
ar
X

iv
:2

41
0.

21
10

1v
1

 [
cs

.C
R

]
 2

8
O

ct
 2

02
4

Fingerprinting Browsers in Encrypted

Communications

Sandhya Aneja∗ and Nagender Aneja†

∗School of Computer Science and Mathematics, Marist College, Poughkeepsie, NY, USA
†Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA

E-mail: sandhya.aneja@marist.edu, naneja@vt.edu

Abstract—Browser fingerprinting is the identification of
a browser through the network traffic captured during
communication between the browser and server. This can
be done using the HTTP protocol, browser extensions, and
other methods. This paper discusses browser fingerprinting
using the HTTPS over TLS 1.3 protocol. The study observed
that different browsers use a different number of messages
to communicate with the server, and the length of messages
also varies. To conduct the study, a network was set up
using a UTM hypervisor with one virtual machine as the
server and another as a VM with a different browser. The
communication was captured, and it was found that there
was a 30%-35% dissimilarity in the behavior of different
browsers.

Index Terms—Cosine Similarity, Browser Fingerprinting,
Network Traffic, Transport Layer Security, Web Server,
Browser

I. INTRODUCTION

Identifying the client device information is crucial for

the server, and this process was made easier by including

the user-agent header field in the HTTP protocol [1].

Browser fingerprinting [2] is common using the user-

agent field when a client communicates with a server us-

ing HTTP since HTTP communication is in plain text and

is so easier to classify the network traffic. The browser

uses many APIs, such as canvas, WebGL, web Audio

APIs, and browser extensions for user customization, such

as a password manager and video downloader. All these

attributes can be used to define a browser’s uniqueness.

Browser fingerprinting is useful because it helps identify

not only the client but also malicious users, as their

fingerprints are different from those of legitimate users.

This research is for browser fingerprinting over en-

crypted communication using the HTTPS protocol [3].

HTTPS protocol uses TLS encryption, which helps au-

thenticate the parties involved in the communication, in-

creasing the reliability and trustworthiness of the connec-

tion. However, HTTPS traffic complicates legitimate net-

work monitoring. Moreover, it has become complicated

to detect the malware since malware has started using

HTTPS. Husák et al. [4], Garn et al. [5] has proposed

the classification using the TLS handshake. However, the

method involves decryption of HTTPS fields by consid-

ering all the possible encryption parameters exchanged

during the handshake.

Our approach is based on the idea that the list of

encryption algorithms used (cipher suite list) affects how

a browser communicates with the server, which in turn

affects the message length of the communication. We treat

the message length of a page’s communication with a

browser as a vector, resulting in n vectors for n browsers.

We employ interpolation to standardize the lengths of the

vectors and calculate the dissimilarity between browsers.

a) We observed the length of TLS handshake and data

messages are different for different browsers for a

same page.

b) We used interpolation to make the length vector of

a browser messages to compare with others

c) We used cosine similarity to compare the browsers

d) We observed the difference in length is due to

cipher suite list used be TLS protocol

II. PRELIMINARIES

Transport Layer Security [6] protocol extends secure

socket layer protocol. Its current version is 1.3. This

protocol uses two phases wherein first phase is handshake

between client and server to negotiate the encryption and

integrity algorithms. The second phase is the sending the

application data using the key exchanged in first phase. In

the first phase, once integrity and encryption algorithms

are negotiated, the keys are exchanged, the data is ex-

changed. However, the record protocol parameters still

cover the application data. Encryption, key exchange and

integrity algorithms are changed from 1.2 to 1.3 version

[6] .

III. RELATED WORK

Husák et al. [4] assumed that a client uses both type

of traffics HTTP and HTTPS. The authors collected

the network traffic from the devices on the campus

and a installed web server. The authors paired HTTPS

and HTTP traffic from an IP address. They correlated

the cipher suite list from HTTPS with user-agent from

HTTP traffic. By pairing the user-agents with the cipher

suite list, they were able to identify the user-agent, host

operating system, and user application for all pairs within

the HTTPS traffic. In their traffic, there were 307 pairs

with 273 different browsers. They could identify the user-

agent in the 95% of traffic with most commonly used 10

http://arxiv.org/abs/2410.21101v1

browsers. This method is compute intensive as it requires

using all encryption algorithms of the cipher suite list.

Garn et al. [5] proposed combinatorial sequence based

browser fingerprinting for encrypted traffic of HTTPS

protocol. The authors used a Sequence covering array,

SCA(N,S, t) matrix of dimension N × S with entries

from a finite set S of s symbols. Every t−way permuta-

tion of symbols from S occurs in a atleast one row and

each row is a permutation of the s symbols. For example,

a 3-event sequences of six events occur in 10 ways instead

of 20 ways. The authors used t-event sequence of cipher

suite list of n-algorithms and tested for pairing it with the

browser instead of all n! permutations.

Laperdrix et al. [7] presented a survey on research

conducted on browser fingerprinting. The paper presents

browser fingerprinting using HTTP headers and

Application programming interfaces (API) used by the

browser. The authors have discussed the advantages of

browser fingerprinting that how the server can run a

script to get the differences in the environments of the

browser to identify user. This survey does not include

browser fingerprinting research for encrypted traffic.

IV. EXPERIMENTAL SETUP

We installed a hypervisor UTM [8] on a Apple Mac

machine with M1 processor and installed three virtual

machines Windows 11, Kali Linux and Ubuntu using

UTM. The hypervisor provides a virtual Local area net-

work between virtual machines with host machine as a

switch to connect the virtual machines to the Internet.

We installed Apache web server on the Kali Linux with

6 web pages. We installed three browsers on Windows

11 and two on Ubuntu and accessed the web pages on

these with simultaneously capturing the communication

at Wireshark. We configured openSSL also on the Kali

Linux to use generate 4096 byte key and certificate for

web server to communicate with browsers using the same

credentials for a HTTPS communication. The openSSL

use TLS 1.3 version protocol to generate key and certifi-

cate. All the browsers also use TLS 1.3 protocol thus the

communication of web pages was using TLS 1.3 protocol.

A. Data Preparation

We installed Python and TShark on the Ubuntu ma-

chine to extract the fields of TLS 1.3 protocol in a csv

file and extracted the fields using Python to compare the

behavior of the browsers. We observed that browsers were

using different length sized packets for the communi-

cation of a same page. We extracted lengths of all the

messages used by browsers for all 6 web pages in the

form of a vector. Thus, we were having 6 vectors for

each browser.

TABLE I
SIMILARITY BETWEEN DIFFERENT BROWSERS FOR URLS

Browsers url-1 url-2 url-3 url-4 url-5 url-6

Chrome-
Edge

0.480 0.771 0.957 0.427 0.999 0.601

Chrome-
Firefox

0.559 0.539 0.950 0.526 0.608 0.801

Edge-
Firefox

0.861 0.620 0.932 0.507 0.601 0.509

TABLE II
DISSIMILARITY BETWEEN DIFFERENT BROWSERS FOR URLS

Browsers url-1 url-2 url-3 url-4 url-5 url-6

Chrome-
Edge

0.520 0.229 0.043 0.573 0.001 0.399

Chrome-
Firefox

0.441 0.461 0.050 0.474 0.392 0.199

Edge-
Firefox

0.139 0.380 0.068 0.493 0.399 0.491

B. Dataset and Methodology

The browsers use different size messages and different

number of messages to communicate because of TLS

protocol for the communication. Thus the vectors from

the browsers for a web page were of different lengths.

We used cosine similarity to present the dissimilarity of

browsers. We used interpolation function of Python to

make the vectors of equal sizes for the cosine similarity

presentation. The Tables I and II represents the cosine

similarity and dissimilarity of the browsers respectively.

V. RESULTS AND DISCUSSION

Cosine similarity is a metric used to measure how sim-

ilar two vectors are. It is often used in fields such as infor-

mation retrieval, text analysis, and machine learning. The

cosine similarity is defined as cosine of angle between

two vectors in a multi-dimensional space. The resulting

value can be from −1 to 1, where the values 1, 0,−11
indicates vectors are identical, orthogonal (no similarity),

and diametrically opposite respectively. However, in our

case, the range of metric is between 0 and 1 since the

vector formed with length of messages communicated for

handshake of TLS protocol is greater than zero. Thus, the

cosine similarity would be between 0 and 1.

cosine similarity(~A, ~B) =
~A · ~B

‖ ~A‖‖ ~B‖

cosine dissimilarity(~A, ~B) = 1−
~A · ~B

‖ ~A‖‖ ~B‖
(1)

Equations 2 and 3 represent two example vectors cor-

responding to different browsers for the same webpage.

If necessary, the vectors are interpolated to ensure equal

lengths before calculating the cosine similarity.

v1
T =

327 1514 70 84 327 1514
70 84 391 1514 70 84
295 1514 70 118 146 539
133 133 104 85 85 350
220 69 122 402 100 78

(2)

v2
T =

295 1514 70 84 359 1514
70 84 359 1514 70 118
146 549 133 183 85 85
350 220 92 122 402 100
78

(3)

We observe that for a web page the dissimilarity may

be high up to maximum 52% while it may be low as .01

%. The probability of low dissimilarity is .05 which is

also very small. We can see that we get Chrome-Edge

mean dissimilarity as 30.94%, Chrome-Firefox mean dis-

similarity as 33.57% and Edge-Firefox mean disimilarity

as 32.77%. Thus, the proposed approach is able to dis-

tinguish the three browsers upto a large extent.

VI. CONCLUSION AND FUTURE WORK

The browser fingerprinting is important not only from

the server perspective to recognize the difference in envi-

ronment of browsers but also it is required to identify the

malicious users. Therefore it is required to study browser

fingerprinting with encrypted communication also for risk

analysis. In future, we propose to extend the work to many

existing web browsers and by capturing the traffic over

campus and apply machine learning over a large dataset.

Looking into the features from other protocols such

as TCP protocol can improve the accuracy of browser

fingerprinting.

REFERENCES

[1] R. T. Fielding, H. Nielsen, J. Mogul, J. Gettys,

and T. Berners-Lee, “Hypertext Transfer Protocol

– HTTP/1.1,” RFC 2068, Jan. 1997. [Online].

Available: https://www.rfc-editor.org/info/rfc2068

[2] D. Zhang, J. Zhang, Y. Bu, B. Chen, C. Sun, and

T. Wang, “A survey of browser fingerprint research

and application,” Wireless Communications and Mo-

bile Computing, vol. 2022, no. 1, p. 3363335, 2022.

[3] E. Rescorla and A. Schiffman, “The

Secure HyperText Transfer Protocol,”

RFC 2660, 1999. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc2660

[4] M. Husák, M. Čermák, T. Jirsı́k, and P. Čeleda,

“HTTPS traffic analysis and client identification using

passive SSL/TLS fingerprinting,” EURASIP Journal

on Information Security, vol. 2016, pp. 1–14, 2016.

[5] B. Garn, D. E. Simos, S. Zauner, R. Kuhn, and

R. Kacker, “Browser fingerprinting using combina-

torial sequence testing,” in Proceedings of the 6th

Annual Symposium on Hot Topics in the Science of

Security, 2019, pp. 1–9.

[6] Wikipedia, “Transport layer security.”

[7] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine,

“Browser fingerprinting: A survey,” ACM Transac-

tions on the Web (TWEB), vol. 14, no. 2, pp. 1–33,

2020.

[8] UTM, “Virtual machines for mac.”

https://www.rfc-editor.org/info/rfc2068
https://datatracker.ietf.org/doc/html/rfc2660

	Introduction
	Preliminaries
	Related Work
	Experimental Setup
	Data Preparation
	Dataset and Methodology

	Results and Discussion
	Conclusion and Future Work

