
HAL Id: hal-01271684
https://inria.hal.science/hal-01271684v1

Submitted on 9 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling Live-Migrations for Fast, Adaptable and
Energy-Efficient Relocation Operations
Vincent Kherbache, Eric Madelaine, Fabien Hermenier

To cite this version:
Vincent Kherbache, Eric Madelaine, Fabien Hermenier. Scheduling Live-Migrations for Fast, Adapt-
able and Energy-Efficient Relocation Operations. 8th IEEE/ACM International Conference on Utility
and Cloud Computing, Dec 2015, Limassol, Cyprus. �10.13140/RG.2.1.1626.8563�. �hal-01271684�

https://inria.hal.science/hal-01271684v1
https://hal.archives-ouvertes.fr

Scheduling Live-Migrations for Fast, Adaptable and Energy-Efficient Relocation
Operations

Vincent Kherbache
INRIA Sophia Antipolis

Email: vincent.kherbache@inria.fr

Éric Madelaine
INRIA Sophia Antipolis

Email: eric.madelaine@inria.fr

Fabien Hermenier
University Nice Sophia Antipolis,

CNRS, I3S, UMR 7271
Email: fabien.hermenier@unice.fr

Abstract—Every day, numerous VMs are migrated inside a
datacenter to balance the load, save energy or prepare produc-
tion servers for maintenance. Despite VM placement problems
are carefully studied, the underlying migration scheduler rely
on vague adhoc models. This leads to unnecessarily long and
energy-intensive migrations.

We present mVM, a new and extensible migration scheduler.
mVM takes into account the VM memory workload and the
network topology to estimate precisely the migration duration
and take wiser scheduling decisions. mVM is implemented as
a plugin of BtrPlace and can be customized with additional
scheduling constraints to finely control the migrations. Exper-
iments on a real testbed show mVM outperforms schedulers
that cap the migration parallelism by a constant to reduce the
completion time. Besides an optimal capping, mVM reduces the
migration duration by 20.4% on average and the completion
time by 28.1%. In a maintenance operation involving 96 VMs to
migrate between 72 servers, mVM saves 21.5% Joules against
BtrPlace. Finally, its current library of 6 constraints allows
administrators to address temporal and energy concerns, for
example to adapt the schedule and fit a power budget.

Keywords-live-migrations; scheduling; energy-efficiency;

I. INTRODUCTION

Infrastructure As A Service (IaaS) clouds provide clients
with resources via Virtual Machines (VMs). To deploy
applications (web services, data analytics etc.) in an IaaS
cloud, a client installs the appropriate application and selects
a Service Level Agreement (SLA) offered by the provider.
Currently, public cloud providers advertise 99.95% avail-
ability [1], [2]. To ensure this, any management operation
on the provider side must be done on the fly, with a minimal
interference over the VM availability. Live migration [3]
makes these management operations possible: it relocates
a running VM from one server to another with a negligible
downtime under idyllic conditions.

Today, live-migrations occur continuously. For exam-
ple, dynamic VM placement algorithms relocate the VMs
depending on their resource usage to distribute the load
between the servers or to reduce the datacenter power
consumption [4], [5], [6], [7]. These solutions work in
two passes. The first pass consists in computing the new
placement for some VMs according to specific objectives.
The second pass consists in enacting the new VM placement
using live-migrations. Datacenter operators heavily rely on

live-migration to perform maintenance operations over pro-
duction infrastructures [8]. For example, the VMs running
on a server to update must be first relocated elsewhere to
keep VMs availability. A maintenance operation occurs at
the server scale but also at rack or cluster scale [9]. At
a small scale, the operator may want to find a destination
server and relocate the VMs by himself. At a larger scale,
the operator is assisted by a placement algorithm.

A live-migration is a costly operation. It consumes net-
work bandwidth and energy. It also temporarily reduces the
VM availability. When numerous VMs must be migrated,
it is important to schedule the migrations wisely, in order
to minimize the impact on both the infrastructure and the
delivered quality of service [10]. In practice, the duration
of a migration depends on the allocated bandwidth and
its memory workload. A sequential execution leads to fast
individual migrations but long standing completion time. On
the opposite, an excessive parallelism leads to a low per-
migration bandwidth allocation hence long or even endless
migrations. Additionaly, the datacenter operator and the cus-
tomers have restrictions in terms of scheduling capabilities.
For example, it may be required to synchronize the migration
of strongly communicating VMs [11], while a datacenter
must also cap its power usage to fit the availability of
renewable energies or ensure power cooling capabilities [12].
This advocates for a scheduling algorithm that can take the
benefits from the knowledge of the network topology, the
VM workload but also the clients and the datacenter operator
expectations to compute fast and efficient schedules.

Despite VM placement problems are carefully studied,
we observe that the scheduling algorithms enacting the
new placements do not receive the same level of atten-
tion. Indeed, underlying scheduling models that estimate
the migration duration are often inaccurate. For example,
Entropy [4] supposes a non-blocking homogeneous network
coupled with a null dirty page rate. These hypotheses
are unrealistic, prevent from computing efficient schedules
and finally reduce the practical benefits of the placement
algorithms [7].

In this paper, we present mVM, a migration scheduler that
relies on realistic migration and network models to compute
the best moment to start each migration and the amount

of bandwidth to allocate. It also decides which migrations
are executed in parallel to provide fast migrations and
short completion times. In practice, mVM is implemented
as a set of extensions for the customizable VM manager
BtrPlace [13].

The evaluation of mVM is performed over a blocking
network testbed against two representative schedulers: A un-
modified BtrPlace that maximizes the migration parallelism
similarly to [4], [6], [14], and a scheduler that reproduces
Memory Buddies [15] decisions by capping the parallelism
to a constant defined by the datacenter operator.

Our main results are:
Migration speed: On 50 migration plans generated ran-

domly, the migrations scheduled by mVM completed on av-
erage 20.4% faster than Memory Buddies, while completion
times are reduced by 28.1%. Contrarily to Memory Buddies,
mVM always outperforms sequential scheduling with an
average migration slowdown of 7.35% only, 4.5 times lower
than with Memory Buddies.

Energy efficiency: In a server decommissioning operation
involving 96 migrations among 72 servers, the schedule
computed by mVM saves 21.5% Joules with regards to
BtrPlace.

Scalability: Experiments show that mVM requires only
1.5 additional seconds with regards to BtrPlace to compute
the schedule of a decommissioning operation involving 960
migrations among 720 servers.

Extensibility: mVM controls the scheduling at the action
level through independent high-level constraints. The current
library implements 4 constraints and 2 objectives. They
address temporal and energy concerns such as the capability
to compute a schedule fitting a power budget.

The paper is organized as follows. Section II describes the
design of mVM. Section III details its implementation and
Section IV presents performance optimizations. Section V
evaluates mVM. Finally, Section VI describes related work,
and Section VII presents our conclusions and future works.

II. MVM OVERVIEW

mVM is a migration scheduler that can be configured with
specific constraints and objectives. It aims at computing the
best sequence of migrations along with any actions needed
to perform a data center reconfiguration while continuously
satisfying the constraints. It is implemented as a set of
extensions for BtrPlace and controls VMs running on top
of the KVM virtual machine monitor [16]. In this paper, we
refer to a customized version of BtrPlace with our extensions
as mVM.

In this section, we first introduce the architecture of
mVM and illustrate how it concretely performs migration
scheduling.

A. Global design
Figure 1 depicts the architecture of mVM. mVM takes as

input three types of informations, the data center configura-

tion, the VM characteristics and the scheduling constraints.
The datacenter configuration specifies the network including
its topology along with the capacity and the connectivity of
the switches. This information is usually obtained automati-
cally by a monitoring tool. Despite mVM should be able to
comply with any tool, these informations must be provided
using the SimGrid Platform Description Format.1

Figure 1. mVM architecture.

The VM characteristics provides the current VM place-
ment and resource usage but also their real memory usage
and their dirty page rate. All these informations can also be
retrieved by a monitoring tool. The memory usage and dirty
page rate are however rarely monitored. We then develop a
command to retrieve these informations from libvirt.

The constraints indicate the expectations that must be
satisfied by the computed schedule. They must at least state
the future hosting server for each VM. These constraints can
be specified manually or computed with a VM placement
algorithm; With the legacy version of BtrPlace for example.
The constraints also express additional restrictions such as
the need to synchronize some migrations or to cap the
datacenter power usage during a reconfiguration. They can
be provided through configuration scripts or directly through
an API.

With these inputs, mVM computes a reconfiguration plan
that is a schedule of actions to execute. For each migration
action, mVM indicates the moment to start the action, its
predicted duration and the amount of bandwidth to allocate.

The Executor module applies the schedule by performing
all of the referred actions. In practice, it is not safe to execute
actions by only focusing on the predicted start times as the
effective duration of an action may differ from its estimated
duration. This can lead to unexpected SLA violations, an
extra energy consumption, or a technical limitation such as
the migration of a VM to an server that is not yet online. To
address this issue, the executor inserts dependencies between
actions according to a global virtual clock.

B. Scheduling example
Figure 2 illustrates a network topology that connect 6

servers grouped into two racks by a single 2 Gbit/s link.
The VMs from the source servers must be migrated to the
destination servers using a given placement. The length of
a VM represents its duration when migrated at 1 Gbit/s.

The Gantt chart in Figure 3 depicts a possible migration
schedule. According to the network topology, the bottleneck

1http://simgrid.gforge.inria.fr/simgrid/3.9/doc/platform.html

Figure 2. Sample migration scenario.

is the 2 Gbit/s inter-switch link. It is however possible to
allocate 1 Gbit/s to each migration and schedule them 2 by 2
from different source and destination servers, to fully exploit
the inter-switch link. This sample schedule takes then the
full advantage of both inter-server parallelization and intra-
server serialization to continuously use the inter-switch link
at its maximum bandwidth and provide fast migrations.

Figure 3. A schedule for the scenario in Figure 2.

III. IMPLEMENTATION

In this section, we describe the implementation of mVM.
We first introduce BtrPlace architecture. We then provide
details of the implementation of the network and the migra-
tion model. We finally present extensions we developed on
top of the migration model to control the scheduling with
regards to temporal or energy-efficiency concerns.

A. BtrPlace architecture

BtrPlace [13] aims at computing the next placement for
the VMs, the next state for the servers, and the action
schedule that lead to this stage.

BtrPlace uses constraint programming (CP) to model a
placement for the VMs and the action schedule, it relies on
the Java library Choco [17] to solve the associated problem.
CP is an approach to model and solve combinatorial prob-
lems in which a problem is modeled by logical relations that
must be satisfied by the solution. The CP solving algorithm
is independent of the constraints composing the problem and
the order in which they are provided. To use CP, a problem
is modeled as a Constraint Satisfaction Problem (CSP),

comprising a set of variables, a set of domains representing
the possible values for each variable, and a set of constraints
that represent the required relations between the values and
the variables. A solver computes a solution for a CSP
by assigning each variable to a value that simultaneously
satisfies the constraints. The CSP can be augmented with
an objective represented by a variable that must have its
associated value maximized or minimized. To minimize
(resp. maximize) a variable K, Choco works incrementally:
each time a solution with an associated cost k is computed,
Choco automatically adds the constraint K < k (resp. K > k)
and tries to compute a new solution. This added constraint
ensures the next solution will have a better objective value.
This process is repeated until Choco browses the whole
search space or hits a given timeout. It then returns the last
computed solution.

From its inputs, Btrplace first models a core Reconfigura-
tion Problem (RP), i.e. a minimal placement and scheduling
algorithm that manipulate servers and VMs through actions.
Each action is modeled depending on its nature (booting,
migrating or halting a VM, booting or halting a server). An
action a ∈ A embeds at least a variable st(a) and ed(a)
that denote the moment the action starts and terminates,
respectively.

As CP provides composition, it is possible to plug external
models on top of the core RP to support additional datacenter
elements, such as the network, but also additional concerns
such as the power usage that results from the execution of
each action. It is also possible to use an alternative model
for each kind of action. Once the core RP is generated,
BtrPlace customizes it with all the stated constraints and
the possible objective. The resulting specialized RP is then
solved to generate the action schedule to apply.

mVM inserts inside the core RP a network model, a new
migration model and a power model to formulate the power
consumption of a migration. On top of the core RP, mVM
also provides additional constraints and objectives to adapt
the schedule with regards to temporal and energy concerns.
In total, these extensions represent 1600 lines of Java code.

B. Network model

A migration transfers a VM from a server to another
through a network. For economic and technical reasons, a
network is rarely non-blocking. Indeed, network links and
switches might not be provisioned enough to support all the
traffic in the worst case scenario.

Our network model represents the traffic generated by
each migration over the time and the available bandwidth,
through a set of network elements. All the links are consid-
ered full-duplex. As the next VM placement is known, the
model considers that a VM migrate from its source to its
destination server through a predefined route. The bandwidth
allocation for a migration is also supposed to be constant.
Finally, the model ignores the network latency, which means

that it considers a migration occupies simultaneously all the
networking elements it is going through. This assumption is
coherent as temporal variables in our model are expressed
in terms of seconds while the network latency between two
servers in a datacenter is much less than a second.

The network model considers a set of VM migrations
M ⊆ A to perform over a set of network elements N
(network interfaces, switches, etc.). For any element n∈N ,
capa(n) denotes its capacity in Mbit/s. For any migration
m ∈ M , path(m) ⊆ N indicates the network elements
crossed (source and destination servers included), bw(m)
denotes the allocated bandwidth, st(m) and ed(m) indicate
the beginning and the end of the operation, respectively. The
equation (1) models the bandwidth sharing of a network
element among the migrations that pass through it:

∀n ∈N ,∀t ∈ N, ∑
m∈M , n∈path(m),

t∈[st(m); ed(m)]

bw(m) < capa(n) (1)

In practice, the bandwidth sharing is modeled with cu-
mulative constraints [18]. A cumulative constraint consists
in placing a set of tasks on a bounded resource. Each task
has three variables: a height, a duration, and a starting time.
The constraint ensures then that at any time, the cumulative
height of the placed tasks does not exceed the height of
the resource. We use one cumulative constraint per network
element where each task represents a migration and the
height corresponds to the available bandwidth.

C. Migration model

The migration model mimics the pre-copy algorithm [3]
used in Xen and KVM. The model assumes a shared storage
for the VM disk images. The pre-copy algorithm is an
iterative process. The first phase consists in sending all the
memory used by the VM to the destination server while
the VM is still running. The subsequent phases consist in
sending iteratively the memory pages that were made dirty
during the previous transfer. Thus, the migration duration
depends of the memory dirtying rate and the bandwidth
allocated to the migration. The migration terminates when
the amount of dirty pages is sufficiently low to be sent in a
time interval lesser than the downtime (30 ms by default).
Once this condition is met, the VM is suspended on the
hosting server, the latest memory pages are transferred,
and the VM is resumed on the destination server. It is
worth noting that with this algorithm, the duration of a
live-migration increases exponentially when the allocated
bandwidth decreases linearly (see Figure 4).

According to the majority of the loads observed on
real applications [19], [20], the observation of the memory
dirtying rate can be separated in two phases. The first phase
corresponds to the hot-pages, a set of memory pages that are
quickly dirtied. This phase exhibits a high dirty page rate but

 0

 1

 2

 3

 200
 300

 400
 500

 600
 700

 800
 900

 1000

M
ig

ra
ti

o
n
 d

u
ra

ti
o
n
 [

m
in

.]

Allocated bandwidth [Mbit/s]

1000*200K

1000*100K

1000*10K

Figure 4. Duration of a live-migration between 2 KVM hypervisors
depending on the allocated bandwidth and the parameters used by the
command stress to generate dirty pages. 1000*10K indicates the VM runs
1000 concurrent threads that continuously allocate and free up 10 KiB of
memory each. The VM memory used is set to 4 GiB and the downtime is
limited to 30 ms.

during a short period of time. The second phase represents
the linear evolution of the cold-pages which corresponds
to the pages that became dirty after the generation of the
hot-pages until the end of the migration. These two phases
are distinguished by the observation of the memory dirtying
rate variation. The amount of hot-pages HPs in MiB, and
the seconds HPd spent to rewrite them determine the hot-
pages rate HPr =

HPs
HPd

, this rate gives a good overview of
the minimum bandwidth to allocate to ensure the termination
of a migration. In practice, predicting the termination of a
migration consists in measuring HPr over a period equal to
the downtime period D and ensuring that its rate is less
than the available bandwidth. Indeed, the memory pages
marked as dirty in this time interval will be transferred in
the final iteration of the pre-copy algorithm, thus, they must
be transferred in a period less than D. CPr corresponds to the
cold-pages rate in MiB/s, it is measured from t =HPd . Often
very low, this rate is still dependent of the VM’s workload.

Given a migration m ∈M , with mu(m) the amount of
memory used by the VM in MiB and bw(m) its allocated
bandwidth, the minimum duration of the migration dmin is
written: dmin(m) = mu(m)

bw(m) . Generally, to transfer an amount
of memory X with a bandwidth Y and a memory dirty rate
Z, the transfer duration is: X

Y−Z .
The cold pages are rewritten at the beginning of the

migration process just after the hot pages. Hence if we
assume that dmin is always higher than the time required
to dirty the hot pages, the total amount of cold pages CPs
corresponds to: CPs =

(
dmin(m)−HPd

)
×CPr. Thus the time

spent to send the cold pages dCP is written:

dCP(m) =
HPs +CPs

bw(m)−CPr
(2)

Then the time spent to send the hot-pages dHP equals:

dHP(m) =
HPs

bw(m)
× HPr

bw(m)−HPr
(3)

Finally, the duration d of a migration m is:

d(m) = dmin(m)+dCP(m)+dHP(m)+D (4)

The duration of dmin is the dominating factor. It is usually
expressed in terms of seconds or minutes, while dCP(m)
and dHP(m) are usually expressed in seconds. Finally the
downtime D has a very low weight (30 ms by default). It
can thus be ignored when the unit of time is a second.

This migration model establishes the link between the
duration of a migration, represented by the length of the task
in a cumulative constraint, and the bandwidth to allocate,
represented by the height of the task. As a result, mVM
knows that a minimum bandwidth is required to ensure
the migration termination while allocating a high bandwidth
reduces the migration duration exponentially.

D. Extensions

In this section we present the extensions we developed
to control the migrations. All these extensions were im-
plemented using the original BtrPlace API and rely on the
variables provided by the migration model.

1) Temporal control: Sync synchronizes the migrations
of the VMs passed as parameters. It is a constraint inspired
by COMMA [11]. When two strongly-communicating VMs
must be migrated to a distant server, they can be migrated
sequentially. Temporarily, one VM will be then active on the
distant server while the second one stay on the source server.
The two VMs will thus suffer from a performance loss due
to a communication through a slow link. It is possible to
migrate a VM using either a pre-copy or a post-copy algo-
rithm [21]. While in the pre-copy algorithm, the VM state is
migrated at the end of the operation, the post-copy algorithm
migrates the VM state at the beginning of the operation.
Sync supports both approaches and can synchronize either
the beginning or the end of the migrations. In practice,
the constraint enforces the variables denoting the moment
the migrations starts (post-copy algorithm) or end (pre-copy
algorithm) to be equal.

Before establishes a precedence rule between two migra-
tions or a migration and a deadline. It allows a datacenter
operator to specify priorities in a maintenance operation for
example, or to ensure the termination of a heavy mainte-
nance operation in time, before the office hours for example.
The constraint that establishes a precedence rule between
two migrations m1 and m2 is expressed as follows:

ed(m1)≤ st(m2)

Seq ensures that the given migrations will be executed
sequentially but with no precise order. This allows the oper-
ator to reduce the consequences if a hardware failure occurs
during the execution of a schedule as only one migration
will be active. The constraint does not force any ordering
to let the scheduler decides the most profitable one with

respect to the other stated constraints. seq is implemented
by a cumulative constraint with a resource having a capacity
of 1 and each migration a height of 1. An implementation
based on a disjunctive [22] constraint would be preferable to
obtain better performance. It is however not yet implemented
inside Choco.

MinMTTR is an objective that ask for fast schedules. The
intuition is to have fast actions that are executed as soon as
possible. It is implemented as follows:

min
(

∑
a∈A

ed(a)
)

2) Energy aware scheduling: A schedule is composed of
some actions to execute. In a server maintenance operation
for example, there will be VMs to migrate but also servers
to turn on or off. These operations should be planned with
care to consume a few amount of energy or a consumption
that fit a given power budget [12]. BtrPlace already embeds
a power model for the actions that consists in turning on and
off a server or a VM. We describe here the power model for
a migration and two constraints to control the energy usage
during a reconfiguration.

The energy model derives from the model proposed by
Liu et al. [19]. The amount of data transmitted and received
by these servers is the same. With network interfaces that
are not energy adaptive, the authors propose and validate a
model where the energy consumed by a migration increases
linearly with the amount of data to be transferred. Equa-
tion (5) formulates with variables of our migration model,
the energy consumption of a migration when the source and
the destination servers are identical. α and β are parameters
that must be computed during a training phase.

∀m ∈M ,E(m) = α×bw(m)×d(m)+β (5)

PowerBudget controls the instantaneous power consumed
by the infrastructure during the reconfiguration process.
It takes as parameters a period of time and the power
capping. This constraint is required for example to avoid
overheating [12], or when the datacenter is powered by
renewable energies or under the control of a Smart City
authority that restricts its power usage. Using PowerBudget,
mVM can then delay some migrations or any actions, de-
pending on their power usage. PowerBudget is implemented
using a cumulative constraint. The resource capacity is the
maximum power allowed during the reconfiguration. Each
action is modeled as a task with its height denoting its power
usage. Finally, when the power budget is not a constant for
the whole duration of the reconfiguration process, additional
tasks are inserted to create a power profile aligned with the
requirements.

MinEnergy is an objective that minimizes the overall en-
ergy consumed by the datacenter during the reconfiguration.

The cost variable to minimize is defined as the sum of the
energy spend by each action. It is implemented as follows:

min

(
∑

a∈A
E(a)

)
The overall implementation is succint, each constraint

reprensents approximately 100 lines of Java code, while each
objective requires around 200 lines.

IV. OPTIMIZING MVM
The problem of computing for each migration a time to

start the action and a bandwidth to allocate refers to the
Resource-Constrained Project Scheduling Problem where
each migration is a task and each network element is a
resource to share. This problem is known to be NP-hard.
Therefore, computing a solution is time consuming when
the number of VMs is large. mVM uses two strategies to
optimize the solving process. Our first strategy simplifies
the problem using a domain specific hypothesis while the
second is a heuristic that guides the CP solver toward fast
migration plans.

The MaxBandwidth optimization precomputes the band-
width to allocate to the migrations. As stated in Sec-
tion III-B, there is a limited interest in parallelizing mi-
grations up to the point of sharing the minimal bandwidth
available on the migration path: this increases the amount
of memory pages to re-transfer and thus the migration
duration. Accordingly, this optimization forces to allocate
the maximum bandwidth for each migration. As a side effect,
this simplification precomputes the migration duration as
well. MaxBandwidth reduces then the set of variables in
the problem to the variables denoting the moment to start
the migrations. Despite this simplification, the problem stays
NP-hard.

Our second strategy is a domain-specific heuristic that
indicates to the solver the variables it has to instantiate
first and the values to try for these variables. In general,
the intuition is to guide the solver to variable instantiations
of interest. First, the heuristic establishes different group
of variables. Each group contains the start moment of the
possible action to perform over the server, the start moment
of each VM that must be migrated to that server and the
possible actions to perform over the source servers. Second,
the heuristic asks the solver to instantiate the start moments
group by group. Until all the variables of a group are not
instantiated, the heuristic asks to focus on the hardest action
to schedule, i.e. action that has the smallest domain for its
start variable. Once the variable is selected, the heuristic
asks then to try to instantiate the variable to its smallest
allowed value, so to start the action as soon as possible.
It is worth noting that the heuristic is only a guide, it
does not change the problem definition and still leads to
a viable solution. Indeed, the solver prevents to perform
an instantiation that contradicts a constraint and allows the

backtracking mechanism to revise a initial instantiation that
turned to be invalid later in the decision tree.

V. EVALUATION

mVM aims at improving the live-migration scheduling
thanks to an accurate migration model and appropriate
decisions. In this section, we evaluate the practical benefits
of mVM in terms of migration and reconfiguration speedup
over a network testbed. We also validate the capability of
mVM to address energy concerns and evaluate its scalability.

A. Testbed setup

All the experiments were conducted on the Grid’5000
platform [23]. The testbed is composed of racks hosting 24
servers each. Servers in a same rack are connected to a Top-
of-Rack (ToR) switch through a Gigabit Ethernet interface.
All the ToR switches are then connected together through
a 10 Gigabit Ethernet aggregation switch. Servers are also
connected to a 20 Gbit/s Infiniband network. For a better
control of the network traffic, the VM disk images are shared
by dedicated NFS servers through the Infiniband network
while all the migrations transit through the Ethernet network.
We consider a dedicated migration network to avoid any
interference with the VM network traffic; a common practice
in production environment [24]. Each server runs a Debian
Jessie distribution with a GNU/Linux 3.16.0-4-amd64 kernel
and the Qemu (KVM) hypervisor 2.2.50. The VM configu-
ration and the migrations were performed using libvirt. Each
VM runs a Ubuntu 14.10 desktop distribution with a single
virtual CPU, the maximum migration downtime is 30 ms
and the workloads are generated using stress.

B. mVM to speed up migrations

The experiment consists in scheduling and executing the
migration of 10 VMs with different memory usage between
4 servers connected through an heterogeneous network. Each
server has 2 quad-core Intel Xeon L5420, 16 GiB RAM
and is connected to a central switch through a Gigabit
Ethernet interface. To emulate a blocking network, the tc
command limits the network bandwidth of two servers at
500 Mbit/s. The VM memory used is set to 2 and 3 GiB,
equally distributed among the VMs. This amount represents
the real memory allocated to the guest by Qemu, thus the
one transferred during the migration. The memory workload
for each VM is generated by 1,000 threads that continuously
write 70 KiB of RAM.

In this experiment, we compare the schedules computed
by mVM against a scheduler that reproduces Memory Bud-
dies [15] decisions. Similarly to mVM, Memory Buddies
controls the migration parallelism, however it limits the
parallelism to a constant to be defined. In practice, we
compare mVM to three configurations of Memory Buddies,
referred as MB-2 to MB-4, where the parallelism varies from
2 to 4. To perform a robust experimentation that covers a

wide spectrum of scenarios, we precomputed 50 runs of 10
migrations each where the initial and the destination server
for each VM are computed randomly. Each run has been
executed 3 times for each VM scheduler.

Table I
ABSOLUTE MIGRATION DURATIONS AND RELATIVE SLOWDOWN

COMPARED TO A SEQUENTIAL SCHEDULING

Scheduler mVM MB-2 MB-3 MB-4
Mean migration time (sec.) 45.55 57.22 113.2 168.6

Mean slowdown (%) 7.35% 29.69% 141.3% 259.2%

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

25

50

75

100

0 20 40 60 80 100 120 140
Duration slowdown [%]

P
er

ce
nt

ag
e

of
 m

ig
ra

tio
ns

●

●

●

●

 mVM
 MB−2
 MB−3
 MB−4

Figure 5. CDF of migrations duration slowdown compared to sequen-
tial predictions. Migrations with a slowdown greater than 150% are not
displayed.

Table I summarizes the average migration duration for
each scheduler. We first observe mVM outperforms every
configuration of Memory Buddies. Indeed, the migrations
scheduled by mVM completed 20.4% faster than those com-
puted by MB-2, the best Memory Buddies configuration. To
assess the absolute quality of these results, we compared the
durations to sequential migrations computed on a flawless
virtual environment. This exhibits the potential migration
slowdowns due to parallelism decisions. We observe an av-
erage 7.35% slowdown for mVM while it is at least 4.5 times
higher for MB-2. Figure 5 depicts the migration slowdowns
as a CDF. We observe 88.8% of the migrations scheduled by
mVM have a slowdown of 5 seconds at maximum, against
at least 52.8% for MB-2. We also observe the slowdown
distribution for mVM is gathered while it is scattered for
Memory Buddies and increasing with the concurrency. As
the 50 different migration plans were generated randomly,
this shows mVM is more reliable than Memory Buddies
to get fast migrations as the performance is not heavily
dependent from the context.

These improvements over Memory Buddies are explained
by better parallelism decisions. Indeed, Memory Buddies
parallelizes the migrations statically without any knowledge
about network topology or VM placement. This can produce
an insufficient usage of the overall network capacity and
an undesired concurrency between migrations on a same

network path. This reduces the migration bandwidth, thus
leads to more retransmissions of dirty memory pages and
higher migration durations. On the other side, mVM infers
the optimal number of concurrent migrations over the time
from its knowledge of the network topology. In practice, we
observed the number of concurrent migrations varied from 2
to 5. We also observe mVM took better parallelism decisions
than the most aggressive Memory Buddies configuration
while producing a lower slowdown than the most conserva-
tive one. As a result, mVM migrates each VM at maximum
speed and parallelizes them to maximize the usage of the
network capacity. We finally observe three abnormally long
migrations with mVM. A post-mortem analysis reveals these
durations were caused by the technical limitations of our
testbed. Indeed, when a server sends and receives migrations
simultaneously at maximum speed through a 500 Mbit/s lim-
ited interface then the traffic shaping queuing mechanism is
not fair and we observe periodic bandwidths slowdown. We
reproduced this disruption using the iperf tool and measured
a slowdown varying from 100 Mbit/s to 200 Mbit/s. This
problem also occurs using Memory Buddies as the chances
to migrate multiple VMs on a same link increased with the
parallelism.

Table II
ABSOLUTE COMPLETION TIMES AND RELATIVE SPEEDUP COMPARED

TO A SEQUENTIAL SCHEDULING

Scheduler mVM MB-2 MB-3 MB-4
Mean completion time (sec.) 212.8 295.9 394.6 479.4

Mean speedup (%) 54.18% 36.42% 15.94% -2.64%

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●0

25

50

75

100

−80 −60 −40 −20 0 20 40 60
Completion time speedup [%]

P
er

ce
nt

ag
e

of
 r

un
s

●

●

●

●

 mVM
 MB−2
 MB−3
 MB−4

Figure 6. CDF of completion times speedup compared to sequential
executions.

Table II shows mVM produces shorter completion times
than Memory Buddies. We observe executions completed on
average 28.1% faster than with MB-2, the best configuration
for Memory Buddies. mVM completed the executions in
average 83.1 seconds earlier than MB-2. To assess the
quality of these results, we compared completion times to
predicted values of a pure sequential scheduling. We observe
an average speedup of 54.18% for mVM while it is at least

1.49 times lower with MB-2. Figure 6 depicts the completion
times speedup as a CDF. It first confirms mVM exhibits the
most important speedup. We also observe the speedups for
MB-3 and MB-4 are scattered and not always positives. This
confirms mVM offers a reliable and a performant scheduling
algorithm.

This overall improvement is due to the parallelism and
clustering decisions taken by mVM. As explained before,
mVM optimizes the parallelism according to the migration
routes and the available bandwidth while Memory Buddies
decisions are capped by a constant. Furthermore, contrarily
to Memory Buddies, mVM infers how to group the migra-
tions according to their predicted duration. This reduces the
periods where the network is underused and consequently
the completion time. As a conclusion, this experiment con-
firmed that predicting the migration duration to compute an
adaptive level of parallelism and a tight migration clustering
is a key to compute efficient schedules. Indeed, while mVM
computed the shortest plans, no particular configuration of
Memory Buddies outperform the others.

A part of the experimental gain of mVM comes from
decisions based on an analysis of the VM dirty page rate.
Despite such an approach is a common practice in the state
of the art and has already been tested under production
workloads [10], [19], [20], some VMs might still have a
fuzzy dirty page rate. In this case the estimated migration
duration might be inaccurate then fool mVM. However,
this does not prevent mVM to compute wise schedules
with regards to Memory Buddies. Indeed, despite these mis-
estimations might bias the clustering decisions thus extend
the completion time, they have no impact on mVM paral-
lelism decisions that solely depends on the network model.
Unlike Memory Buddies there will still be no excessive
parallelism decisions, therefore keeping migrations as short
as possible.

C. mVM to address energy efficiency

This experiment evaluates the practical benefits of mVM
when addressing energy concerns during migrations. It con-
sists in executing a decommissioning scenario over multiple
servers and observe the capabilities of mVM to compute
schedules that consume less energy or to restrict the overall
power consumption. Contrary to BtrPlace, Memory Buddies
cannot schedule the actions that consists of turning on or
off servers. Accordingly, we use the original BtrPlace as a
representative baseline for this experiment.

The testbed is composed of 3 racks. Each rack consists
of 24 servers with one Intel Xeon X3440 2.53 GHz CPU
and 16 GiB RAM each. ToR switches connect the servers
through a Gigabit Ethernet while the ToR switches are
connected to a 10 GBit/s aggregation switch. The decom-
missioning scenario consists of migrating the VMs from two
racks to the third one. To save power, the destination servers
are initially turned off and the server to decommission have

to be turned off once their VMs are migrated. Each source
server hosts 2 VMs. This amounts to 96 VMs to migrate
from 48 to 24 servers. Every VM uses 1 virtual CPU and the
allocated memory is set to 2 GiB and 4 GiB RAM equally
distributed among the VMs.

To calibrate the energy models with realistic values, we
reused the experimental values from [19] for the migration
energy model while the idle energy consumption of the
servers were measured directly from the testbed (see Table
III).

Table III
ENERGY MODEL CALIBRATION

Model element Energy model
Server consumption (idle) 110 W× running duration
Server boot overhead 20 W× boot duration
VM hosting 16%× idle × hosting duration
Migration 0.512× transferred data +20.165

1) Energy saving capabilities: Figure 7 compares the
power usage of the same decommissioning scenario sched-
uled by either BtrPlace or mVM. As the testbed is not
instrumented enough to measure the power consumption
of each server, the values were computed from the energy
model. We observe that mVM saved a total of 2,350 Joules
compared to BtrPlace, a 21.55% reduction. This is explained
by the schedule computed by mVM that allowed to turn off
the source servers sooner thanks to faster migrations. At
the beginning of the experiment, the instantaneous power
consumption grows up from 7 kW to 10 kW with both
schedulers. This increase is explained by the simultaneous
boot of the 24 destination servers during 2 minutes. Once
available, BtrPlace launches all the migrations in parallel.
This results in very long migration durations. As all the
migrations terminate almost simultaneously at minute 7,
it is then impossible to turn off any source server before
that time. With mVM, migrations complete faster and some
source servers are being turned off from minute 2. This
behavior can be seen by the regular going down steps on
Figure 7.

We observed mVM scheduled the migrations 10 by 10.
These groups were defined to maximize the bandwidth
usage and minimize the migration duration. As stated in
Section IV, the MaxBandwidth optimization forces a 1 Gbit/s
bandwidth per migration, so the 10 by 10 parallelization
fully utilizes the 10 Gbit/s link that is connected to the
destination switch. Also, in order to obtain a 10 Gbit/s data
flow, the migration groups where all chosen from 10 differ-
ent source and destination servers at a time and grouped by
their predicted duration. With mVM, we also observe small
peaks in the energy consumption. They correspond to the
termination of a migration group and the beginning of a new
one. In theory, these sequences follow on from each other.
However the small predictions errors (around 7%) imply
to synchronize these transitions to maintain the original

4

5

6

7

8

9

10

11

12

13

0 1 2 3 4 5 6 7 8
Duration [min.]

P

ow
er

 [k
W

]

 BtrPlace
 mVM

Figure 7. Energy consumption.

schedule and avoid actions overlapping. At the end, the
completion time exceeded the prediction by only 5 seconds.

2) Power capping capabilities: The PowerBudget con-
straint restricts the instantaneous power consumed by the
infrastructure during the reconfiguration process. As it re-
stricts the consumption over the time, this constraint can
delay some migrations or any actions, depending on their
power usage. To verify the effectiveness of the power budget
constraint on the scheduling decisions, we executed the
decommissioning scenario under a restrictive power budget
of 9 kW.

Figure 8 shows the power consumption of the predicted
and the observed scheduling. We first observe mVM reduced
the peak power consumption to stay under the threshold. In
practice, the PowerBudget constraint forced to spread the
boot actions during the first 5 minutes of the execution.
A first set of actions was executed at the beginning of the
experiment to finish at minute 2. Then, the remaining actions
where scheduled later, in smaller groups that partially over-
lap. From minute 2 to 5, we observe the power consumption
is very close to the 9 kW budget. Indeed, mVM executed
a few migrations in parallel to fill the gap and to try to
terminate the operation as soon as possible. It was however
not possible to migrate the VMs 10 by 10 contrary to the
previous experiment. As a result, the operation required 1.5
additional minutes to complete with regards to an execution
without PowerBudget (see Figure 7).

Despite we measured a prediction accuracy of 93% for
the migration durations, we observe the practical completion
time exceeds the predicted one by 32 seconds. This is mainly
explained by the larger number of synchronization points
inserted by the Executor to maintain the computed sequence
of migrations and thus comply with the capping constraint.
There is also an inevitable latency that is due to the time to
contact the hypervisors, initiate the migrations and wait for
KVM to reach the expected transfer rate.

Power budget

4

5

6

7

8

9

10

11

12

13

0 1 2 3 4 5 6 7 8 9
Duration [min.]

P

ow
er

 [k
W

]

Estimation
Observation

Figure 8. Impact of a power capping on the power usage.

D. Scalability

Computing the moment to start each migration with
regards to bandwidth requirements is NP-Hard. In practice,
the time required by mVM to compute a schedule depends
on the amount of VMs to migrate, the number of network
elements, and their bandwidth capacity. In this experiment,
we evaluate the solving duration of mVM by computing
schedules for a decommissioning scenario that is scaled up
to 10 times with regards to the experiment performed in
Section V-C. The scaling factor is applied on the aggregation
switch capacity and the number of racks. At the largest
scale, mVM and BtrPlace must then compute a schedule
for a decommissioning scenario that requires to migrate 960
VMs running inside 20 racks of 24 servers each, to 10
new racks. While all the servers are still connected to their
ToR switch through a Gigabit Ethernet link, the aggregation
switch provides a 100 Gbit/s bandwidth which we consider
as an exceptional bandwidth for a datacenter.

Figure 9 depicts the computation time that was needed
by BtrPlace and mVM to compute their best solution and
to prove their optimality. As expected, we first observe the
solving duration increases exponentially due to the nature of
the problem. We however observe this duration is low and
the performance overhead of mVM compared to BtrPlace is
acceptable with regards to its benefits in terms of migration
speed and energy efficiency. At the largest scale, mVM
requires only 1.5 additional seconds to compute the best
possible schedule. For this evaluation, both the number of
racks and the aggregation switch capacity are scaled linearly.
We should then observe a completion time reduced by
30 seconds with regards to BtrPlace, similarly to the real
experiment conducted at scale 1. This overhead is negligible
with regards to the time that is needed to execute the
resulting schedule.

At a very larger scale, the solving duration for mVM will
become significant. A solution to overcome this limitation
would be to part the operation in multiple steps. At the
moment the bandwidth used to migrate VMs exceeds the

●

●

●

●

●

● ●

●

0.0

0.5

1.0

1.5

2.0

2.5

x1 x2 x4 x10
Scale

D
ur

at
io

n
[s

ec
.]

●

●

mVM
BtrPlace

Figure 9. Solving duration of mVM and BtrPlace depending on the scale
of the decommissioning operation.

aggregation switch capacity, mVM migrates the VMs by
group. Accordingly, with a 100 Gbit/s interconnect, asking
mVM once to migrate 960 VMs or asking mVM twice
to migrate 480 VMs at each step would lead to the same
observable result while being less stressful for the datacenter
operator.

VI. RELATED WORKS

Migration scheduling in VM managers: Dynamic VM
placement algorithms embed schedulers to solve action
dependencies and ensure their theoretical feasibility. For
example, [4], [13], [15] can delay a VM migration to a server
when the memory or CPU requirements are not yet available
due to a pending outgoing migration on that server.

Current approaches are however incomplete when they
want to control the scheduling to get fast migrations. Many
works [4], [6], [13], [14] estimate the migration duration
to be equal to the VM memory usage divided by the
network bandwidth. The experiments discussed in Section V
proved that this assumption is not realistic. This ignores
the principles of the pre-copy algorithm or assumes that
the VMs do not write into their memory. It also assumes
a non-blocking network where none of the VMs to migrate
are co-located. Memory buddies [15] discusses the impact
of concurrent live-migrations. They propose to cap the
concurrency with a number to be defined. The experiments
discussed in Section V also proved that this assumption
is not optimal. Indeed, this solution improves the practical
quality of the scheduling in some cases but the concurrency
cannot be constant as it depends on the current network load
and the migration path. COMMA [11] considers the network
bandwidth and the dirty page rate to synchronize in real time
the termination of strongly communicating VM migrations.
It however assumes a single network path for all the VMs.
mVM implements the concept of COMMA with the Sync
constraint. It however has no network limitation with the
knowledge of the whole topology.

Predicting live-migration duration for simulation:
The simulation community studies carefully live-migration
performances to provide accurate cloud simulators. The
migration models of [20], [25] assume an average memory
dirty page rate that is refined during the simulation by the

analysis of the prediction errors. Our approach predict the
migration duration statically by a preliminary analysis of the
VMs load. We modeled the memory dirty page generation
in a two-stage process based on the analysis of common
workloads observation. Haikun et al. [19] propose a good
migration performance model based on the memory dirty
page transfer algorithm implemented in Xen. They consider
both static and refined dirty page rate build on historical
observations and assume that the Writable Working Set size
should be transferred in one round thereby determining the
VM downtime. In contrast, we modeled the dirty page rate
using a two-stage approach based on KVM behavior and
we consider a preset maximum downtime for each VM
migration. However, contrary to mVM they do not tackle
migration scheduling and network topology that are the main
contributions of this paper.

The CloudSim simulator [14] provides a migration model
to estimate the migration duration but the model relies on the
assumptions of Beloglasov et al. [6] discussed previously.
Takahiro et al. [26] implement the pre-copy migration algo-
rithm in the Simgrid simulator. They reproduces the memory
dirty page generation behavior but they induced it from
the CPU utilization with a proportional correlation between
them. In contrast, we defined the dirty page generation rate
statically, as a two-stage process, according to live VM
memory observations and independently of the CPU usage.
Sherif et al. [20] propose a simulator to reproduce the Xen
migration algorithm with two different models. The first
one is based on a constant average memory dirty page rate.
The second model is a dynamic algorithm that learn from
previous observations.

The aforementioned algorithms predict live-migration du-
rations under different assumptions. To the best of our un-
derstanding, our model embraces the particularities of these
algorithms without their possible restrictions. None of these
models are however devoted to be used to compute quality
migration schedules. [20], [25] reduce prediction errors with
a feedback loop. They might have a better accuracy than
our model, however, such an approach is not compatible
with the need to compute a migration plan. Furthermore,
our experimentations over a real network tested already
reports 88.8% of the migrations scheduled by mVM have
a 5 seconds slowdown at maximum against their theoretical
minimal duration.

Scheduling live-migrations: [27], [10] study the factors
that must be considered to schedule live-migrations effi-
ciently. While Ye et al.[27] focused on resource reservation
techniques on the source and the destination servers, we
focused on the network topology and the dirty page rate [10].
These two works discuss about different scheduling policies
that should be considered for the development of a migration
scheduler. However, none of them proposed that scheduler.
mVM is the migration scheduler that results from [10].

To the best of our knowledge, only Sarker et al. [25]

already propose an adhoc heuristic to schedule migrations.
The objective is to reduce the completion time according
to the network topology and a fixed dirty page rate. The
heuristic is only compared to a custom algorithm that
schedules the migrations randomly with regards to their
theoretical completion time. The accuracy of the migration
model and its practical benefits are not validated on a real
testbed. We propose with mVM a migration model based on
a two-stage process deduced from the practical observations
of the workload, our scheduler can be enhanced to support
additional constraints and we evaluated its prediction and
benefits on a real testbed.

VII. CONCLUSION

Live-migration are used on a daily basis by consolidation
algorithms and datacenter operators to manage the VMs
on production servers. Current VM managers compute a
placement of quality but usually neglect the main factors that
impact the migration duration. This leads to unnecessarily
long and costly migrations, prevents any control, and con-
sumes an excessive amount of energy. We proposed mVM,
a migration scheduler that infers the best moment to start
the actions and the amount of bandwidth to allocate to them
with regards to the VM workload, the network topology and
user-specific constraints. mVM is implemented as a set of
extensions for the VM manager BtrPlace in place of the old
scheduler.

The accuracy of the migration model and the resulting
decision capabilities of mVM have been validated through
experiments on a real network testbed compared to the
original scheduler of BtrPlace [13] and a scheduler that
mimics Memory Buddies [15] decisions. Micro-experiments
have shown that mVM outperforms both schedulers. On 50
migration plans generated randomly, migrations scheduled
by mVM completed on average 20.4% faster than Memory
Buddies, while completion times are reduced by 28.1%.
Contrarily to Memory Buddies, mVM always outperforms
sequential scheduling with a completion time speedup of
54.18% in average, while migration durations are close to the
optimal with an average duration slowdown of 7.35% only,
4.5 times lower than with Memory Buddies. Thus making
mVM more reliable.

Macro-experiments also exhibited the practical interest
of mVM to address energy concerns. On a server de-
commissioning scenario involving 96 migrations among 72
servers having their ToR switches connected by a 10 Gbit/s
aggregation switch, mVM reduced the energy consumption
of the operation by 21.5% compared to BtrPlace. We also
validated the control capacity of mVM by capping the power
consumption of a schedule. Depending on the budget, mVM
delayed migrations or server state switches to guarantee
the power consumption remains below the given threshold.
Finally, a scalability simulation reported mVM only requires
1.5 additional seconds with regards to BtrPlace to compute

a schedule for the decommissioning scenario scaled by a
factor of 10.

As a future work we want to consider the downtime as a
variable of the model to infer when it is preferable to perform
a cold migration over a live migration depending on the
environment condition and the VM SLA. We finally want to
merge the scheduler with the placement model of BtrPlace.
Indeed, some schedules might be considered sub-optimal
with respect to placement algorithm expectations in terms of
reactivity. For example, the scheduler can introduce a delay
to a migration as a consequence of a bad choice in terms
of destination server. With a tight coupling between the two
models, the placement algorithm will be able to revise its
placement with respect to the scheduling decisions.

AVAILABILITY

mVM is available as a part of the BtrPlace scheduler
under the terms of the LGPL license. It can be downloaded,
along with all the material related to the reproduction of the
experiments at http://www.btrplace.org.

ACKNOWLEDGMENTS

This work has been carried out within the European
Projects DC4Cities (FP7-ICT-2013.6.2). Experiments pre-
sented in this paper were carried out using the Grid’5000
experimental testbed [23], being developed by INRIA with
support from CNRS, RENATER and several universities as
well as other funding bodies.

REFERENCES

[1] “Service Level Agreement,” http://cloud.google.com/
compute/sla, 2015.

[2] “EC2 SLA,” http://aws.amazon.com/fr/ec2/sla/, 2013.

[3] C. Clark, K. Fraser, S. Hand, and al., “Live migration of
virtual machines,” in Proceedings of the 2nd NSDI. USENIX
Assoc., 2005.

[4] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and
J. Lawall, “Entropy: a Consolidation Manager for Clusters,”
in VEE. NY, USA: ACM, 2009.

[5] A. Verma, P. Ahuja, and A. Neogi, “pMapper: power and
migration cost aware application placement in virtualized
systems,” in Middleware ’08. Springer-Verlag NY, Inc., 2008,
pp. 243–264.

[6] A. Beloglazov and R. Buyya, “Energy Efficient Resource
Management in Virtualized Cloud Data Centers,” in Proc. of
the 0th IEEE/ACM Intl. Conference on Cluster, Cloud and
Grid Computing, ser. CCGRID ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 826–831.

[7] A. Verma, J. Bagrodia, and V. Jaiswal, “Virtual Machine
Consolidation in the Wild,” in Middleware’14. New York,
USA: ACM, 2014.

[8] “Maintenance behavior,” https://cloud.google.com/compute/
docs/instances, 2015.

[9] Dean, Jeff, “Designs, Lessons and Advice from Building
Large Distributed Systems,” in Keynote of the International
Conference on Large-Scale Distributed Systems and Middle-
ware Conference, 2009.

[10] V. Kherbache, E. Madelaine, and F. Hermenier, “Planning
Live-Migrations to Prepare Servers for Maintenance,” in
Euro-Par: Parallel Processing Workshops. Springer, 2014.

[11] J. Zheng, T. S. E. Ng, K. Sripanidkulchai, and Z. Liu,
“COMMA: Coordinating the Migration of Multi-tier Appli-
cations,” in VEE. NY, USA: ACM, 2014.

[12] X. Wang and Y. Wang, “Coordinating power control and per-
formance management for virtualized server clusters,” IEEE
Transactions on Parallel and Distributed Systems, vol. 22,
no. 2, pp. 245–259, 2011.

[13] F. Hermenier, J. Lawall, and G. Muller, “BtrPlace: A Flexible
Consolidation Manager for Highly Available Applications,”
IEEE Trans. on Dependable and Secure Computing, 2013.

[14] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose,
and R. Buyya, “CloudSim: a toolkit for modeling and simu-
lation of cloud computing environments and evaluation of
resource provisioning algorithms,” Software: Practice and
Experience, vol. 41, no. 1, 2011.

[15] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cec-
chet, and M. D. Corner, “Memory Buddies: Exploiting Page
Sharing for Smart Colocation in Virtualized Data Centers,”
in Proc. of the ACM Intl. Conference on Virtual Execution
Environments, NY, USA, 2009.

[16] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
“KVM: the Linux virtual machine monitor,” in Proceedings
of the Linux Symposium, vol. 1, 2007, pp. 225–230.

[17] N. Jussien, G. Rochart, and X. Lorca, “Choco: an Open
Source Java Constraint Programming Library,” in CPAIOR’08
Workshop on Open-Source Software for Integer and Contraint
Programming (OSSICP’08), Paris, France, 2008, pp. 1–10.

[18] A. Aggoun and N. Beldiceanu, “Extending CHIP in order to
solve complex scheduling and placement problems,” Mathe-
matical and Computer Modelling, vol. 17, no. 7, pp. 57–73,
1993.

[19] H. Liu, H. Jin, C.-Z. Xu, and X. Liao, “Performance and
energy modeling for live migration of virtual machines.”
Cluster Computing, vol. 16, no. 2, 2013.

[20] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and A. Hopper,
“Predicting the Performance of Virtual Machine Migration.”
in MASCOTS, 2010.

[21] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy Live
Migration of Virtual Machines,” SIGOPS OSR, vol. 43, no. 3,
pp. 14–26, Jul. 2009.

[22] J. Carlier, “The one-machine sequencing problem,” European
Journal of Operational Research, vol. 11, no. 1, pp. 42–47,
1982.

[23] R. Bolze, F. Cappello, M. Caron, Daydé, and al., “Grid’5000:
A Large Scale And Highly Reconfigurable Experimental
Grid Testbed,” Int. Journal of High Performance Computing
Applications.

[24] VMware Inc, “vSphere Documentation Cen-
ter,” https://pubs.vmware.com/vsphere-51/
topic/com.vmware.vsphere.vcenterhost.doc/
GUID-3B41119A-1276-404B-8BFB-A32409052449.html,
September 2015.

[25] T. Sarker and M. Tang, “Performance-driven live migration
of multiple virtual machines in datacenters,” in IEEE Inter-
national Conference on Granular Computing, 2013.

[26] T. Hirofuchi, A. Lèbre, and L. Pouilloux, “Adding a Live
Migration Model into SimGrid: One More Step Toward the
Simulation of Infrastructure-as-a-Service Concerns,” in IEEE
5th Intl. Conference on Cloud Computing Technology and
Science, vol. 1, 2013, pp. 96–103.

[27] K. Ye, X. Jiang, D. Huang, J. Chen, and B. Wang, “Live
migration of multiple virtual machines with resource reserva-
tion in cloud computing environments,” in IEEE International
Conference on Cloud Computing. IEEE, 2011, pp. 267–274.

