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Abstract—Traditional physical layer secure beamforming is
achieved via precoding before signal transmission using channel
state information (CSI). However, imperfect CSI will compromise
the performance with imperfect beamforming and potential infor-
mation leakage. In addition, multiple RF chains and antennas are
needed to support the narrow beam generation, which compli-
cates hardware implementation and is not suitable for resource-
constrained Internet-of-Things (IoT) devices. Moreover, with the
advancement of hardware and artificial intelligence (AI), low-
cost and intelligent eavesdropping to wireless communications is
becoming increasingly detrimental. In this paper, we propose a
multi-carrier based multi-band waveform-defined security (WDS)
framework, independent from CSI and RF chains, to defend
against AI eavesdropping. Ideally, the continuous variations of
sub-band structures lead to an infinite number of spectral fea-
tures, which can potentially prevent brute-force eavesdropping.
Sub-band spectral pattern information is efficiently constructed
at legitimate users via a proposed chaotic sequence generator.
A novel security metric, termed signal classification accuracy
(SCA), is used to evaluate the security robustness under AI
eavesdropping. Communication error probability and complexity
are also investigated to show the reliability and practical capabil-
ity of the proposed framework. Finally, compared to traditional
secure beamforming techniques, the proposed multi-band WDS
framework reduces power consumption by up to six times.

Index Terms—Waveform, secure communication, power effi-
ciency, signal classification, deep learning, non-orthogonal, phys-
ical layer security, Internet of things.

I. INTRODUCTION

C
OMMUNICATION security is an increasingly impor-

tant research topic with the commercialization of 5G

and the rapid development of its beyond. In typical radio

frequency (RF) based communications, due to the broadcast
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nature of wireless channels, legitimate user communications

are vulnerable to eavesdropping. In traditional eavesdropping

scenarios, physical layer secure beamforming [1], [2], [3] is a

commonly used physical layer security (PLS) technique, which

can prevent eavesdroppers from intercepting confidential data

via optimizing spatial signal beams according to channel

conditions. However, the secure beamforming techniques are

showing limitations [4], [5], [6]. Firstly, confidential data is

vulnerable in the presence of multi-antenna eavesdroppers or

distributed eavesdroppers and extra processing complexity is

required to mitigate the challenges [7], [8]. Experiments in

[9] even revealed that an eavesdropper can capture confiden-

tial data from directional millimeter waves via using small-

scale reflection objects. Moreover, existing security techniques

require additional hardware complexity in utilizing multiple

antennas and multiple RF chains, which are energy inefficient

and against net zero sustainable development objectives [10].

Therefore, the high energy consumption from extra hardware

utilization prevents the use of secure beamforming in low-

cost Internet of things (IoT) applications [11], [12], [13], [14].

More importantly, traditional secure beamforming techniques

require the knowledge of channel state information (CSI).

However, CSI could be inaccurate [15] due to pilot spoofing

attacks, pilot contamination, and pilot jamming. Therefore,

extra processing complexity is required to mitigate the chal-

lenges [16], [17]. However, the acquisition of CSI is becoming

more costly [18] especially for resource and power limited IoT

applications.

Due to the advancement of artificial intelligence (AI), a

passive eavesdropper could become an active attacker result-

ing in AI based threats to communication security. As an

attacker, adversarial machine learning [19], [20], [21] can

intelligently eavesdrop and further manipulate legitimate user

signal characteristics over the air, which could cause signal

processing failure at a legitimate user. The adversarial attack

challenges end-to-end autoencoder deep learning systems in

[22], orthogonal frequency division multiplexing (OFDM)

channel estimation and signal detection in [23], multiple input

multiple output (MIMO) channel estimation in [24], deep

learning MIMO power allocation in [25] and cooperative

spectrum sensing in [26]. A more detrimental type of attack is

termed generative adversarial network (GAN) [27], which can

simultaneously learn legitimate user signal patterns and chan-

nel/hardware impairment models to starve scarce over-the-air

resources [28] via spoofing attacks. Existing countermeasures

http://arxiv.org/abs/2402.00535v1
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for adversarial machine learning attacks is either sending fake

data and labels to fool adversaries [29] or proactively applying

adversarial attacks to intruders to prevent signal detections

[30]. However, the above methods would reduce spectral

efficiency and increase system complexity.

The motivation of this work is to prevent AI based eaves-

dropping and subsequent AI attacks, especially for resource-

constrained secure communication scenarios, from a waveform

design perspective. Typical 4G/5G systems employ the OFDM

waveform [31], [32], which is simple for signal generation

and detection but at the cost of security vulnerability. Further

investigations on waveform security lead to the study of new

waveform design. There are some existing research works

on designing waveforms in physical layer security. Masked-

OFDM [33] combines two OFDM signals with overlapping

to produce a composite non-orthogonal signal and therefore

complicates eavesdropping signal detections. However, this

approach also results in high complexity at legitimate user side

signal detection. Work in [34] employs variable time interval

patterns to complicate eavesdropping. However, with the ad-

vancement of AI, eavesdroppers could easily identify different

patterns using intelligent algorithms. The recent work in [35]

proposed a waveform-defined security (WDS) framework, but

the framework is still vulnerable to AI based eavesdropping.

This work focuses on optimizing WDS, which is the initial

waveform candidate proposed to defend against AI based

eavesdropping. To enhance the traditional WDS scheme’s

robustness to AI eavesdropping, this work proposes an adap-

tive multi-band WDS framework aiming to further improve

communication security. Multi-band waveform architectures

can separate a single-band signal into multiple sub-bands. In

this case, more spectral ambiguity will be introduced since

each sub-band can have independent and unique spectral fea-

tures. The enhanced spectral ambiguity will prevent AI based

eavesdropping and therefore avoid adversarial attacks. It is

noted that this work aims for single user scenarios where a user

occupies all sub-bands. The use of multi-band architectures

is to simplify signal detection and enhance ambiguity rather

than supporting multiple users using a multiple access scheme.

The fundamental principle behind WDS is the utilization

of non-orthogonal waveform spectrally efficient frequency

division multiplexing (SEFDM) [36], which introduces feature

ambiguity via intentionally tuning sub-carrier packing patterns.

As indicated by [37], [38], increased number of antennas or

RF chains are the main energy consumption source. Therefore,

the proposed multi-band WDS framework, although requiring

extra signal processing, can prevent AI based interception

for resource-constrained IoT scenarios while available PLS

techniques are too costly to implement.

The main contributions of this work are as follows:

• A multi-band WDS secure communication framework

is proposed for over-the-air PLS scenarios aiming to

defend against AI eavesdropping. Typically, coding can

encrypt signals but it cannot prevent AI eavesdropping

and the variations of coding rates will complicate sig-

nal frame design and hardware implementation. Unlike

traditional beamforming PLS approaches that require

multiple antennas, the proposed framework is able to

enhance PLS security for single-antenna transceivers,

which is particular suitable to resource-constrained IoT

applications. Sub-carriers are packed non-orthogonally

and the packing schemes are adaptively adjustable in each

sub-band, thus significantly complicating eavesdropping

signal detection. Ideally, the continuous variations of

sub-band spectral compression features further enhance

the PLS by introducing an infinite number of signal

patterns, which prevents accurate signal identifications at

the eavesdropper and is robust to exhaustive brute-force

eavesdropping. Therefore, the proposed multi-band WDS

has further enhanced security than single-band WDS by

jointly complicating eavesdropping signal detection and

preventing accurate signal pattern identification.

• AI security metric, termed signal classification accuracy

(SCA), is proposed to replace the traditional non-AI

security metric signal-to-noise ratio (SNR). The eaves-

dropping classification accuracy approximation model is

derived for the adaptive multi-band WDS framework.

It shows a perfect match between the analytical model

and actual results. It also reveals that the classification

accuracy will further degrade by increasing the number

of signal patterns and sub-bands.

• A paired-key generator is designed to ensure fast and

reliable pattern information generation at both legitimate

users. Prior to the key generation, the same bifurca-

tion parameter, initial state, chaotic mapping and pat-

tern threshold should be pre-shared and stored at both

legitimate users. Using identical parameter initializations,

two identical pattern generators will continuously output

identical chaotic sequences, which will be used as pattern

keys to produce a correlation matrix. The key generation

scheme is practical since only four parameters are needed

and stored in memory in advance.

• Lower implementation complexity is achieved by the

multi-band waveform security framework such that

the framework is suitable for low-cost and resource-

constrained communication scenarios where RF chains,

antennas and carrier frequency are limited. This work also

reveals that the waveform security framework can reduce

power consumption by up to six times compared to

traditional secure beamforming techniques indicating the

suitability of the framework in net-zero communications.

Notations: Unless otherwise specified, matrices are denoted

by bold uppercase letters (i.e., F), vectors are represented by

bold lowercase letters (i.e., x, s), and scalars are denoted by

normal font (i.e., ρ). Subscripts indicate the location of the

entry in the matrices or vectors (i.e., ci,j and sn are the (i, j)-
th and the n-th element in C and s, respectively)

II. THE PRINCIPLE OF WDS FRAMEWORK

The principle of the waveform-defined security communi-

cation framework is demonstrated in Fig. 1. Traditional PLS

techniques aim to weaken the wiretap link while enhancing

the legitimate link using beamforming. However, they require

channel state information at the transmitter (CSIT) from both

eavesdroppers and legitimate users, which are commonly
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Fig. 1. The waveform based secure communication model for legiti-
mate user and eavesdropper.

unavailable in most cases. The proposed WDS framework

avoids CSIT and therefore simplifies the entire system design.

Unlike traditional multi-antenna based beamforming defence

techniques, a WDS communication system will employ an

omni-directional communication format using a single an-

tenna. In this case, the WDS framework saves antennas and

RF chains leading to reduced hardware complexity. It is noted

that the WDS framework is also applicable in multi-antenna

systems, in which it can enhance the over-the-air encryption

of beamforming. The eavesdropper is assumed to be passive

in this work, therefore it will firstly learn to identify signal

patterns and then detect signals. In this case, the aim of WDS

is to design signal patterns that will prevent accurate signal

classification and complicate signal detection at eavesdroppers.

A. Signal Pattern Principle

The traditional OFDM is a multi-carrier signal with sub-

carrier spacing of ∆f = 1/T where T is the time duration of

one OFDM symbol. The principle of SEFDM is to pack sub-

carriers closer in a non-orthogonal format while maintaining

the bandwidth for each sub-carrier. Therefore, the sub-carrier

spacing becomes ∆f = α/T where α <1 is the bandwidth

compression factor (BCF), which determines the bandwidth

compression ratio. The spectral bandwidth compression prin-

ciple for SEFDM is illustrated in Fig. 2 (reused from [35])

where the spectral efficiency improvement of SEFDM over

OFDM is given by

η = (
1

α
− 1)× 100. (1)

The mathematical expression of an SEFDM signal is ob-

tained by adding α in a typical OFDM signal as

xk =
1√
Q

N−1
∑

n=0

sn exp

(

j2πnkα

Q

)

, (2)

where 1√
Q

is the power scaling factor, Q = ρN is the number

of time samples where ρ is an oversampling factor and N is

the number of sub-carriers. xk is the kth time sample with the

0

0.5

1

N
o

rm
a

liz
e

d
 M

a
g

n
it
u

d
e

-5 -4 -3 -2 -1 0 1 2 3 4 5

Normalized Frequency

0

0.5

1

N
o

rm
a

liz
e

d
 M

a
g

n
it
u

d
e

Locations of

adjacent

subcarriers

Locations of

adjacent

subcarriers

Locations of

adjacent

subcarriers

Locations of

adjacent

subcarriers

inter-carrier

interference

(b)

(a)

Fig. 2. Principle of non-orthogonal SEFDM signal waveform. (a)
OFDM sub-carrier packing. (b) SEFDM sub-carrier packing.

Fig. 3. Signal generation block diagram. (a) OFDM. (b) SEFDM.

index k = 0, 1, ..., Q− 1. sn is the nth single-carrier symbol

modulated on the nth sub-carrier.

Commonly, a signal requires protection guard bands on both

sides. Therefore, in Fig. 3, the original input symbol vector

[s0, s1, ..., sN−1] is expanded to a Q-dimensional vector as

[ς0, ς1, ..., ςQ−1] = [ 0, ..., 0
︸ ︷︷ ︸

(Q−N)/2

, s0, s1, ..., sN−1, 0, ..., 0
︸ ︷︷ ︸

(Q−N)/2

]. (3)

Then a Q-point inverse fast Fourier transform (IFFT) is

applied in Fig. 3(a) to modulate the vector [ς0, ς1, ..., ςQ−1]
leading to a Q-point OFDM symbol. For SEFDM signal

generation, equation (2) will be transformed into

xk =
1√
Q

Q−1
∑

n=0

ςn exp

(

j2πnkα

Q

)

. (4)

It is clear that the direct operation of (4) will result in

high computational complexity due to the existence of α. To

remove the effect of α and directly use IFFT for SEFDM

signal generation, the vector [ς0, ς1, ..., ςQ−1] has to be further
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expanded to a longer vector as shown in Fig. 3(b) with the

following operation

[s
′

0, s
′

1, ..., s
′

M−1] = [ 0, ..., 0
︸ ︷︷ ︸

(M−Q)/2

, ς0, ς1, ..., ςQ−1, 0, ..., 0
︸ ︷︷ ︸

(M−Q)/2

], (5)

where a new parameter M = Q/α is defined. M should be

rounded to its closest integer. A vector of (M − Q)/2 zeros

are padded on both sides of ς . Therefore, the original signal

generation expression will be transformed into an M-point

IFFT operation demonstrated in Fig. 3(b) as

x
′

k =
1√
M

M−1
∑

n=0

s
′

n exp

(

j2πnk

M

)

, (6)

where n, k = [0, 1, ...,M − 1]. The output will be truncated

with only Q samples reserved while the rest of the samples

are discarded.

To simplify the expression, a matrix format of the signal

generation in (2) is defined as

x = Fs, (7)

where s is the N-dimensional signal vector, F is the Q ×N
sub-carrier matrix, in which each element is represented by

exp
(
j2πnkα
Q

)

.

After going through a wireless channel denoted by a Q×Q
channel matrix H and additive white Gaussian noise (AWGN)

w, the received signal is expressed as

y = Hx+w. (8)

It is noted that before any further signal processing after

(8), the channel effect of H has to be equalized by multiplying

with the inverse of the channel matrix as

ŷ = H−1Hx+H−1w = x+ z. (9)

By multiplying the signal using the complex conjugate

demodulation matrix F∗ = exp
(

−j2πnkα
Q

)

, the demodulated

signal is expressed

r = F∗x+ F∗z = F∗Fs+ F∗z = Cs+ zF∗ , (10)

where C is the N ×N correlation matrix, which includes the

self-created ICI information as

cm,n =

sinc[πα(m− n)]

sinc[πα(m− n)/Q]
× exp

(
jπα(Q − 1)(m− n)

Q

)

.
(11)

When m = n, all the auto-correlation diagonal elements

cm,n equal one. When m 6=n, all the cross-correlation non-

diagonal elements are not zero indicating the self-created inter

carrier interference (ICI). It is apparent that the ICI term is

related to the value of α, which is the principle for the WDS

communication security.

B. Security Metric

The principle of this work is to design waveform patterns

that can confuse eavesdroppers. Therefore, to evaluate the

robustness, instead of using non-AI security metric SNR, we

use AI security metric SCA to indicate the capability of

eavesdroppers to correctly identify a signal.

SCA =
1

λ

λ∑

ν=1

NC(ν)

NT (ν)
, (12)

where the number of signal classes is defined by λ. The larger

value of λ, the more difficult for an eavesdropper to suc-

cessfully identify a signal pattern. To have solid evaluations,

in each signal class with the index of ν, a total number of

NT symbols are tested. Among NT symbols, NC symbols

can be correctly identified by an eavesdropper. The ratio of

NC and NT indicates classification accuracy for one signal

class. The final accuracy is obtained by averaging the results

from λ signal classes. A small value of SCA indicates a low

classification accuracy at Eve, which leads to the failure of

signal detection and prevents accurate adversarial AI attacks.

C. Signal Classification Principle

Signal classification is to identify different signal formats

associated with the value of α. A perfect signal classification

will determine the accurate demodulation matrix F∗ in (10)

and further determine the characteristics of C. An imperfect

signal classification will mistakenly use a wrong demodulation

matrix as

r̃ = F̃∗x+ F̃∗z = F̃∗Fs+ F̃∗z = C̃s+ z
F̃∗ , (13)

where F̃∗ is the incorrect demodulation sub-carrier matrix

caused by misclassification. Compared to the ideal matrix F∗

in (10), a BCF offset ∆α will exist in the imperfect F̃∗ with the

new expression as F̃∗ = exp
(

−j2πnk(α+∆α)
Q

)

. The mismatch

between F̃∗ and F will cause an imperfect estimate of C̃ as

c̃m,n =

sinc[π(αTm− αRn)]

sinc[π(αTm− αRn)/Q]
× exp

(

jπ(Q− 1)(αTm− αRn)

Q

)

,

(14)

where αT is the BCF at the transmitter and αR = αT +∆α
is the incorrect BCF at the receiver.

The traditional and optimal classification method is maxi-

mum likelihood, which has been investigated for modulation

classification in [39], [40]. The likelihood function, with

perfect knowledge of all parameters except modulation format,

is expressed as

Lf (r|M, σ) =
1

P

N−1
∏

n=0

P−1
∑

p=0

1

2πσ2
exp

(

−|rn −M(i, p)|2
2σ2

)

, (15)

where M represents the modulation class, M(i, p) indicates

the pth constellation symbol in the ith modulation scheme.

There are P constellation points for each modulation. σ2 is

noise variance when AWGN is considered and rn is the nth

single-carrier complex symbol.
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Table I: Hardware Complexity Analysis (uplink channel from

Alice to Bob)

Framework Hardware

Traditional PLS RF Chain(multiple)
(digital beamforming) Antenna(multiple)

Traditional PLS RF Chain(multiple)
(hybrid analog-digital beamforming) Antenna(multiple)

Traditional PLS RF Chain(single)
(analog beamforming) Antenna(multiple)

WDS(Alice): RF Chain(single)
User Antenna(single)

WDS(Bob): RF Chain(single)
Base Station Antenna(single)

WDS(Eve): RF Chain(single/multiple)
Eavesdropper Antenna(single/multiple)
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Fig. 4. Power consumption comparison for full-digital secure beam-
forming, hybrid analog-digital secure beamforming, analog secure
beamforming and WDS frameworks.

The optimal solution is obtained via maximizing the likeli-

hood function (15) by attempting all the potential modulation

candidates as

M̂ = arg max
M(i)∈Θ

Lf (r|M, σ), (16)

where Θ indicates all the potential candidates for the ith

modulation format.

The traditional maximum likelihood method is not realistic

for non-orthogonal signal classification. Therefore, intelligent

classification using artificial intelligence would be a potential

solution. Deep learning based convolutional neural network

(CNN) has been investigated for single-carrier modulation

classification in [41] with competitive accuracy relative to the

maximum likelihood method. The automatic learning CNN

classifier has also been tested for non-orthogonal multi-carrier

signal classification in [42]. Therefore, the CNN model will

be used for eavesdropping signal classification in this work.

D. Power Consumption Comparison

The WDS framework aims for low-cost and resource-

constrained communications where IoT is a matched appli-

cation scenario. Most IoT traffic occurs at uplink channels

where each IoT unit sends information back to base stations.

Therefore, we consider power consumption for uplink channel

communications with the complexity comparison in Table I

where hardware utilization for each scenario is compared. In

the column of ‘Hardware’, detailed hardware utilization is pre-

sented. In the bracket, ‘single’ indicates one such component

is needed while ‘multiple’ indicates several such components

have to be used. There is no specific data associated with Table

I where this table only shows general hardware utilization for

different scenarios. The proposed multi-band WDS framework

utilizes single-RF chain while traditional PLS has to employ

multiple RF chains for digital beamforming, where the tradi-

tional solution consume more power [37], [38].

Based on the studies in [43], [44], the power consumption

for digital beamforming Pbf−d, hybrid analog-digital beam-

forming Pbf−h, analog beamforming Pbf−a and WDS Pwds
could be computed in the following

Pbf−d = Plo +Nrf−f (Pdac + Pmixer + Pf +
Pt

ξ
), (17)

Pbf−h = Plo+Nrf−h(Pdac+Pmixer+Pf )+Nps(Pps+
Pt

ξ
), (18)

Pbf−a = Plo + Pdac + Pmixer + Pf +Nps(Pps +
Pt

ξ
), (19)

Pwds = Plo + Pdac + Pmixer + Pf +
Pt

ξ
, (20)

where Plo, Pdac, Pmixer, Pf , Pt and Pps indicate the power

consumption for the local oscillator, digital-to-analogue con-

verter (DAC), mixer, filter, transmit signal and phase shifter.

Nrf−d is the number of RF chains for digital beamforming,

Nrf−h is the number of RF chains for hybrid beamforming

and Nps is the number of phase shifters. ξ indicates the

efficiency of a power amplifier. Based on [43], [44], we

set Plo=22 mW, Pdac=170 mW, Pmixer=5 mW, Pf=14 mW,

Pt=200 mW, Pps=10 mW, ξ=50%. Based on [45], [46], we set

Nrf−f=6, Nrf−h=2, Nps=6. The power consumption for each

system design is compared in Fig. 4, in which our proposed

WDS framework can reduce power consumption by up to

six times compared to traditional multi-antenna based secure

beamforming techniques.

III. SIGNAL DETECTION

In the framework in Fig. 1, the legitimate user Bob has cor-

rect signal detection because the signal pattern information is

pre-known between Alice and Bob. However, signal detection

at Eve would fail due to signal misclassification.

A. WDS Signal Detection

Once the correlation matrix C is determined via either

paired-key information at Bob or signal classification at Eve,

signal detection has to be operated to recover original signals

from ICI. The optimal signal detection method is maximum

likelihood (ML) while its computational complexity is expo-

nentially increased when the number of sub-carriers increases.

Its simplified version is sphere decoding (SD) [47], which

searches for the optimal solution within a pre-defined space.

The SD search for the optimal estimate s
SD

is defined as

s
SD

= arg min
s∈ON

‖r−Cs‖2 ≤ g, (21)
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where O is the constellation cardinality and ON covers all

possible solutions. g is the pre-defined search radius and

it equals the distance between the demodulated r and the

hard-decision s
ZF

. It is noted that the hard-decision s
ZF

is

computed based on the zero forcing (ZF) criterion using a

rounding function ⌊.⌉ as s
ZF

= ⌊C−1r⌉. Therefore, the search

radius is defined as

g = ‖r−Cs
ZF

‖2 . (22)

The norm calculation in (21) can be re-formatted in (23) by

substituting p = C−1r where p is the soft-decision estimate

of s.

s
SD

= arg min
s∈ON

{(p− s)∗C∗C(p− s)} ≤ g. (23)

The expression can be further simplified using Cholesky

decomposition [48] via chol{C∗C} = L∗L, where L is an

N × N upper triangular matrix. Therefore, (23) can be re-

written as

s
SD

= arg min
s∈ON

‖L(p − s)‖2 ≤ g. (24)

The triangular structure of L can simplify (24) into N steps

with the following expression

g≥(l
N−1,N−1

(p
N−1

− s
N−1

))2 + (l
N−2,N−2

(p
N−2

−
s
N−2

) + l
N−2,N−1

(p
N−1

− s
N−1

))2 + ...,
(25)

where li,j , pi and si are the elements of L, p and s in (24),

respectively. To study each term in (25), the N-dimensional

expression is divided into N independent one-dimensional

terms. The (N − 1)th inequality term is thus represented as

l2
N−1,N−1

(p
N−1 − s

N−1)
2 ≤ g

N−1 = g. (26)

Therefore, the search range for the (N − 1)th dimension is

derived as

⌈−
√
g
N−1

l
N−1,N−1

+ p
N−1

⌉ ≤ s
N−1

≤ ⌊
√
g
N−1

l
N−1,N−1

+ p
N−1

⌋, (27)

where ⌈· ⌉ ⌊· ⌋ denote rounding operations to the nearest larger

and smaller integers, respectively.

Therefore, the left term of (27) indicates a hard lower bound

(H-LB) while the right term indicates a hard upper bound (H-

UB). It is clearly seen that an accurate estimate of s
N−1

is

related to g
N−1

, l
N−1,N−1

and p
N−1

, which are all determined

by the accurate estimate of C.

After the search at the (N − 1)th dimension, the search

radius g
N−2 for the next dimension is updated as

g
N−2

= g
N−1

− l2
N−1,N−1

(p
N−1

− s
N−1

)2. (28)

The search principle in (27) and the radius update in (28)

will be repeated until the last dimension. The final solution

s
SD

is obtained as an N-dimensional vector that meets the

condition in (21). Each element estimation in s
SD

is dependent

on the elements from its previous dimensions. The perfect

knowledge of C plays an important role since an imperfect

estimate of C will give a wrong decision interval in (27) and

might cause no solution at the end. Therefore, the first step

signal classification is crucial to an eavesdropper who aims to

decode signals.

Fig. 5. Spectral illustration for (a) OFDM, (b) SB-SEFDM, (c) MB-
SEFDM, (d) AMB-SEFDM, (e) MAMB-SEFDM. Each impulse in
each sub-figure indicates one sub-carrier and each coloured rectan-
gular block indicates a signal band or a sub-band.

B. Impact of Imperfect Classification

An imperfect signal classification will mislead the estimate

of C, which further gives inaccurate calculation of L in

Cholesky decomposition. Therefore, the element li,j in L

will become li,j + ∆l, where ∆l is the offset caused by

imperfect signal classification. Meanwhile, since the soft-

decision estimation follows p = C−1r, the new estimate

of each element will become pi + ∆p where ∆p is the

offset caused by imperfect signal classification. It should

be noted that signal misclassification will cause inaccurate

ŝ
ZF

= ⌊(C+∆C)−1r⌉ as well. Therefore, the search space

gi in (22) will become gi+∆g where ∆g is the offset caused

by imperfect signal classification.

The above imperfect estimates will jointly cause inaccurate

estimate of s. The lower bound and upper bound in (27) will

be improperly biased to

LB = ⌈−
√
g
N−1 +∆g

l
N−1,N−1 +∆l

+ p
N−1 +∆p⌉. (29)

UB = ⌊
√
g
N−1

+∆g

l
N−1,N−1

+∆l
+ p

N−1
+∆p⌋. (30)

Therefore, the variations of ∆g, ∆l and ∆p, due to imper-

fect signal classification, will cause signal detection failure.

IV. SECURE MULTI-BAND FRAMEWORK

To ensure a joint secure and detectable communication

system, the signal waveform has to be modified. This section

will investigate four WDS signal waveform architectures in

Fig. 5, namely single-band SEFDM (SB-SEFDM), multi-

band SEFDM (MB-SEFDM), adaptive multi-band SEFDM

(AMB-SEFDM) and mixed adaptive multi-band SEFDM

(MAMB-SEFDM).

A. Single-Band

The WDS framework was initially designed for single-band

signals. In this case, sub-carriers are packed consecutively

without empty guard bands. The traditional SB-SEFDM signal
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architecture is presented in Fig. 5(b). To simplify the illus-

tration, each impulse represents a sub-carrier. For a better

demonstration, only a partial number of sub-carriers and sub-

bands are presented. It should be noted that all the designs in

Fig. 5 have the same sub-carrier bandwidth. The only differ-

ence is the sub-carrier spacing. In order to achieve bandwidth

compression, the sub-carrier spacing for SB-SEFDM should

satisfy ∆f2 < ∆f1, where ∆f1 and ∆f2 indicate the sub-

carrier spacing of OFDM and SB-SEFDM, respectively.

According to 4G [49] and 5G [50] standards, a multi-carrier

signal bandwidth is defined by the multiplication of sub-carrier

spacing ∆f and the number of sub-carriers N . Therefore, the

spectral bandwidths for the cases in Fig. 5(a) and Fig. 5(b)

are defined by B
OFDM

= N∆f and B
SB−SEFDM

= αN∆f
respectively.

The single-band SB-SEFDM signal architecture might chal-

lenges signal detection since the sophisticated SD detector

has to be applied resulting in exponentially increased com-

putational complexity especially when the size of a signal is

scaled up. Thus, communication security is ensured such that

eavesdroppers cannot decode signals easily but at the cost of

complicating legitimate user signal recovery as well.

B. Multi-Band

The principle of the multi-band signal architecture, shown

in Fig. 5(c), is to partition the single-band signal into multiple

sub-bands with an empty sub-carrier between two adjacent

sub-bands. The purpose of the protection gap is to mitigate

inter-band interference. In this case, each sub-band signal

can be recovered separately using the SD detector leading to

reduced computational complexity.

The total occupied spectral bandwidth of the multi-band

signal is equivalent to that of a typical single-band signal. Due

to one empty sub-carrier as the protection gap ∆fG = 2∆f3
between two adjacent sub-bands in Fig. 5(c), the sub-carrier

spacing in each sub-band has to be further squeezed leading

to the spacing ∆f3 < ∆f2 < ∆f1. The effective spectral

bandwidth of MB-SEFDM is defined as

B
MB−SEFDM

= β(N +
N

NB

− 1)∆f , (31)

where NB is the number of sub-carriers in each sub-band and

β indicates the sub-band bandwidth compression factor. To

ensure the same occupied spectral bandwidth B
MB−SEFDM

=
B

SB−SEFDM
, the sub-band β is calculated as

β =
αN

N + N
NB

− 1
. (32)

The mathematical expression of the multi-band SEFDM

signal is given by

xk =

1√
Q

N
NB

−1
∑

lB=0

NB−1
∑

i=0

s
i+lBNB

exp

(

j2πkβ(i+ lB(NB + 1))

Q

)

,

(33)

where s
i+lBNB

is the ith single-carrier symbol modulated in

the lB
th sub-band.

To directly use IFFT for the multi-band SEFDM signal

generation, the raw symbol mathematical expression in (33)

has to be updated to

s
′′

m = s
′′

n+⌊ n
NB

⌋ =

{

sn 0 ≤ n < N
0 otherwise

, (34)

where related parameters are defined below






n = i+ lBNB

m = i+ lB(NB + 1) = n+ lB
lB = ⌊ n

NB
⌋

. (35)

Therefore, the original multi-band signal expression in (33)

is converted to a new expression as

xk =
1√
Q

N+ N
NB

−2
∑

m=0

s
′′

m exp

(

j2πmkβ

Q

)

. (36)

Following the same zero padding method in (5), a new input

symbol vector is generated as

s
′′′

m =











0 0≤m < (M −Q
′

)/2

s
′′

m (M −Q
′

)/2≤m < (M +Q
′

)/2

0 (M +Q
′

)/2≤m < M

, (37)

where Q
′

= N + N
NB

− 1, M = Q/β is rounded to its closest

integer. The expression in (36) is therefore adjusted to a new

form as

x
′′

k =
1√
M

M−1
∑

m=0

s
′′′

m exp

(

j2πmk

M

)

, (38)

where m, k = [0, 1, ...,M − 1]. The output is truncated with

only Q samples reserved while the rest of the samples are

discarded.

C. Adaptive Multi-Band

The multi-band signal architecture simplifies signal detec-

tion. However, the challenge of the multi-band signal archi-

tecture is that eavesdroppers can filter and extract each sub-

band and operate signal classification for each one. To enhance

multi-band communication security, an adaptive multi-band

signal architecture is proposed in Fig. 5(d).

Modifying spectral features of a signal would effectively

prevent unauthorized signal feature learning and format identi-

fication. It is observed from Fig. 5(d) that the overall occupied

spectral bandwidth is similar to the traditional MB-SEFDM

but with further reduced bandwidth compression factor leading

to ∆f4 < ∆f3 < ∆f2 < ∆f1. The scheme in Fig. 5(d) would

mislead eavesdroppers to classify an AMB signal of β0 into an

MB signal of β1 due to their similar spectral characteristics.

Meanwhile, the AMB signal architecture in Fig. 5(d) achieves

a higher data rate than the MB signal in Fig. 5(c).

Considering an example comparison including three types

of signals where the bandwidth compression factors for the

signals in each sub-band satisfy β2 < β1 < β0. To make three

signals similar, more sub-carriers will be packed in β1, β2
relative to β0. The sub-carrier packing strategy is

B
sub

= β0NB∆f = β1(NB +∆N1)∆f = β2(NB +∆N2)∆f,
(39)

where B
sub

is the bandwidth for one sub-band, ∆N1 is the

number of additional sub-carriers per sub-band that have to
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be packed for β1 relative to β0 and ∆N2 is the number of

additional sub-carriers per sub-band that have to be packed

for β2 relative to β0. In this case, the spectral bandwidth per

sub-band for the three SEFDM signals would be similar and

can easily cause eavesdropping misclassification.

Due to additional sub-carrier packing, the original multi-

band signal in (33) is modified to a new format as

xk =
1√
Q

N+∆N
NB+∆NB

−1
∑

lB=0

NB+∆NB−1
∑

i=0

s
i+lB(NB+∆NB)

× exp

(

j2πkβ(i + lB(NB +∆NB + 1))

Q

)

,

(40)

where the number of sub-carriers in each sub-band is increased

to NB+∆NB and the total number of sub-carriers is increased

to N +∆N . However, the number of sub-bands maintains the

same with the following relationship

N +∆N

NB +∆NB

=
N

NB

. (41)

Signal generation for the AMB signal in (40) is straightfor-

ward via IFFT following the similar operations from (34) to

(38) except that more data sub-carriers are required by (40).

D. Mixed Adaptive Multi-Band

To enhance further communication security, a mixed adap-

tive multi-band (MAMB) signal waveform design is consid-

ered to flexibly tune BCF in each sub-band, where each sub-

band has different BCF configurations but the overall effective

BCF maintains the same. In Fig. 5(e), each independent sub-

band has different number of sub-carriers, by adjusting sub-

carrier spacing, the spectral bandwidth for each sub-band

and the total occupied spectral bandwidth maintain the same

leading to more confusions to eavesdroppers.

To confuse eavesdroppers, the sub-band BCF can be inten-

tionally tuned with various patterns. Since each sub-band has

a unique BCF, signal generation using a single-IFFT might

be unrealistic. Therefore, multiple IFFTs have to be used

and the number of IFFTs depends on the number of sub-

bands. The composite MAMB signal, including all sub-bands,

is represented as the following

xk =
1√
Q

NB+∆N0−1
∑

i=0

s0i × exp

(

j2πkβ0i

Q

)

+
1√
Q

NB+∆N1−1
∑

i=0

s1i × exp

(

j2πkβ1(i+ ε0))

Q

)

+ ...

+
1√
Q

NB+∆NΘ−1
∑

i=0

sΘi × exp

(

j2πkβΘ(i+ εΘ))

Q

)

,

(42)

where Θ = N/NB − 1 is the maximum number of sub-band

index, s0i indicates the ith symbol in the first sub-band and

sΘi indicates the ith symbol in the Θth sub-band. β0 is the

sub-band BCF in the first sub-band and βΘ is the sub-band

BCF in the Θth sub-band.

Since each sub-band has to be perfectly aligned without

causing any spectral feature difference, each sub-band has to
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Fig. 6. Chaotic sequence illustration for two configurations with the
minor difference in initial state φ0.

uniquely pack extra sub-carriers (i.e. ∆N0,∆N1, ...,∆NΘ)

and has to be adaptively offset in frequency domain (i.e.

ε0, ε1, ..., εΘ). It should be noted that the frequency off-

set for each sub-band alignment can be easily implemented

by adaptively adding zeros to input symbol vectors (i.e.

s0i, s1i, ..., sΘi) similar to the operations in (3) and (5). Then

similar operations will be followed from (34) to (38) before

the direct use of IFFT for signal generation.

V. PATTERN KEY GENERATION

To ensure the communication reliability between legitimate

users, the signal pattern key, has to be known between Alice

and Bob. However, it is impractical to exchange a large

number of pattern information between legitimate users in

each communication session. Therefore, an efficient way to

generate pattern keys at both sides is of great importance.

A paired-key generator is proposed in this work. The idea

is to design a signal pattern generator that will be deployed

at both the transmitter and the receiver. A chaotic dynamic

system [51] can generate a random-like but reproducible

chaotic sequence, which will be a simple solution for the WDS

signal pattern generator. A discrete-time dynamical system is

defined with the following state equation

φk+1 = f(φk), (43)

where 0 < φk < 1 indicates the value at the kth state and

0 < φk+1 < 1 indicates the value at the (k + 1)th state. f(· )
represents a chaotic map, which is used to produce sequence

bits at different states. It is noted that the value of next state

is highly dependent on its previous state. There are various

chaotic maps and the commonly used one is logistic map,

which is defined in [51] as

φk+1 = γ·φk(1 − φk), (44)

where γ is the bifurcation parameter with values 1 < γ < 4
defined by [52]. The value of γ determines the feature of a

generated sequence. With a larger value of γ, the generated

sequence is non-periodic and non-converging. The studies in

[52] have proved that a minor change of the three factors will

produce a completely different sequence.
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Fig. 7. CNN signal classifier architecture.

To show the pattern sequence generation mechanism, we

compare two systems in Fig. 6. The first one is configured with

γ=3.9, initial state φ0=0.85 and the logistic map following

(44). The second system has the same configurations except

that the initial state is slightly increased to φ0=0.86. With

such a minor difference, two systems will produce different

sequences in Fig. 6, which can effectively prevent eavesdrop-

pers from using exhaustive methods to guess the sequence.

The random-like sequence, as shown in Fig. 6, helps to

generate pattern key α. To implement the generation algo-

rithm, a threshold 0 < η < 1 is introduced to decide which

pattern key should be generated. For example, to generate a

pattern key sequence with α=(0.9, 0.85, 0.8) using Fig. 6, a

threshold η=0.75 could be used where only the values beyond

the threshold η is considered. For any values between 0.75 and

0.8, the key is α=0.8; for any values between 0.8 and 0.85,

the key is α=0.85; for any values between 0.85 and 0.9, the

key is α=0.9. In this case, a pattern key sequence including

α=(0.9, 0.85, 0.8), is obtained.

The cooperation of the bifurcation parameter γ, chaotic

map f(· ), initial state φ0 and pattern threshold η will enable

an efficient and secure pattern index generation scheme. An

eavesdropper will not easily obtain an accurate pattern index

sequence since a minor change of each parameter will produce

a completely different sequence.

VI. CLASSIFIER TRAINING AND SYSTEM PERFORMANCE

A. Classifier Training

The trained CNN architecture is presented in Fig. 7 where

seven convolutional layers are stacked for automatic fea-

ture extraction. The dimension of each layer is presented

above each neural network sub-block. Each training symbol

is configured to have 2048 complex time samples. To have a

robust classifier, 1024 training samples is randomly captured

out of the 2048 time samples. Therefore, the input training

symbol size is 2×1024 since a complex symbol has real and

imaginary parts. To avoid overfitting in the neural network

training, a 50% dropout ratio is configured. To have a universal

classifier that can generally identify signals at different noise

conditions, the training signals will go through a wide range

of noise impacts with Es/N0 ranging from -20 dB to 50

dB with a 10 dB increment step. To extract rich features,

the CNN classifier applies 64 feature filters and therefore

the first neural network (NN) sub-block outputs a three-

dimensional 2×1024×64 feature matrix. To reduce the size

of a feature matrix, downsampling functions such as MaxPool

and AveragePool are applied. The full connection layer will

resize the 2×1×64 input feature matrix to a 1×1×λ output

feature vector with λ indicating the number of signal classes.

In the end, the SoftMax layer computes the probability of each

predicted signal class using the SoftMax function as

Pr(ψi) =
eψi

∑λ
j=1 e

ψj

, (45)

where Ψ = (ψ1, ψ2, ..., ψλ) ∈ R
λ indicates the input feature

vector to the SoftMax function and it includes λ real numbers

with the element index i = 1, 2, ..., λ. The computation in (45)

ensures each output from the SoftMax is within the interval

[0, 1] and the sum of each output equals one.

To find a classifier that works well for all the signal classes,

cross entropy is computed as an indicator for the total loss as

Loss = −
λ∑

i=1

PTr (ψi)· ln(Pr(ψi)), (46)

where PTr (ψi) is the true probability that the ith input signal

belongs to the ith signal class while Pr(ψi) is the predicted

probability that the ith input signal belongs to the ith signal

class. With the cross entropy calculation, the neural network

can optimize its architecture via backward propagation using

the Adam optimizer. The maximum number of epochs is

limited to 30 and the mini-batch size is 128. To fully extract

features from a dataset, a learning rate of 0.01 is configured

through the training.

The signal pattern for each framework should be designed

according to the pattern keys generated by the proposed

chaotic sequence generator in section V. Ideally, the key, in

other words the bandwidth compression factor α, is contin-

uous and therefore has an infinite number of values. This

will advantageously show the robustness of our proposed

framework in practice but the infinite number of values also

complicate the evaluations of the proposed framework in

simulations. Therefore, in this work, we use discrete values of

α instead of using continuous values. The effect of a relatively

small change of α has been studied in [35] where the work

showed that the narrower gap between adjacent values of α,

the lower classification accuracy is achieved. It is therefore

expected that continuous values of α will lead to an infinite

number of signal patterns, which will significantly decrease

eavesdropping signal classification accuracy.

The single-band WDS framework might be designed with

the following SB signal pattern.
{
SB −OFDM
SB − SEFDM (α=0.95, 0.9, 0.85, 0.8, 0.75, 0.7)

,

(47)

where the values in the bracket indicate the value of α for

each signal class. The SB signal pattern has λ=7 signal classes

and the BCF gap between adjacent classes is ∆α=0.05. Each

signal class has 2,000 OFDM/SEFDM symbols and there

are overall 14,000 symbols for the SB signal pattern neural

network training.

In terms of multi-band signals, this work will select sub-

band BCF β=0.9, 0.85, 0.8, which are a subset of the SB-

SEFDM α pattern in (47). The bandwidth compression factor
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Fig. 8. Spectral packing characteristics for MB-SEFDM signal pat-
terns. (a) MB-1. (b) MB-2. (c) MB-3.

Fig. 9. Spectral packing characteristics for AMB-SEFDM signal
patterns. (a) AMB-1. (b) AMB-2. (c) AMB-3.

Fig. 10. Spectral packing characteristics for MAMB-SEFDM signal
patterns. (a) MAMB-1. (b) MAMB-2. (c) MAMB-3.

and the number of sub-carriers for each multi-band signal

architecture is configured as the following.






MB − 1 (β=0.9, NB=16)
MB − 2 (β=0.85, NB=16)
MB − 3 (β=0.8, NB=16)

. (48)

The MB-SEFDM signal pattern with λ=3 signal classes is

designed in (48) and illustrated in Fig. 8, in which β=0.9,

0.85, 0.8 are allocated to Fig. 8(a), Fig. 8(b) and Fig. 8(c),

respectively. Each sub-band has the same number of sub-

carriers NB=16 but the variations of β result in different

spectral bandwidth. Each signal class has 2,000 symbols and

there are overall 6,000 symbols for neural network training.






AMB − 1 (β=0.9, NB=16)
AMB − 2 (β=0.85, NB=17)
AMB − 3 (β=0.8, NB=18)

. (49)

The AMB-SEFDM signal pattern with λ=3 signal classes

is designed in (49) and illustrated in Fig. 9. In order to have

approximately similar occupied spectral bandwidth for each

AMB signal, each sub-band in Fig. 9(a) with β=0.9 packs 16

sub-carriers, Fig. 9(b) and Fig. 9(c) should pack 17 and 18 sub-

carriers, respectively. Each signal class has 2,000 symbols and

there are overall 6,000 symbols for neural network training.






MAMB − 1 (β=0.9, 0.85, 0.8, NB=16, 17, 18)
MAMB − 2 (β=0.9, 0.85, 0.8, NB=16, 17, 18)
MAMB − 3 (β=0.9, 0.85, 0.8, NB=16, 17, 18)

. (50)
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Fig. 11. Classification accuracy for SB based signal patterns and their
average accuracy.
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Fig. 12. Classification accuracy for MB based signal patterns and
their average accuracy.

The MAMB-SEFDM signal pattern with λ=3 signal classes

is designed in (50) and illustrated in Fig. 10. Similar to the

AMB signal pattern, three different values of β are employed.

However, different β would be mixed together in each signal

class. Therefore, MAMB waveforms are similar to AMB

waveforms in terms of occupied bandwidth but with different

sub-band spectral features. The sub-band spectral ambiguity

will cause misclassification at eavesdroppers. Each signal class

has 2,000 symbols and there are overall 6,000 symbols for

neural network training.

B. Performance and Processing Complexity

Due to the black-box learning mechanism of CNN, there

is no analytical theory to justify the generality of the partic-

ular neural network in all security scenarios. To justify the

feasibility of our trained CNN model in security analysis, we

choose a benchmark for the reference. We firstly train a CNN
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Fig. 13. Classification accuracy for AMB based signal patterns and
their average accuracy.

model that can correctly classify the existing signal patterns.

Then the CNN architecture will be re-trained for the newly

proposed waveform scheme. In this case, we can have a fair

justification that this particular CNN network is appropriate for

the security analysis since the eavesdropping CNN model can

eavesdrop conventional signals but it cannot identify the newly

proposed signal patterns. Although an analytical justification

is not available, the intensive training process for a CNN

model results in time delay and will prevent eavesdropping in

time-critical communications, which is a suitable application

scenario that justifies the utility of our proposed framework.

The classification accuracy of single-band signal patterns is

shown as a benchmark in Fig. 11, in which all the signals can

be identified at nearly 100% accuracy rates with the increase

of Es/N0. The classification accuracy results for multi-band

signals are presented in Fig. 12. Since there is no need for

OFDM signals using a multi-band signal architecture, OFDM

is not considered in the MB scenario. As expected from Fig.

12, all the MB structured signals with perfect classification

can converge to nearly 100% accuracy at high Es/N0 regime.

The imperfect classification for the target signal β=0.9 is

also evaluated. The notation, β = (β0 → β1), indicates an

imperfect classification from a signal class of β0 to another

signal class of β1. The imperfect classification accuracy shows

a complementary trend relative to its perfect accuracy.

So far, both single-band and multi-band signal patterns are

able to be identified by properly trained CNN classifiers.

Compared to the single-band signal format, the multi-band

signal architecture is a hardware-friendly signal format and

its signal detection is implementable in hardware. However,

they are both vulnerable to eavesdropping since eavesdroppers

can apply deep learning to identify signals and employ proper

algorithms to recover signals.

The classification accuracy for the AMB signal pattern is

investigated in Fig. 13. As usual, both perfect and imperfect

classification results are presented. Unlike the complementary

results observed from Fig. 12, both perfect and imperfect
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Fig. 14. Classification accuracy for MAMB based signal patterns and
their average accuracy. The sub-band signal configuration follows the
example in Table II.

Table II: MAMB-WDS sub-band architecture (an example

used in this work)

Sub-band MAMB-1 MAMB-2 MAMB-3
Index β β β

0 0.90 0.80 0.85

1 0.80 0.90 0.85

2 0.85 0.80 0.90
3 0.90 0.90 0.80

4 0.90 0.85 0.90

5 0.80 0.90 0.85
6 0.85 0.80 0.90

7 0.80 0.80 0.90

8 0.90 0.85 0.80

9 0.85 0.85 0.85
10 0.90 0.80 0.80

11 0.85 0.90 0.85

12 0.90 0.85 0.85
13 0.80 0.90 0.80

14 0.85 0.80 0.90

15 0.80 0.85 0.80

classification accuracy rates are distributed around a static

accuracy rate, 1/3. It is due to the fact that the three signal

classes have strong feature similarity and each signal class

would be equally classified into three signal classes resulting

in the static 1/3 accuracy rate.

To enhance further the ambiguity of classifying AMB

signal patterns, the mixed signal pattern MAMB from (50) is

evaluated with classification accuracy presented in Fig. 14, in

which three mixed signal patterns are designed with the BCF

characteristics in Table II. The 256 sub-carrier MAMB signal

is divided into 16 sub-bands and each sub-band is allocated

with a specific sub-band BCF β and an associated number

of sub-carriers. In this case, three MAMB signal patterns

effectively have the similar occupied spectral bandwidth. It

should be noted that the combination pattern of sub-bands is

flexible and Table II only shows an example. It is clearly seen

from Fig. 14 that due to the randomness of each sub-band

features, the enhanced ambiguity complicates MAMB signal
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Fig. 15. Approximate accuracy and measured accuracy for MAMB
signal patterns.

classification resulting in the 1/3 accuracy rate at all Es/N0.

The results observed in Fig. 14 come with an assumption

that the accuracy rate would be reduced further when more

MAMB signal patterns are considered. The approximate ac-

curacy rate to classify an arbitrary MAMB pattern is expressed

in a mathematical model as

ψ =
1

̟
, ̟ ∈ [1, 2, 3, ..., bN/NB ], (51)

where ̟ indicates the number of MAMB signal classes, b
represents the number of BCF candidates and N/NB indicates

the number of sub-bands. Considering the example from Table

II, it is clear that the example has b=3 due to β=0.9, 0.85, 0.8

and N/NB=16 sub-bands. Therefore, the maximum number

of MAMB signal classes is ̟ = 316. In practice, the value of

̟ would be infinite since the value of b could be infinite due

to continuous combinations of BCF. In addition, the number

of sub-bands N/NB is also flexible and the increase of the

value will exponentially cut the classification accuracy rate.

Fig. 15 compares the approximate accuracy and measured

accuracy for MAMB signal patterns with different number

of signal classes. Each signal pattern is evaluated ranging

from Es/N0=-20 dB to Es/N0=50 dB with a 10 dB increment

step. Therefore, each signal pattern will show eight evaluation

points in Fig. 15, in which it shows the reduction of classifi-

cation accuracy with the increase number of signal classes. In

addition, the measured accuracy reduction trajectory follows

the accuracy approximation in (51) where the accuracy rate

drops by 57% from three signal classes to seven signal classes.

In addition to the robustness evaluations of the WDS frame-

work to prevent eavesdropping, Fig. 16 shows communication

reliability at legitimate users as well. The MAMB signal

pattern, with three signal classes, is selected for BER testing.

The legitimate user will use pre-known pattern information to

detect signals. It reveals that without a proper signal detector,

where matched filter (MF) is applied, all the MAMB signal

classes cannot be decoded resulting in high BER results. On

the other hand, with the help of a uniquely designed detector,

2 4 6 8 10

Es/N0 (dB)
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10-3

10-2

10-1

B
E

R

QPSK-OFDM

MAMB-1: w/ detector

MAMB-2: w/ detector

MAMB-3: w/ detector

MAMB-1: w/o detector

MAMB-2: w/o detector

MAMB-3: w/o detector

Fig. 16. BER performance for legitimate user MAMB signals with
and without the uniquely designed SD detector.
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Fig. 17. BER performance for eavesdroppers with knowledge of the
uniquely designed SD detector.

where the SD architecture from section III-A is applied for

each signal sub-band, all the signal classes are detectable with

similar performance to QPSK-OFDM. Based on the results in

Fig. 16, it is inferred that even signals are correctly identified

by eavesdroppers, they cannot decode signals properly when

the uniquely designed SD detector is not known in advance.

To explore the eavesdropping capability on MAMB signals,

Fig. 17 shows that the eavesdropping performance approaches

a flat BER curve even the multiband SD detector is employed

indicating a failure of eavesdropping. Based on the results in

Fig. 17, it is inferred that even when the uniquely designed SD

detector is known by eavesdroppers in advance, they cannot

decode signals properly because signals are not correctly iden-

tified by eavesdroppers, which further enhances the physical

layer communication security.

The signal processing complexity for WDS and multi-

band WDS frameworks is compared in Table III. The pattern

key generation is one-time processing and is not taken into
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Table III: Signal Processing Complexity Analysis (uplink channel from Alice to Bob)

Processing WDS(Alice) WDS(Bob) multi-band WDS(Alice) multi-band WDS(Bob) WDS/multi-band WDS(Eve)
User Base Station User Base Station Eavesdropper

Tx IFFT(single) - IFFT(multiple) - -

FFT(single) FFT(multiple) FFT(single/multiple)
Rx - Signal Detection - Signal Detection Signal Classification

Signal Detection
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Fig. 18. The upper-bound of signal detection complexity in the
number of real-valued multiplication operations.

account. At the transmitter (Tx), the traditional WDS requires

single IFFT while the proposed multi-band WDS requires mul-

tiple IFFTs. In terms of receiver side (Rx), both frameworks

are for uplink channel communications where complex signal

processing is at energy consumption insensitive base stations.

Therefore, signal detection complexity is not the limitation to

our proposed security framework. In summary, our proposed

framework significantly reduces power consumption in Fig. 4

due to the reduced hardware utilization analysed in Table I.

Compared to traditional OFDM, our proposed waveform

framework has increased spectral efficiency and higher data

rate in a given bandwidth. It is because our proposed wave-

form framework can compress occupied spectral bandwidth

and generate non-orthogonal waveforms. As a result, in a

given spectral bandwidth, we can pack more sub-carriers

for carrying data, leading to an increased data rate. The

obvious limitation of our proposed approach, compared to

OFDM, is the increased signal processing complexity at the

receiver side, because the system requires complex signal

detection algorithms to decode signals at legitimate users. We

have implemented a similar signal detector in our previous

work [53], which verifies that the data rate can be enhanced

using optimized digital circuit design. To evaluate signal

detection complexity, real-valued multiplication operations are

considered. Since SD has variable computational complexity

related to the level of noise power, this work will evaluate

the upper-bound complexity. For traditional OFDM based sys-

tems, signal detection relies on MF, which is the fast Fourier

transform (FFT) operation with the computational complexity

of (N/2)log2(N) multiplications. For the traditional single-

band WDS framework, a single SD detector is required with

the upper bound complexity of
∑2N

n=1 2
n[2n + 1]. For our
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Fig. 19. BER performance and classification accuracy evaluations in
multipath fading channels.

newly proposed multi-band WDS framework, its signal de-

tection has upper bound complexity of N
NB

∑2NB

n=1 2n[2n+1].
Fig. 18 clearly shows the complexity difference for the three

waveform schemes. It is obvious that the newly proposed

multi-band WDS framework has higher detection complexity

compared to the traditional OFDM scheme but our proposal

has significant complexity reduction compared to the single-

band WDS framework.

It is noted that this work obtains the security enhancement

capability using non-orthogonal signal waveform ambiguity

rather than relying on channel variations. Our previous work

[35] has verified that channels have minimal effects on clas-

sification since eavesdroppers fail to distinguish signals in

both AWGN and wireless channels. For further information

on the effect of channels, previous studies in [36], [54]

have verified the feasibility of the non-orthogonal signals in

practical experiment. To provide a comprehensive evaluation,

we test our proposed signal scheme under the multipath fading

channel model [36], [55], [56] where each path is configured

to experience Rayleigh fading. In Fig. 19, our proposed multi-

band WDS signal exhibits close BER performance to OFDM

in multipath fading scenarios, suggesting that the proposed

non-orthogonal signal can provide good BER performance in

fading channels. Fig. 19 also demonstrates the classification

accuracy at eavesdropper under multipath fading channels.

It is evident that the accuracy is not obviously affected

by channels, because the classification relies on waveform

spectral ambiguity rather than channel variations.

We include the Masked-OFDM technique [33], the FTN-

based technique [34], and the single-band SEFDM-based
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Fig. 20. Comparison with other waveform schemes in terms of
classification accuracy, BER at legitimate users and eavesdroppers.

technique [35] for the comparison in this paper. All of these

waveforms are incorporated into multicarrier formats similar

to the multi-band WDS framework, and they all exhibit higher

spectral efficiency compared to OFDM. The classification

accuracy results reveal that the eavesdropper achieves the

lowest accuracy (therefore better security performance) by

our proposed multi-band WDS signal, while the eavesdropper

attains the highest accuracy by the single-band WDS signal.

For the other two signals, their accuracy is similar to that of the

multi-band WDS signal. Concerning BER performance, the

aim is to develop a framework that increases the eavesdrop-

per’s BER while simultaneously reducing the legitimate user’s

BER. Based on the results presented in Fig. 20, it is evident

that our proposed multi-band WDS framework can meet both

requirements while all other waveform candidates degrade

both legitimate user and eavesdropper BER performance.

VII. CONCLUSION

This work investigated a multi-band waveform-defined se-

curity (WDS) framework, which avoids CSI at transmitters

and can be jointly used with traditional PLS techniques.

An adaptive multi-band WDS scheme is able to confuse

eavesdropping signal identification since the designed signals

occupy the same spectral bandwidth while their sub-band spec-

tral characteristics are variable and unknown by eavesdroppers.

With adaptive adjustment of each sub-band spectral feature,

the eavesdropping accuracy drops to 33% when only three

sub-band signal classes are taken into account. It is noted that

spectral features for each sub-band are determined by sub-

carrier packing patterns, which theoretically have an infinite

number of combinations due to the continuous variations of

the packing schemes. Therefore, the potentially infinite com-

binations of WDS patterns can efficiently prevent brute-force

eavesdropping. An accuracy approximation model is derived to

reveal that the eavesdropping accuracy will drop further when

the number of feature combinations increases. Results show a

nearly 57% accuracy drop when the number of combinations

goes from three to seven. Signal BER performance is also

evaluated and results show nearly perfect signal recovery with

lower complexity relative to traditional PLS approaches.
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