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Index Modulation with Circularly-Shifted Chirps for
Dual-Function Radar and Communications
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Abstract—In this study, we propose index modulation (IM)
with circularly-shifted chirps (CSCs) (CSC-IM) for dual-function
radar and communication (DFRC) systems. The proposed scheme
encodes the information bits with the CSC indices and the phase-
shift keying (PSK) symbols. It allows the receiver to exploit the
frequency selectivity naturally in fading channels by combining
IM and wideband CSCs. It also leverages the fact that a CSC
is a constant-envelope signal to achieve a controllable peak-to-
mean envelope power ratio (PMEPR). For radar functionality,
CSC-IM maintains the good autocorrelation (AC) properties of a
chirp by ensuring that the transmitted CSCs are separated apart
sufficiently in the time domain through index separation (IS). We
investigate the impact of IS on spectral efficiency (SE) and obtain
the corresponding mapping functions. For theoretical results, we
derive the union bound (UB) of the block error rate (BLER) for
arbitrary chirps and the Cramer-Rao lower bounds (CRLBs) for
the range and reflection coefficients for the matched filter (MF)-
based estimation. We also prove that complementary sequences
(CSs) can be constructed through CSCs by linearly combining
the Fourier series of CSCs. Finally, through comprehensive
comparisons, we demonstrate the efficacy of the proposed scheme
for DFRC scenarios.

Index Terms—Chirps, complementary sequences (CSs), index
modulation (IM), peak-to-mean envelope power ratio (PMEPR)

I. INTRODUCTION

The merging of communications and radar functionalities
into a single wireless network can improve the efficient
utilization of the physical resources and address the potential
interference issues between radar and communication systems
[3]. To realize such a network, the transmitted signals need
to be designed based on two different objectives. For radar
functionality, the primary goal is to improve the accuracy of
the range and/or velocity estimations. On the other hand, the
waveform for communications is optimized by considering
communications-related metrics such as error rate or data
rate. Hence, developing a transmission scheme suitable for
both features is not trivial [4]. In this study, we address
this issue and propose index modulation (IM) with circularly-
shifted chirps (CSCs) (CSC-IM) for dual-function radar and
communication (DFRC) systems, which can be synthesized
with discrete Fourier transform spread orthogonal frequency
division multiplexing (DFT-s-OFDM) used in 3GPP Fifth
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Generation (5G) New Radio (NR) [5] and Fourth Generation
(4G) Long-Term Evolution (LTE) uplink [6].

Chirps are prominent for radar applications due to their
excellent peak-to-mean envelope power ratio (PMEPR) and
good autocorrelation (AC) properties in time-varying channels.
They also facilitate the radar implementation with a simple
hardware architecture through correlations in radio-frequency
(RF). They were first proposed in [7] to achieve a long-range
high-resolution radar, which was later extended to encode in-
formation through the slope of the chirps in the time-frequency
(TF) plane. For developing more sophisticated multiplexing
methods based on chirps, the bases constructed through chirps
have been studied in the literature, extensively. For example,
in [8], an orthogonal amplitude-variant linear chirp set where
each chirp has a different chirp rate was proposed. In [9],
orthogonal chirps were constructed by shifting the chirps in the
frequency domain. In [10], CSCs were proposed by using the
structure of DFT-s-OFDM with a specific frequency-domain
spectral shaping (FDSS) function. It was shown that CSCs
can be transmitted simultaneously in an overlapping manner
as opposed to linear chirps. However, these studies do not
particularly consider DFRC applications.

Another way of constructing a scheme suitable for DFRC
is to utilize the multiplexing methods that are highly used
in wireless communication systems. In [3], orthogonal fre-
quency division multiplexing (OFDM), chirps, and comple-
mentary sequences (CSs) with single-carrier (SC) waveform
and OFDM [11], [12] are surveyed for DFRC scenarios. It
is emphasized that the noise-like nature of OFDM signals in
time can be beneficial for a typical radar at the expense of
high PMEPR and the sidelobe growth in the AC function
due to the existence of cyclic prefix (CP). On the other
hand, OFDM provides an excellent framework for the channel
frequency response (CFR)-based estimation methods as the
processing directly occurs in the modulation domain. For
example, in [13], several range profiles were demonstrated
through CFR by using OFDM as a radar waveform. In [14],
OFDM is compared with chirps and other spread-spectrum
techniques in detail. In [15] and [16], maximum-likelihood
(ML)-based range and velocity estimators for a single target
are investigated for OFDM. An iterative algorithm based on
filtering and clipping was investigated in [17] to reduce the
PMEPR of the multicarrier radar waveform at a cost of the
distorted AC function. In [18], the weighted subcarriers were
proposed to mitigate the PMEPR for an OFDM-based radar.
The authors in [19] proposed to transmit optimized complex-
valued data through the unused subcarriers of OFDM for
radar functionality. In [20], a real-valued baseband OFDM
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signal that modulates the phase of the carrier, called constant-
envelope OFDM, was proposed for detecting a target in a
multi-path scenario. In [21], the IEEE 802.11ad SC preamble
based on CSs was exploited for DFRC applications.

Recently, IM receives attention for DFRC scenarios as it
promises communications with minimal degradation to the
radar performance [4]. IM is a permutation modulation [22]
and encodes the information in the order of discrete objects,
e.g., antennas, subcarriers, or time slots. For a comprehensive
survey on IM and its applications, we refer the reader to the
surveys in [23]–[26] and the references therein. For commu-
nications applications, in [27], IM with OFDM (OFDM-IM)
is investigated by grouping the subcarriers and activating
or deactivating subcarriers within the groups for encoding
information. In [28], extra information bits were transmitted
by turning on and off the antennas, i.e., spatial modulation.
In [29], media-based modulation was proposed by setting the
on/off status of available RF mirrors. For radar applications,
in [30], the information was encoded by shuffling the radar
signals for a multi-input multi-output (MIMO) radar setup. In
[31], it was proposed to select a subset of subcarriers and/or
antennas. In this study, with the same motivation of minimum
degradation to radar, we utilize IM with CSCs.

A. Contributions

In this study, we provide both theoretical and practical
contributions listed as follows:

• A scheme for DFRC systems: We propose to transmit
multiple modulated CSCs simultaneously for a DFRC
system, where the information bits are encoded with
indices and phase-shift keying (PSK) symbols. Since it
relies on the structure of DFT-s-OFDM with a special
FDSS and IM, it leads to low-complexity transmitters and
receivers. The main advantage of the proposed scheme
is controllable low-PMEPR and spectral efficiency (SE)
while still being a wideband signal needed for radar func-
tionality at radar receiver (RXr) and exploiting frequency
selectivity at communication receiver (RXc).

• Theoretical bounds and relationships: We establish
a connection between CSs and chirps. We derive the
union bound (UB) of block error rate (BLER) for the
proposed scheme. Also, for radar functionality, we obtain
the Cramer-Rao lower bounds (CRLBs) for ranges and
reflection coefficients, which consider the phase of the
reflected signal as a function of the target’s range.

• Improved range estimation with Index Separation:

We investigate two range estimation methods: Matched
filter (MF)-based and linear minimum mean square error
(LMMSE)-based estimations. To increase the estimation
accuracy, we introduce a concept called index separation

(IS) that ensures a low AC zone. We derive the maximum
separation between CSCs in time without affecting the
SE for any number of chirps, theoretically. To facilitate
the encoder and decoder with the IS, we also develop
methods that construct a bijective mapping between the
information bits and indices.

• Comprehensive comparisons: The proposed scheme
is compared with OFDM-IM, IM with DFT-s-OFDM

(DFT-s-OFDM-IM), and the CSs based on Reed-Muller
(RM) code (CSs-RM), comprehensively, in terms of
PMEPR, error rate, estimation accuracy, and radar resolu-
tion in various scenarios, which provides further insights
into DFRC waveform.

The rest of the paper is organized as follows. In Section II,
the system model is provided. In Section III, we introduce
CSC-IM and derive the UB of BLER. The relationship be-
tween CSs and chirps and the trade-off between SE and
PMEPR are discussed in this section. In IV, we analyze the
radar functionality with CSC-IM. We discuss range estimation
and IS. In Section V, numerical results are presented. The
paper is concluded in Section VI.

II. PRELIMINARIES AND SYSTEM MODEL

The sets of complex numbers, real numbers, non-negative
real numbers, positive integers, non-negative integers, and the
set of integers {0, 1, . . ., H−1} are denoted by C, R, R+

0 , Z+,
Z
+
0 , and ZH respectively. Conjugation is denoted by (·)∗. The

notation (a0, a1, . . . , aM−1) represents the sequence a. The
constant j denotes

√
−1.

A. Circularly-Shifted Chirps

Let ψ0(t) ∈ R be a periodic function with the period of
Ts. We then define the function Bm(t) by setting Bm(t) =
ejψm(t), where ψm(t) = ψ0(t− τm) and τm is the amount
of translation for m ∈ {0, 1, . . .,M − 1} and τ0 = 0. The
function Bm(t) for t ∈ [0, Ts) is a CSC and it is equal to the
circularly-shifted version of the function B0(t) by τm seconds.

The Fourier series expansion of Bm(t) can be obtained as

Bm(t) ≈
Lu∑

k=Ld

cke
j2πk t−τm

Ts , (1)

where Ld < 0 and Lu > 0 are integers, and ck is the kth
Fourier coefficient given by

ck = F{ejψ0(t)} ,
1

Ts

∫

Ts

ejψ0(t)e−j2πk t
Ts dt . (2)

Let D/2Ts denote the maximum frequency deviation around
the carrier frequency. For an accurate approximation of the
right-hand side of (1) to Bm(t), we assume that Ld < −D/2
and Lu > D/2. This is due to the fact that Bm(t) is a function
where |ck| approaches zero rapidly for |k| > D/2. Note that
the actual bandwidth of a chirp is slightly larger than twice the
maximum frequency deviation [32]. It can be calculated based
on the total integrated power of the transmitted spectrum, i.e.,
occupied channel bandwidth (OCB). In this study, we express
the OCB as Mocb/Ts Hz, where Mocb is assumed to be a
positive integer. Also, the instantaneous frequency of Bm(t)
around the carrier frequency fc can be obtained as Fm(t) =
1
2πdψm(t)/dt Hz.

In [10], CSCs are utilized for data transmission by using
DFT-s-OFDM as follows: Consider a baseband signal given
by x (t) = 1√

M

∑M−1
m=0 dmBm(t), where dm denotes the mth

modulation symbol. If τm is chosen as τm = m/M ×Ts, i.e.,
uniform spacing in time, by sampling x (t) at n/N × Ts for
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n ∈ {0, 1, . . .N − 1} and using (1), the baseband signal x (t)
in discrete time can be written as

xn =

Lu∑

k=Ld

ck
1√
M

M−1∑

m=0

dme−j2πkm
M

︸ ︷︷ ︸

Normalized M-point DFT
︸ ︷︷ ︸

Frequency-domain spectral shaping

ej2πk
n
N

︸ ︷︷ ︸

N -point IDFT with zero-padding

, (3)

where N > M = Lu − Ld + 1 > D. Hence, by prepending
a CP with the duration of TCP to the signal in (3), a
typical DFT-s-OFDM transmitter or receiver can be utilized
for synthesizing modulated CSCs by only introducing a special
FDSS filter, i.e., {ck|k = Ld, . . ., Lu}.

In [10], several closed-form expressions for ck are also
provided. For example, let F0(t) be a function changing from

− D
2Ts

Hz to D
2Ts

Hz, i.e., F0(t) =
D
2Ts

(
2t
Ts

− 1
)

, i.e., a linear

chirp. The kth Fourier coefficient for the linear chirp can be
calculated as

ck = γk(C(αk) + C(βk) + jS(αk) + jS(βk)) , (4)

where C(·) and S(·) are the Fresnel integrals with cosine and
sine functions, respectively, and αk = (D/2 + 2πk)/

√
πD,

βk = (D/2 − 2πk)/
√
πD, γk =

√
π
D e−j (2πk)2

2D −jπk. For

sinusoidal chirps, F0(t) = D
2Ts

cos
(

2π t
Ts

)

and it can be

shown that

ck = Jk

(
D

2

)

, (5)

where Jk (·) is the Bessel function of the first kind of order
k.

B. Complementary Sequences

A sequence pair (a, b) of length M is a Golay comple-
mentary pair (GCP) if the aperiodic autocorrelation functions
(AACFs) of the sequences a and b sum to zero for all non-zero
lags [33], i.e., ρa(l) + ρb(l) = 0 for l 6= 0, where ρa(l) and
ρb(l) are the AACFs of the sequences a and b at the lth lag,
respectively. The AACF of the sequence a can be calculated
as

ρa(l) ,







∑M−l−1
i=0 a∗i ai+l, 0 ≤ l ≤M − 1

∑M+l−1
i=0 aia

∗
i−l, −M + 1 ≤ l < 0

0, otherwise

. (6)

Each sequence in a GCP is called a CS. A GCP (a, b)
can equivalently be defined as any sequence pair satisfy-
ing |A(z)|2 + |B(z)|2 = ρa(0) + ρb(0), where A(z) ,

aM−1z
M−1+aM−2z

M−2+· · ·+a0 andB(z) , bM−1z
M−1+

bM−2z
M−2 + · · ·+ b0 in indeterminate z [34].

Let sa(t) =
∑M−1
i=0 aie

j2πi t
Ts for t ∈ [0, Ts) be a

continuous-time baseband OFDM symbol generated from a
sequence a with the symbol duration Ts. It can be shown
that the instantaneous peak power of sa(t) is bounded, i.e.,
maxt |sa(t)|2 ≤ ρa(0) + ρb(0), if a is a CS. For this
case, the PMEPR of the OFDM symbol sa(t), defined as
maxt |sa(t)|2/Pav, is less than or equal to 10 log10(2) ≈ 3 dB

IM-chirpsCP

Target 1CP

Target 2CP

Transmitted 

signal

Reflected

signals

Time

RXr aperture

1, 1

2, 2

RXr signal processing

TX aperture
User 2

User 1

Time

BS

Fig. 1. DFRC scenario and the corresponding timing diagram for the
transmitted signal and the radar return for two targets.

if Pav = ρa(0) = ρb(0) [35]. For non-unimodular CSs, ρa(0)
may not be equal to ρb(0). In that case, the power of an
OFDM symbol with a can be different from the one with
b although the instantaneous peak power is still less than or
equal to ρa(0)+ρb(0). Hence, to avoid misleading results, we
define Pav as the power of the entire baseband signal in this
study.

C. DFRC Scenario

In this study, we consider a DFRC scenario where a base
station (BS) broadcasts a communication signal to the users
and exploits the same signal to estimate the distances of the
surrounding objects as illustrated in Fig. 1. We assume that
a directional antenna at the RXr sweeps along azimuth and
elevation angles within the aperture of the transmitter (TX) to
identify the orientation of the targets.

We consider a low-velocity environment, e.g., indoors,
where the coherence time is much larger than Ts. Hence,
the channel impulse response (CIR) within Ts can be as-
sumed to be time-invariant and expressed as h (τ) =
∑R
s=1 αsδ (τ − τs), where R is the number of paths, and

αs ∈ R and τs ∈ R
+
0 are the gain and the delay of the

path TX-to-sth target-to-RXr, respectively. The path delays
can be calculated as τs = 2rs/c, where rs ∈ R is the distance
between the sth target and the BS and c is the speed of light.
The BS’s goal is to estimate rs for s ∈ {1, . . ., R} while using
the same signal for broadcasting information.

We assume that the TX and RXr at the BS are synchronized
in time and there is an ideal phase/frequency synchronization
between the TX and RXr carriers (e.g., fed through the same
oscillator). For an OFDM-based waveform, the CFR on the
kth subcarrier can be calculated as

ζk =

∫

h (τ) e−j2πfτdτ
∣
∣
∣
f=fc+

k
Ts

=

R∑

s=1

αse
−j2πfcτse−j2πk τs

Ts ,

(7)

where we assume that τR ≤ TCP and the RXr processes the
radar return for t ∈ [TCP, Ts + TCP) so that the path delays
include the propagation delays. Therefore, the maximum range
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Fig. 2. Transmitter and receiver for the proposed scheme and an example realization under IS for ∆ = 2 and M = 10.

of the radar for this specific implementation is c × TCP/2
meters. Note that it is possible to increase the maximum range
if the RXr’s synchronization point is intentionally delayed and
chosen based on energy detection or prior information related
to the environment, at the cost of extra processing. It is also
worth noting that the phase term in (7) is a function of target’s
location, which plays a major role for increasing the accuracy
of range estimation as discussed in Section IV-C.

III. INDEX MODULATION WITH CIRCULARLY-SHIFTED

CHIRPS

At the transmitter, p information bits are first split into two
groups: p1 bits for choosing L different CSCs from the set
W = {Bm(t)|m = 0, 1, . . .,M−1} and p2 bits for L different
H-PSK symbols that are multiplied with the chosen CSCs.
Let i = (i0, i1, . . ., iL−1) for 0 ≤ ip < ir < M and p < r
and h = (h0, h1, . . ., hL−1) for hℓ ∈ ZH denote the indices
of the chosen CSCs and the integers to be mapped to H-
PSK symbols, respectively. Without loss of generality, the ℓth
H-PSK symbol can be calculated as sℓ = ej2πhℓ/H for ℓ ∈
{0, 1, . . ., L − 1}. The baseband signal for the CSC-IM can
be written as x (t) = 1√

L

∑L−1
ℓ=0 sℓBiℓ(t). Therefore, by using

(3), the discrete-time signal can be expressed as

xn =

Lu∑

k=Ld

fk
1√
M

M−1∑

m=0

dme−j2πkm
M ej2πk

n
N , (8)

where fk =
√
Mck/

√
∑Lu

k=Ld
|ck|2 is the kth normalized

FDSS coefficient1 and diℓ =
√
Es × sℓ for ℓ = 0, 1, . . ., L− 1,

otherwise 0, and Es =M/L is the symbol energy.
In Fig. 2, the transmitter and receiver block diagrams are

given for CSC-IM. First, the modulation symbols are obtained
based on i and h. An M -point DFT of the modulation symbols
is then calculated. After the resulting sequence is shaped in
the frequency domain with an FDSS for generating CSCs,
the shaped sequence is mapped to the OFDM subcarriers.
The discrete-time signal in (8) is obtained by applying an N -
point inverse discrete Fourier transform (DFT) (IDFT) to the
mapped sequence and prepending a CP with the duration of
TCP = NCPTsample to the signal, where NCP is the number
of samples in the CP duration. At the RXc, after removing the
CP and applying an N -point DFT to the received signal, the
signal in the frequency domain can be expressed as

bk =
λkfk√
M

M−1∑

m=0

dme−j2πkm
M + ηk , (9)

1The normalization is applied as the coefficients are truncated in (1).

where ηk is zero-mean additive white Gaussian noise (AWGN)
with the variance σ2

n and λk is the CFR between TX and RXc
for the kth subcarrier for k ∈ {Ld, Ld + 1, . . ., Lu}. In this
study, we consider LMMSE frequency-domain equalization
(FDE) followed by an M -point IDFT to obtain the modulation
symbols, which can be given by

d̃l =
1√
M

Lu∑

k=Ld

λ∗kf
∗
k

|λkfk|2 + σ2
n

bk
︸ ︷︷ ︸

LMMSE-FDE

ej2π(k−Ld)
l
M , (10)

for l ∈ {1, 2, . . .,M − 1}. Note that (10) explicitly shows that
an equalizer needs to be employed even in AWGN channel
(i.e., λk = 1) for CSC-IM due to the FDSS coefficients for
CSCs.

Without any constraint on the indices, the ML detector for
i and h can be expressed as

{̂i, ĥ} = arg max
i̇ℓ∈{0,. . .,M−1}
i̇p<i̇r for p<r

ḣℓ∈ZH

ℜ
{
L−1∑

ℓ=0

d̃i̇ℓe
−j2πḣℓ/H

}

, (11)

where î , (̂i0, î1, . . ., îL−1) and ĥ , (ĥ0, ĥ1, . . ., ĥL−1) are
the detected chirp and the PSK symbol indices, respectively.
Thus, a low-complexity ML detector can be implemented by
evaluating each d̂l,z , ℜ{d̃le−j2πz/H} for l ∈ {0, 1, . . .,M −
1} and z ∈ ZH and choosing L indices and the corresponding
z values that maximize d̂l,z [36].

Let Sq ∈ Z
+
0 denote the number of integers between two

adjacent indices in a circular manner for q ∈ {1, . . ., L} as

Sq ,

{

iq − iq−1 − 1, 1 ≤ q < L

M − 1− iL−1 + i0, q = L
. (12)

With the IS, we introduce constraints on the indices such that
Sq ≥ ∆ for q ∈ {1, . . ., L} and ∆ ∈ Z

+
0 to improve the range

estimation accuracy by ensuring a low AC zone in the case of
simultaneous CSCs transmissions. A realization under IS for
∆ = 2 and M = 10 is given in Fig. 2, where (i0, i1, i2) =
(0, 4, 7) and (S1, S2, S3) = (3, 2, 2). We discuss the IS and
its impact on TX and RXc in Section IV-A in detail.

A. Theoretical error-rate analysis

Consider the case where the FDSS is not utilized, i.e.,
DFT-s-OFDM-IM. Let El,z|i,h denote the event where d̂l,z is
larger than or equal to at least one of the elements of {d̂iℓ,hℓ

}.
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Hence, based on De Morgan’s law, P
(
El,z|i,h

)
can be obtained

as

P
(
El,z|i,h

)
= P

(
L−1⋃

ℓ=0

El,z|iℓ,hℓ

)

= 1− P

(
L−1⋂

ℓ=0

Ec
l,z|iℓ,hℓ

)

= 1−
L−1∏

ℓ=0

(
1− P

(
El,z|iℓ,hℓ

))
. (13)

A block error occurs if l is not an element of i or z 6= hℓ for
iℓ = l. The probability of block error can then be expressed
as

Pe = P












M−1⋃

l=0

H−1⋃

z=0
︸ ︷︷ ︸

(l,z) 6=(iℓ,hℓ)
ℓ∈{0,. . .L−1}

El,z|i,h












≤
M−1∑

l=0

H−1∑

z=0
︸ ︷︷ ︸

(l,z) 6=(iℓ,hℓ)
ℓ∈{0,. . .L−1}

P
(
El,z|i,h

)
.

(14)

By using (13), (14) can be given by

Pe ≤
M−1∑

l=0

H−1∑

z=0
︸ ︷︷ ︸

(l,z) 6=(iℓ,hℓ)
ℓ∈{0,. . .L−1}

(

1−
L−1∏

ℓ=0

(
1− P

(
El,z|iℓ,hℓ

))

)

=

M−1∑

l=0

H−1∑

z=0
︸ ︷︷ ︸

l/∈i

(

1−
L−1∏

ℓ=0

(
1− P

(
El,z|iℓ,hℓ

))

)

+

L−1∑

ℓ=0

H−1∑

z=0
︸︷︷︸

z 6=hℓ

(

1−
L−1∏

ℓ=0

(
1− P

(
El,z|iℓ,hℓ

))

)

. (15)

The Euclidean distance between diℓ and dl 6=iℓ is fixed and
can be calculated as dind =

√
2Es. The minimum Euclidean

distance between two PSK constellation points for the same
index is dpsk = 2

√
Essin(

π
H ). Under the coherent detection

and by using the symbol-error rate for H-PSK [32], this
implies that the right-hand side of (15) can be re-written as

Pe ≤UL , (M − L)H

(

1−
(

1−Q

(
dind√
2N0

))L
)

+ L
(

1− (1− PH-PSK)
L
)

, (16)

where

PH-PSK =







2Q
(
dpsk√
2N0

)

, H ≥ 4

Q
(
dpsk√
2N0

)

, H = 2

0, H = 1

, (17)

Q (·) is the Q-function, and UL is the UB of the probability of
error for any L ∈ {1, . . .,M} and H ≥ 1 for DFT-s-OFDM-IM
in AWGN channel.

Now consider the case where the FDSS for CSCs is
included, i.e., CSC-IM. Since we use a single-tap LMMSE-
FDE followed by an M -point IDFT as in (10), inter-symbol
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Fig. 3. Trade-off between the SE and the maximum PMEPR for CSC-IM.

interfence (ISI) occurs and the noise on the received modula-
tion symbols becomes correlated. By utilizing the derivation
in [37] for a typical DFT-s-OFDM transmission with inde-
pendent and identically distributed (i.i.d.) modulation symbols
under a fading channel, the signal-to-noise ratio (SNR) for
the received modulation symbols after the equalization can
be obtained as SNRpost = 1/(

√

1/αMMSE − 1), where

αMMSE =
(

1/M
∑Lu

k=Ld
|fk|2/(|fk|2 + σ2

n)
)2

. Assuming

that the noise on the modulation symbols is uncorrelated
and follows Gaussian distribution, the bound in (16) can be
calculated by using N0 = 1/SNRpost. It is worth noting that
these assumptions are weak as long as the parameters do not
cause ill-conditioned operations (e.g., D ≪ M ) and (16) is
fairly accurate for typical FDSS choices, e.g., (4), as shown
in Section V.

B. Trade-off between PMEPR and Spectral Efficiency

The CSC-IM allows p = p1 + p2 information bits to be

transmitted, where p1 = ⌊log2
((
M
L

))

⌋ and p2 = L log2(H)

since L indices can be chosen from M indices in
(
M
L

)
different

ways and L H-PSK symbols are utilized. Hence, the SE of
the scheme can be calculated as ρ = ⌊log2(

(
M
L

)
×HL)⌋/M

bit/second/Hz. Therefore, the SE increases with L ≤ ⌊M/2⌋.
On the other hand, since chirps are constant-envelope signals,
i.e., |Bl(t)| = 1, the maximum amplitude of the superposition
of L chirps is less than or equal to L, i.e., the instantaneous
power is maximum L2. As the mean power is L in the
presence of random PSK symbols, the PMEPR of the signal
with CSC-IM is always less than or equal to L. Therefore,
the proposed scheme leads to a trade-off between maximum
PMEPR and SE as quantified in Fig. 3 by sweeping L for
a given L and for a quadrature PSK (QPSK) constellation,
i.e., H = 4, and M ∈ {16, 32, 64, 128, 256}. While the SE of
CSC-IM increases with a larger L ≤ ⌊M/2⌋, the maximum
PMEPR is always less than or equal to 10 log10 L dB. This
trade-off can be helpful to identify the maximum number of
CSCs and the corresponding SE for a given power back-off.
For example, if the tolerable input power back-off is 7 dB, the
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maximum number of active CSCs is 5 and the maximum SE
is 0.35 bits/(s.Hz) for M = 64 based on Fig. 3.

As a special case, the proposed scheme for L = 2 reveals
that non-trivial CSs can be generated from chirps as follows:

Theorem 1. Let x(t) and y(t) be the signals given by

x(t) = dpe
jψp(t) + dre

jψr(t) , (18)

y(t) = dpe
jψp(t) − dre

jψr(t) , (19)

for dp, dr ∈ C and |dp| = |dr| = 1. The Fourier coefficients

of x(t) and y(t) form a GCP.

Proof. By the definition of a GCP, we need to show that
|x(t)|2 + |y(t)|2 is constant:

|x(t)|2 =|dp|2 + |dr |2

+ dpd
∗
re

j(ψp(t)−ψr(t)) + d∗pdre
−j(ψp(t)−ψr(t)) .

Similarly,

|y(t)|2 =|dp|2 + |dr |2

− dpd
∗
re

j(ψp(t)−ψr(t)) − d∗pdre
−j(ψp(t)−ψr(t)) .

Therefore, |x(t)|2 + |y(t)|2 = 2 × (|dp|2 + |dr|2) = 4, which
implies that F{x(t)} and F{y(t)} form a GCP.

Theorem 1 indicates that the Fourier coefficients of a linear
combination of the frequency responses of two constant-
envelope chirps result in a CS. Hence, based on (4) and
(5), Fresnel integrals and Bessel functions can be useful for
generating CSs, which have not been reported in the literature
to the best of our knowledge.

Example 1. Assume that x(t) and y(t) are linear combinations
of two circularly-shifted versions of a band-limited sinusoidal
chirp. By using (1) and (5), the Fourier coefficients of x(t)
and y(t) are obtained as

ak = dpJk

(
D

2

)

e−j2πk
τp
Ts + drJk

(
D

2

)

e−j2πk τr
Ts , (20)

bk = dpJk

(
D

2

)

e−j2πk
τp
Ts − drJk

(
D

2

)

e−j2πk τr
Ts , (21)

respectively. Based on Theorem 1, (ai)∞i=−∞ and (bi)
∞
i=−∞

form a GCP. Since the sinusoidal chirps are band-limited
signals, the amplitude of a Fourier coefficient approaches
to zero for |i| ≥ D/2. Therefore, (ai)

Lu

i=Ld
and (bi)

Lu

i=Ld

are approximately GCP. Note that if the sinusoidal chirps
are replaced by the linear chirps, by using (4), the Fourier
coefficients of x(t) and y(t) can be calculated as

ak =dpγk(C(αk) + C(βk) + jS(αk) + jS(βk))e
−j2πk

τp

Ts

+ drγk(C(αk) + C(βk) + jS(αk) + jS(βk))e
−j2πk τr

Ts ,

bk =dpγk(C(αk) + C(βk) + jS(αk) + jS(βk))e
−j2πk

τp

Ts

− drγk(C(αk) + C(βk) + jS(αk) + jS(βk))e
−j2πk τr

Ts .

In Fig. 4, we exemplify a GCP of length M = 24,
synthesized through (20) and (21) for Ld = −11, Lu = 12,
τp/Ts = 0/24, τr/Ts = 1/24, and dp = dr = 1. When
D = 24, the sequences are truncated heavily. Therefore, it
does not satisfy the definition of a GCP given in Section II-B.
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Fig. 4. A GCP of length M = 24 synthesized with sinusoidal chirps and the
impact of truncation on the GCP formation.

On the other hand, when the maximum frequency deviation is
halved, Mocb is 15 for containing 99% of the total integrated
power of the spectrum. Hence, M = 24 forms the chirps well
and the resulting sequences form a GCP. It is also worth noting
that synthesized CSs are not unimodular sequences. Therefore,
the mean power of OFDM symbol changes although instanta-
neous power is bounded.

Corollary 1. Let W = {Bm(t)|m = 0, 1, . . .,M − 1} be a

set of M CSCs of an arbitrary band-limited function with

the duration Ts and Mocb ≤M . Without using the same CSC

twice, the total number of distinct CSs of lengthM is
(
M
2

)
×H2

for dp, dr ∈ {ej2πz/H |z = 0, 1, . . ., H − 1}.

Proof. There exist H2 combinations for {dp, dr} and ejψp(t)

and ejψr(t) in (18) can be chosen in
(
M
2

)
ways without using

the same chirp. Thus, the total number of CSs is
(
M
2

)
×H2

via Theorem 1. The CSs are distinct as Bm(t) are distinct for
m ∈ {0, 1, . . .,M−1}. Since the OCB of Bm(t) is less than or
equal to M/Ts, the length of the synthesized CS is M based
on Nyquist’s sampling theorem.

Note that the extension of Theorem 1 for L > 2 is currently
a difficult open problem. To address this issue, using the
coefficients of CSCs as seed GCP sequences for the recursive
CS construction [12] is a potential direction that can be
pursued.

C. Practical Issues

At the transmitter, mapping the information bits to a
combination of L indices (and vice versa for RXr) may
be a challenge. This can be addressed by constructing a
bijective function from integers to the set of combinations
via a combinatorial number system of degree L [27], also
called combinadics. Note that we investigate a generalization
of combinadics in Section IV-A2 to obtain a mapping rule
under the proposed IS to develop the encoder and decoder,
which may also be used for the unconstrained case.

The choice of FDSS is important for obtaining a low error
rate and a low PMEPR. In [10], it was demonstrated that a
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flatter FDSS improves the bit error rate (BER) performance
for the receiver with a single-tap LMMSE-FDE. For example,
a linear chirp offers a more flat FDSS as compared to the
one with a sinusoidal chirp. On the other hand, a linear
chirp causes abrupt instantaneous frequency changes within
the IDFT duration. Therefore, it requires a much lower D as
compared to the one for a sinusoidal chirp for a given M
to form a CS. This issue can distort the signals and cause
a larger PMEPR than the theoretical bound, as demonstrated
in Section V. Note that the PMEPR can be reduced to the
theoretical limit if FDSS is allowed to be extended to the
sidebands with some roll-off factor, i.e., a larger Lu and a
lower Ld in (3).

D. Comparisons

As compared to DFT-s-OFDM-IM, the proposed scheme
has a significant PMEPR advantage since the signal is spread
in the time domain whereas DFT-s-OFDM generates Dirichlet
sinc pulses. The proposed scheme and OFDM-IM have similar
PMEPR characteristics since OFDM-IM also spreads the sym-
bol energy in time2. However, the energy is also distributed
within the signal bandwidth with the proposed scheme. Thus,
the proposed scheme allows a coherent receiver to exploit
frequency diversity in frequency-selective channels naturally.
On the other hand, OFDM-IM receiver does not fully benefit
from the frequency selectivity without an extra operation, e.g.,
repetitions or interleaving [38], at the transmitter.

In [11], a low PMEPR coding scheme was proposed to gen-
erate H-PSK CSs-RM. This scheme synthesizes Hm+1×m!/2
CSs, where the length of each CS must be in the form of 2m,
where m ∈ Z+. When a seed GCP of length N is utilized
with this scheme, it can be shown that Hm+1 × m! CSs of
length N · 2m can be generated [12]. Therefore, the spectral
efficiency of the schemes in [11] and [12] can be calculated as
⌊log2(Hm+1 ×m!/2)⌋/2m and ⌊log2(Hm+1 ×m!)⌋/(N2m)
bit/second/Hz, respectively. The differences between these
schemes and the proposed scheme can be listed as follows:
1) The proposed scheme supports flexible bandwidth. For
example, M can be an integer chosen as an integer multiple
of 12 based on the resource allocation in 3GPP 5G NR and
4G LTE. 2) The schemes in [11], [12] do not provide a trade-
off between PMEPR and spectral efficiency whereas L can
be chosen for a higher SE at a cost of high PMEPR with
our scheme. The PMEPR is still theoretically limited. 3) The
number of CSs is a function of a second-order coset term
generated through permutations in [11] and [12]. However,
designing a decoder for all possible permutations is not trivial
[12], [39]. For a fixed coset, the decoder can be implemented
through fast Hadamard transformation or recursive methods
[40], but the SE reduces to ⌊log2Hm+1⌋. Under this case, the
SE of the proposed scheme and the schemes in [11] and [12]
are similar while a simple decoder can be employed for the
proposed method.

Note that the SE of the proposed scheme is low as com-
pared to typical coding schemes such as low-density parity-

2In this study, we consider a large number of subcarriers with few indices
for both OFDM-IM and DFT-s-OFDM-IM.

check (LDPC) or polar codes. Although this appears as a
disadvantage, there exist many communication scenarios (e.g.,
uplink control channels in 5G NR [41], Internet-of-Things
(IoT) networks) where the primary concern is reliability under
low SNR or a longer battery life, rather than a higher data rate.
In addition, to exploit the demodulated data for improving
radar functionality for bi-static DFRC scenarios, the signal
should be able to decoded at very low SNR. For these
scenarios, the proposed scheme provides a way of limiting
PMEPR without an optimization procedure at the transmitter
while exploiting frequency selectivity and supporting radar
functionality discussed next.

IV. RADAR FUNCTIONALITY WITH CSC-IM

At the RXr, similar to (9), the received signal in the
frequency domain can be expressed as

bk =
ζkfk√
M

M−1∑

m=0

dme−j2πkm
M + ηk , (22)

where ηk is zero-mean AWGN with the variance of σ2
n. The

received symbols in (22) can be re-expressed in the vector
form as

b = diag{f}diag{DMd}
︸ ︷︷ ︸

W,diag{w}

h+ n , (23)

where b = [bLd
, . . ., bLu]

T, f = [fLd
, . . ., fLu], DM is the

M -point normalized DFT matrix, d = [dLd
, . . ., dLu ]

T, n =
[ηLd

, ηLd+1, . . ., ηLu ]
T, w = [wLd

, . . ., wLu ]
T is the response

of the waveform in the frequency, and h = [ζLd
, . . ., ζLu ]

T.
Based on (7), h can be expressed as

h = Ta , (24)

where T = [tτ1 tτ2 · · · tτR ] ∈ CM×R is the delay matrix
and tτs = e−j2πfcτs × [e−j2πLd

τs
Ts , · · · , e−j2πLu

τs
Ts ]T, and a =

[α1, α2, . . ., αR]T. For our DFRC scenario, the sequences s

and i are available at the RXr. Therefore, the symbols on the
subcarriers, i.e., w, can be used as reference symbols. Hence,
in AWGN channel, the ML-based delay estimation problem
can be expressed as

{(τ̃s, α̃s)} = arg min
{(τ̇s,α̇s)}
s=1,. . .,R

‖b−WṪȧ‖22

= arg min
{(τ̇s,α̇s)}
s=1,. . .,R

‖WṪȧ‖22 − 2ℜ{ȧHṪHWHb} .

(25)

For a single target, i.e., R = 1, (25) can be reduced to

τ̃1 = argmax
τ̇1

|ℜ{tτ̇1HWHb}| , (26)

where α̃1 = ℜ{tτ̃1HWHb}/(wHw) by equating the deriva-
tive of cost function with respect to τ̇1 and α̇1 to zeros. The
reason for the absolute value in (26) is that α1 can be negative
or positive. The solution of (26) corresponds to the optimum
MF and the objective function can be evaluated via a computer
search. Note that tτ̃s is a function of the carrier frequency.
Thus, the search should consider narrow enough steps to obtain
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the maximum. In this study, we utilize a refinement procure
that increases the number of points around the coarse estimate
point through chirp Z-transformation.

The solution of (25) is not trivial for R > 1 and a brute-
force search can cause a high-complexity RXr. To address
this issue, we utilize (26) and propose an iterative procedure
by subtracting the information related to (n−1)th target from
the signal as

b(n) = b(n−1) − α̃n−1Wtτ̃n−1 , (27)

for b(1) = b. To increase accuracy further, after τ̃s and α̃s
are estimated through iterations for s = 1, . . ., R, we re-use
the estimates obtained from (27) and update τ̃n and α̃n by
using

b(n) = b−
R∑

s=1
s6=n

α̃sWtτ̃s , (28)

in (26). The corresponding range for sth target can then be
obtained as r̃s = τ̃s × c/2. Based on our simulation trials,
updating the estimates through (28) twice addresses the root-
mean-square error (RMSE) floor in our previous results in [1].

The successful cancellation of the (n-1)th reflected signal
in (27) relies on the accurate estimate of the reflection coeffi-
cient. However, when there are multiple targets, the reflection
coefficient estimation can be inaccurate due to 1) the distance
between the targets and 2) the correlation properties of the
waveform. The reason for the former issue is that multiple
targets appear as a single target if the distance between
two targets is less than the minimum resolution. It is well-
known that the minimum resolution can be calculated as
rmin = 0.5 × c/B meters, where B = D/Ts is the chirp
bandwidth. The issue related to the waveform can be seen
in (26). For multiple CSCs transmission, the MF output, i.e.,
ℜ{tτ̃1HWHb} for τ̃1 ∈ [0, TCP), is a superposition of the
MF outputs of all CSCs and CSCs that are closer to each
other in time can cause inaccurate estimations of the reflection
coefficients. Also, the estimation accuracy for path delays can
degrade since the reward function in (26) can be high at
different values of τ̇1 for L > 1, i.e., multiple spikes, although
there is a single target, To address the correlation problem, we
investigate two solutions: 1) IS unique to the proposed scheme
and 2) Range estimation over the LMMSE channel estimate,
i.e., removing the impact of waveform on the range estimation.

A. Solution #1: Index Separation for MF-based estimation

For this solution, we consider the MF-based estimation and
use the iterations in (27) at the RXr. However, we modify the
transmitter such that the spikes in the AC function occurring
due to the multiple CSC transmissions are well-separated.
To this end, we restrict the selected CSC indices as the
distance between two adjacent indices is larger than a certain
value, which separates CSCs apart in time as in Fig. 2. This
restriction improves the accuracy of the reflection coefficient
estimation in (26) and the accuracy of the cancellations in (27)
by guaranteeing a low AC zone.

IS introduces a trade-off between communications and
radar. This is because a larger ∆ for improving the radar
functionality can degrade the SE of the proposed scheme.
Hence, the first question that we need to address is how the SE
of CSC-IM is affected for a given ∆. In addition, the restriction
on indices under IS requires a new bijective mapping between
bits and indices for the encoder and decoder designs.

1) Spectral Efficiency under IS: Let AL,∆(M) denote the
cardinality of the set of sequences (i0, i1, . . ., iL−1), where 0 ≤
ip < ir < M for p < r and Sq ≥ ∆ for all q ∈ {1, 2, . . ., L},
i.e., the number of valid index permutations for given ∆, L and
M . Also, let BL,∆(Z) denote the cardinality of the sequences
(S1, S2, · · · , SL) such that S1+S2+ · · ·+SL = Z ∈ Z

+
0 and

Sq ≥ ∆ ∈ Z
+
0 for q ∈ {1, 2, . . ., L}. To obtain AL,∆(M), we

need the following lemma:

Lemma 1. For L ≥ 1,

BL,∆(Z) =
Z−∆L+∆∑

r=∆

BL−1,∆(Z − r) (29)

=

{(
Z−L∆+L−1

L−1

)
, Z ≥ ∆L

0. otherwise
. (30)

Proof. The cardinality of the set of (S1, S2, · · · , SL−1) is
BL−1,∆(Z − SL) as S1 + S2 + · · · + SL−1 = Z − SL for
SL ∈ {∆, . . ., Z − ∆L + ∆}, which implies the recursive
formula in (29).

It is well-known that the number of compositions of n into
exactly k parts is

(
n−1
k−1

)
, where each part is greater than 0.We

define the variable S′
q by setting S′

q = Sq − (∆− 1).

• Case 1 (∆ ≥ 1): S′
1 + S′

2 + · · · + S′
L = Z − L(∆ − 1)

holds. Hence, BL,∆(Z) must be equal to the number of
compositions of Z−L(∆−1) into exactly L parts, which
implies (30) for ∆ > 1.

• Case 2 (∆ = 0): Since S′
1 + S′

2 + · · · + S′
L = Z + L

holds, BL,1(Z) must be equal to
(
Z+L−1
L−1

)
.

If Z < ∆L, there exists no composition.

Theorem 2. For L ≥ 2,

AL,∆(M) =

{
M
L

(
M−L∆−1

L−1

)
, M ≥ L(∆ + 1)

0, otherwise
. (31)

Proof. Consider the following steps:
Step 1: By the definition in (12), the cardinality of the set

of sequences (i0, S1, . . ., SL−1) is AL,∆(M) and S1 + S2 +
· · · + SL = M − L. Since Sq ≥ ∆ for all q, the inequality
given by

∆ ≤ SL ≤ U , (32)

holds for U ,M − L(∆ + 1) + ∆.
Step 2: By the definition in (12), SL can be expressed as

SL = i0 + b, where b = M − 1 − iL−1. Therefore, for i0 ∈
{0, 1, . . ., U}, the inequality in (32) can be re-stated as

∆− i0 ≤ b ≤ U − i0 . (33)

Step 3: Since Sq ≥ ∆ for all q and S1 + S2 + · · ·+ SL =
M − L, the cardinality of the sequences (S1, S2, · · · , SL−1)
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is BL−1,∆(M −L−SL) for a given SL. Hence, by using (33)
and Lemma 2, AL,∆(M) can be expressed as

AL,∆(M) =
U∑

i0=0

U−i0∑

b=max(0,∆−i0)
BL−1,∆(M − L− (i0 + b)) ,

=

∆−1∑

i0=0

BL,∆(M − L) +

U∑

i0=∆

BL,∆(M − L+∆− i0)

(34)

=∆BL,∆(M − L) + BL+1,∆(M − L+∆)

=
M

L

(
M − L∆− 1

L− 1

)

.

There exists no valid sequence for M < L(∆ + 1), i.e.,
AL,∆(M) = 0.

For a given ∆, the SE of the CSC-IM can now be calculated
as ρ = ⌊log2(AL,∆(M)×HL)⌋/M . In Fig. 5(a), we show the
trade-off between ∆ and the maximum number of information
bits that are encoded with the indices, i.e., log2(AL,∆(M)).
As expected, a larger ∆ means a lower number of information
bits that can be transmitted on the indices. The degradation is
more rapid with a larger L although the number of information
bits is larger for smaller values of ∆.

One interesting question is that what is the largest ∆ such
that the SE still remains at the maximum for a given L?
To address this question, let ∆no-loss denote the largest sep-
aration such that ⌊log2

(
M
L

)
⌋ = ⌊log2 AL,∆no-loss(M)⌋. Hence,

AL,∆no-loss(M) ≥ 2⌊log2 (
M
L)⌋ must hold. Since Theorem 2

provides a closed-form solution, ∆no-loss can be evaluated with
a computer search.

In Fig. 5(b), we plot ∆no-loss for a given M . The surprising
result is that the separation between two adjacent indices can
be as large as M/4 − 1 without losing SE for L = 2. For
instance, for M = 2k, where k ∈ Z+, ∆no-loss reaches its
maximum value, i.e., ∆no-loss =M/4− 1. In other words, the
duration of the low AC zone can be as large as a typical CP
size as ∆no-loss/M = NCP/N can be maintained. The value of

M where ∆no-loss reaches at its maximum depends on L. For
instance, the values of M are 931, 954, and 1012 for L = 3,
L = 4, and L = 5, respectively, and the corresponding values
for ∆no-loss are 90, 48, and 31. The ratios between ∆no-loss and
M approach to 1/10.25, 1/19.4, and 1/32.45 for L = 3, L =
4, and L = 5, respectively. We also observe abrupt changes
in ∆no-loss for different values of M . For example, ∆no-loss

becomes minimum, i.e., ∆no-loss = 0, for M = 2k + 1 for
M = 2. This behavior is because the number of bits encoded
on the indices increases by 1 when M increases by 1.

2) Bijective mappings between natural numbers and indices

under IS: To develop an encoder and a decoder for CSC-IM
by taking the IS into account, information bits need to be
mapped to the indices under a separation constraint or vice
versa. We address this issue by deriving the mapping rules
from a positive integer n to the indices or vice versa for a given
∆, where the information bits can be converted to n through
a binary to decimal conversion. The following definitions are
needed:

Definition 1. The function ǫA(n,M,L,∆) maps a positive
integer n to the sequence (i0, i1, . . ., iL−1) for given M , L,
and ∆.

Definition 2. The function ǫB(k, Z, L,∆) maps a positive
integer k to the sequence (S1, S2, . . ., SL) for given Z , L, and
∆.

Definition 3. The inverse functions of ǫA(n,M,L,∆)
and ǫB(k, Z, L,∆) are ǫ−1

A ((i0, i1, . . ., iL−1),M,L,∆) and
ǫ−1
B ((S1, . . ., SL), Z, L,∆), respectively.

For ǫA(n,M,L,∆), we use the expansion in (34). We
first determine i0 as the maximum value of x such
that n(x) ,

∑x
i0=0 f(i0) < n, where f(i0) ,

BL,∆(M −L+min(0,∆− i0)). We then obtain (S1, . . ., SL)
by using ǫB(n(i0)− n,M − L,L,∆) for i0 < ∆ and
ǫB(n(i0)− n,M − L+∆− i0, L,∆) for i0 ≥ ∆. We finally
calculate iℓ = i0 +

∑ℓ
j=1(1 + Sj) for ℓ ∈ {1, 2, . . ., L− 1}.

For ǫB(k, Z, L,∆), we exploit the sum in (29) and ob-
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Algorithm 1: Mapping algorithms for ∆ ≥ 0

Function (i0, i1, . . ., iL−1) = ǫA(n,M,L,∆)
Obtain the largest x for n(x) =

∑x
a=0 f(a) < n

i0 = x
if i0 < ∆ then

(S1, . . ., SL) = ǫB(n(i0) − n,M − L,L,∆)
else

(S1, . . ., SL) = ǫB(n(i0) − n,M − L+ ∆ − i0, L,∆)

Obtain (i0, i1, . . ., iL−1) from (i0, S1, . . ., SL−1)

Function (S1, S2, . . ., SL) = ǫB(k, Z, L,∆)
if L > 1 then

Obtain the largest x for k(x) =
∑x

r=∆ BL−1,∆(Z − r) < k
SL = x
(S1, . . ., SL−1) = ǫB(k − k(x), Z − SL, L− 1,∆)

else

S1 = k

Function n = ǫ−1
A

((i0, i1, ..., iL−1),M,L,∆)
Obtain (S1, . . ., SL) from (i0, i1, . . ., iL−1)
if i0 < ∆ then

k = ǫ−1
B

((S1, . . ., SL),M − L,L,∆)
else

k = ǫ−1
B

((S1, . . ., SL),M − L+ ∆− i0, L,∆)

n = n(i0 − 1) + k

Function k = ǫ−1
B

((S1, ..., SL), Z, L,∆)
if L > 1 then

k = k(SL) + ǫ−1
B

((S1, . . ., SL−1), Z − SL, L− 1,∆)
else

k = 1

TABLE I
THE ENUMERATIONS OF ǫA(n,M, L,∆) FOR M = 10, L = 3, AND

∆ ∈ {0, 1, 2}.

∆ = 0 ∆ = 1 ∆ = 2

n i0 i1 i2 i0 i1 i2 i0 i1 i2
1 0 8 9 0 6 8 0 4 7
2 0 7 9 0 5 8 0 3 7
3 0 6 9 0 4 8 0 3 6
4 0 5 9 0 3 8 1 5 8
5 0 4 9 0 2 8 1 4 8
6 0 3 9 0 5 7 1 4 7
7 0 2 9 0 4 7 2 6 9
8 0 1 9 0 3 7 2 5 9
9 0 7 8 0 2 7 2 5 8

10 0 6 8 0 4 6 3 6 9
...

...
...

50 1 6 7 5 7 9 N/A
...

... N/A
120 7 8 9

Cardinality 120 50 10

tain SL as the maximum value of x such that k(x) ,
∑x

r=∆ BL−1,∆(Z − r) < k. Since determining SL re-
duces the original problem from L parts to L − 1 parts,
where the new sum is Z − SL, ǫB(k, Z, L,∆) recalls itself
as ǫB(k − k(x), Z − SL, L− 1,∆) to obtain (S1, . . ., SL−1).
This procedure is recursive and continues till L = 1. For
L = 1, ǫB(k, Z, L,∆) returns S1 = k.

The function ǫ−1
A ((i0, i1, . . ., iL−1),M,L,∆) first calcu-

lates n(i0 − 1). Afterwards, it obtains (S1, . . ., SL−1) from
(i0, i1, . . ., iL−1). Finally, it returns n = n(i0) + k, where
k is ǫ−1

B ((S1, . . ., SL),M − L,L,∆) for i0 < ∆ and
ǫ−1
B ((S1, . . ., SL),M − L+∆− i0, L,∆) for i0 ≥ ∆ based

on (34).

The function ǫ−1
B ((S1, . . ., SL), Z, L,∆) first

calculates k(SL). It then returns the result as
k = k(SL) + ǫ−1

B ((S1, . . ., SL−1),M − SL, L− 1,∆).
For L = 1, ǫ−1

B ((S1, . . ., SL), Z, L,∆) is 1.

The pseudocodes for the mapping algorithms are provided
in Algorithm 1. As the closed-form expressions of AL,∆(M)
and BL,∆(Z) are available in Theorem 2 and Lemma 1,
respectively, the time complexity of these algorithms linearly
scales with M , L, and 1/∆. The algorithms can also be
efficiently implemented as they rely on recursions.

In TABLE I, we exemplify the output of ǫA(n,M,L,∆) for
M = 10, L = 3, and ∆ ∈ {0, 1, 2}. For instance, for ∆ = 2,
there are at least 2 integers between any two adjacent indices
and there are 10 valid sequences. Hence, 3 information bits
can be encoded by using the decimal number converted from
the binary number constructed with the information bits.

3) Impact of IS on the communication receiver perfor-

mance: The ML detector under the IS can be expressed as

{̂i, ĥ} = arg max
i̇ℓ∈{0,. . .,M−1}

ḣℓ∈ZH

i̇p<i̇r for p<r
Sq≥∆ for q∈1,. . .,L

ℜ
{
L−1∑

ℓ=0

d̃i̇ℓe
−j2πḣℓ/H

}

,

(35)

where the condition Sq ≥ ∆ reduces the search space. A
low-complexity receiver based on (35) can be implemented as
follows:

• Obtain {î0, ĥ0} that maximizes d̂l,z for l ∈ {0, 1, . . .,M−
1} and z ∈ ZH .

• Calculate {îℓ, ĥℓ} that maximizes d̂l,z for l ∈
{0, 1, . . .,M − 1} and z ∈ ZH such that min(|̂iℓ −
îℓ′ |,M − |̂iℓ − îℓ′ |) ≥ ∆ + 1 for all 0 ≤ ℓ′ ≤ ℓ − 1
till detecting the (L − 1)th index and the corresponding
PSK symbol.

• Re-order the detected chirp and PSK symbol indices such
that îp < îr for p < r.

Note that the IS can slightly decrease the error rate since it
restricts the valid index combinations.

B. Solution #2: Range Estimation over LMMSE Channel

Estimate

For this solution, we remove the impact of the waveform
on the range estimation by using the LMMSE estimate of h,
i.e., h̃ = WH(WWH + σ2

nI)
−1b . For a single target, the

estimate of τ̃1 can then be obtained as

τ̃1 = argmax
τ̇1

|ℜ{tτ̇1HWH(WWH + σ2
nI)

−1b}| , (36)

where α̃1 = ℜ{tτ̃1HWHb}/(wHw+σ2
n). For multiple targets,

we also consider the iterative procedure in (27) and (28). The
main disadvantage of this method is that it does not attain the
CRLB of ranges if the waveform in the frequency domain is
not unimodular as demonstrated in Section V. In addition, it
requires an accurate estimation of the noise variance.
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C. CRLB for Range and Reflection Coefficients

To derive CRLB for range and reflection coefficients, we
follow a similar approach proposed in [42]. We first re-express
bk as

bk = ζkwk + ηk =

R∑

s=1

αs|wk|e−j2π(fc+
k
Ts

)τs+j∠wk + ηk

=

R∑

s=1

µks + jνks + ηk , (37)

where µks = αs|wk| cos(−2π(fc +
k
Ts
)τs + ∠wk) and νks =

αs|wk| sin(−2π(fc +
k
Ts
)τs +∠wk). Let p be the vector that

contains the unknown parameters as p = [p1, . . ., p2R] =
[τ1, . . ., τR, α1, . . ., αR]. The element on the ith row and jth
column of the 2R× 2R Fisher information matrix (FIM) can
then be calculated as Jij = 2

σ2
n

∑R
s=1

∑Lu

k=Ld

∂µks

∂pi

∂µks

∂pj
+

∂νks

∂pi
∂νks

∂pj
. By evaluating the derivatives, Jij can be obtained

as

Jij =







8π2α2
i

σ2
n

∑Lu

k=Ld
|wk|2( kTs

+ fc)
2, i = j ≤ R

2α2
i−R

σ2
n

∑Lu

k=Ld
|wk|2, i = j > R

0 otherwise

. (38)

The CRLBs for the unknown parameters are the diagonal
elements of the inverse of the FIM. Since the FIM is a diagonal
matrix, the unbiased CRLB of the ranges and the CRLB of
the reflection coefficients are given by

σ2
range ,E

{
R∑

s=1

|rs − r̃s|2
}

≥ c2

4

R∑

i=1

1

Jii

=
σ2
nc

2

32π2
∑Lu

k=Ld
|wk|2( kTs

+ fc)2

R∑

s=1

1

α2
s

, (39)

and

σ2
coeff ,E

{
R∑

s=1

|αs − α̃s|2
}

≥
2R∑

i=R+1

1

Jii

=
σ2
n

2
∑Lu

k=Ld
|wk|2

R∑

s=1

1

α2
s

, (40)

respectively. By using the fact that E
{
|wk|2

}
= |fk|2, Jij

can be re-expressed by replacing |wk|2 with |fk|2 in (38).
Therefore, (39) and (40) can be modified by replacing |wk|2
with |fk|2.

In the literature, various CRLBs are derived for different
scenarios. For instance, by using OFDM with unimodular
sequences, the CRLB of σ2

range was calculated in [43, Section
3.3.3] as

σ2
range ≥

3σ2
nc

2

8π2M(M2 − 1)

R∑

s=1

1

α2
s

. (41)

In [18], it was derived when the OFDM subcarriers are
weighted. The main difference between (39) and the CRLBs
derived in these studies is the distance-dependent phase in
the channel model. While these studies assume that the phase
is unknown and independent from the target’s location, we
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Fig. 6. PMEPR distributions for different schemes.

consider the fact that the phase is a function of the target’s
distance in (7) [44].

V. NUMERICAL RESULTS

We consider IEEE 802.11ay OFDM with 4 channels, where
Ts ≈ 194 ns and TCP ≈ 48.48 ns, fc = 64.8 GHz,
fsample = 10.56 Gsps, N = 2048, and NCP = 512. We
assume that Lu = 724, Ld = −723, and D = 1382, and
M = 1536 for 4 channels3. Therefore, the bandwidth of the
signal is approximately 7.2 GHz for CSC-IM. The maximum
range of the radar is 7.27 m. The modulation symbols are
based on QPSK, i.e., H = 4. The FDSS coefficients are
chosen based on (4) and (5) and assumed to be known at
the RXc.We consider L ∈ {1, 2, 5} and set ∆ to 84 (i.e.,
no bits loss based on Fig. 5(b)) for L = 2 and 252 (i.e.,
10 bits are sacrificed based on Fig. 5(a)) for L = 5, when the
IS is considered. Otherwise, ∆ is set to 0. We compare the
proposed scheme with three different alternatives: OFDM-IM,
DFT-s-OFDM-IM (i.e., no FDSS is applied), and the CSs-RM
[11], [12]. For OFDM-IM, an ML detector that incorporates
the channel frequency response is utilized [27]. For CSs-RM,
we use a seed GCP of length N = 3 and use m = 9. To
facilitate the ML-based decoder proposed in [12] for CSs, we
consider only (m − 1)! cosets. Since these schemes do not
use FDSS, their bandwidths are approximately 7.9 GHz. For
fading channel, a power delay profile with three paths where
the relative powers are 0 dB, -10 dB, -20 dB at 0 ns, 10 ns,
and 20 ns with Rician factors of 10, 0, and 0, respectively, is
considered. The number of information bits transmitted are 12,
24, and 56 bits for IM-based schemes without IS for L = 1, 2,
and 5, respectively. When IS is considered, 24 bits (i.e., no SE
loss due to the IS) and 46 bits (i.e., SE loss due to the IS) are
transmitted for L = 2 and 5, respectively. With CSs-RM, 35
bits are transmitted for each OFDM symbol.

3The reason for M = 1536 is that we can compare the proposed scheme
with the CSs-RM under this configuration.
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A. Communications Performance

In Fig. 6, we compare PMEPR distributions. The signals are
over-sampled to measure PMEPR accurately. The PMEPR is
always less than or equal to 3 dB for CSs-RM and sinusoidal
chirps for L = 2. However, the distortion on linear chirps
due to the truncation is higher than the one for sinusoidal
chirps. Therefore, the CSs are not accurately formed with
linear chirps under our simulation settings and the maximum
PMEPR reaches to 5 dB. For L = 5, the PMEPR is still
limited for the proposed scheme and the maximum PMEPRs
are 10 log10 5 = 6.98 dB and 7.5 dB for sinusoidal and linear
chirps, respectively. On the other hand, they result in a higher
SE as compared to CSs-RM. OFDM-IM results in PMEPR
distributions similar to the ones for the proposed scheme for
L = 2 and L = 5. However, it does not spread the energy in
the frequency domain, which is needed for radar functionality.
While DFT-s-OFDM-IM spreads the energy in time, it causes
signals with very high PMEPRs. The main reason for this
behavior is that DFT-s-OFDM-IM actives only L indices that
are represented as Dirichlet-sinc pulses in time (see Fig. 5 in
[2]). Therefore, CSC-IM is superior to DFT-s-OFDM-IM and
OFDM-IM for radar applications by reducing PMEPR and
spreading the energy in both time and frequency.

In Fig. 7, we compare the BLER performance in AWGN
and fading channel. For the proposed scheme, the receiver
equalizes the signal even in the AWGN channel because of
FDSS. Since a flatter response improves the BLER result
in both AWGN and fading channels [10], we consider only
linear CSCs for the rest of the analysis. In Fig. 7(a), we
provide BLER comparisons for a given Eb/N0. The CSs-RM
is superior to all schemes and provides 1-2 dB gain at 1e-3
BLER. The CSC-IM operates in the range of 3-4 dB Eb/N0

at 1e-3 BLER and the performance degrades slightly for a
larger L. Their error rates are similar to those of OFDM-IM
and DFT-s-OFDM-IM, which shows the equalization due to
the FDSS do not degrade the error rate under our simulation
settings. In Fig. 7(b) and Fig. 7(d), we analyze BLER for
a given SNR. The BLERs for CSC-IM and orthogonal IM
schemes (i.e., OFDM-IM and DFT-s-OFDM-IM) approach to
the corresponding UBs given in (15), rapidly. As opposed to
CSs-RM, the proposed scheme provides a range of solutions
with the various data rates, maximum PMEPRs, and operating
SNR points. For example, for L = 1, it results in 0 dB PMEPR
with a very low data rate transmission while it increases the
data rate by using L = 5 chirps at the expense of a higher
PMEPR. In Fig. 7(c) and Fig. 7(d), we analyze the same
schemes in fading channel. The performance of OFDM-IM
is worse than all other schemes since it does not exploit
the frequency selectivity. The slopes of the BLER curves for
CSC-IM under the fading channel are also noticeably higher
than the ones for OFDM-IM. Although the DFT-s-OFDM-IM
is similar to CSC-IM, a larger power back-off is required for
DFT-s-OFDM-IM (see PMEPR distributions in Fig. 6). We
also observe that the difference between CSs-RM and CSC-IM
diminishes in the fading channel and it is less than 1 dB for
L = 2. It is worth noting that the ML detector for CSs-RM is
based on an ML-based algorithm [12], which causes a high-

complexity detector due to the second-order coset term. On the
other hand, the proposed scheme relies on a single M -IDFT,
per-bin ML detection, and recursive mapping rules discussed
in Section IV-A2. We also observe that the IS slightly reduces
the error rate as in Fig. 7(d) as IS limits the search space for
indices as discussed in Section IV-A3.

B. Radar Performance

We consider two scenarios for evaluating RXr performance.
In the first scenario, a single target is assumed. Its location is
drawn from a uniform distribution between 2 m and 3 m and
the true value of the reflection coefficient is set to −1, which
considers the phase change of a reflected signal [44]. For the
second scenario, we consider two targets located nearby. The
location of the first target is random between 2 m and 3 m
and its reflection coefficient, unknown to the RXr, is set to
−
√
2/2. The second target with the true value of the reflection

coefficient of −
√
2/2 is away from the first target by ∆r,

where ∆r is a randomly chosen between 1.5rmin ≅ 3.16 cm
and 2rmin ≅ 4.21 cm for rmin ≅ 2.1 cm. We consider
the proposed scheme with linear chirps and compare it with
CSs-RM. We exclude OFDM-IM (as it does not distribute the
signal energy in the frequency domain) and DFT-s-OFDM-IM
(as it causes high PMEPR) for radar functionality.

In Fig. 8, we evaluate the accuracy of range estimators by
providing RMSE versus SNR curves. In Fig. 8(a) and 8(b),
we consider the first scenario. The performance of schemes
are very similar to each other. The MF-based estimator attains
the CRLB derived in (39) as shown in Fig. 8(a). For the sake
of comparison, we also plot the CRLB in (41) for the case
when the phase information is unknown and not a function of
the target location. The difference between these two bounds
indicates the phase information has a notable impact on the
accuracy, which can be exploited at high SNR, i.e., for strong
reflections. For the LMMSE-based estimator, the bound is only
attained for CSs-RM. This is because CSs are unimodular
in the frequency domain, while the symbol energy is not
distributed identically to the frequency bins for linear chirps
due to the multiple CSCs and FDSS. In Fig. 8(c) and Fig. 8(d),
we consider the second scenario. Since RXr estimate targets’
locations by using the sequence in the frequency domain,
the waveform characteristics in the frequency domain plays
a role in the accuracy. For example, the CSs-RM are the most
prominent ones as it leads to sequences based on QPSK. The
subcarriers are populated with arbitrary complex numbers for
CSC-IM, which degrades the accuracy slightly. When IS is
not adopted for ML-based estimation, Fig. 8(c) shows CSC-IM
saturates and never attains the corresponding CRLB. However,
when IS is utilized, the accuracy of CSC-IM with L = 2, 5 is
similar to CSC-IM with L = 1 and attains the CRLB. For the
LMMSE-based estimator, CRLB is not attained for CSC-IM
(due to the FDSS with non-unimodular coefficients for CSCs)
while it is achieved with CSs-RM as in Fig. 8(d). This result
implies that using unimodular sequences is beneficial for radar
as it yields superior results with both LMMSE and MF-based
estimators. However, the price paid is a higher-complexity
RXr for decoding CSs-RM. Although it is possible to use a
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Fig. 7. BLER performance at RXr for different schemes.

lower-complexity code with QPSK, it is challenging to address
the high PMEPR for OFDM. From this aspect, CSs-RM is
promising for OFDM-based DFRC applications. On the other
hand, CSC-IM is more flexible in terms of size and data rate
as compared to CSs-RM.

In Fig. 9, we analyze the resolution for the aforementioned
schemes by sweeping the distance between two targets. We
fix the SNR at 20 dB. All schemes resolve the targets after
the minimum resolution rmin = 2.1 cm. On the other hand,
CSC-IM without IS cannot resolve the targets as accurate as
CSC-IM with IS even the distance between targets is larger
than rmin. The results are in line with the ones as observed
in Fig. 8. For the LMMSE-based estimation, they do not
attain the CRLB except for the CSs-RM although the accuracy
improves after rmin.

VI. CONCLUDING REMARKS

In this study, we propose CSC-IM for DFRC scenarios. We
show that this scheme can generate wideband signals while
bringing a trade-off between SE and maximum PMEPR, i.e.,
the SE increases with the number of CSCs at the expense of a

higher maximum PMEPR. As a special case, we prove that the
transmitted signals in the frequency domain lead to new CSs
based on chirps. We also exemplify that Bessel functions and
Fresnel integrals can be useful for generating GCPs. CSC-IM
is more flexible than the standard CSs based on RM codes in
the sense that it allows one to control the maximum PMEPR
theoretically for the sake of increasing the SE while being
more flexible in terms of the number of utilized subcarriers.
Besides, since CSC-IM does not utilize a coset term needed
for the CSs-RM, it enjoys a low-complexity decoder. In this
study, we derive the UB of the BLER for CSC-IM, which also
captures the analysis for OFDM-IM and DFT-s-OFDM-IM.
With comprehensive simulations, we show that the CSC-IM
offers a lower PMEPR than DFT-s-OFDM-IM while exploiting
frequency selectivity as compared to OFDM-IM. CSC-IM
is more suitable for radar functionality as compared to
DFT-s-OFDM-IM and OFDM-IM as it reduces the PMEPR
while allowing controllable AC properties. We consider two
range estimation methods: MF-based and LMMSE-based es-
timations. For the MF-based estimation, we introduce IS to
generate a low AC zone. We investigate the impact of IS on
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(a) MF-based estimation and a single target.
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(b) LMMSE-based estimation and a single target.
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(c) MF-based estimation and two nearby targets.
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Fig. 8. Accuracy analysis for different estimators and scenarios.
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Fig. 9. Resolution analysis for different estimators.
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SE and provide algorithms that map indices to information bits
or vice versa. We show that IS helps the estimation accuracy
to attain the corresponding CRLB.
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