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Generalized Firefly Algorithm for Optimal Transmit

Beamforming
Tuan Anh Le and Xin-She Yang

Abstract—This paper proposes a generalized Firefly Algorithm
(FA) to solve an optimization framework having objective func-
tion and constraints as multivariate functions of independent
optimization variables. Four representative examples of how
the proposed generalized FA can be adopted to solve down-
link beamforming problems are shown for a classic transmit
beamforming, cognitive beamforming, reconfigurable-intelligent-
surfaces-aided (RIS-aided) transmit beamforming, and RIS-aided
wireless power transfer (WPT). Complexity analyzes indicate that
in large-antenna regimes the proposed FA approaches require
less computational complexity than their corresponding interior
point methods (IPMs) do, yet demand a higher complexity than
the iterative and the successive convex approximation (SCA)
approaches do. Simulation results reveal that the proposed FA
attains the same global optimal solution as that of the IPM for
an optimization problem in cognitive beamforming. On the other
hand, the proposed FA approaches outperform the iterative, IPM
and SCA in terms of obtaining better solution for optimization
problems, respectively, for a classic transmit beamforming, RIS-
aided transmit beamforming and RIS-aided WPT.

Index Terms—Firefly algorithm, nature-inspired optimization,
transmit beamforming, reconfigurable intelligent surfaces.

I. Introduction

T
ransmit beamforming problems are normally cast as

optimization problems where beamforming vectors are

optimization variables. Two fundamental optimization prob-

lems in transmit beamforming include: i) minimizing the total

transmit power subject to signal-to-interference-plus-noise-

ratio (SINR) constraints [1]–[4]; ii) maximizing the weakest

SINR subject to a total power constraint [5], [6]. In fact, these

two problems are equivalent [7], [8]. A generalized version of

the second problem is introduced in [8] where the objective is

to maximize an arbitrary utility function of SINRs, which is

strictly increasing in every receiver’s SINR, subject to a power

constraint. The other variation of the second optimization

problem is the sum rate maximization [9], [10]. Furthermore,

additional constraints can be introduced to these fundamental

problems to capture other wireless communication applica-

tions. For instance, a soft-shaping interference constraint was

added for cognitive radio scenarios [11], [12] while a power

transfer constraint was included for simultaneous-wireless-

information-and-power-transfer scenarios [13]. In addition,

various metrics have been utilized to formulate downlink

beamforming optimization problems such as secrecy capacity
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[14], energy efficiency [15], data transmission reliability, data

transmission security, and power transfer reliability [16].

Since the SINR is a non-convex quadratic function of

the beamforming vectors, the two fundamental beamforming

optimization problems are NP-hard and cannot be solved in

polynomial time. Fortunately, exploiting the hidden convexity

property of the SINR metric, an elegant framework was

proposed in [2] to convert these two optimization problems

into convex conic programming forms, which can be ef-

fectively solved by a standard interior point method (IPM).

Furthermore, uplink-downlink duality was utilized to derive

iterative algorithms to find optimal beamforming vectors for

some power minimization problems, e.g., [1], [4], [17], [18].

An iterative algorithm was introduced in [9] to attain optimal

beamforming vectors for the sum rate maximization.

Numerous transmit beamforming problems can be realized

in quadratically constrained quadratic programs (QCQPs) of

beamforming vectors, which are mostly non-convex [11], [19].

To solve a QCQP problem, a semidefinite relaxation technique

[20] is adopted in which the original QCQP is converted to

a convex semidefinite programming (SDP) with new opti-

mization variables as beamforming matrices. If solving the

transformed SDP yields a rank-one optimal beamforming

matrix, then this optimal matrix is also the optimal solution

to the original QCQP. Otherwise, an approximated solution

to the original QCQP can be obtained by exploiting some

rank-one approximations or the Gaussian randomize procedure

[19]. Unfortunately, obtaining such solution requires further

computational resources yet results in a sub-optimal solution.

Optimization variables for downlink beamforming problems

may include different types of beamforming vectors. For exam-

ple, in a reconfigurable-intelligent-surface-aided (RIS-aided)

communication system, see e.g., [21], [22] and references

therein, the optimization variables are active beamforming

vectors for the base station (BS) and a passive beamformimg

vector for the RIS. The objective function and/or constraints

for a RIS-aided communication system are functions of both

active and passive beamforming vectors. These beamforming

vectors are independent variables yet need to be jointly op-

timized making their problems non-convex. Widely adopted

approaches for tackling such problems are to iteratively solve

two sub-optimization problems, a.k.a., alternative optimization

(AO) approach [21], or to approximate a non-convex using

first-order Taylor expansion, a.k.a., successive convex approx-

imation (SCA) [23]. In an AO approach, each of these two sub-

optimization problems, one variable is treated as a constant

while solving for the other. These sub-optimization problems

themselves are mostly in QCQP forms. Due to the inherent

http://arxiv.org/abs/2310.18460v1
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non-convexity character of the original and sub-optimization

problems, the resulting active and passive beamforming vec-

tors may not be the global solutions. Whereas in a SCA

approach, a lower (or upper) bounded solution is normally

attained.

IPMs, a.k.a., barrier methods, are gradient based algorithms

being good at exploitation,1 a.k.a., intensification, hence, they

are regarded as effective methods to solve convex optimization

problems [25]. Unfortunately, most of transmit beamforming

problems are non-convex. Solving non-convex optimization

problems requires algorithms having better exploration2 ability

than that of the IPMs to avoid getting trapped in a local

mode. Firefly algorithm (FA), i.e., a nature-inspired algo-

rithm, possesses both exploitation and exploration abilities.

Consequently, FA is a good candidate for solving non-convex

downlink beamforming problems. FA is an easy-to-implement,

simple, and flexible algorithm based on the flashing char-

acters and behaviour of tropical fireflies [24]. FA was first

developed and published by Xin-She Yang, respectively, in

late 2007 and in 2008 [24], [26] for optimization problems

with objective and constrains being functions of a single

optimization variable. Although FA has been widely applied

to many applications [27], there has not been any significant

work investigating the application of FA in solving transmit

beamforming problems. There were only two attempts to

adopt FA for a throughput maximization problem in [28]

and for a power minimization problem in [29]. As these two

attempts only capture two fundamental transmit beamforming

problems, it is not clear how FA can be adopted to solve other

types of transmit beamforming problems.

This paper takes a further step on implementing FA to solve

a wider range of transmit beamforming optimization problems.

The contributions of the paper can be summarized as follows.

• The paper proposes a generalized FA to find the optimal

solution of an optimization framework where its objective

function and constraints are multivariate functions of

multiple independent optimization variables. The prob-

lems in [28] and [29] are only two special cases of the

proposed generalized FA while the proposed generalized

FA is capable of handling a larger range of transmit

beamforming problems.

• The paper shows four representative examples of how

the generalized FA can be adopted for solving transmit

beamforming problems, i.e., a classic transmit beamform-

ing approach, a cognitive beamforming approach, a RIS-

aided beamforming approach, and RIS-aided wireless

power transfer (WPT) approach. The applications of the

proposed generalized FA are beyond these four examples

which are only given to showcase how different types of

beamforming problems can be handled by the generalized

FA.

• For the sake of completeness and comparison, the iterative

closed form or SDP forms of the under investigated beam-

forming approaches are represented. The paper analyzes

1Exploitation is the ability of using any information from the problem of
interest to form new solutions which are better than the current ones [24].

2Exploration is the ability of efficient exploring the search space to form
new solutions with sufficient diversity and far from the existing ones [24].

and compares the complexities of the iterative or SDP

and FA implementations of each beamforming approach.

• Simulations are carried out to evaluate the performances

of the proposed FAs for the classic transmit beamforming,

cognitive beamforming, RIS-aided, and RIS-aided WPT

beamforming approaches.

Notation: Lower and upper case letter y and Y: a scalar; bold

lower case letter y: a column vector; bold upper case letter Y:

a matrix; ‖·‖: the Euclidean norm; (·)T : the transpose operator;

(·)H: the complex conjugate transpose operator; Tr (·): the trace

operator; Y � 0: Y is positive semidefinite; Ix: an x×x identity

matrix; O: the big O notation; CM×1: the set of all M × 1

vectors with complex elements; HM×M : the set of all M × M

Hermitian matrices; y ∼ CN(0, σ2): y is a zero-mean circularly

symmetric complex Gaussian random variable with variance

σ2; diag (y): a diagonal matrix whose diagonal elements are

the entries of vector y; and finally diag (Y): a vector whose

entries are the diagonal elements of matrix Y.

II. Generalized Firefly Algorithm Framework

A. Proposed Generalized Firefly Algorithm Framework

The FA was developed based on the following three ide-

alized rules [24], [26]. First, any firefly attracts other fireflies

regardless of its sex. Second, the attractiveness of any firefly

to the other one is proportional to its brightness. Both attrac-

tiveness and brightness decrease as the distance between these

two fireflies increases. Given two flashing fireflies, the darker

firefly will move towards the brighter one. If a firefly does

not find any brighter one, it will make a random move. Third,

the brightness of a firefly depends on the landscape of the

objective function.

In this section, we propose a generalized FA to find

optimal solution for an optimization framework containing

both objective and constraints as multivariate functions of

independent variables. To that end, we first introduce the

following optimization framework.

minimize
A,B,··· ,Z

f (A,B, · · · ,Z) ,

subject to gl (A,B, · · · ,Z) ≤ 0, l ∈ {1, 2, . . . , L},
hk (A,B, · · · ,Z) = 0, k ∈ {1, 2, . . .K},

(1)

where A ∈ CMa×Na ,B ∈ CMb×Nb , · · · ,Z ∈ CMz×Nz , i.e.,

Ma,Na, Mb,Nb, · · · , Mz,Nz ≥ 1, are decision variables, a.k.a.,

optimization variables. Depending on the the values of

{Ma,Na, Mb,Nb, · · · , Mz,Nz}, the decision variables can be

matrices, vectors, scalars, or the combination of all.

We continue by using the penalty method [24], [26] to

equivalently rewrite (1) as:

minimize
A,B,··· ,Z

f (A,B, · · · ,Z) + P (A,B, · · · ,Z) , (2)

where P (A,B, · · · ,Z) is the penalty term defined as:

P (A,B, · · · ,Z) =

L
∑

l=1

λlmax{0, gl (A,B, · · · ,Z)}2

+

K
∑

k=1

ρk{hk (A,B, · · · ,Z)}2. (3)
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In (3), λl > 0, ∀l, and ρk > 0, ∀k, are penalty constants. Let

{Ai,Bi, · · · ,Zi} be the i-th firefly amongst the population of

N fireflies, i.e., i ∈ {1, 2, · · · ,N}. Following the second rule of

the FA, the brightest firefly is the most attractive one. Since

the proposed optimization framework is a minimization, we

define the brightness of firefly i as:3

Ii (Ai,Bi, · · · ,Zi) =
1

f (Ai,Bi, · · · ,Zi) + P (Ai,Bi, · · · ,Zi)
.

(4)

For any two fireflies i, j ∈ {1, 2, · · · ,N}, if

I j

(

A j,B j, · · · ,Z j

)

> Ii (Ai,Bi, · · · ,Zi), then firefly i

will move towards firefly j at (n + 1)-th generation as:

A
(n+1)

i
= A

(n)

i
+ βa,0e

−γx(r
(n)

a,i j
)2 (

A
(n)

j
− A

(n)

i

)

+ α(n)
a ΛΛΛ

(n)

a,i
, (5)

B
(n+1)

i
= B

(n)

i
+ βb,0e

−γy(r
(n)

b,i j
)2 (

B
(n)

j
− B

(n)

i

)

+ α
(n)

b
ΛΛΛ

(n)

b,i
, (6)

...

Z
(n+1)

i
= Z

(n)

i
+ βz,0e

−γz(r
(n)
z,i j

)2
(

Z
(n)

j
− Z

(n)

i

)

+ α(n)
z ΛΛΛ

(n)

z,i
, (7)

where r
(n)

a,i j
= ||A(n)

j
− A

(n)

i
||, r(n)

b,i j
= ||B(n)

j
− B

(n)

i
||, · · · , r(n)

z,i j
=

||Z(n)

j
−Z

(n)

i
|| are the Cartesian distances which are not necessary

Euclidean distances yet they can be any measure effectively

characterized the quantities of interest in the optimization

problem; βa,0, βb,0, · · · , βz,0 are, respectively, the attractiveness

at r
(n)

a,i j
= 0, r

(n)

b,i j
= 0, · · · , r(n)

z,i j
= 0; finally γa, γb, · · · , γz present

the variations of the attractiveness. The second terms in (5),

(6), and (7) capture the attractions. The third terms in (5),

(6), and (7) are randomizations with randomization factors

α
(n)
a , α

(n)

b
, · · · , α(n)

z and ΛΛΛ
(n)

a,i
∈ CMa×Na ,ΛΛΛ

(n)

b,i
∈ CMb×Nb , · · · ,ΛΛΛ(n)

z,i
∈

C
Mz×Nz being matrices of random numbers drawn from a

Gaussian or an uniform distribution. The proposed generalized

FA for solving the optimization framework (1) is summarized

in Algorithm 1, where T is the maximum generation of the

algorithm. For any particular optimization problem subsumed

under the framework, the corresponding FA will have the same

steps as those in Algorithm 1 except the input, step 3, step 16,

step 18, step 19, and the return value.

B. Asymptotic Convergence and Optimality

Since the firefly algorithm, like quite a few other nature-

inspired algorithms, is a metaheuristic algorithm, there is no

rigorous proof of convergence so far in the current literature,

despite many applications of such metaheuristic algorithms.

In this section, we provide some intuitive discussions on the

optimality and convergence of the FA framework.4

1) Asymptotic Optimality: Without loss of generality, let

γa = γb = · · · = γz = γ, we consider two special cases of the

variations of the attractiveness when γ → 0 and γ → ∞.

When γ → 0, it is clear that e
−γ(r

(n)
a,i j

)2 → 1, e
−γ(r

(n)

b,i j
)2 →

1, · · · , e−γ(r
(n)
z,i j

)2 → 1. Therefore the attractivenesses in (5), (6),

and (7) are constant and, respectively, equal to βa,0, βb,0, and

βz,0. Equivalently, it is an idealized sky scenario where the

3Note that if (1) is a maximization problem, then (2) can be expressed as:
minimize

A,B,··· ,Z
− f (A,B, · · · ,Z) + P (Ai,Bi, · · · ,Zi).

4Mathematical analysis of the FA’s optimality and convergence deserves an
important research topic. Such analysis is postponed to future research due
to the space constraint.

Algorithm 1 Generalized Firefly Algorithm for solving (1)

1: Input: FA parameters: N, T , λt, ρk,

βa,0, βb,0, · · · , βz,0, γa, γb, · · · , γz; Optimization data:

the structures/parameters of functions f (A,B, · · · ,Z),

gl (A,B, · · · ,Z), hk (A,B, · · · ,Z);

2: Randomly generate N populations

{{A1,B1, · · · ,Z1}, {A2,B2, · · · ,Z2}, · · · , {AN ,BN , · · · ,ZN }};
3: Evaluate the light intensities of N population as (4);

4: Rank the fireflies in a descending order of

Ii (Ai,Bi, · · · ,Zi);

5: Define the current best solution: I⋆ :=

I1

(

A⋆,B⋆, · · · ,Z⋆
)

; {A⋆,B⋆, · · · ,Z⋆} :=

{A1,B1, · · · ,Z1};
6: for n = 1 : T do

7: for i = 1 : N do

8: for j = 1 : N do

9: if Ii (Ai,Bi, · · · ,Zi) > I⋆ then

10: I⋆ := Ii (Ai,Bi, · · · ,Zi);

{A⋆,B⋆, · · · ,Z⋆} := {Ai,Bi, · · · ,Zi};
11: end if

12: if I j

(

{A j,B j, · · · ,Z j}
)

> I⋆ then

13: I⋆ := I j

(

A j,B j, · · · ,Z j

)

;

{A⋆,B⋆, · · · ,Z⋆} := {A j,B j, · · · ,Z j};
14: end if

15: if I j

(

A j,B j, · · · ,Z j

)

> Ii (Ai,Bi, · · · ,Zi) then

16: Move firefly i towards firefly j as (5)-(7);

17: end if

18: Attractiveness varies with distances via

e
−γa

(

r
(n)
a,i j

)2

, e
−γb

(

r
(n)

b,i j

)2

, · · · , e−γz

(

r
(n)
z,i j

)2

;

19: Evaluate new solutions and update light inten-

sity as (4);

20: end for

21: end for

22: Rank the fireflies in a descending order of

Ii (Ai,Bi, · · · ,Zi);

23: Update the current best solution: I⋆ :=

I1

(

A⋆,B⋆, · · · ,Z⋆
)

; {A⋆,B⋆, · · · ,Z⋆} :=

{A1,B1, · · · ,Z1};
24: end for

25: return {A⋆,B⋆, · · · ,Z⋆}.

brightness of each firefly does not change over the distance,

which can be seen everywhere. Consequently, a global opti-

mum can be obtained.

On the other hand, when γ → ∞, it is obvious that

e
−γ(r

(n)

a,i j
)2 → 0, e

−γ(r
(n)

b,i j
)2

→ 0, · · · , e−γ(r
(n)

z,i j
)2 → 0, indicating

that the attractiveness of each firefly is zero. Equivalently,

each firefly is randomly in a heavily foggy region and cannot

be seen by the others. Each will randomly move and the

optimality is not always guaranteed. In this case, FA is

equivalent to a random search approach.

In fact, the attractiveness is in between these two extreme

cases, i.e., 0 < γ < ∞. The value of γ−0.5 defines the average

distance of a herd of fireflies being seen by its adjacent herds.

Hence, the entire population can be separated into number of

herds. This automatic division property provides FA suitable
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ability of handling highly nonlinear and multimodal optimiza-

tion problems. By controlling the attractiveness γa, γb, · · · , γz

and the roaming randomness αa, αb, · · · , αz, it has been shown

in previous studies that FA can outperform both Particle

Swarm Optimization (PSO), see, e.g., [30]–[33], and random

search approaches, see e.g., [24], [26].

2) Asymptotic Convergence: When γ→ 0, the convergence

of FA is similar to that of PSO where the convergence was

analyzed by Clerc and Kennedy in 2002 in [34]. When γ→ ∞,

the FA may act like a random search, though its behaviour

is similar to that of Simulated Annealing (SA) because the

FA’s solution is perturbed or modified in the similar way as

that in the SA in this limiting case. The SA was shown to

be convergent under the right-cooling conditions [35]. The

reduction of the roaming randomness, i.e., αa, αb, · · · , αz, in

the FA can be considered as a type of cooling schedule, and

thus it can be expected that FA can converge in this case.

Let us now investigate the case when 0 < γ < ∞.

Given a very large number of firefly population N, it can

be assumed that N is much greater than the number of local

optima. The initial locations of N fireflies should be uniformly

distributed over the whole search space. As the iterations of

Algorithm 1 progress, i.e., n increases, these initial N fireflies

should converge into all locally brighter ones, i.e., the local

optima including the global ones, in a stochastic manner due

to the third term in (5), (6), and (7). By comparing the

brightest fireflies amongst the locally brighter ones, i.e., the

best solutions amongst the local optima, the global optima

can be attained. Theoretically, these fireflies will reach the

global optimal when N → ∞ and n ≫ 1. However, it has

been reported in the related literature that the FA converges

with less than 50 to 100 generations [24], [26].

In sections IV, V, and VI, we present how the proposed

FA can be adopted to solve optimization problems for trans-

mit beamforming designs.5 Hereafter, “min” and “s. t.” are,

respectively, used to represent “minimize” and “subject to”.

III. Transmit Beamforming

In this section we consider a classic transmit beamforming

problem with a well-known iterative method based on uplink-

downlink duality. We then introduce our FA solution to the

problem.

A. Problem Formulation

1) Problem Formulation: Consider an Mt-antenna BS serv-

ing U single-antenna mobile users. Let hH
i
∈ C1×Mt , wi ∈ CM×1

and si, respectively, be the channel between the i-th user

and the BS, the information-beamforming vector and the data

symbol for the ith user. The overall signal received by the ith

user is yi =
∑U

j=1 hH
i

w js j+ni where ni is a zero mean circularly

symmetric complex Gaussian noise with variance σ2, i.e.,

ni ∼ CN(0, σ2), at the user. Let Ri = hih
H
i

represent the

instantaneous channel state information (CSI) or Ri = E
(

hih
H
i

)

denote the statistical CSI, {wi} = {w1,w2, · · · ,wU} be the set

5The original FA has been discretized to solve various discrete or combi-
natorial optimization problems [36]. For example, Osaba et al. [37] used a
discrete FA to solve rich vehicle routing problems.

of candidate information-beamforming vectors for all users.

Assuming that E
(

|si|2
)

= 1, the SINR at the i-th user is

SINRi =
wH

i
Riwi

∑U
j=1, j,i wH

j
Riw j + σ2

. (8)

We design the set of beamforming vectors {wi} such that

the BS’s total transmit power is minimized while maintaining

the SINR level at each user above the required threshold. To

that end, the problem is formulated as follows:

min
wi

U
∑

i=1

wH
t wt

s. t.
wH

i
Riwi

∑U
j=1, j,i wH

j
Riw j + σ

2
i

≥ γi, ∀i ∈ {1, · · · ,U},
(9)

where γi is the required SINR level for the i-th user. Problem

(9) is known as non-convex due to the SINR constraint.

2) Iterative Approach: An elegant approach to solve (9)

was introduced in [1] based on uplink-downlink duality where

the optimal solution of the downlink problem can be sought

via solving the following dual-uplink problem:6

min
pi

U
∑

i=1

pi

subject to p � Γt(p),

(10)

where p =
[

p1 p2 · · · pU

]T
, Γ = diag

[

γ1, γ2, · · · , γU

]

,

t(p) =
[

t1 (p) t2 (p) · · · tU (p)
]T

,

ti (p) = arg min
ŵi

ŵH
i

Qi (p) ŵi

ŵH
i

Riŵi

, (11)

Qi (p) =
(

∑U
t=1,t,i ptRt + σ

2
i
I
)

, pi = λiσ
2
i

is the dual-uplink

power for i-th user, λi is the ith Lagrange multiplier associated

with the ith constraint in (9), and ŵi, i.e., ŵH
i

ŵi = 1, is the dual-

uplink beamforming vector for i-th user. Starting from any

positive initial value of p (0), the solution for the dual-uplink

problem (10) can be found iteratively as p (n + 1) = Γt (p (n)).

The iterative downlink algorithm to find optimal solutions for

(9) is summarised in algorithm 2.

B. Proposed Firefly Algorithm

We rewrite (9) as

min
W

f (W)

s. t. di (W) ≤ 0, ∀i,
(12)

where W =
[

w1,w2, · · · ,wU

]

∈ CMt×U , f (W) =
∑U

i=1 wH
i

wi,

di(W) = −wH
i

Riwi + γi

∑U
j=1, j,i wH

j
Riw j + γiσ

2
i
. Using the

penalty method, we recast (22) into an unconstrained problem

as:

min
W

f (W) + P(W), (13)

6This approach was also adopted for transmit beamforing problems in
coordinated multi-point (CoMP) transmissions, see e.g., [38] and [39].
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Algorithm 2 Iterative algorithm for problem (9)

1: Input: Γ = diag
[

γ1, γ2, · · · , γU

]

, Ri, ∀i, number of

iterations T .

2: Initialize p (1) � 0.

3: for n = 1 : T do

4: for i = 1 : U do

5: Find ŵi (n) as the dominant eigenvector of the

matrix Gi(n) = pi (n) Q−1
i

(p (n)) Ri

6: Calculate ti (p (n)) =
ŵH

i
(n)Qi(p(n))ŵi(n)

ŵH
i

(n)Riŵi(n)
.

7: end for

8: Update p (n + 1) = Γt (p (n)).

9: end for

10: p⋆
i
= p (n + 1) and ŵ⋆

i
= ŵi (n + 1).

11: Output: w⋆
i
=

√

p⋆
i

ŵ⋆
i

.

where P(W) is the penalty term given as:

P(W) =

U
∑

i=1

λimax {0, di(W)}2 , (14)

with λi > 0 is the penalty constant.

Let {Wi} =
{[

wi
1
,wi

2
, · · · ,wi

U

]}

be the i-th firefly. We

initialize a population of N fireflies {Wi}, i ∈ {1, 2, · · · ,N},
and define the light density of the firefly {Wi} as:

Ii (Wi) =
1

f (Wi) + P(Wi)
. (15)

For any two fireflies i and j in the population, if

I j

(

W j

)

> Ii (Wi) then the firefly i will move toward the

firefly j as:

W
(n+1)

i
= W

(n)

i
+ β0e

−γ
(

r
(n)
i j

)2 (

W
(n)

j
−W

(n)

i

)

+ α(n)V, (16)

where r
(n)

i j
= ||(W(n)

j
−W

(n)

i
|| is the Cartesian distance, β0 is

the attractiveness at r
(n)

i j
= 0, γ presents the variation of of the

attractiveness. The second term of (16) represent the attraction.

The third term of (16) is a randomization comprised of a

randomization factor α(n) and a matrix of random numbers

V ∈ CMt×U . The random factor α(n) and the elements of V are

drawn from either a Gaussian or an uniform distribution.

It can be seen that problem (12) is a special case of the

proposed framework (1) where the objective and constraints

are functions of optimization variable W. Hence, the proposed

FA has the same steps as those in Algorithm 1 except steps

3, 16, 18 and 19 given in Algorithm 3.

Algorithm 3 Modified generalized FA for solving (12)

Input: FA parameters: N, T , λi, β0; Optimization data: Ri,

σ2
i
, γi;

Step 3: Evaluate the light intensities of N fireflies as (15);

Step 16: Move firefly i towards firefly j as (16);

Step 18: Attractiveness varies with distance via e
−γ

(

r
(n)

i j

)2

;

Step 19: Evaluate new solutions; update Ii(Wi) as (15);

return W⋆.

C. Complexity Analysis

The complexity of algorithm 2 is described in the following

lemma.

Lemma 1: The computational complexity of algorithm 2 is

on the order of T
[

U(M3
t + M2

t + Mt log Mt) + U
]

.

Proof: The proof is based on the observation that com-

plexities of steps 5, 6 and 8 are, respectively, on the order of

M3
t + Mt log Mt, M2

t and U.

Lemma 2: The computational complexity of Algorithm 3 is

on the order of:

T N2
[

M2
t + NUMt(1 + UMt)

]

+ T N log N + NMtU

+NUMt(1 + UMt) + N log N. (17)

Proof: Due to space limitation, we provide main obser-

vations to derive (17) as follows. The dominant terms of the

computational complexity of Algorithm 3 are at steps 2, 3,

4, 16, 19, and 22. The complexity of generating N matrices,

each matrix of size Mt×U, in step 2 is on the order of NMtU.

The complexity of evaluating each di(W) is on the order of

UM2
t , while the complexity of evaluating

∑U
t=1 wH

t wt is on the

order of UMt.
7 Hence the complexity of calculating the light

density for N fireflies, i.e., steps 3 and 19, is on the order

of N(UMt + U2M2
t ) = NUMt(1 + UMt). The complexity of

ranking N firefly in steps 4 and 22 is N log N. Finally, the

complexity of moving a firefly in step 16 is on the order of

M2
t . Assuming a worst case when step 16 is executed in every

inner loop of the algorithm, after some manipulations, one can

arrive at (17).

IV. Cognitive Beamforming

A. Problem Formulation

1) Problem Formulation: Consider a cognitive wireless

communication system consisting of an Mt-antenna cognitive

base station (BS), U active single-antenna secondary users

(SUs) and K single-antenna primary users (PUs). The cog-

nitive BS is allowed to communicate with its SUs in the

same frequency band owned by the primary system if its

interference imposed on each PU is less than a predefined

tolerable threshold of Ito,k. The received signal at the t-th SU,

t ∈ {1, · · · ,U}, is:

yt = hH
s,twt st +

U
∑

j=1, j,t

hH
s,tw js j + nt, (18)

where hH
s,t ∈ C1×Mt is the channel coefficient of the wireless

link between the t-th SU and the cognitive BS; wt ∈ CMt×1 and

st ∼ CN(0, 1) are, respectively, the beamforming vector and

the data symbol associated to the t-th SU; and nt ∼ CN(0, σ2
t )

is a zero mean circularly symmetric complex Gaussian noise

with variance σ2
t , at the t-th SU. Let Rs,t = E

(

hs,th
H
s,t

)

for the

statistical CSI and Rs,t = hs,th
H
s,t for the instantaneous CSI.

The SINR at the t-th SU can be expressed as:

SINRt =
wH

t Rs,twt
∑U

j=1, j,t wH
j
Rs,tw j + σ

2
t

. (19)

7Here, we adopt the schoolbook iterative algorithm to evaluate complexity
of the multiplication of two matrices of sizes n × m and m × p as the order
of nmp.
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Let hH
p,k
∈ C1×Mt be the channel coefficient of the wireless

link between the k-th PU, k ∈ {1, · · · ,K}, and the cognitive BS,

Rp,k = E
(

hp,khH
p,k

)

for the statistical CSI and Rp,k = hp,khH
p,k

for

the instantaneous CSI. The total interference power imposed

on the k-th PU by the cognitive BS is
∑U

j=1 wH
j
Rp,kw j.

Our objective is to design downlink beamforming vectors

for the SUs that minimize the cognitive BS transmit power

while maintaining the required SINR level for every SU and

keeping the interference level imposed at each PU receiver

below the predefined tolerable threshold. The optimization

problem to design beamforming vectors is cast as:

min
wt

U
∑

t=1

wH
t wt

s. t.
wH

t Rs,twt
∑U

j=1, j,t wH
j
Rs,tw j + σ

2
t

≥ ηt, ∀t ∈ {1, · · · ,U},

U
∑

j=1

wH
j Rp,kw j ≤ Ito,k, ∀k ∈ {1, · · · ,K},

(20)

where ηt is the required SINR level for the t-th SU. Due to

the SINR constraint, problem (20) is non-convex.

2) SDP Approach: For the sake of completeness, we

provide a review on a traditional approach to solve (20)

using semidefinite programming (SDP). We first form a new

optimization variable Ft = wtw
H
t where Ft � 0, Ft ∈ HMt×Mt ,

and Ft is a rank-one matrix.8 We then utilize the identity

xHXx = Tr(XxxH) to rewrite (20) as:

min
Ft∈HM×M

U
∑

t=1

Tr (Ft)

s. t.

(

1 +
1

ηt

)

Tr
(

Rs,tFt

) −
U

∑

j=1

Tr
(

Rs,tF j

)

− σ2
t ≥ 0, ∀t,

Ito,k −
U

∑

j=1

Tr
(

Rp,kF j

)

≥ 0, ∀k,

Ft � 0, ∀t,
(21)

where t ∈ {1, · · · ,U}, k ∈ {1, · · · ,K}.
Problem (21) is in a standard SDP form. Hence, its optimal

solution can be obtained in a polynomial time by using a

general purpose IPM, e.g., CVX which is a Matlab based

modeling system for constructing and solving disciplined

convex programs [40]. In arriving at (21), we have relaxed

the rank-one constraint on Ft, ∀t. If the solution of (21)

does not have rank-one, then further computation resources are

required to derive a sub-optimal solution via some rank-one

approximations or the Gaussian randomize procedure [19].

B. Proposed Firefly Algorithm

Here, we adopt the generalized FA in Algorithm 1 to solve

(20). Rearranging the constraint, we rewrite (20) as:

8A matrix is rank-one if and only if it has only one linearly independent
column/row.

min
W

f (W)

s. t. φt(W) ≤ 0, ∀t ∈ {1, · · · ,U},
ϕk(W) ≤ 0, ∀k ∈ {1, · · · ,K},

(22)

where W =
[

w1,w2, · · · ,wU

]

∈ CMt×U , f (W) =
∑U

t=1 wH
t wt,

φt(W) = ηt

∑U
j=1, j,i wH

j
Rs,tw j + ηtσ

2
t − wH

t Rs,twt and ϕk(W) =
∑U

j=1 wH
j
Rp,kw j − Ito,k. Using the penalty method, we first

transform (22) into an unconstrained problem as:

min
W

f (W) + P(W), (23)

where P(W) is the penalty term given as:

P(W) =

U
∑

t=1

λtmax {0, φt(W)}2 +
K

∑

k=1

ρkmax {0, ϕk(W)}2 , (24)

with λt > 0 and ρk > 0 are penalty constants.

Let Wi =
[

wi
1
,wi

2
, · · · ,wi

U

]

∈ CMt×U be the firefly i. We

initialize a population of N fireflies Wi, i ∈ {1, 2, · · · ,N}, and

define the light density of the firefly Wi as:

Ii (Wi) =
1

f (Wi) + P(Wi)
. (25)

For any two fireflies i and j in the population, if

I j

(

W j

)

> Ii (Wi) then the firefly i will move toward the

firefly j as:

W
(n+1)

i
=W

(n)

i
+ β0e

−γ
(

r
(n)
i j

)2 (

W
(n)

j
−W

(n)

i

)

+ α(n)V, (26)

where r
(n)

i j
= ||(W(n)

j
−W

(n)

i
|| is the Cartesian distance, β0 is

the attractiveness at r
(n)

i j
= 0, γ presents the variation of of the

attractiveness. The second term of (26) captures the attraction.

The third term of (26) is a randomization comprised of a

randomization factor α(n) and a matrix of random numbers

V ∈ CMt×U . The random factor α(n) and the elements of V are

drawn from either a Gaussian or an uniform distribution.

It can be seen that problem (22) is a special case of the

proposed framework (1) where the objective and constraints

are functions of only one optimization variable W. Hence, the

proposed FA has the same steps as those in Algorithm 1 except

steps 3, 16, 18 and 19 given in Algorithm 4.

Algorithm 4 Modified generalized FA for solving (20)

Input: FA parameters: N, T , λt, ρk, β0, γ; Optimization

data: Rs,t, Rp,k, σ2
t , ηt, Ito,k;

Step 3: Evaluate the light intensities of N fireflies as (25);

Step 16: Move firefly i towards firefly j as (26);

Step 18: Attractiveness varies with distance via e
−γ

(

r
(n)
i j

)2

;

Step 19: Evaluate new solutions; update Ii(Wi) as (25);

return W⋆.

C. Complexity Analysis

We investigate the complexity of solving (21) in a worst-

case runtime of the IPM followed by the complexity analysis

of the proposed FA. We start by the following definition.
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Definition 1: At a given ε > 0, the set of {Fε
t } is an ε-

solution to problem (21), i.e., an acceptable solution with the

accuracy of ε, if

U
∑

t=1

Tr
(

Fε
t

) ≤ min
Ft∈HM×M

U
∑

t=1

Tr (Ft) + ε. (27)

The number of decision variables of (21) is M2
t . The com-

plexity of (21) is described in the following lemma.

Lemma 3: The computational complexity to attain ε-

solution to (21) is on the order of:

ln
(

ε−1
)√

U(Mt + 1) + K
[

(M2
t + 1)(U + K)

+UM2
t (M2

t + Mt) + M4
t

]

M2
t . (28)

Proof: We sketch some main steps to arrive at the lemma

due to space limitation. It can be observed that (21) has (U+K)

linear-matrix-inequality (LMI) constraints of size 1 and U LMI

constraints of size Mt. One can follow the same steps as in

[41, Section V-A] to derive the following facts: (i) the itera-

tion complexity is on the order of ln
(

ε−1
)√

U(Mt + 1) + K,

and (ii) the per-iteration complexity is on the order of
[

(M2
t + 1)(U + K) + UM2

t (M2
t + Mt) + M4

t

]

M2
t .

Lemma 4: The computational complexity of Algorithm 4 is

on the order of:

T N2
[

M2
t + NUMt(1 + UMt + KMt)

]

+ T N log N + NMtU

+NUMt(1 + UMt + KMt) + N log N. (29)

Proof: Due to space limitation, we provide main obser-

vations to derive (29) as follows. The dominant terms of the

computational complexity of Algorithm 4 are at steps 2, 3, 4,

16, 19, and 22. The complexity of generating N matrices, each

matrix of size Mt ×U, in step 2 is on the order of NMtU. The

complexity of evaluating each φt(W) or ϕk(W) is on the order

of UM2
t , while the complexity of evaluating

∑U
t=1 wH

t wt is on

the order of UMt. Hence the complexity of calculating the light

density for N fireflies, i.e., steps 3 and 19, is on the order of

N(UMt + U2M2
t + KUM2

t ) = NUMt(1 + UMt + KMt). The

complexity of ranking N firefly in steps 4 and 22 is N log N.

Finally, the complexity of moving a firefly in step 16 is on the

order of M2
t . Assuming a worst case when step 16 is executed

in every inner loop of the algorithm, after some manipulations,

one can arrive at (29).

V. Reconfigurable Intelligent Surface-Aided Beamforming

A. Problem Formulation

1) Problem Formulation: Consider a communication sys-

tem comprising of an Mt-antenna BS communicating with U

single-antenna mobile users in which the direct communica-

tion links between the BS and its mobile users are blocked,

e.g., because of high building etc., [42]. To circumvent the

problem, an Nt-reflective-element RIS is utilized to support

the communication. Let H = [h1, . . . , hNt
] ∈ CMt×Nt represent

the channel coefficients between the BS and the RIS and

gi = [gi1, . . . , giNt
]T ∈ CNt×1 be the channel coefficients

between the RIS and the i-th user.

Let xi, i.e., E[|xi|2] = 1, and wi ∈ CMt×1, respectively,

represent the data symbol and the active beamforming vector

for the i-th user. Each reflective element of the RIS generates

a phase shift to support the communication between the BS

and the mobile users. Let θk be the phase shift at the k-th

reflective element and let θθθ = [θ1, θ2, · · · , θNt
]T denote the

phase-shift coefficients generated by the RIS with |θk | ≤ 1

and arg(θk) ∈ [−π, π),∀k = 1, . . . ,Nt. Vector θθθ is the passive

beamforming vector for the RIS. The signal arrived at the i-th

user is:

yi = gH
i diag(θθθ)HHHwixi + gH

i diag(θθθ)HHH

U
∑

j=1, j,i

w jx j + ni,

= θθθHGH
i wixi + θθθ

HGH
i

U
∑

j=1, j,i

w jx j + ni, (30)

where GH
i
= diag(g∗

i
)HH ∈ CNt×Mt and ni ∼ CN(0, σ2)

represents the additive noise measured at the i-th user. Fur-

thermore, let {wi} = {w1,w2, · · · ,wU} denote the set of active

beamforming vectors, and SINRi({wi}, θθθ) be the SINR at the

i-th user. One can write:

SINRi ({wi}, θθθ) =
|θθθHGH

i
wi|2

U
∑

j=1, j,i

|θθθHGH
i

w j|2 + σ2
i

. (31)

The optimization is posed as follows:

min
{wi}, θθθ

U
∑

i=1

wH
i wi

s. t. SINRi ({wi}, θθθ) ≥ ηi,∀i,

|θk | ≤ 1,∀k,

(32)

where ηi is the required SINR level measured at the i-th user.

Since the SINR constraint is a function of two optimization

variables wi and θθθ, problem (32) is non-convex.

2) Alternative Optimization Approach: For the sake of

completeness, the widely-adopted AO approach [21], [42]–

[44] is represented here as a baseline to solve (32). Let

Fi = wiw
H
i

, and Θ = θθθθθθH , i.e., rank(Fi) = 1 and rank(Θ) = 1.

As Fi and Θ are two independent variables, they can be

alternatively solved [21], [42]–[44]. To that end, relaxing the

rank-one constraint on Fi and beginning with any initial value

of the reflecting coefficient matrix Θ(0), the following sub-

problem will be solved at the p-th iteration:

min
{Fi}

Tr















U
∑

i=1

Fi















s. t. Tr
GiΘ

(p−1)GH
i

Fi

ηiσ
2
i

−
U

∑

j=1, j,i

Tr
GiΘ

(p−1)GH
i

F j

σ2
i

− 1 ≥ 0,∀i,

Fi � 0, ∀i ∈ {1, · · · ,U}.
(33)

The reflecting coefficients Θ(p) is then updated from the

optimal solution of (33) at p-th iteration, i.e., {F(p)

i
}, by solving
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the following sub-problem [42]:

min
Θ

Tr (Θ)

s. t. Tr
ΘGH

i
F

(p)

i
Gi

ηiσ
2
i

−
U

∑

j=1, j,i

Tr
ΘGH

i
F

(p)

j
Gi

σ2
i

− 1 ≥ 0,∀i,

diag
(

diag (Θ)
) � INt

,

Θ � 0.
(34)

The AO approach repetitively solves two SDPs (33) and

(34) in n0 iterations to obtain the solution for (32).

Remark 1: It is worth noticing that the AO approach ap-

proximates the originally non-convex optimization (32) by

two sub-problems (33) and (34). Although (33) and (34) are

convex, the solutions to these sub-problems can be regarded

as the upper bounds of the original problem (32) as these

solutions may not be the global solution. Furthermore, the

AO approach adopts the so-called semidefinite relaxation

technique [20] in which the rank-one constraints on Fi and

Θ are relaxed. If solving (33) and/or (34) does not return

rank-one matrices Fi and/or Θ, then a rank-one approximation

or a Gaussian randomize procedure [19] is required to extract

approximated rank-one solutions. Extracting the approximated

solutions requires further computational resources yet only

results in sub-optimal solutions.

Motivated by the above observations, we introduce a novel

FA approach to simultaneously solve wi and θθθ for the original

problem (32) in the following section.

B. Proposed Firefly Algorithm

The optimization (32) can be expressed as

min
{W, θθθ}

f (W)

s. t. φi ({W, θθθ}) ≤ 0,∀i,

ϕk (θk) ≤ 0,∀k,

(35)

where W =
[

w1,w2, · · · ,wU

]

∈ CMt×U , f (W) =
∑U

i=1 wH
i

wi,

φi (W, θθθ) = ηi

∑U
j=1 wH

j
Giθθθθθθ

HGH
i

w j

σ2
i

+ ηi

− (1 + ηi)
wH

i
Giθθθθθθ

HGH
i

wi

σ2
i

, (36)

and ϕk (θk) = |θk | − 1. Adopting the penalty method, (35) can

be written as:

min
{W, θθθ}

f (W) + P(W, θθθ), (37)

where P(W, θθθ) is the penalty term given as:

P(W, θθθ) =

U
∑

i=1

λimax {0, φi({W, θθθ})}2 +
Nt
∑

k=1

ρkmax {0, ϕk(θk)}2 , (38)

with λi > 0 and ρk > 0 are penalty constants.

Let {Wt, θθθt} = {
[

wt
1
,wt

2
, · · · ,wt

U

]

, θθθt} be the firefly t. We

initialize a population of N fireflies {Wt, θθθt}, t ∈ {1, 2, · · · ,N}
and define the light density, i.e., the brightness, of the firefly

t {Wt, θθθt} as:

It (Wt, θθθt) =
1

f (Wt) + P(Wt, θθθt)
. (39)

For any fireflies t and l amongst the population, if

It (Wt, θθθt) > Il (Wl, θθθl) then the firefly l will move toward the

firefly t as:

W
(n+1)

l
= W

(n)

l
+ β0e

−γ
(

r
(n)

w,tl

)2 (

W
(n)
t −W

(n)

l

)

+ α(n)V, (40)

θθθ
(n+1)

l
= θθθ

(n)

l
+ β0e

−γ
(

r
(n)

θ,tl

)2 (

θθθ
(n)
t − θθθ

(n)

l

)

+ α(n)v, (41)

where r
(n)

w,tl
= ||(W(n)

t −W
(n)

l
|| and r

(n)

θ,tl
= ||(θθθ(n)

t − θθθ
(n)

l
|| are the

Cartesian distances, β0 is the attractiveness at r
(n)

w,tl
= 0 and

r
(n)

θ,tl
= 0, γ presents the variation of of the attractiveness. The

second terms of (40) and (41) capture the attractions while

the third terms of (40) and (41) are randomization comprised

of randomization factor α(n), V ∈ CMt×U and v ∈ CMt×1. The

factor α(n), the elements of V and v are drawn from either an

uniform or a Gaussian distribution.

It can be observed that problem (35) is a special case of the

proposed framework (1) where the objective and constraints

are functions of optimization variables W and θθθ. The proposed

FA for RIS has the same steps as those in Algorithm 1 except

steps 3, 16, 18 and 19 given in Algorithm 5.

Algorithm 5 Modified generalized FA for solving (32)

Input: FA parameters: N, T , λi, ρn, β0; γ; Optimization

data: H, gi, σ
2
i
, ηi, Ito;

Step 3: Evaluate the light intensities of N fireflies as (39);

Step 16: Move firefly i towards firefly j as (40) and (41);

Step 18: Attractiveness varies with distances via e
−γ

(

r
(n)
w, ji

)2

and e
−γ

(

r
(n)

θ, ji

)2

;

Step 19: Evaluate new solutions; update Ii (Wi, θθθi) as (39);

return W⋆, θθθ⋆.

C. Complexity Analysis

Here, we analyze the computational complexities of the AO

and the proposed FA for RIS-aided beamforming problem.

Lemma 5: The complexity of the AO approach is on the

order of:

no (τ1 + τ2) , (42)

where

τ1 = ln
(

ε−1
)√

U(Mt + 1)
[

(M2
t + 1)U + UM2

t (M2
t + Mt)

+M4
t

]

M2
t , (43)

τ2 = ln
(

ε−1
)√

U + 2Nt

[

(N2
t + 1)(U + 2N2

t ) + N4
t

]

N2
t .(44)

Proof: We first give some hints to derive the computa-

tional complexity of obtaining optimal solution to problems

(33) and (34). With the observation that (33) has U LMI

constraints of size 1 and U LMI constraints of size Mt, one

can follow the same steps as in [41, Section V-A] to derive

the complexity of solving (33) as τ1 given in (43).

At a given ε > 0, Θε is called an ε-solution to problem (34)

if Tr (Θε) ≤ min
Θ

Tr (Θ)+ε. The number of decision variables of
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(34) is N2
t . Observing that (34) has U linear-matrix-inequality

(LMI) constraints of size 1 and 2 LMI constraints of size

Nt, one can derive the computational complexity to attain ε-

solution to (34) as the order of τ2 given in (44).

Since the AO approach iteratively solves (33) and (34) in

no iterations, the complexity of AO approach is on the order

of no (τ1 + τ2).

Lemma 6: The computational complexity of Algorithm 5 is

on the order of

T N2
[

M2
t + Nt + N

(

UMt + U(N2
t + MtNt) + Nt

)]

+T N log N + NMtU + NtN + N log N

+N
(

UMt + U(N2
t + MtNt) + Nt

)

. (45)

Proof: The proof is based on the following observa-

tions. The dominant terms of the computational complexity

of Algorithm 5 are at steps 2, 3, 4, 16, 19, and 22. The

complexity of generating N fireflies in step 2 is on the order of

NMtU +NtN. The complexities of evaluating φi(W, θθθ), ϕk(θk),

and
∑U

i=1 wH
i

wi are, respectively, on the order of U(N2
t +MtNt),

Nt, and UMt. Hence, the complexity of calculating the light

density for N fireflies, i.e., steps 3 and 19, is on the order of

N
(

UMt + U(N2
t + MtNt) + Nt

)

. The complexity of ranking N

firefly in steps 4 and 22 is N log N. Finally, the complexity of

moving a firefly in step 16 is on the order of M2
t +Nt. Assuming

a worst case when step 16 is executed in every inner loop of

the algorithm, after some manipulations, one can arrive at (45).

VI. RIS-AidedWireless Power Transfer

A. Problem Formulation

1) Problem Formulation: Consider a similar communica-

tion system in V-A, however, the users are energy harvesting

receivers (EHRs) instead of information decoding receivers.

Using the same notations as in V-A, the power arrived at the i-

th user is:

Ei =

∣

∣

∣

∣

gH
i diag(θθθ)HHH

U
∑

j=1

w j

∣

∣

∣

∣

2

=

U
∑

j=1

wH
j Giθθθ θθθ

HGH
i w j,(46)

where w j is the active energy beamforming vector for the j-th

user. we interested in maximizing a total weighted sum power

received at the EHRs obtained via the following optimization

problem:

max
{wi}, θθθ

U
∑

i=1

U
∑

j=1

αiw
H
j Giθθθ θθθ

HGH
i w j

s. t.

U
∑

j=1

wH
j w j ≤ P, |θk | = 1,∀k,

(47)

where P is the maximum transmit power of the BS and αi ≥ 0

is the weighting factor for the i-th EHR.

2) Successive Convex Approximation: According to [23],

for any fix θθθ, only one common energy beam is sufficient.

Using a successive convex approximation (SCA) technique,

[23] proposed an iterative algorithm to find optimal active

and passive beamforming vectors for problem (47) as follows.

Starting with an initialized value θθθ(0), the optimal active

beamforming vector at the l-th iterations is calculated as

w(l) =
√

Peigmax

(

∑U
i=1 αiGiθθθ

(l−1)θθθ(l−1)HGH
i

)

where eigmax (X) is

the maximum eigenvalue of matrix X. The k-th coefficient of

the RIS’s phase shift vector at the l-th iterations is calculated

as
[

θθθ(l)
]

k
= 1 if µk = 0 and

[

θθθ(l)
]

k
=

µk

|µk | if µk , 0, where

µk =
[

∑U
i=1 αiG

H
i

w(l)w(l)HGiθθθ
(l−1)

]

k
.

B. Proposed Firefly Algorithm

The optimization (47) can be expressed as

min
{W, θθθ}

− f (W, θθθ)

s. t. φ ({W, θθθ}) ≤ 0,

ϕk (θk) = 0,∀k,

(48)

where W =
[

w1,w2, · · · ,wU

]

∈ C
Mt×U , f (W, θθθ) =

∑U
i=1

∑U
j=1 αiw

H
j
Giθθθθθθ

HGH
i

w j, φ (W, θθθ) =
∑U

j=1 wH
j
w j − P, and

ϕk (θk) = |θk | − 1. Adopting the penalty method, (35) can be

written as:
min
{W, θθθ}

− f (W, θθθ) + P(W, θθθ) (49)

where P(W, θθθ) = λmax {0, φ({W, θθθ})}2 +∑Nt

k=1
ρk {ϕk(θk)}2, with

λ > 0 and ρk > 0 are penalty constants.

Let {Wt, θθθt} = {
[

wt
1
,wt

2
, · · · ,wt

U

]

, θθθt} be the firefly t. We

initialize a population of N fireflies {Wt, θθθt}, t ∈ {1, 2, · · · ,N}
and define the light density, i.e., the brightness, of the firefly

t {Wt, θθθt} as:

It (Wt, θθθt) =
1

− f (Wt) + P(Wt, θθθt)
. (50)

It can be observed that problem (48) is a special case of the

proposed framework (1) where the objective and constraints

are functions of optimization variables W and θθθ. Utilizing the

firefly movements define in (40) and (41) in SectionV-B, the

proposed FA for RIS has the same steps as those in Algo-

rithm 1 except steps 3, 16, 18 and 19 given in Algorithm 6.

Algorithm 6 Modified generalized FA for solving (47)

Input: FA parameters: N, T , λ, ρk, β0; γ; Optimization

data: H, gi, αi, P;

Step 3: Evaluate the light intensities of N fireflies as (50);

Step 16: Move firefly i towards firefly j as (40) and (41);

Step 18: Attractiveness varies with distances via e
−γ

(

r
(n)

w, ji

)2

and e
−γ

(

r
(n)
θ, ji

)2

;

Step 19: Evaluate new solutions; update Ii (Wi, θθθi) as (50);

return W⋆, θθθ⋆.

C. Complexity Analysis

Here, we analyze the complexities of the SCA approach

and the proposed FA for the RIS-aided WPT beamforming.

We start by introducing the following lemma.

Lemma 7: The complexity of the SCA approach is on the

order of:

m0

(

UMt (Mt + Nt) + M3
t + Mt log Mt + N3

t + N2
t Mt

)

, (51)

where m0 is the number of iterations of the SCA approach.
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Proof: At each iteration, the complexity of evaluating

αiGiθθθ
(l−1)θθθ(l−1)HGH

i
is on the order of U

(

M2
t + MtNt

)

. The

complexities of finding a maximum eigenvalue of the Mt ×Mt

matrix αiGiθθθ
(l−1)θθθ(l−1)H GH

i
based on the SVD method is on the

order of M3
t +Mt log Mt. Hence, the complexity of finding w(l)

is on the order of UMt(Mt+Nt)+M3
t +Mt log Mt. Furthermore,

the complexity of calculating µk is on the order of N2
t +MtNt.

Therefore, the complexity of finding θθθ(l) is on the order of

Nt

(

N2
t + MtNt

)

. Consequently, m0 iterations of evaluating w(l)

and θθθ(l) lead to (51).

Lemma 8: The complexity of the Algorithm 6 is on the

order of:

T N2
[

M2
t + Nt + N

(

UMt + U(N2
t + MtNt) + Nt

)]

+T N log N + NMtU + NtN + N log N

+N
(

UMt + U(N2
t + MtNt) + Nt

)

. (52)

Proof: Noticing that the complexities of evaluating

φ(W, θθθ), ϕk(θk), and f (W, θθθ) are, respectively, on the order

of UMt, Nt, and U
(

Nt Mt + N2
t

)

. One can easily show that

the complexity of the Algorithm 6 is the same as that of the

Algorithm 5.

VII. Numerical Results

In this section, we perform simulations to evaluate the per-

formances of the proposed FA approaches, i.e., FA approaches

for transmit beamforming, cognitive cognitive beamforming,

RIS-aided transmit beamforming, and RIS-aided WPT, and

compare them with their iterative, SDP, and SCA counterparts.

CVX package [40] is utilized to obtain the solution for

the cognitive SPD approach, i.e., problem (21), and the AO

approach for the RIS-aided transmit beamforming. In the AO

approach, two SDPs (33) and (34) are alternatively solved

in n0 = 10 iterations. The setup parameters for FAs are as

follows. The variation of the attractiveness γ is set at 1. The

penalty constants are set equal but they dynamically vary

as λi = ρk = n2, ∀i, k where n is the generation index in

Algorithm 1. The attractiveness at zero distance is β0 = 1.

Finally, the initial randomization factor is α(0) = 0.9 and its

value at the n-th generation is α(n) = α(0)0.9n.

A. Evaluation on Transmit Beamforming

We simulate a scenario of two users, i.e., U = 2, randomly

distributed within 2 km from their BS. The array antenna

gain at the BS is 15dBi. The noise power spectral density,

noise figure at each user and the subcarrier bandwidth are,

respectively, −174 dBm/Hz, 5 dB and 15 kHz wide. The path

loss model is 35 + 34.5 log 10(l), where l is in kilometers. A

log-normal shadowing with a standard deviation of 8 dB is

assumed. Furthermore, a complex Gaussian distribution is set

with the variance of 1/2 on each of its real and imaginary

components for the downlink channel fading coefficients.

Monte Carlo simulations have been carried out over 1000

channel realizations.

Fig. 1 illustrates the total transmit power of the proposed

FA approach and its iterative counterpart versus the required

SINR level with different numbers of BS’s antennas. The
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Fig. 1: The total BS’s transmit power versus the required SINR
level with different numbers of BS’s antennas: (a) 4 antennas; (b)
6 antennas; (c) 8 antennas. The firefly population is N = 30. The
number of maximum generations T = 30.

results on Fig. 1 clearly show that the proposed FA approach

outperforms the iterative method in obtaining lower required

transmit power, i.e., around 3 to 4 dB lower, for all simulated

setups. The results in Fig. 1 confirm the ability of the proposed

FA in handling highly nonlinear and multimodal optimization

problems. This power saving gain, however, comes at the price

of a higher complexity. Using the parameter setup for Fig. 1 in

Lemmas 1 and 2, i.e., U = 2, T = N = 30, Mt = 4, 6, 8, one

can find the complexities of the Iterative and FA approaches

are, respectively, in the order of O
(

104
)

and O
(

108
)

. When the

number of antennas elements are large, letting T = N = Mt,

it can be shown that the dominant terms of the complexities

of the Iterative and FA approach are in the order of O
(

M4
t

)

and O
(

M6
t

)

, respectively. The trade off between the power

saving gain and computational complexity of the proposed FA

approach in comparison with the Iterative method should be

considered by the network designer/operator.

Fig. 2 shows the total BS’s transmit power of the Iterative

and proposed FA versus the number of iteration/generations

with different numbers of BS’s antennas. The results indi-

cate that the Iterative approach converges after just 5 iter-

ations/generations while the proposed FA requires about 20

generations/iterations to level off.

Fig. 3 shows the total BS’s transmit power of the proposed

FA approach versus the number of population N with different

BS’s antenna elements. It can be seen that the observed curves

converge after N = 30. Our simulations indicate that the

proposed FA approach performs well with at least 30 fireflies

to solve (12) under the investigated SINR range.

B. Evaluations on Cognitive Transmit Beamforming

We first reproduce the result of the experiment described in

Example 1 of [3] to compare the proposed FA approach with

the SDP approach. In that experiment, three SUs are located

at −5◦, 10◦, 25◦, and two PUs are located at 30◦ and 50◦,
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Fig. 2: The total BS’s transmit power versus the generations/iteration
with different numbers of BS’s antennas: (a) 4 antennas; (b) 6
antennas; (c) 8 antennas. The firefly population is N = 30. The
required SINR level at each user is 10 dB.
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Fig. 3: The total BS’s transmit power versus the number of population
with different numbers of BS’s antennas: (a) 4 antennas; (b) 6
antennas; (c) 8 antennas. The number of generation is T = 30. The
required SINR level at each user is 10 dB.

relative to the BS’s array broadside. The tolerable interference

level two PUs are Ito,1 = 0.001 and Ito,2 = 0.0001. The noise

variance is set to 0.1 while the required SINR values are set

to 1 for the SUs.

The channel covariance matrices from the secondary BS

to SU t , i.e., Rs,t = R
(

ζs,t, δa

)

, and to PU k, i.e., Rp,k =

R
(

ζp,k, δa

)

, are the function of the angle of departure, i.e., ζs,t

or ζp,k, and the standard deviation of the angular spread, i.e.,

δa. The (m, n)th entry of R (ζ, δa) is, [20]:

e
j2π∆

ψ [(n−m)sinζ]e
−2

[

π∆δa
ψ
{(n−m)cosζ}

]2

, (53)

where ψ is the carrier wavelength, σa = 2◦, and the antenna

spacing at the BS is set as ∆ = ψ/2.

Fig. 4 (a) illustrates the radiation patterns at the BS of the

SDP approach as described in (21), which is the reproduction
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Fig. 4: The radiation pattern of the BS with 8 antennas: (a) The
reproduction of [3, Fig. 3]; (b) The proposed FA approach with the
number of population N = 100.

of Fig. 3 in [3], while Fig. 4 (b) shows the radiation patterns

at the BS of the FA approach proposed in Algorithm 4.

The results clearly indicate that the FA obtains the same

radiation pattern as the SDP approach does. Both approaches

are able to form nulls to the locations/angles where the PUs are

located. In other words, the proposed FA can obtain the same

optimal solution as the IPM does for the SDP counterpart. This

confirms the ability of the proposed FA in handling highly

nonlinear and multimodal optimization problems.

With the setup in Fig. 4, i.e., Mt = 8, U = 3, K = 2, N = 100

and, T = 80, one can easily verify from Lemmas 3 and 4

that the proposed FA approach requires higher computational

complexity than the SDP approach does when it returns rank-

one optimal solution. When the number of antennas is large,

one can show that the dominant term of (28) is M
6 1

2

t . On the

other hand, assuming T = N = Mt, the dominant term of

(29) is M6
t . Hence, the complexity of an IPM to solve (21)

is slightly higher than the complexity of the proposed FA in

Algorithm 4, i.e., O
(

M
6 1

2

t

)

in comparison with O
(

M6
t

)

.

Fig. 5 shows the transmit power of the proposed FA ap-

proach versus the number of population with different numbers

of transmit antennas. The results indicate that the proposed

FA converges with all number of antenna setups as all the

observed curves level off after the maximum size of population

of N = 50. However, the higher of the antenna elements is, the

larger the size of the population is required for a converged

transmit power. For example, with M = 8, 16, and 32, the

proposed FA approach, respectively, obtains a stable transmit

power at N = 30, 40 and 50. This is due to the fact that

the size of the system increases with a higher number of

antenna elements, i.e., a higher degree of freedom. As a result,

it requires a larger size of the population to provide a sufficient

diversification for the exploration of the FA. The results also

show that the required transmit power decreases when the

number of antennas increase as the result of having higher

degree of freedom.



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, DOI: 10.1109/TWC.2023.3328713 12

10 20 30 40 50 60 70 80 90 100

Number of population N

-20

-15

-10

-5

0

5

10
T

ra
n

s
m

it
 p

o
w

e
r 

[d
B

]

M=8

M=16

M=32

Fig. 5: The total transmit power of the proposed FA approach versus
the number of population with different numbers of transmit antennas.
The number of maximum generation T = 150.
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Fig. 6: The total transmit power of the proposed FA approach
versus the number of maximum generations with different numbers
of transmit antennas. The number of population N = 70.

Fig. 6 depicts the transmit power of the proposed FA

approach versus the number of maximum generations with

different numbers of transmit antennas. A similar trend as in

Fig. 5 is also observed in this figure. The transmit power

attained by the proposed FA approach converges with all

numbers of antenna setups. The higher number of antennas

is, the higher number of generations is needed as a result of

higher exploitation required for the increase of the problem

dimension. For instance, the transmit power levels off at

around 90, 100, and 120 generations, respectively, for M = 8,

16, and 32.

C. Evaluations on RIS-aided Transmit Beamforming

We simulate a RIS-aided communication system which

consists of one BS, one RIS, and two users, i.e., U = 2.

The distance between the BS and the RIS is 10 m. Users

0 4 8 12 16 20

Required SINR level [dB]

0

10

20

30

40

T
ra

n
s
m

it
 p

o
w

e
r 

[d
B

m
]

Mt=3, Nt=30

FA

AO

0 4 8 12 16 20

Required SINR level [dB]

0

10

20

30

T
ra

n
s
m

it
 p

o
w

e
r 

[d
B

m
]

Mt=8, Nt=30

FA

AO

0 4 8 12 16 20

Required SINR level [dB]

0

10

20

30

40

T
ra

n
s
m

it
 p

o
w

e
r 

[d
B

m
]

Mt=3, Nt=20

FA

AO

0 4 8 12 16 20

Required SINR level [dB]

0

10

20

30

T
ra

n
s
m

it
 p

o
w

e
r 

[d
B

m
]

Mt=8, Nt=20

FA

AO

Fig. 7: The total BS’s transmit power versus the required SINR
level with different numbers of BS’s antennas and RIS’s reflective
elements. The firefly population is N = 120. The number of maximum
generations T = 50.

are randomly distributed with a distance of 6 m from the RIS.

The pathloss exponents of both wireless links from the BS

to the RIS and from the RIS to users are set to be 2.2 with

the signal attenuation at the reference distance of 1 m being

30 dB [23], i.e., the large-scale fading coefficient is modeled

as −30 − 22 log10(d) dB where d is the distance between the

BS to RIS or RIS to a user. The noise variance at each user

is −124 dBm. Monte Carlo simulations are carried over 100

channel realizations. Each channel realization is associated

with a random user location and a random fading coefficient.

Fig. 7 illustrates the total BS’s transmit power versus the

required SINR level with different numbers of BS’s antennas

and RIS’s reflective elements. The results indicate that the

proposed FA prevails the AO approach in terms of lower power

consumption. The superior performance of the FA approach

over its AO counterpart can be explained as follows. As the

AO approach approximates non-convex problem (32) by two

convex sub-problems (33) and (34), the solution obtained by

the AO approach is not necessary the global optimal solution

of the original problem (32). On the other hand, the proposed

FA possessing both exploitation and exploration abilities can

effectively handle such non-convex problem and obtain much

better solution than its counterpart. The results shown on

Fig. 7 verify the ability of the proposed FA in handling highly

nonlinear and multimodal optimization problems.

It can be observed from Fig. 7 that at a given number of

RIS’s reflective elements, the performance gap between the

proposed FA and the AO decreases when the number of BS’s

antennas increases. For example, when Nt = 20, the gaps are,

respectively, around 7.5 dB and 3.5 dB with Mt = 3 and

Mt = 8. Fortunately, at a given number of BS’s antennas, the

performance gap improves when the number of RIS’s elements

increases. For instance, with Mt = 8, the performance gap

increases from around 3.5 dB to 4.5 dB when Nt increases

from 20 to 30. Interestingly, the FA performs especially well

with a relatively high ratio of Nt/Mt, i.e., the performance gap
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Fig. 8: The total BS’s transmit power versus the number of maximum
generations with different numbers of BS’s antennas and RIS’s
reflective elements. The firefly population is N = 120. The required
SINR level is 10 dB.

is around 9.5 dB with the ration of 30/3 while it is around

3.5 with the ratio of 20/8. The results can be explained as

follows. A higher number of RIS’s reflective elements gives

more degree of freedom for the FA to perform. Moreover, the

channel between the RIS and these users plays a higher role

than that between the BS and the RIS does as the former is

closer to these users. Last but not least, the performance gaps

slightly decrease at relatively high SINR level especially when

the Nt/Mt ratio is relatively low. For example with the ratio of

20/8, the performance gap is around 1.8 dB at SINR of 20 dB

compared with around 3.5 dB at the other SINR levels, i.e.,

see the bottom-right corner figure of Fig. 7. This is because

of a fact that the FA has reached its limit of exploration with

N = 120 fireflies, at a stricter constraint condition.

We now compare the computational complexities of the AO

and FA approaches for the experiments presented on Fig. 7.

As Nt is larger than Mt, from Lemma 5 one can show that

the dominant term of the complexity of the AO approach

is n0N
6 1

2

t . Similarly, from Lemma 6 one can conclude that

the dominant term of the complexity of the FA approach is

T N3N2
t . Substituting for Nt = 30, n0 = 10, N = 120 and

T = 50, we can arrive at the fact that the computational

complexities of the AO and FA approaches are on the same

order of O
(

1010
)

. When the numbers of antennas Mt and Nt

are large, letting Nt = n0 = Mt in (42), one can show that the

dominant term of the complexity to attain ε-solution to (32)

is M
7 1

2

t . On the other hand, one can derive the dominant term

of (45) as M6
t when assuming T = N = Nt = Mt. Hence,

the complexity of an IPM to solve (32) is higher than the

complexity of the proposed FA in Algorithm 5, i.e., O
(

M
7 1

2

t

)

in comparison with O
(

M6
t

)

.

In Fig. 8, the total BS’s transmit power is plotted versus

the maximum of generation T used in the FA in Algorithm 5

with different BS’s antennas and RIS’s reflective elements. The

results indicate that the proposed FA requires around 50 to 60

20 40 60 80 100 120 140 160 180 200

Number of Population (N)

20

22

24

26

28

30

32

34

T
ra

n
s
m

it
 p

o
w

e
r 

[d
B

m
]

Mt:8, Nt:30

Mt:8, Nt:20

Mt:3, Nt:30

Mt:3, Nt:20

Fig. 9: The total transmit power versus the number of populations
with different numbers of BS’s antennas and RIS’s reflective ele-
ments. The number of maximum generations T = 50. The required
SINR level is 20 dB.

generations to attain the optimal solution for all setups.

Fig. 9 illustrates the total transmit power versus the number

of population N with different BS’s antennas and RIS’s

elements. The results show that increasing the size of the

firefly population enables the FA to obtain better solution.

For example, the total transmit power decreases around 7

dB, 5.4 dB, 5 dB, and 3 dB, respectively, for the setups of

(Mt = 8,Nt = 20), (Mt = 3,Nt = 30), (Mt = 8,Nt = 20),

and (Mt = 3,Nt = 20) when the firefly population increases

from 20 to 120. The performance gap at the 20 dB SINR level

observed in Fig. 7 for (Mt = 8,Nt = 20) can be improved 1 dB

further when the population size is enlarged from 120 to 200.

These total-transmit-power curves converge after N = 180 as

the reduction in the total transmit power is negligible when

the population increases to N = 200 for all setups.

D. Evaluations on RIS-aided WPT

Here, we use the same setup for the RIS-aided commu-

nication system as considered in the previous section, i.e.,

Section VII-C. However, the EHRs are randomly placed with

the distance of 2 m from the RIS. We run m0 = 10 iterations

to obtain the solution for the SCA approach.

Fig. 10 shows the sum-power received at EHRs versus

BS’s maximum transmit power with different numbers of BS’s

antennas and RIS’s reflective elements. It is clear from the

figure that the proposed FA approach outperforms the SCA

approach in [23] in offering higher sum-power at EHRs. The

performance gaps are, respectively, around 18 dB, 17 dB,

15 dB, and 14 dB for the setups of (Mt = 3,Nt = 30),

(Mt = 8,Nt = 30), (Mt = 3,Nt = 20), and (Mt = 8,Nt = 20).

The superior performance of the proposed FA over the SCA

is due to the advantage of having exploitation and exploration

abilities to handle non-convex optimization problems. On the

other hand, the SCA employs the first-oder Taylor expansion

to approximate the optimization problem resulting in a lower-

bounded solution. Furthermore, the FA approach allocates
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Fig. 10: Sum-power received at EHRs versus BS’s maximum transmit
power with different numbers of BS’s antennas and RIS’s reflective
elements. The firefly population is N = 100. The number of maximum
generations T = 50.

one active beamforming vector for each EHR whereas the

SCA only uses one active beamforming vector for all EHRs.

The results shown on Fig. 10 again verify the ability of the

proposed FA in handling highly nonlinear and multimodal

optimization problems.

Comparing Figs. 7 and 10, it can be observed that the

FA behaves in a similar manner for both power minimization

problem (35) and sum-power maximization problem (48). For

instance, at the same value of Mt, the higher the value of

Nt, the larger the performance gap is. At the same value of

Nt, the lower the value of Mt, the bigger the performance

gap is. The results also recommend to maintain a relatively

high ratio of Nt/Mt to attain the best performance of the FA.

Slight declines in the performance gaps are also observed at

the stricter constraint of BS’s transmit power, i.e., 40 dBm, as

the FA’s population reach their limit of exploration.

We proceed by comparing the computational complexities

of the SCA and FA approaches for the experiments shown on

Fig. 10. As Nt is larger than Mt, from Lemmas 7 and 8, it is

clear that the dominant terms of the complexities of the SCA

and the FA approaches are, respectively, m0N3
t and T N3N2

t .

Substituting for Nt = 30, m0 = 10, N = 100 and T = 50, we

can arrive at the fact that the computational complexities of

the SCA and FA approaches are, respectively, on the orders of

O
(

105
)

and O
(

1010
)

. When the numbers of antennas Mt and

Nt are large, letting Nt = m0 = Mt in (51), one can show that

the dominant term of the complexity of the SCA is M4
t . On the

other hand, the dominant term of (52) is M6
t when assuming

T = N = Nt = Mt. Hence, the complexity of the SCA approach

is lower than that of the proposed FA in Algorithm 6, i.e.,

O
(

M4
t

)

in comparison with O
(

M6
t

)

.

Sum-power received at EHRs are shown versus the number

of maximum generations with different numbers of BS’s

antennas and RIS’s reflective elements in Fig. 11. The figure

reveals that the proposed FA converges after around 50 to 60

generations for all observed setups.
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Fig. 11: Sum-power received at EHRs versus the number of maximum
generations with different numbers of BS’s antennas and RIS’s
reflective elements. The firefly population is N = 100. The required
SINR level is 10 dB.
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Fig. 12: Sum-power received at EHRs versus the number of popu-
lations with different numbers of BS’s antennas and RIS’s reflective
elements. The number of maximum generations T = 50. The required
SINR level is 20 dB.

The effect of the firefly population on the sum-power

received at EHRs is illustrated on Fig. 12. The figure shows

that all the curves converge after the population size of 80.

However the difference between the EHRs’ sum-power offered

by 80 fireflies and that offered by 40 fireflies is no more

than 0.7 dB for all observed setups. This indicates that the

complexity of the proposed FA for the RIS-aided WPT sum-

power maximization problem in (48) can be reduced with an

acceptable tradeoff in the optimality.

VIII. Conclusion

We have proposed a generalized FA to find optimal solution

for an optimization framework containing objective function

and constraints as multivariate functions of independent opti-

mization variables. We have adopted the proposed generalized
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FA to solve four representative examples of classic trans-

mit beamforming, cognitive beamforming, RIS-aided transmit

beamforming, and RIS-aided wireless power transfer. Our

analyzes have indicated that the computational complexities

of proposed FA approaches are less than those of their IPM

counterparts, i.e., the SDP and the AO approaches, yet higher

than that of the iterative and SCA approaches in large-antenna

scenarios. Simulation results have revealed the fact that the

proposed FA attains the same optimal solution as the IMP

does for the under-investigated cognitive beamforming prob-

lem. Interestingly, the proposed FA outperforms the iterative,

AO, and SCA approaches for the under-investigated classic

transmit beamforming, RIS-aided transmit beamforming, and

wireless power transfer problems, respectively. This confirms

the effectiveness of the proposed generalized FA in handling

multivariate and non-convex problems.
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