. We now 
examine these cases one by one. 

CASE 1: For both bids, buyern is denied and charged with 
zero, leading to the same utility of zero. 

CASE 2: This happens only if ' b

n n
b v . Theorem 2 ensures 

a non-negative utility when n bids truthfully and wins the 
auction. Thus, its utility is no less than that when it bids 
untruthfully and loses (zero utility). 

CASE 3: This happens only if ' b

n n
b v  while the number of 

channels bid can be ' = t

n n
d d or ' t

n n
d d . Let 

1
,...,

ql l
   

and
1

' ',...,
ql l

  represent the bids of the q ( '0
n

q d  ) VBGs, 

whose auction results are changed from losing (i.e. n wins 
none of the channels) to winning (i.e. n wins q  channels), 
whenn  bids truthfully and untruthfully. Then this case can be 
divided into the following two further cases. 

(A) Case ' = t

n n
d d  

 In this case, we have 0 t

n
q d  . Because n  changes the 

auction results of these VBGs from losing to winning by 

bidding higher than b

n
v , n must be eliminated from its VBGs 

(no matter its VBGs lose or win the auctions) when he bids 

truthfully, i.e.  =
i

b

l i n
n v , 

i
n is the size of each VBG, for 

1,2,...,i q . Conversely, when n  bids untruthfully, it is easy 

to show that the untruthful bids for its VBGs, '

il
 , must satisfy 

the following condition: ' '

i i

b

i n l l i n
n b n v      . Therefore, 

the utility when n  bids ' '( , )
n n
b d  is '

1
( / ) 0

i

q b

n l ii
v n


  , 

which is not more than that when n  bids truthfully (0). 
Theorem 3 holds. 

(B) Case ' t

n n
d d  

This case can only affect the value ofq . When ' t

n n
d d , it is 

the same as the case of (A) except that q  may become smaller, 

so the utility when n  bids ' '( , )
n n
b d  is not more than that when 

he bids truthfully.  When ' t

n n
d d , q  may become greater and 

if 0 t

n
q d  the result is the same as case (A), and if t

n
q d , 

i.e. '= +t
n

q d q ( ' 0q  ), the utility when n  bids ' '( , )
n n
b d  



is ' '

,1
( / )+ ( ) 0

t
n

i

d b b

n l i n ei
v n u q


  , where '

,
( )b

n e
u q is the utility 

of the extra 'q channels which is not greater than 0 according to 
our problem assumption. So Theorem 3 holds. 

CASE 4: The following two further cases must be 
examined. 

(A) Case ' = t

n n
d d  

According to Lemmas 1 and 3, it is easy to show that 
buyern wins the same number of channels and is charged by 
the same price in both cases, leading to the same utility. 

(B) Case ' t

n n
d d  

This case can only affect the winning number of channels. 

When ' t

n n
d d , winning number may become smaller, so the 

utility when n bids ' '( , )
n n
b d  is not more than that when he bids 

truthfully. When ' t

n n
d d , if 0 w t

n n
d d  ( w

n
d is the winning 

number when n bids truthfully), the winning number of 
channels must remain the same when n lies according to 

Lemmas 1, so the result is the same as case (A); and if =w t

n n
d d , 

the winning number of channels when n lies must be 
' =w t t

n n n
d d d d    ( 0d  ), the utility is 

,
( )+ ( )b t b

n n n e
u d u d  

( )= ( )b t b w

n n n n
u d u d , i.e. the utility is not greater than that when 

n bids truthfully, where ( )b

n
u d is the utility when n wins 

d channels and 
,
( )b

n e
u d is the utility of the d extra winning 

channels. Theorem 3 holds. 

From the above, we show that no buyer can improve its 
utility by bidding untruthfully. Our proof is completed.  □ 

Theorem 4: True-MCSA is truthful for sellers. 

Proof: Similarly, we need to show that any seller m  
cannot obtain higher utility by bidding '( , )

m m
s c , where ' s

m m
s v . 

Again, the four cases listed in Table 4 are examined. 

CASE 1: The same as the buyer case. Theorem 4 holds. 

CASE 2: This happens only when ' s

m m
s v . The utility of 

seller m  is non-negative when bids truthfully and wins 
(Theorem 2), while it is zero when lies and loses. Theorem 4 
holds. 

CASE 3: This happens only when ' s

m m
s v . First, let p  be 

the per-channel payment to the auction winners when m bids 

truthfully. Because m  loses in this case, s

m
p v . Second, let 

'p  be the per-channel payment to the winners (includingm ) 

when m  bids '( , )
m m
s c . It is easy to show that because m  

lowers its bid and wins, 'p p . Combine the two, we have 
' s

m
p v and hencem ’s per-channel utility is ' - 0s

m
p v   when 

bidding untruthfully. Thus, no matter the value of 
m
c is, the 

utility when m lies is not greater than that when it bids 
truthfully. Theorem 4 holds. 

CASE 4: According to Lemmas 2 and 4, seller m wins the 
same number of channels and the payment for it does not 
change, leading to the same utility in both cases. Theorem 4 
holds. 

Having shown that no seller can improve its utility by 
bidding other than its true value, our proof completes.  □ 

IV. EXPERIMENTAL RESULTS 

In this section, we use network simulations to evaluate the 
performance of True-MCSA, and study the auction efficiency 
of the spectrum auctions and the impacts of bidding algorithms, 
bidding patterns and buyer distributions on the efficiency. 

A. Simulation Setup 

We study the performance of True-MCSA under different 
settings. The key factors that affect True-MCSA’s performance 
are the underlining spectrum allocation algorithms, the bidding 
algorithms, bidding patterns, and buyer distributions (i.e. the 
interference conditions among buyers). For the impact of 
spectrum allocation algorithms on auction efficiency is similar 
to that of TRUST, we omit the studies of allocation algorithm 
and fix it as the algorithm which is based on the maximum 
independent set of conflict graph. We assume that the buyer 
interference conditions are modeled by a conflict graph and all 
buyers are distributed in an area of100 100 . All the results 
are averaged over 500 rounds. 

1) Bidding algorithms. 

In Section III-B, we have proposed two VBG bidding 
algorithms: MMIN bidding and GMAX bidding. In our 
experiments, we compare the impacts of the two algorithms on 
auction efficiency in different settings. 

2) Bidding Patterns 

We assume that buyers’ bids are randomly distributed over 
(0,1] and those of sellers over (0,2] . Also, we assume that 

auctions can have a base bid value 
0
b  and each bid is then 

defined by 
0 max 0

( )b b b b    , where   is a random 

number uniformly distributed over (0,1]  and 
max
=1b for buyers 

and 
max
=2b for sellers. Then, we assume that the channel 

numbers requested by buyers are randomly distributed over 

max
[1.. ]d and those of sellers over

max
[1.. ]c , where [1.. ]X  

represents the integer number set from 1 toX . We use a triple 

max max 0
( , , )c d b to represent a bidding pattern for the auctions 

and examine the impacts of different bidding patterns on the 
auction efficiency. 

3) Buyer Distributions. 

The auction efficiency depends on the interference 
conditions among buyers. We model the interference 
conditions using a conflict graph, and apply a distance-based 
criterion to determine whether two buyers conflict. In this case, 



the interference condition depends mainly on the buyer 
distribution. We consider two types of distributions:  

Random Distribution: We randomly distribute a set of 
buyers in a given area, with a variety of conflict degrees.  

Clustered Distribution: We randomly place some buyers 
in a given area and gradually add buyers in some small center 
areas, creating some hotspots. 

The performance metrics are auction efficiency (or social 

welfare, ), the number of channels traded (
t
N ), the per-

channel spectrum efficiency (  ), and the efficiency 
degradation ( ) over Pure Allocation (PA). Here, auction 
efficiency is defined as the bid-weighted sum of all the 
channels won by buyers minus that of all the channels won by 
sellers as Equation (7). Auction efficiency is in fact the value 
created by the auction and shared by sellers, buyers and the 
auctioneer, and thus has another name called social welfare. 
Since it reflects not only the spectrum reuse but also the 
financial efficiency of the auctions, we use it as the main 
performance metric instead of spectrum utilization. What is 
more, according to [1], spectrum utilization and auction 
efficiency reflect coarsely the same conclusions, thus we omit 
the spectrum utilization results. The other metrics are defined 
as Equations from (8) to (10). 

1 1

N Mw w

n n m mn m
b d s c

 
                                   (7) 

1

M w

t mm
N c


                                                             (8) 

/
t
N                                                                  (9) 

1 /
PA

                                                           (10) 

Where w

n
d ( 0 w

n n
d d  ) and w

m
c ( w

m m
c c 0 ) are the 

numbers of winning channels of buyer n  and seller m , 
respectively, and 0w

n
d  or 0w

m
c  means buyer n  or seller m  

loses; 
PA

  is the auction efficiency of PA.  

By default, the experimental settings are as follows: True-
MCSA uses MMIN bidding algorithm, random buyer 
distribution, bidding pattern(3,5, 0) , and the numbers of sellers 
and buyers are 10 and 100, the protection distance of buyers is 
10. 

B. Auction Efficiency 

We start from studying the auction efficiency of the truthful 
double multi-channel spectrum auctions in different settings. 
We use PA as a benchmark and change the number of sellers, 
the number of buyers, and the protection distance of buyers (i.e. 
the maximal distance that a buyer’s radio signal can reach) to 
evaluate the four performance metrics mentioned above. PA 
repeatedly selects the unassigned VBG of the biggest size and 
assigns it a channel regardless of the buyers’ bids. For a fair 
comparison, we implement PA using the same allocation 
algorithm assuming the number of channels available is equal 
to the number of channels traded in True-MCSA. 

Fig. 2 shows that as the increasing of the number of sellers 
(other factors are fixed as default), both the auction efficiency 

and the number of channels traded increase while the per-
channel efficiency and efficiency degradation decrease. Since 
increasing the number of sellers means raising the supplies, we 
can concludes that raising the supplies can increase the auction 
efficiency of True-MCSA though decreasing the per-channel 
efficiency, and the efficiency degradation caused by achieving 
economic-robustness is diminished, too. Furthermore, the 
efficiency degradation values are within 30% when the number 
of sellers changes from 10 to 100.  

Fig. 3 illustrates that as the increasing of the number of 
buyers, the entire performance metrics trend to increase while 
the degradation over PA has a small-scope fluctuation in its 
curve. This indicates that raising the demands can increase both 
the per-channel efficiency and number of channels traded, and 
thus the auction efficiency, but the efficiency degradation 
caused by achieving economic-robustness is also increase. Still, 
the degradation values are within 30% when the number of 
buyers changes from 20 to 300. 
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Fig. 2 Auction Efficiencies as the Number of Sellers Increases 
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Fig. 3 Auction Efficiencies as the Number of Buyers Increases 
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Fig. 4 Auction Efficiencies as Protection Distance Increases 

 

In Fig. 4, we can see that as the protection distance of 
buyers increase, the per-channel efficiency and number of 
channels traded decrease, and thus the auction efficiency 
decreases, but the efficiency degradation over PA fluctuates 
within 30%. Therefore, heavy interferences among buyers 
severely affect the auction efficiency of both Ture-MCSA and 
PA. 

 

C. Impact of Bidding Algorithms 

In this part, we compare the performances of the two VBG 
bidding algorithms: MMIN bidding and GMAX bidding.  

In Fig. 5, as the increasing of the number of sellers, the per-
channel efficiency of MMIN bidding is still greater than that of 
GMAX bidding, and the traded channel number of MMIN 
bidding exceeds that of GMAX bidding when the number of 
sellers is more than 80. As a total effect, the auction efficiency 
of MMIN bidding exceeds that of GMAX bidding when the 
number of sellers is more than 30. Furthermore, the efficiency 
degradation of MMIN bidding decreases more rapidly than that 
of GMAX bidding and the degradation values of the former are 
still quite smaller than that of the latter. Therefore, we can 
conclude that MMIN bidding algorithm is more suitable for 
auctions with more supplies than GMAX bidding algorithm. 

In Fig. 6, it is shown that as the increasing of the number of 
buyers, the per-channel efficiencies of both MMIN bidding and 
GMAX bidding increase at the same time, while the former is 
still greater than the latter; the traded channel numbers of both 
MMIN bidding and GMAX bidding also increase 
simultaneously, but the latter is still far greater than the former. 
As a total effect, the auction efficiency of GMAX bidding is 
still greater than that of MMIN bidding. Additionally, the 
efficiency degradation of GMAX bidding becomes smaller 
than that of MMIN bidding when the number of buyers is 
greater than 150. Thus, the conclusion is that GMAX bidding 
algorithm is more suitable for auctions with more demands 
than MMIN bidding algorithm. 
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Fig. 5 Auction Efficiency Comparison as the Number of Sellers Increases 
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Fig. 6 Auction Efficiency Comparison as the Number of Buyers Increases 
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Fig. 7 Auction Efficiency Comparison as Protection Distance Increases 



 
Fig. 7 shows that as the protection distance increases, the 
auction efficiency, the per-channel efficiency, and the number 
of channels traded of both MMIN bidding and GMAX bidding 
decrease similarly, while the efficiency degradations of both 
fluctuate similarly, too. Furthermore, all the performance 
metrics converge to one point as the protection distance is 50. 
So it can be concluded that the impacts of protection distance 
for both two bidding algorithms are analogy. 
 

D. Impact of Bidding Patterns 

We also study the impact of different bidding 

patterns
max max 0
( , , )c d b . Tab. 5 lists the performance metrics 

when applying different bidding patterns. From the table, we 
can see that: (1) using a positive base bid value like 

0
0.1b  can greatly improve the all the performance metrics; 

(2) Increasing the value of
max
c leads to decreasing of per-

channel efficiency but increasing of traded channel number, 
and thus improving the auction efficiency while slightly 
decreasing the efficiency degradation; (3) Increasing the value 
of

max
d leads to increasing of both the per-channel efficiency 

and the traded channel number, and thus improving the auction 
efficiency while slightly affecting the efficiency degradation. 

While the values of
max
c and

max
d depend on the relation 

between market supply and demand, the auctioneer can greatly 
improve the auction efficiency and diminish the efficiency 
degradation by properly designing the base bid value

0
b . 

 
Tab. 5 Impact of Bidding Patterns on Auction Efficiency 

NO Bid Patt. 
(cmax, dmax, b0) 

Auc. Eff. 
(α) 

Per-Ch. 
Eff. (β) 

Num. Ch. 
Tr. (Nt) 

Degrad. 
(η) 

1 (3, 5, 0) 41.4462 4.1571 9.9700 0.2703 

2 (3, 5, 0.1) 75.5006 5.0100 15.0700 0.0773 

3 (3, 7, 0) 47.1174 4.3668 10.7900 0.2650 

4 (3, 7, 0.1) 80.9589 5.2742 15.3500 0.0858 

5 (5, 5, 0) 53.7958 3.9153 13.7400 0.2660 

6 (5, 5, 0.1) 94.4755 4.6909 20.1400 0.0564 

7 (5, 7, 0) 57.5567 3.9234 14.6700 0.2970 

8 (5, 7, 0.1) 102.7039 4.8930 20.9900 0.0740 

 

E. Impact of Buyer Distribution 

We randomly place 60 buyers in a given area of 
size100 100 and gradually add 20 buyers in two randomly 
selected small center areas of size20 20 , creating 2 hotspots. 
Tab. 6 shows that the performance metrics suffer declines in 
different degrees when using cluster distribution. 

 
Tab. 6 Impact of Buyer Distributions on Auction Efficiency 

Buyer 
Distr. 

Auc. Eff. 
(α) 

Per-Ch. 
Eff. (β) 

Num. Ch.  
Tr. (Nt) 

Degrad. 
(η) 

Uniform 40.2154 4.2328 9.5010 0.2743 

Cluster 27.6391 3.0223 9.1450 0.3761 

 

V. RELATED WORKS 

Auctions have been widely used to allocate spectrum [10], 
including transmit power auctions [11], spectrum band auctions 
[12-15], and spectrum pricing [16-19]. However, these 
schemes do not consider truthfulness. Paper [2] proposed the 
first truthful spectrum auction design VERITAS, but only 
addressed single-sided multi-channel auctions and a direct 
extension of VERITAS to double auctions is untruthful [1]. For 
double spectrum auctions, [20] proposed a hierarchical design 
based on McAfee’s design without spectrum reuse. Paper [1] 
proposed TRUST, the first truthful double auction design with 
spectrum reuse for multi-party spectrum trading, but TRUST 
only dealt with one-channel requirements for both sellers and 
buyers. Paper [3] improved TRUST by redesigning the group 
bidding and winner determining mechanisms and still only 
dealt with one-channel requirements as TRUST. Although 
paper [4] brought forward a simple illustration for solving 
buyers’ two-channel requirements, the solution is computation-
prone and hard to achieve and scale. Furthermore, the solution 
seems to be truthful only for buyers but not for sellers, since 
the pricing among sellers is impossible to be uniform according 
to the paper and sellers can manipulate their bids to obtain 
higher utilities. True-MCSA provides a simple truthful double 
auction design with spectrum reuse for multi-party multi-
channel spectrum trading. In addition, True-MCSA can work 
with various spectrum allocation algorithms [8], [9], [21].  

Truthfulness is a critical factor to attract participation [6]. 
Many truthful mechanisms have been developed in 
conventional double auctions including single-unit [22], [23], 
[7] and multi-unit double auctions [5], [24]. The majority of 
these designs follow the idea of McAfee’s mechanism [7], 
using the trade reduction to maintain truthfulness. True-MCSA 
differs significantly from these conventional designs in that it 
exploits the spectrum reusability to distribute spectrum 
efficiently while successfully deals with multi-channel requests 
from both sellers and buyers to better fit practical requirements.  

 

VI. CONCLUSIONS AND FUTURE WORKS 

We propose Ture-MCSA, a framework for truthful double 
multi-channel spectrum auctions to support dynamic multi-
party multi-channel spectrum trading. Ture-MCSA achieves 
truthfulness, individual rationality, and ex-post budget balance, 
the three key economic properties required for economic-
robust auctions. Furthermore, Ture-MCSA successfully deals 
with the multi-channel requests from both sellers and buyers, 
while enables spectrum reuse to significantly improve auction 
efficiency. From the design and evaluation of Ture-MCSA, we 
see that the auction efficiency is impacted by the economic 
factors leading to certain efficiency degradations. However, the 
experimental results suggest that we can improve the auction 
efficiency by choosing a proper bidding algorithm and using a 
base bid. True-MCSA makes an important contribution on 
enabling spectrum reuse to improve auction efficiency in multi-
channel cases. 

In this paper, we assume that all the spectrum channels are 
homogeneous and design True-MCSA to achieve multi-
channel spectrum auctions. Through the auctions, sellers sell 



all the channels they provide when winning but sell nothing 
when losing, buyers buy at most all the channels they require 
when winning while buy nothing when losing. However, there 
are other request formats [2], e.g. requesting continuous 
channels, requesting restrict number of channels, which should 
be addressed in future work. Finally, how to resist collusions 
and what is the tradeoff between auction efficiency and 
collusion-resisting economic robustness in double truthful 
multi-channel spectrum auctions are also interesting problems 
worth exploring in the future. 
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