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Figure 1: FAIRVIS integrates multiple coordinated views for discovering intersectional bias. Above, our user investigates the
intersectional subgroups of sex and race. A. The Feature Distribution View allows users to visualize each feature’s distribution and
generate subgroups. B. The Subgroup Overview lets users select various fairness metrics to see the global average per metric

and compare subgroups to one another, e.g.,

versus hovered African-American Males. The plots for

Recall and False Positive Rate show that for African-American Males, the model has relatively high recall but also the highest false
positive rate out of all subgroups of sex and race. C. The Detailed Comparison View lets users compare the details of two groups
and investigate their class balances. Since the difference in False Positive Rates between Caucasian Males and African-American
Males is far larger than their difference in base rates, a user suspects this part of the model merits further inquiry. D. The Suggested
and Similar Subgroup View shows suggested subgroups ranked by the worst performance in a given metric.

ABSTRACT

The growing capability and accessibility of machine learning has
led to its application to many real-world domains and data about
people. Despite the benefits algorithmic systems may bring, models
can reflect, inject, or exacerbate implicit and explicit societal biases
into their outputs, disadvantaging certain demographic subgroups.
Discovering which biases a machine learning model has introduced
is a great challenge, due to the numerous definitions of fairness and
the large number of potentially impacted subgroups. We present
FAIRV1S, a mixed-initiative visual analytics system that integrates a
novel subgroup discovery technique for users to audit the fairness
of machine learning models. Through FAIRVIS, users can apply
domain knowledge to generate and investigate known subgroups, and
explore suggested and similar subgroups. FAIRVIS’s coordinated
views enable users to explore a high-level overview of subgroup
performance and subsequently drill down into detailed investigation
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of specific subgroups. We show how FAIRVIS helps to discover
biases in two real datasets used in predicting income and recidivism.
As a visual analytics system devoted to discovering bias in machine
learning, FAIRVIS demonstrates how interactive visualization may
help data scientists and the general public understand and create
more equitable algorithmic systems.

Keywords: Machine learning fairness, visual analytics, intersec-
tional bias, subgroup discovery

1 INTRODUCTION

In recent years, significant strides have been made in machine
learning (ML), enabling automated, data-driven systems to tackle
ever more challenging and complex tasks. Many of the new domains
in which these novel techniques are being applied are human-focused
and consequential, including hiring, predictive policing, predicting
criminal recidivism, and pedestrian detection. The latter two cases
are examples where differing levels of predictive accuracy have been
observed for different demographic groups [8}136].

When deploying ML to these societally impactful domains, it is
vital to understand how models are performing on all different types
of people and populations. ML algorithms are usually trained to
maximize the overall accuracy and performance of their model, but



often do not take into account disparities in performance between
populations. The trained models thus provide no guarantees as to
how well they will perform on different subgroups of a dataset.

The potential disparity in performance between populations may
have many sources; an ML model can naturally encode implicit and
explicit societal biases S]], which is often referred to as algorithmic
bias. Performance disparity can arise for a variety of reasons: the
training data may not be representative, either in terms of its rep-
resentation of different demographic groups or within a particular
demographic group; the training data labels may have errors which
reflect societal biases, or be an imperfect proxy for the ultimate
learning task; unequal rates of labels across demographic groups;
the model class may be overly simple to capture more nuanced rela-
tionships between features for certain groups; and more [8]. A stark
example of algorithmic bias in deployed systems was discovered by
Buolamwini and Gebru’s Gender Shades study [7], who showed that
many commercially available gender classification systems from
facial image data had accuracy gaps of over 30% between darker
skinned women and lighter skinned men. While the overall models’
accuracies hovered around 90%, darker skinned women were classi-
fied with accuracy as low as 65% while the models’ accuracies on
lighter skinned men were nearly 100%.

In order to discover and address potential issues before ML sys-
tems are deployed, it is vital to audit ML models for algorithmic bias.
Unfortunately, discovering biases can be a daunting task, often due
to the inherent intersectionality of bias as shown by Buolamwini and
Gebru [7]. Intersectional bias is bias that is present when looking at
populations that are defined by multiple features, for example “Black
Females” instead of just people who are “Black” or “Female”. The
difficulty in finding intersectional bias is pronounced in the Gender
Shades study introduced above — while there were performance
differences when looking at sex and skin color individually, the
significant gaps in performance were only found when looking at
the intersection of the two features. An example of how aggregated
measures can hide intersectional bias can be seen in[Fig. 2]

In addition to the intersectional nature of bias, addressing bias is
challenging due to the numerous proposed definitions of unfairness.
The metrics for measuring a model’s fairness include measuring a
model’s group-specific false positive rates, calibration, and more.
While a user may decide on one or more metrics to focus on, achiev-
ing true algorithmic fairness can be an insurmountable challenge. In
we describe how recent research has shown that it is often
impossible to fulfill multiple definitions of fairness at once.

While it can be straightforward to audit for intersectional bias
when looking at a small number of features and a single fairness
definition, it becomes much more challenging with a large num-
ber of potential groups and multiple metrics. When investigating
intersectional bias of more than a few features, the number of popu-
lations grows combinatorially and quickly becomes unmanageable.
Data scientists often have to balance the tradeoffs between various
fairness metrics when making changes to their models.

To help data scientists better audit their models for intersectional
bias, we introduce FAIRVIS, a novel visual analytics system dedi-
cated to helping audit the fairness of ML models. FAIRVIS’s major
contributions include:

* Visual analytics system for discovering intersectional bias.
FAIRVIS is a mixed-initiative system that allows users to explore
both suggested and user-specified subgroups that incorporate a
user’s existing domain knowledge. Users can visualize how these
groups rank on various common fairness and performance met-
rics and contextualize subgroup performance in terms of other
groups and overall performance. Additionally, users can com-
pare the feature distributions of groups to make hypotheses about
why their performance differs. Lastly, users can explore similar
subgroups to compare metrics and feature values.
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Figure 2: This illustrative example highlights how inequities in popula-
tions can be masked by aggregate metrics. While the classifier in this
example has an accuracy of between 66.6% and 72.2% when looking
at groups defined by a single feature, the accuracy drops to as low as
40% when looking at the intersectional subgroups.

* Novel subgroup generation technique. In order to aid users
in exploring a combinatorially large number of subgroups, we
introduce a new subgroup generation technique to recommend
intersectional groups on which a model may be underperforming.
We first run clustering on the training dataset to find statisti-
cally similar subgroups of instances. Next, we use an entropy
technique to find important features and calculate fairness met-
rics for the clusters. Lastly, we present users with the generated
subgroups sorted by important and anomalously low fairness met-
rics. These automated suggestions can aid users in discovering
subgroups on which a model is underperforming.

* Method for similar subgroup discovery. Once a subgroup for
which a model has poor performance has been identified, it can
be useful to look at similar subgroups to compare their values
and performance. We use similarity in the form of statistical
divergence between feature distributions to find subgroups that
are statistically similar. Users can then compare similar groups to
discover which value differences impact performance or to form
more general subgroups of fewer features.

2 BACKGROUND IN MACHINE LEARNING FAIRNESS

Significant discoveries and advances have been made in algo-
rithmic bias detection, mitigation, and machine learning fairness
in recent years. Most of the work stems from theoretical computer
scientists and sociologists focusing on the mathematical foundations
and societal impacts of machine learning.

A major difficulty in machine learning fairness is that it is mathe-
matically impossible to fulfill all definitions of fairness simultane-
ously when populations have different base rates. This incompati-
bility between fairness metrics was formalized by the impossibility
theorem for fair machine learning. Two papers [14,24]] simultane-
ously proved that if groups have different base rates in their labels, it
is statistically impossible to ensure fairness across three base fairness
metrics — balance for the positive class, balance for the negative
class, and calibration of the model. Data scientists must therefore
decide which fairness metrics to prioritize in a model and how to
make trade-offs between metric performance.

The implications of this discovery were made apparent in the
recidivism prediction tool COMPAS, a system that is used to predict
the risk of letting someone go on bail. A ProPublica article [3]]
showed that COMPAS is more likely to rank a Black defendant as
higher risk than a White defendant given that they have equal base
rates. A follow-up study showed that while COMPAS is not balanced
for the positive class prediction, it is well calibrated, meaning that
the model provides similarly accurate scores for both groups relative
to their base rates [[12]]. Due to inherent base rate differences, it is



not possible for COMPAS to meet the all three fairness definitions
at once. We explore this dataset more in[Sect. 6.1]

There have been various solutions proposed for addressing algo-
rithmic bias in machine learning across the entire model training
pipeline. These range from techniques for obfuscating sensitive
variables in training data [37], to new regularization parameters for
training [6] and post-processing outcomes by adding noise to pre-
dictions [17]. While these can help balance certain inequities, the
impossibility theorem dictates that hard decisions will still have to be
made about which fairness metrics are the most important for each
problem. Ideally, over time these will become standard processes
for ensuring model fairness, and tools like FAIRV1IS can be used to
ensure their effectiveness and investigate tradeoffs between metrics.

3 RELATED WORK
3.1 Intersectional Bias

Important innovations have come from the machine learning com-
munity in relation to intersectional bias.

Kearns et al. [23]] proposes a framework for auditing a (possibly
very large) number of subgroups for unfair treatment. Their work
has the same high-level concerns that motivate this project: that there
may be a very large number of intersectional groups over which one
wants to satisfy some notion of fairness. However, for their work,
they assume the collection of these groups is predefined for the task
at hand, and construct an algorithm for creating a distribution over
classifiers which (approximately) minimizes a particular fairness
metric over all the subgroups simultaneously. Our work differs
from theirs in several key ways. First, we aim to operate in a space
where a predefined notion of groups is not necessarily available,
and so cooperation between an automated system and a domain
expert might be necessary to uncover subgroups whose treatment
by a particular model is problematic. Second, our goal is to help a
user explore their model and dataset for a deeper understanding of
why the model might be treating particular groups very differently,
a far different task compared to aiming to satisfy a particular fair-
ness metric without delving into the data-dependent sources of this
different treatment. This deeper model understanding will facilitate
task-specific interventions and promote a deeper understanding of a
learning task, a dataset’s suitability to this task, and whether a model
(class) matches the dataset and task.

Recent techniques have also been proposed for discovering and
analyzing intersectional bias. Most similar to our work is Slice
Finder [9], a technique for automatically generating subgroups. Slice
Finder takes a top-down approach to generating subgroups, adding
features to create more granular groups until the training loss is statis-
tically significant. Our technique for automated subgroup discovery
is bottom-up, clustering instances without imposing any structure on
the features used. In addition to potentially generating more diverse
subgroups, our subgroups are not tied to training loss, allowing us
to use any performance metric to order and suggest subgroups.

3.2 Visual Analytics for Machine Learning

There is a large body of work on visual analytics techniques for
understanding and developing machine learning models [2, 122} [25]
301 132]|. Various systems have been created focused on helping users
understand how complex models work and visually debugging their
outputs [33]]. Additionally, systems have been introduced that en-
able users to analyze production-level models [21]] and the full ML
workflow from training to production [2} 25 30]. These visual sys-
tems have been shown to aid users in understanding and developing
machine learning models [19]].

The research most directly related to the present work are tech-
niques for analyzing both datasets and the results of machine learn-
ing models. MLCube [22] is a visualization technique that allows
users to compare the accuracy of groups defined by at most two
features. Squares [32] introduces a novel encoding for visually

understanding the performance of a multi-class classifier. Finally,
Facets [1] is a visualization system for interactively exploring and
subdividing large datasets. While these systems provide novel and
useful methods for exploring data and outcomes, they are limited
by the complexity of subgroups and number of performance metrics
they support, essential features for auditing for intersectional bias.
While there are various visual systems for analyzing machine
learning models, there have been few advancements in visual
systems or techniques focused on algorithmic bias and fair ma-
chine learning. One notable exception is the What-If tool from
Google [16]]. The What-If tool is a more general data exploration
tool that combines dataset exploration with counterfactual explana-
tions and fairness modifications. Users can explore a dataset using
the Facets interface, and then look for counterfactual [27] explana-
tions for specific instances. There is also a feature that allows users
to modify a classifier’s threshold to change which fairness principles
are being satisfied. While the What-If tool is a powerful data explo-
ration tool, it does not allow users to explore intersectional bias nor
does it aid users in auditing the performance of specific subgroups.

4 DESIGN CHALLENGES AND GOALS

Our goal is to build an interactive visual interface to help users
explore the fairness of their machine learning models and discover
potential biases. Many of the challenges present in auditing for
bias derive from the combinatorial number of subgroups generated
when looking at various features. Additionally, any visual system
must convey multiple fairness metrics for a subgroup. A successful
visual system should allow users to narrow the large search space
of possible subgroups. We formalize these important factors in the
design of FAIRVIS with the following key design challenges:

4.1 Design Challenges

C1. Auditing the performance of known subgroups. For many
datasets and problem definitions, users already know of certain
populations for which they want to ensure fair outcomes. [34] It
is often cumbersome and slow to manually generate and calculate
various performance metrics for subgroups. A system should enable
users to generate any type of subgroup they want to investigate, and
efficiently generate and calculate metrics for it [20].

C2. Contextualizing subgroup performance in relation to
multiple metrics and other groups. To measure the severity of
bias against a certain subgroup, it is important to know how the
subgroup is performing in relation to the overall model. Any visual
encoding of subgroup performance should convey how groups per-
form for different performance metrics [17] and in relation to other
subgroups. Our interface should also allow users to drill down into
subgroup details while maintaining the high-level view.

C3. Discovering significant subgroups in a large search space.
When investigating intersectional bias, there could be hundreds or
thousands of subgroups a user may need to look at [23]. It is often
not feasible to analyze every group, so deciding how to prioritize
subgroups is an important and difficult task. Methods for discovering
and suggesting potential groups can aid users in searching this large
space and finding potential issues more efficiently.

C4. Finding similar subgroups to investigate feature impor-
tance and more general groups. When a biased subgroup has been
identified, it can be informative to look at the performance of sim-
ilar subgroups to draw conclusions about feature importance or to
create more general groups [13} 38]]. This is a difficult task since
an immense number of potential subgroups have to be searched to
find similar subgroups, and it is not clear how similarity between
subgroups should be defined or calculated.

CS. Emphasizing the inherent trade-offs between fairness
metrics. Classifiers are often not able to fulfill all measures of fair-
ness if the base rates between populations are different, as proven by
the impossibility of fairness theorem (Sect. 2). This means users of-
ten have to keep in mind the tradeoffs between fairness metrics when



deciding what modifications to make to their models. It is essen-
tial to show the various fairness metrics when displaying subgroup
performance and emphasize their tradeoffs.

C6. Suggesting potential causes of biased behavior. How to
address bias in machine learning models is a difficult and open ques-
tion, but there are indicators that can help users start to improve their
models. Emphasizing information like ground-truth label balance,
subgroup entropy, and data distribution can point users in the right
direction for addressing biases [17,26].

4.2 Design Goals

Using the design challenges we identified for ML bias discovery,
we iterated and developed design goals for FAIRVIS. The following
goals address the challenges presented in[Sect. 4.1} and align with
the primary interface components of our system:

G1. Fast generation of user-specified subgroups. Since users
often have domain knowledge about important subgroups they want
to ensure fairness for (C1), quickly generating these groups to enable
investigation is vital. Users should be able to select either entire
features (e.g. “race”) or specific values (e.g. “white” or “black”) to
generate groups of any feature combination (C3). Users should then
be able to explore the performance of these groups in detail.

G2. Combined overview relationships with detailed informa-
tion of subgroup performance. To understand the magnitude and
type of bias a model has encoded for a subgroup, it is important
to show the performance of the group in relation to the overall and
other subgroups’ performance (C2). At the same time, the interface
should also display detailed information about the performance of
the selected subgroup (C6). We aim to achieve this by using multiple,
coordinated views that can handle different fairness metrics (C5).

G3. Suggested under-performing subgroups for user investi-
gation. When more than a couple of features are used to define
subgroups, the number of generated groups grows combinatorially
(C3). We aim to develop both an algorithmic technique for automat-
ically discovering potentially under-performing subgroups and an
intuitive visual encoding for suggesting discovered groups to the
user. By suggesting these groups automatically, we can make the
subgroup discovery process quicker and potentially discover groups
the user had not originally thought about (C2).

G4. Efficient calculation of similar subgroups. For any given
subgroup, there is a combinatorially large space of groups that need
to be searched to find similar groups (C3). Since it is often useful
to look at similar subgroups to analyze the importance of certain
features or to generate more general groups, we aim to develop a
technique that efficiently discover these similar groups (C4, C6).

GS. Effective visual interfaces for subgroup comparison.
Users may want to analyze two subgroups side by side to compare
their values or performance (C2). We aim to provide an intuitive
interface for highlighting the differences between two groups. Users
can compare these groups to help pinpoint which features or values
are causing the difference in fairness metrics (C6).

5 FAIRVIS: DISCOVERING INTERSECTIONAL BIAS

From the design challenges introduced in Section 4, we have
developed FAIRVIS, a visual analytics system for discovering inter-
sectional bias in machine learning models. To meet the listed design
goals, we developed two novel techniques to generate underper-
forming subgroups and find similar subgroups. We combine these
techniques in a web-based system that tightly integrates multiple,
coordinated views to help users discover fairness issues in known
and unknown subgroups.

Our interface consists of four primary views, the Feature Distri-
bution View (Sect. 5.1)), Subgroup Overview (Sect. 5.2), Suggested
and Similar Subgroup View (Sect. 5.3} [Sect. 5.4)), and Detailed Com-
parison View (Sect. 5.5). The Feature Distribution View gives users
an overview of the dataset distribution and allows them to generate
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Figure 3: The Feature Distribution View allows users to explore both
the distributions of each feature in the entire dataset and also create
user-specified groups out of features or specific values. When a user
hovers over a bar such as “Male”, it shows the number of instances
for that value. Red bars show the distribution of the pinned group (in
this case “White Males”) from the Subgroup Overview .

groups to visualize in the Subgroup Overview. Users can then add
additional subgroups provided by the Suggested and Similar Sub-
group View, and compare and further analyze them in the Detailed
Comparison View. Each section of our interface aligns with one of
the stated design goals, addressing each desired feature.

5.1 Feature Distribution View & Subgroup Creation [G1]

The left sidebar, or Feature Distribution View, acts as both a high-
level overview of a dataset’s distribution and the interface for gen-
erating user-specified subgroups. As a starting place for FAIRVIS,
the Feature Distribution View helps users develop an idea of their
dataset’s makeup and begin auditing subgroups right away.

Feature distribution. A large part of understanding model per-
formance is understanding how the data used to train a model is
distributed (C6). We enable users to investigate feature distributions
by providing large, interactive histograms for each feature for the
entire dataset, as seen in[Fig. 3| These histograms treat all features
as categorical and when a user hovers over a bar, a tooltip shows the
value of this category and how many instances there are with that
value in the entire dataset. Furthermore, clicking on one of the rows
reveals a collapsible view of all the possible values for the feature.
Users are also able to hover over the expanded values to see their
location in the histogram.

Subgroup generation. The Feature Distribution View also al-
lows users to generate user-specified subgroups. Model developers
are often aware of certain intersectional subgroups for which they
want to ensure fairness (C1). We define a subgroup as a subset of a
dataset in which all instances share certain values, e.g., the subgroup
of blue circles in[Fig. 2]

Our interface allows users to generate both specific subgroups
and all subgroups of multiple features by selecting a combination
of features and values. For instance in[Fig. 3} if a user checks the
feature “race” and “sex”, then mutually exclusive subgroups will
be generated out of all the instances in the dataset divided on their
values for “race” and “sex”. However, if a user wants to investigate
a particular subgroup, they can select a specific value for “race” and
“sex” to add a subgroup of all instances with those specific values.
Users can pick any number and combination of features and values
by which to define their subgroups, and thus are at liberty to define
how general or specific the subgroups they want to explore are.

5.2 Subgroup Overview [G2]

Once a user has generated subgroups, they should be able to un-
derstand which subgroups the model is underperforming on across
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Figure 4: In the Subgroup Overview users can see how different subgroups compare to one another according to various performance metrics. As

more metrics are selected at the top, additional strip plots are added to the interface. Here, a user has

over the Male subgroup.

various metrics and further investigate interesting subgroups (C2).
The Subgroup Overview provides a high-level view of this informa-
tion as multiple interactive and dynamic strip plots (C2).

When a user clicks the “Generate Subgroups” button (Fig. 3),
FAIRVIS splits the data into the specified subgroups and calculates
various performance metrics for them. These groups are then rep-
resented in the multiple strip plots as lines corresponding to their
performance for the respective metric.

Visualizing multiple fairness metrics. Due to the inherent trade-
offs between different fairness requirements as shown by the im-
possibility theorem, users must choose which metrics they want
to prioritize and investigate (C5). To facilitate this interaction, we
allow users to select which metrics are displayed in the Subgroup
Overview by adding and removing performance metrics through
the bar seen at the top of Selecting a new metric adds an
additional strip plot for that metric with all the current subgroups.
We also show the corresponding dataset average per metric in each
strip plot to provide context as to how each subgroup is doing in
relation to the overall dataset.

In total, users can select from the following metrics: Accuracy,
Recall, Specificity, Precision, Negative Predictive Value, False Nega-
tive Rate, False Positive Rate, False Discovery Rate, False Omission
Rate, and F1 score. These metrics were selected as they are typi-
cally the most common metrics used for evaluating the equity and
performance of classification models. The performance metrics are
derived from the same base outcome rates of true positives, true
negatives, false positives, and false negatives. If users find that they
need different metrics for performance, they can add a new definition
using the base rates which are available in the system.

When a user hovers over a subgroup in a strip plot, the corre-
sponding group is highlighted on every plot currently displayed.
This allows users to see how an individual group performs on several
different metrics at once [C2, C5]. To further investigate a subgroup,
the user can click on a bar to pin the group and use the Detailed
Comparison View to further investigate the group.

Choice of visual encoding. We chose a strip plot to visualize
performance metrics since it allows users to focus on the relative
magnitude of subgroup performance in relation to other subgroups
and the overall dataset performance. By juxtaposing plots, users are
able to see how different metrics are spread out [[15]. One of the
shortcomings of strip plots is that they can become crowded and
hard to use with a large number of subgroups. We address this issue
by allowing users to filter the strip plot by subgroup size. While
subgroups come in all sizes, groups that are only a few instances are
usually not statistically significant enough to draw conclusions from.
The size filtering mechanism can help users narrow their search
space (C3) and improve the functionality of the strip plot.

While designing our system we considered different visual en-

the Female subgroup and hovers

codings for displaying subgroups, especially a scatterplot matrix.
We decided to use a strip plot over a scatterplot matrix for several
reasons. First, since each of the performance metrics is derived from
the same base rates, many of the relationships between metrics are
arithmetic and not indicative of interesting patterns. We investigated
outliers and found that they did not systematically represent any in-
teresting subgroups. Additionally, scatterplot matrices redundantly
encode information, as every metric is displayed multiple times. Our
strip plot implementation only includes each metric once while still
allowing users to see how the group performs in regards to other
metrics. Multiple strip plots allow us to display the most important
information in a clean and understandable manner; namely, how a
given subgroup is performing for selected metrics and in relation to
the overall dataset and other subgroups.

5.3 Suggested Subgroups [G3]

While many users may know of certain groups in their dataset they
need to ensure fairness for, it is possible that the model developer
has little domain knowledge and does not know where to start. Since
there are a combinatorially large number of subgroups in a dataset, it
is daunting and often times not feasible to manually inspect groups
for every combination of features.

To help the user find potentially biased subgroups, we generate
subgroups algorithmically and present them to the user for investiga-
tion. The Suggested and Similar Subgroup View at the bottom of the
interface displays these subgroups and allows the user to sort them
by any fairness metric to discover underperforming subgroups (C3).

5.3.1 Generating and Describing Suggested Subgroups

To create the suggested subgroups, we use a clustering-based gen-
eration technique. By clustering instances, we can generate groups
with significant statistical similarity that can be described by a few
dominant features. We can subsequently calculate their performance
metrics and display them to the user.

We first cluster all the data instances by their feature values in one-
hot encoded form. We use K-means as our clustering algorithm [18]]
with K-means++ as the seeding [4)]. Users are able to choose the
hyperparameter K to balance the number and size of generated
subgroups — a smaller K produces larger, less defined groups while
a larger K has the opposite effect. Users run the clustering as a
pre-processing script before uploading their data to FAIRVIS.

We also experimented with more sophisticated clustering algo-
rithms like the density-based algorithms DBSCAN and OPTICS,
which can generate arbitrarily shaped and sized clusters. While
the statistical quality of the density-based clusters can be higher,
we found that the flexibility provided by allowing users to modity
K is more helpful for discovering important and useful subgroups.
Additionally, we found that since we were clustering on many one



hot encoded categorical features, DBSCAN’s notion of density was
not as useful and K-means produced higher quality clusters. Given
prior successful application of K-means to a variety of problems and
tasks with both categorical and numerical features, we decided to
first adapt K-means for FAIRVIS [10} 28].

Once the clusters have been generated, the makeup of the group
must be described to the user. A cluster’s instances are made up of a
variety of values for each feature, but some features may be more
dominated by one value than others. We define a dominated feature
as a feature that consists of mostly one value, the dominant value
in a subgroup. For example, if a cluster is 99% male for the feature
sex, sex is a dominated feature with a dominant value of male.

The most dominant features can be used to describe the makeup
of a subgroup to the users. We rank how dominant features of a
group are by calculating the entropy of each feature distribution over
its values. Entropy is used since it describes how uniform a feature
is. The closer a feature’s entropy is to 0, the more concentrated the
feature is in one value, making it more dominant in that subgroup.

We formalize the technique for finding dominant features as fol-
lows. Suppose we have a set of features, .# = {f1, f2, ..., fi, .- }, with
each feature, f;, having a set of possible values, V; = {v;;,vp,...}.
We calculate the feature entropy for the k-th subgroup and i-th fea-
ture, Sy ;, as follows:

Ski=—Y,

veV;

Nk,v Io Nk.v
N, BN

1)

where Ny is the number of instances in the k-th subgroup, and N,
is the number of instances in the k-th subgroup with value v. For
example, if all the instances of subgroup k have value v3 (e.g.,
India), for the feature f3 (e.g., native country), the feature entropy is
0 and f3 is a dominant feature for the subgroup.

5.3.2 Displaying Suggested Subgroups

We display the generated subgroups in the Suggested and Similar
Subgroup View at the bottom of the interface, as seen in[Fig. 3] Since
the generated subgroups are not strictly defined by a few features,
it is important to show the feature distributions for each feature
in a group. Each suggested subgroup has a list of its features and
dominant value, along with a histogram of the value distribution for
each feature. The features are sorted according to their dominance,
with the dominant value being displayed under the feature name.
This interface allows users to see what values make up a subgroup
and develop an idea of which subgroups may be underperforming.

To explore the groups, users can filter and sort the groups to refine
their search space (C3). Since users may find certain metrics more
important than others for certain problems, they can choose which
metrics to sort the suggested groups by in ascending order (CS5). For
example, if for a given problem recall is an important metric, users
can find generated subgroups with the lowest recall.

Furthermore, users can use the same size slider used to filter
the Subgroup Overview by size to filter the generated subgroups.
Similar to the reasoning for filtering by size in the strip plot, very
small groups may not be large enough to draw statistically significant
conclusions from. Filtering the groups can remove noise and help
users further refine their search space of problematic groups.

Users can hover over a suggested subgroup card to show its de-
tailed performance metrics in the Detailed Comparison View and add
the group to the Subgroup Overview. If a user wants to investigate
the group further, they can click on the card, pinning the group and
allowing them to compare it to other groups or export it for sharing.

5.4 Similar Subgroups [G4]

Once a user has discovered an interesting subgroup, it can be helpful
to look at similar subgroups to either investigate the impact of certain
features or to find more general groups with performance issues (C4).

Finding similar groups is difficult since it is not a well defined task
and can require searching a combinatorially large space.

To formalize similarity and refine the subgroup search space, we
apply ideas from statistics and machine learning explainability to
this task. When comparing suggested subgroups, we use similarity
in the form of statistical divergence to compare how closely related
groups are. For user-specified subgroups, we apply the concept of
counterfactual explanations by finding groups with minimal value
differences that have significantly different performance.

5.4.1 Finding Similar Subgroups

Similarity between subgroups can be thought of as the statistical
distance between the feature distributions of groups; the more values
two subgroups share, the more similar we consider them. Statistical
distance can be measured in a variety of ways, but we found Jensen-
Shannon (JS) divergence to be a good measure for our use case.
As a derived form of Kullback-Leibler divergence, JS divergence
is a similar measure with the benefits of being bi-directional and
always having a finite value. Since we often have zero-probability
values, JS divergence makes calculating statistical similarity more
straightforward and standardized.

We calculate similarity between groups by summing the JS di-
vergence between all features for a pair of subgroups. This sum
gives us a measure of how similar two subgroups are on aggregate.
Formally, we calculate the total distance D between subgroups k and
k' as follows, where Gy, r represents the value distribution of feature
f in subgroup k:

D(k,K') =Y IS(GrzllGr.p). 2
feF

This definition of subgroup similarity applies most directly to the
suggested subgroups that have some distribution over values for each
feature. When comparing two suggested subgroups against each
other, we can use the formal definition of JS divergence and sum
the average distance of their feature distributions. For comparing
user-specified and suggested subgroups against each other we can
use a similar technique with a small optimization — since user-
specified subgroups will have O probability for all values but the
selected values in each feature, it is only necessary to calculate the
JS divergence for the values present in the user-specified group.

User-specified subgroup comparison. The final potential case
for comparison is between two user-specified subgroups. The use of
JS divergence as a measure of similarity begins to break down and
lose its utility for this use case. The divergence will only ever be one
when groups have the same value for a feature or zero when they do
not. This metric in practice just counts the number of features with
the same value between two groups. While this measure provides
some information about subgroup similarity, it is not as informative
or accurate as it is when comparing distributions over features in the
other two cases.

To provide a more useful comparison of groups, we use the idea
of counterfactual explanations [35] which are usually presented in
the following form: What are the minimum number of features we
have to change to switch the classification of an instance?

Since we are looking at subgroups of multiple instances instead
of individual examples, we use a modified notion of counterfactuals
for comparing user-specified subgroups: If we only switch one or
two feature values for a subgroup, which similar groups have the
most surprising changes in performance? This question can help
users answer similar questions as they would for the groups found
using JS divergence.

5.4.2 Displaying Similar Subgroups

Once similar subgroups have been found for a selected subgroup,
we reuse the Suggested and Similar Subgroup View from|Sect. 5.3
to display the groups to the user. Each subgroup is represented
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Figure 5: Here we can see the Suggested and Similar Subgroup View for both suggested and similar subgroups. Users can hover over any card
to see detailed feature and performance information in the Detailed Comparison View.

by a card containing a group number and the size of the subgroup.
Since selecting a subgroup displays its information in the Detailed
Comparison View, only the information most pertinent to deciding
which subgroup to investigate should be displayed.

Continuing with the philosophy of treating similar groups as
counterfactuals, we display the primary feature difference between
two groups in the case of user-specified subgroups, and the most
divergent feature for suggested subgroups. By displaying the fea-
ture difference, we emphasize the importance of that feature in the
performance difference between the groups.

The same two primary interactions are available for exploring
similar groups: sorting and filtering (C3). Users can sort the groups
by any fairness metric and filter the groups by size. As with the
strip plot and suggested views, this mechanism helps users find
statistically significant subgroups that the model is underperforming
for in metrics the user finds important.

Similar subgroup importance. Similar subgroups can be infor-
mative in two primary manners: finding features which are important
for performance and discovering more general subgroups. Given
that we are looking at two similar subgroups, they likely only differ
in one or two features. If the performance between these two groups
is vastly different, it is indicative that the features which are differ-
ent may contribute significantly to performance (C6). On the other
hand, if the two groups have very similar performance, it may mean
that a broader subgroup not split using the differing features is also
underperforming and should be analyzed.

5.5 Detailed Subgroup Analysis and Comparison [G5]

The final step in discovering and formalizing group inequity is to
examine the details of a subgroup’s features and performance. We
enable this interaction with the Detailed Comparison View on the
right hand side of the system.

A user is able to see the details for two groups in the Detailed
Comparison View, the pinned and hovered group. A group can be
pinned when a user clicks on it in the Subgroup Overview or Sug-
gested and Similar Subgroup View, and is designated by a light red
across the UL The hovered group is designated by a light blue across
the UL These two distinct colors allow users to see a selected group’s
information across various different views.

There are three primary components in the Detailed Comparison
View, as seen in |[Fig. 6 The topmost component is a bar chart
displaying how a group performs for selected performance metrics.
While users can see the values of the fairness metrics in the strip
plot, the bar chart allows users to see the specific values and enables
comparison between groups with a grouped bar chart (CS). The
grouped bar chart also enables direct comparison between the pinned
and hovered subgroups without the distraction of other groups.

The second component in the Detailed Comparison View is a bar
chart for the ground truth label balance of both selected subgroups.
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Figure 6: In the Detailed Comparison View users can compare the
performance and makeup of the pinned and hovered subgroups,

providing insight into the causes of performance differences.

The label imbalance is important because it can often explain ex-
treme values for metrics like recall and precision and can suggest
reasons for bias (C6). For example, a subgroup with 95% negative
values can get a 95% accuracy by classifying everything as negative,
even though it will have a 0% sensitivity.

The final subgroup comparison interface is a table delineating and
comparing the features of the pinned and hovered subgroups. For
user-specified subgroups, this table shows the features and values
that define the subgroup. For suggested subgroups, this shows the
top 5 dominant feature values for that group, and users can see the
full distribution in the Suggested and Similar Subgroup View view.

Subgroup feature distributions. There is additional information
about the pinned and hovered subgroup in the Feature Distribution
View. When a subgroup is hovered or pinned, a histogram of each
feature’s distribution for that group is overlaid on the overall distri-
bution (C2). When there is both a pinned and hovered subgroup,
the histograms are overlaid with opacity, allowing users to see how

similar the distributions are (Fig- 7).

The distribution of a subgroup’s features can be an important
indicator of why a subgroup is underperforming and suggest poten-
tial resolutions (C6). If a subgroup’s ground truth labels are well
balanced, there should be some diversity in the other features of a
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Figure 7: When groups are and hovered, users can compare
their feature distributions in the Feature Distribution View .

subgroup for the classifier to be able to discriminate between the
two labels. For example, if all White males are also high school
educated, married, and from the United States, and they are split
between positive and negative classes, it is nearly impossible for a
classifier to accurately predict the class for anyone in that subgroup.

An extra interaction in the Detailed Comparison View is an export
button for sharing a discovered subgroup. Once a user has found sub-
groups of interest, they can export the pinned and hovered subgroups
to a JSON file with their composition and metrics.

6 UsE CASES

In this section, we describe how FAIRVIS can be used in practice
to audit models after they have been trained with two example usage
scenarios. The first scenario highlights how FAIRVIS can be used
to audit models for biases against known vulnerable groups in the
context of a recidivism prediction system. The second use case
shows how users without previous knowledge or intuitions about
potential biases can use the system to find issues, for this example
with an income prediction model. Both of these use cases utilize
real world datasets to demonstrate the applications of our system.

6.1 Auditing for Known Biases in Recidivism Prediction

For our first example use case, we will demonstrate how FAIRVIS
could be used to discover biases in a classifier for recidivism pre-
diction used in the context of deciding who should be given bail. In
this use case, we use a classifier based on data gathered by ProP-
ublica about the real-world tool, COMPAS, that assigns risk scores
to criminals to determine their likelihood of re-offending [31]. The
original dataset ranks risk from 1-10, with risks from 1-4 constitut-
ing ”low” risk, those from 5-7 constituting “medium” risk, and those
from 8-10 as "high” risk. Following the same methodology as in
the ProPublica analysis, we formulate this as a binary classification
task by taking risk scores above “low” (i.e. above 4) as positive
model predictions to re-offend, and those at 4 or below as negative
predictions as any prediction of risk above low indicates COMPAS
is predicting recidivism. Ground-truth labels correspond to whether
a defendant released on bail was arrested for another crime within
2 years of their release. An audit by ProPublica revealed that the
COMPAS tool is biased to give higher risk scores and thus predict a
higher rate of recidivism for Black defendants than other races [3].
Here, we will demonstrate how a data scientist auditing their model
in FAIRVIS could arrive at the same conclusion.

Known subgroup auditing. To begin their audit, a data scientist
would load the COMPAS dataset along with model predictions and
ground truth labels into FAIRVIS. Given their domain knowledge,
the data scientist is aware that, in previous applications involving
recidivism prediction, many tools have displayed imbalanced perfor-
mance for certain genders and races.

To test whether differing performance holds for this model and
dataset, the data scientist uses the Feature Distribution View to gener-
ate all intersectional subgroups of race and sex. When the groups are
added to the Subgroup Overview (Fig. 1B), she immediately sees
that the groups are spread out broadly across various metrics, sug-
gesting this model may have very different predictive performance
on different subgroups. For instance, as we can see in[Fig. TB (top
row), the different intersectional subgroups of sex and race have
accuracies ranging from around 50% to 100%.

While the data scientist is interested in the accuracy of her model,
she cares most about whether her model has large intra-group varia-
tion in terms of its false positive rate. For this model, this translates
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Figure 8: A user investigates an interesting subgroup discovered in
the Suggested and Similar Subgroup View.

to how many of the people who are not risky are classified as risky.
Additionally, she wants to know if these mistakes are distributed
unevenly across the different demographic groups. A high false
positive rate for this model indicates that many low-risk people (who
might be good candidates for release on bail) would be labeled as
high-risk by the model. If this model were used to help determine
whether a person was seriously considered for release, false positives
would correspond to low-risk candidates for release who might be
passed over for bail.

To audit the false positive performance metric, the data scientist
adds a strip plot for it using the metric selector shown at the top of
[Fig. TB. She then hovers over the bar in the false positive rate strip
plot (the bottom row in[Fig. 1B) with the highest value, and sees
that this corresponds to the African-American males subgroup with
a 43% false positive rate (colored in blue) compared to the dataset
average of around 29%. The data scientist pins this subgroup by
clicking on this group’s strip in the Subgroup Overview to investigate
it further and compare it to other groups.

By hovering over the other subgroups, she can compare the base
rate of recidivism for the pinned group of African-American males
relative to other groups. Looking at the Ground Truth Label Balance
in[Fig. T[C, we see that the base rate for African-American Males
(blue) is almost 60% positive (i.e. 60% rate of recidivism in ground
truth), whereas for Caucasian males (red) it is just over 40%.

Thus, if a model makes only one prediction for the entire sub-
group of African-American Males, choosing to label the subgroup
as positive (a prediction of high recidivism risk) will have higher
accuracy than for other subgroups. Less extreme versions of this
statement may still hold: to maximize accuracy for this subgroup,
a model will use a larger number of positive labels than negative
labels. Since the data scientist has noticed that the African-American
male subgroup has a very high base rate, but also the highest False
Positive Rate out of any of the subgroups in view and still has an
accuracy very similar to that of Caucasian Males, she thinks this part
of her model needs to be altered to give more equitable results.

Here, our example data scientist had suspicions about groups the
model might be biased against and was able to leverage FAIRVIS to
empirically confirm these suspicions. From here, she could use the
export function in the system to save these subgroups and devise a
plan for corrective action for this model or dataset.

Investigating Suggested Subgroups. Although our data scien-
tist was able to use her domain knowledge to inform her subgroup
selection at first, she is interested in whether the model also contains
biases against other intersectional subgroups. To aid in the explo-
ration, this data scientist would turn to the Suggested and Similar
Subgroup View panel to find other potentially problematic groups.

The data scientist first sorts the suggested groups by their false
positive rate, since she is most worried about that metric. While the
first few groups with the highest false positive rate are made up of
African-American males, corroborating her earlier findings, one of



the following groups provides a different result.

The fifth generated group is relatively large with 249
instances, and has a high false positive rate of 39%. By inspecting
the composition of this group in the Detailed Comparison Viewand
the subgroup card, she sees that the most defining characteristics of
this group are Caucasian females with a felony charge. The label
imbalance for this group is about 45% positive and 55% negative and
therefore not as pronounced as the base rate imbalance for African-
American males (Fig. T[C). This gives the data scientist two potential
hypotheses about sources of this high false positive rate. Her first
hypothesis is that the rather small group was not large enough to have
been given priority in training; the second is that the class of models
considered during training may have been too simple to express the
difference between classes in this subgroup. These observations
allow our data scientist to make more informed decisions in how to
best change her model to address these disparities.

6.2 Discovering Biases in Income Prediction

Next, let us consider a model used to offer loan forgiveness to
individuals based off their annual income. Our data scientist in this
situation does not have access to people’s annual income so hopes
to use demographic information to predict income. She therefore
trains a model on the UCI Adult Dataset [[11] to predict whether or
not someone makes under $50,000 a year, allowing her to allocate
loan forgiveness to lower income candidates with higher fidelity.

Model training. After testing different types of models and
hyperparameters, our data scientist finds that a two-layer neural
network performs best, with an overall accuracy of 85%. While
encouraged by the high accuracy of her model, the data scientist is
aware of recent news of algorithmic bias and wants to ensure that
her model is treating different demographic groups with similar pre-
dictive performance. She decides to audit her model using FAIRVIS,
and loads her dataset, labels, and model predictions into the system.

Dataset exploration and subgroup creation. When first open-
ing FAIRVIS, the data scientist uses the Feature Distribution View on
the left to look at how balanced her dataset is. While she is unaware
of any biases in her data, she immediately notices from looking at the
feature histograms that the dataset has a disproportionate representa-
tion of males, with males making up more than 2/3 of all instances
(see [Fig. 3). To investigate the impact of this imbalance, she se-
lects the feature for sex to generate male and female subgroups.
When looking at these two subgroups, she sees in the Subgroup
Overview that there is a gap of almost 10% in model accuracies
between the male and female subgroups (top of [Fig. 4). Despite the
higher accuracy of the female subgroup, she notices that the male
subgroup has a higher value for precision and recall.

Suggested subgroups. After seeing the fairly large gap in the
accuracy of her model between subgroups defined by just one fea-
ture, the data scientist is curious about what other combinations of
features might lead to poor performance in her model. She turns
to the Suggested and Similar Subgroup View to see what she can
find. Keeping the default sorting of groups by lowest accuracy, she
notices that suggested Group 1 (shown on the left side of [Fig. 3)
has an accuracy of around 71%, far below the dataset average of
85%. By inspecting the feature distribution charts in the Suggested
and Similar Subgroup View, she sees that this group is primarily
defined by Females with a marital status of “Married-civ-spouse”
and relationship status of “Wife” as shown by the value distribution
graphs in Group 1 of[Fig._ 3] Since she wants to better understand
why her model is performing poorly for this group, the data scientist
tries exploring similar groups.

Similar subgroups. Using her discovery from the Suggested
Subgroups tab, our data scientist wants to see how groups of females
compare to one another across the “marital-status” and “relationship”
features. She generates these subgroups in the Feature Distribution
View and pins suggested subgroup 1 from earlier to inspect similar

groups. Here, she notices that the similar group with the lowest
accuracy is the one comprised of females with a marital status of
“married-civ-spouse” but a relationship of “own-child”. This group
is quite small with only 44 instances.

To see how this group fits into the overall dataset, the data scientist
looks to the Feature Distribution View. Here, she sees that “married-
civ-spouse” is the most common value for the Marital-Status feature,
and “own-child” is the third most common value for the Relationship
feature. These features combine to make a subgroup with relatively
few values in the dataset.

When looking at the Detailed Comparison View for this similar
subgroup, the data scientist notices that the base rate for the “Female,
own-child, married-civ-spouse” subgroup is heavily skewed to less
than 20% positive ground truth instances (Fig. 6). The data scientist
therefore hypothesizes that the low accuracy for this group may be
due to its small size and the skewed base rate. The data scientist
notes these observations and aims to gather more data and try using a
more expressive model to see if she can address these discrepancies.

7 TECHNICAL IMPLEMENTATION

FAIRVIS is a web-based system built using the open-sourced
JavaScript framework React. Many additional libraries were used for
building the system, including D3.js and Vega Lite for visualizations
and Material.ui for visual components and interface style. Scripts
for pre-processing and clustering were written in Python and use the
scikit-learn implementation of K-means.

8 LIMITATIONS AND FUTURE WORK

Improving and measuring the effectiveness of the sub-
group generation technique. While we found that the generated
subgroups often provide useful suggestions, we hope to test whether
these generated groups align well with groups users find important
in future work. Collecting labeled data of datasets with outputs and
important underperforming subgroups would allow us to quantify
the effectiveness of our technique. Additionally, we plan to experi-
ment with more clustering techniques, such as subspace clustering
methods [29] to future versions of FAIRVIS so that users can see how
the groups compare. Especially in high dimensional data, subspace
clustering has the potential to reveal interesting groups with poor
performance that are primarily defined by only a few features.

Supporting more types of problems and data. FAIRVIS cur-
rently only supports binary classification and tabular data. The
current interface can be expanded to support multiclass classifica-
tion, but additional visualizations views would need to be added
for regression. It would additionally be nice to support some sort
of graphical or textual data. The current interface works if the out-
puts of image classification are loaded with demographic data, but
enabling the display of images could aid in auditing groups.

Scaling to millions of instances. The current implementation of
FAIRVIS is able to scale to tens and hundreds of thousands of data
points, but does not support even larger datasets very well. We are
looking at improving the efficiency of the subgroup generation and
suggestion technique to enable our system to continue to work in
browser while at scale.

Suggesting and providing automatic resolutions. Various tech-
niques exist to address bias in machine learning, many of which can
be applied as a post-processing step to the output of a classifier. In
addition, there are patterns as to what the potential reasons for bias
are which could be learned by a model or codified into heuristics. We
aim to implement some of the post-processing steps into FAIRVIS
and add capability to highlight and suggest potential issues.
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