
Modular Design by Contract Visually and Formally using VCL

Nuno Amálio and Pierre Kelsen
University of Luxembourg, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

{nuno.amalio,pierre.kelsen}@uni.lu

Abstract

Visual representations are widely used to describe
modern-day software systems, but, in most cases, they lack
rigour. This paper addresses the problems of formality,
rigour and complexity in visual descriptions of software
systems. It proposes a new language, VCL, that is designed
to be visual, formal and modular, and that targets abstract
specification at the level of requirements. VCL aims at
expressing visually structural and behavioural proper-
ties of software systems. This paper presents design of
VCL, outlining syntax and semantics of VCL notations of
structural, behavioural, constraint, and contract diagrams,
together with VCL’s approach to behavioural modelling
based on design by contract. VCL’s novelty lies in the fact
that contracts are modular units.
Keywords: formal modelling, visual languages, design by
contract, Z

1. Introduction
Thinking, designing and communicating with pictures

are recognised essential activities in traditional branches of
engineering [1]. Modern day software engineering practice
reflects this prominence: informal and ephemeral diagrams
are used as discussion sketches; visual languages like
UML are widely used to document specification and
designs at different levels of abstraction [2].

Although widely used, mainstream visual languages
such as the UML have several shortcomings:

• They were at large designed to be semi-formal (with
a formal syntax, but no formal semantics). Although
there have been successful formalisations of seman-
tics for such languages (e.g subsets of UML, see [3]),
they are mostly used without a formal semantics. This
brings several problems: it is difficult to be precise,
unambiguous and consistent, and resulting models are
not mechanically analysable.

• They are not able to express diagrammatically all
possible properties of software systems. This is why
UML is accompanied by the textual Object Constraint
Language (OCL).

To address these problems, this paper proposes the
Visual Contract Language (VCL) [4], [5], [6], a visual
language for abstract specification of software systems at
level of requirements (or high-level designs). It presents
the design of VCL, outlining syntax and semantics of
VCL notations of structural, behavioural, constraint, and
contract diagrams, together with VCL’s approach to be-
havioural modelling based on design by contract [7].

2. Syntax of VCL
This section starts by presenting VCL’s visual primi-

tives, which are are used in different types of diagrams;
they have a core meaning that varies slightly with the
context. Next sections then outline abstract syntax of
structural, behavioural, constraint and contract diagrams.

Syntax and semantics of VCL are illustrated using
fragments of VCL model of secure simple Bank from [4].

2.1. Visual Primitives

Account

Savings

VCL blobs are labelled rounded contours
denoting a set. They resemble Euler circles;
topological notion of enclosure denotes sub-

set relation (to the left, Savings is subset of Account).

c : Customer Objects are represented as rectangles; they
denote an element of some set. They have a label that
includes their name and may include the set to which they
belong (e.g. c to the left).

◯CustType

corporate

personal

Blobs may also enclose objects, and they
may be defined in terms of the things they
enclose by preceding the blob’s label with

the symbol ©. To the left, CustType is defined in this
way by enumerating its elements.

balance Edges connect both blobs and objects.
There are two kinds: property and relational. Property
edges, represented as labelled arrows, denote some prop-
erty possessed by all elements of the set, like attributes in
the object-oriented (OO) paradigm (e.g. balance to the
left).

Holds→ Relational edges are labelled directed lines
where direction is indicated by arrow symbol

above the line. Their label is within a blob because they
define a set of tuples and may be inside blobs. They
define or refer to some conceptual relation between blobs
(associations in OO) – e.g. Holds to the left.

TotalBalIsPositive
Represented as labelled hexagons,

constraints identify some state con-
straint or observe (query) operation. They refer to a single
state of the system (e.g. TotalBalIsPositive to the
left).

Withdraw Contracts are represented as labelled
double-lined hexagons. They identify oper-

ations that change state; hence, they are double-lined
hexagons as opposed to single-lined constraints.

Account New VCL diagrams can include modelling
elements from different scopes. Origin

edges are used to help the reader in identifying the
origin of a particular modelling element. They can connect
blobs to constraints and contracts. To the left, origin edge
indicates that operation New is that of blob Account.

accNo?
ACCID New In constraint and contract dia-

grams, communication edges are used
to describe communication constraints involving VCL
contracts and constraints. Communication edges are used
to say that some object or set of objects are passed to a
contract or constraint (e.g. to the left communication edge
from blob ACCID to contract New says that a member
of this set, selected non-deterministically, is passed to
contract through input accNo?).

2.2. Structural Diagrams

State structures are defined in a VCL structural diagram
(SD). Together they constitute an ensemble of structures,
defining a state space. VCL model instances are defined by
the content of the corresponding model’s state structure.

The abstract syntax of SDs is defined in [8] using a class
metamodel described in Alloy. Briefly, it is as follows:

• A SD is made of a finite number of labelled elements:
a blob, an edge, an object or a constraint.

• All blobs, relational edges and constraints of a SD
have distinct labels. Blobs drawn with a bold line
denote a domain blob; those drawn with normal lines
denote value blobs. Domain blobs are part of the state
of overall system; they need to be maintained. Value
blobs define an immutable set of values; they do not
need to be maintained.

• A blob may have blobs and objects inside. This inside
relation must be acyclic. The label of a blob with
things inside may be preceded by symbol© to mean
that it is defined by the things it has inside; if the
symbol is not present the things inside denote subsets.

• Property edges may be drawn between any two blobs
that are not inside each other. They define properties
of blob at the source end that have as types the
blob at the target end. No two property edges with
the same source blob have same label. A property
edge may have a multiplicity constraint; if not present
multiplicity is one; users may specify multiplicities:
1, 0..1 , ∗, or values within a range (e.g. 0 . . 2).

• Relational edges may be drawn between any two
blobs. They define relations between sets. Each end
of the edge may have a multiplicity constraint; default
value is 1, others are optional, many and range.

• Objects define set elements when drawn inside some
blob; otherwise they define constants. A constant
must indicate blob to which it belongs. Local con-
stants (connected to some blob) are visible within
the blob only; global constants (not connected to any
blob) are visible in the scope of the ensemble.

• Constraints define invariants. An invariant is local
when constraint is connected to some blob, and
global when it is not connected.

◯AccType◯CustType

1 0..*

accNo

corporate personal savings current

CorporateHaveNoSavings TotalBalIsPositive

SavingsArePositive

HasCurrentBefSavings

Name

Address

AccID

Int

Customer Account

Holds→

balanceaTypecType

name

address

Figure 1. Structural diagram of package Bank in [4]

Customer

Account

New
New

Deposit

Withdraw

DeleteGetBalance

CrCustomer OpenAccount AccDeposit AccWithdraw

AccGetBalAccDelete GetAccsInDebt GetCustAccs

Holds AddNew

DelGivenAcc

Figure 2. Behavioural diagram of package Bank in [4]

2.2.1. Illustration. Fig. 1 presents a well-formed SD
(taken from [4], [6]). It is as follows:

• Blobs Customer and Account are domain blobs.
Customer has property edges name, cType
and address; Account has properties accNo,
balance and aType.

• Blobs CustType and AccType are defined by
enumeration (symbol ©); inside, they include all
their elements (objects).

• Relational edge Holds relates Customer and
Account; multiplicities say that each Customer
may have many Accounts, and that each Account
has one Customer.

• Constraint SavingsArePositive is local; all
others are global.

2.3. Behavioural Diagrams

Operations are VCL’s unit of behaviour. They may be
local or global. They are local when they factor some state
structure’s internal behaviour; global when their context
is the overall ensemble of structures. Operations may be
further divided into update and observe (or query); the
former performs changes of state and the latter performs
observations upon the state. A behavioural diagram iden-
tifies all operations of an ensemble.

Syntax of BDs used in this paper, is a subset of
overall notation (package compositions constructions are
not included, see [4] for details). BD’s syntax is as follows:

• A BD comprises a finite number of operations repre-
sented as contracts or constraints to denote, respec-
tively, update or observe operations.

• Operations connected to some blob (representing blob
or relational edge from SD) are local; those not
connected are global.

2.3.1. Illustration. A well-formed BD is given
in Fig. 2. It identifies eight global operations;
operations AccGetBalance, GetAccsInDebt
and GetCustAccs are observe operations; all other

global operations are update operations. BD also
identifies several local operations of blobs Account and
Customer, and relational edge Holds.

2.4. Constraint Diagrams

A VCL constraint describes a particular condition of
some state of the system. They can be used to describe
invariants (see [8]), and, as this paper illustrates, observe
or (query) operations (operations that do not change state).

Abstract syntax of constraint diagrams (CntDs) is de-
fined in Alloy in [8]. Syntax presented here is a subset
of overall syntax (constraint expressions involving logical
operators and quantifiers are not included; see [8], [4]
for further details on this feature). A CntD has a name, a
declarations compartment and a predicate compartment.
Constraints have either a local or global scope; they must
have distinct names in some scope.

The declarations compartment comprises:
• A finite number of labelled variables: either objects

or blobs. The label is made of the variable’s name and
its type (blob to which it belongs); no two variables
have same name.

• A finite number of imported constraints. Constraint’s
label comprises an optional up arrow symbol (↑),
name of constraint being imported, and an optional
rename list. ↑ symbol indicates that the import is
total (variables and predicate are imported); when not
present the import is partial (only the predicate is im-
ported). Rename list indicates variables of constraint
being imported that are to be renamed (e.g. [a!/a?]
says that a? is to be renamed to a!).

• Communication edges connecting variables to con-
straints.

In CntDs that describe observe operations, variables
may denote communication channels. These are distin-
guished from ordinary variables through naming conven-
tions: inputs are suffixed with ?; outputs with !.

The predicate compartment may contain a visual ex-
pression based on variables (blobs, objects and edges),
comprising the following elements:

• A finite number of blobs and objects, which may be
connected to other blobs and objects using property
and relational edges. Blobs may have other blobs,
relational edges and objects inside.

• Property edges are labelled after name of property
as defined in SD; in addition, they may include a
relational operator in square brackets (e.g. [≥]). A
property edge with an object as source refers to the
value of property in object; one with a blob as sources
refers to the property in all objects of the set.

• A relational edge is labelled with the name of some
relational edge defined in SD. They may be used to
connect objects and blobs.

• Blobs may have other blobs and relational edges
inside, which may mean subsetting (default) or def-
inition (if blob’s label is prefixed with symbol ©).
Blobs may be shaded to denote the empty set.

GetBalance

balance

a? : Account

accBal!a?

accBal! : Int

AccGetBal

↑GetBalanceAccount

Figure 3. Constraint diagrams of operations
Account.GetBalance and AccGetBal (global)

◯accs!

GetCustAccs

c? : Customer

c? AccountHolds

accs! : Account

◯accs!

GetAccsInDebt

0

accs! : Account

Account
balance[<]

Figure 4. Constraint diagrams of global operations
GetCustAccs and GetAccsInDebt

2.4.1. Illustration. Figs. 3 and 4 give examples of well-
formed CntDs (from [4]). These are as follows:

Fig. 3 presents CntDs of local operation GetBalance
of Account (left) and global operation AccGetBalance
(right), which promotes this local operation to a global
scope. GetBalance uses a property edge balance
of Account to connect input Account object (a!) to
output accBal! to say that accBal! is to hold value
of property. Global operation AccGetBalance does a
total import (symbol ↑) of the local operation.

Fig. 4 presents CntDs of global operations
GetCustAccs (left) and GetAccsInDebt (right).
GetCustAccs defines output blob accs! (symbol ©)
by enclosing relational edge Holds and Account blob
(this obtains range of relation Holds restricted on the
domain for object c?). GetAccsInDebt defines output
blob accs! (symbol ©) by enclosing blob Account
and property edge balance (this obtains objects of
Account whose balance is less than 0).

2.5. Contract Diagrams

A VCL contract is made of a pre- and a post-condition.
Pre-condition describes what holds before the operation is
executed. Post-condition describes effect of the operation,
saying what holds after execution.

VCL contract diagrams (CctDs) are similar to their
constraint counter-parts. Because they involve a pair of
states, they comprise two predicate compartments (has
opposed to a single predicate compartment in CntDs) for
pre- and post- conditions. VCL CctDs comprise a name,
a declarations compartment and a predicate compartment
sub-divided into pre- (left) and post-condition (right) com-
partments. Figs. 5, 6 and 7 present well-formed CctDs.

Certain CctDs directly express the action of updating
state. This is ruled by certain conventions. There are action
units (object, blob or link), which are identified with a
bold line. This action unit can be created, deleted or
have its internal state updated; this is described based
on a differential semantic interpretation of pre- and post-
conditions compartments:

accNo

balance

accNo?

0

aType?

aType

a!

a! : Account

accNo? : AccID aType? : AccType

New Delete

a? : Account

a? 0
balance

Figure 5. Contract diagrams of local operations New
and Delete of blob Account

balance
balance - amount?a?a?

a? : Account amount? : Int

Withdraw AddNew

a? : Account c? : Customer

a?

c?
a? c?

Holds→

Figure 6. Contract diagrams of local operations
Account.Withdraw and Holds.AddNew

• An action unit on the left compartment but not on
the right, means that the unit is deleted.

• An action unit not on the left but on the right, means
that the unit is created.

• An action unit in both compartments, but with a new
value assigned on the right means that the unit is
updated.

• A property changes provided right compartment ex-
plicitly says so; if right compartment says nothing
that means it remains unchanged.

Declarations compartment introduces variables defining
the inputs and outputs to the specified operation (inputs
are suffixed with ?, and outputs with !), together with
the contracts being imported. The syntax is similar to
the declarations compartment of CntDs, differing in the
following:

• Variables representing action units (objects or blobs)
are bold-lined.

• Both contracts and constraints can be imported. Im-
ported constraints refer to the before state.

• Communication edges can involve both contracts and
constraints.

Syntax of pre- and post-conditions compartment is sim-
ilar to that of predicate compartment of CntDs, differing
in the following:

• Action units (object, blob or link) are represented
with a bold line.

• pre- and post-conditions compartments may import
constraints to strengthen either pre- or post-condition.
As CctDs do not admit quantified expressions (whose
syntax is not explained here, see [4]), user may draw
separate CntDs for more complicated expressions.

2.5.1. Illustration. CctDs of Figs. 5, 6 and 7 are well-
formed (from [4]). They are follows:

• Operation New (Fig. 5, left) declares inputs accNo?
and aType?, and output for action object a!. Pre-
condition compartment is empty. Post-condition gives

OpenAccount

accNo?

ACCID

aType? : AccType

c? : Customer

Account

New

Holds

AddNew [a!/a?]

AccWithdraw

↑WithdrawAccount

Figure 7. Contract diagrams of global operations
OpenAccount and AccWithdraw

values to properties of a!; a! is to be created: it is
on the right, but not on the left.

• Operation Delete (Fig. 5, right) declares action
object as input (a?). Pre-condition says that action
object a? must have a balance of 0. Post-condition
compartment is empty; a? is to be deleted: it is on
the left but not on the right.

• Operation Withdraw (Fig. 6, left) declares two
inputs: action object a?, and amount?. Pre-
condition says a? exists. Post-condition says that
balance property of a? is given value of expression
balance-amount? (where balance refers to
before-state value).

• Operation AddNew (Fig. 6, right) declares two in-
puts, a?, and c?, which are placed un-linked on pre-
condition compartment, and linked through relational
edge of Holds in post-condition; link is to be created
as is on the left, but not on the right.

• OpenAccount (Fig. 7, left) declares inputs
aType? and c?, imports actions of contracts
Account.New and Holds.AddNew (see above),
and communication edge from AccID to contract
New. Import of contract AddNew includes a renam-
ing: input a? of AddNew becomes output a!.

• AccWithdraw (Fig. 7, right) does a total import
(symbol ↑) of local contract Account.Withdraw.

3. Semantics of VCL
VCL embodies a generative (or translational) approach

to semantics. It is to be used together with a textual formal
specification language, the target language, that sits in
the background and a target language semantic model.
Semantics of a VCL specification is the generated target
language specification.

Currently, VCL is given a semantics by mapping dia-
grams into the ZOO semantic domain [9], [3], which is
a semantic domain of object orientation for the language
Z [10]. We intend to map VCL into other formal languages
in the future.

Briefly, semantics of main VCL primitives is as follows:
• A blob is a set. Objects are atoms; members of a set

of possible objects that are associated with blob to
which they belong.

• Property edges are properties shared by all objects of
the set.

• Relational edges are relations between sets.
• An ensemble of state structures is defined as the con-

junction of all sets representing blobs and relational

edges. Ensembles are used to represent packages and
systems. All structures of a SD form an ensemble.

• A constraint describes a condition of a particular state
structure or ensemble. It is therefore a predicate over
a single state structure or ensemble.

• Operations are relations between a before-state (pre-
condition) and an after-state (post-condition) of par-
ticular state structure or ensemble.

The following gives semantics of structural, be-
havioural, constraint and contract diagrams.

3.1. Structural Diagrams

SDs are mapped into ZOO following approach for
construction of state spaces outlined in [9], [3]. Briefly:

• Value blobs that do not have property edges are
defined as given sets. Those that are enumerations
are defined as free types, and those that have property
edges are represented as Z schemas (a record); prop-
erty edges are represented as fields of the Z schema.

• Domain blobs are defined as a promoted abstract
data type [10] (a ZOO class). Property edges are
represented as fields.

• Relational edges are represented as Z relations.
• Ensemble is formed as conjunction of all Z schemas

representing domain blobs and relational edges.
• Constraints identified in a structural diagram are

a predicate over a particular state structure (local
invariant) or ensemble (global invariant).

3.1.1. Illustration. The following gives ZOO representa-
tion of blobs Name, Address, AccID, CustType and
Customer, relational edge Holds and state of ensemble
defined by SD of Fig. 1.

VCL blob Int of Fig. 1 corresponds to Z primitive
set Z (integers). Blobs Name, Address and AccID are
represented as Z given sets:

[Name,Address,AccID]

Blobs CustType and AccType defined in VCL by
enumeration are defined in Z as free types:

CustType ::= corporate | personal
AccType ::= savings | corporate

Each domain blob has set of all possible objects;
existing objects are taken from this set. For this purpose,
ZOO defines the set of all possible domain objects:

[OBJ]

Specific domain objects are subsets of OBJ; these are
obtained by using the O function (see [3] for details).

Blob Customer is defined a promoted ADT; this is
made of an inner type (schema Customer), defining the
blob’s properties, and an outer type (schema SCustomer),
which defines set of existing Customer objects:

Customer
name : Name
address : Address
cType : CustType

SCustomer
sCustomer : O Customer
stCustomer : (O Customer) 7→ Customer

dom stCustomer = sCustomer

Relational edge Holds is represented as a relation
between sets of objects of blobs being related:

AHolds
Holds : O Customer↔ O Account

Overall ensemble of structures that SD of Fig. 1 defines
is defined by conjoining the definitions of blobs and
relational-edges:

SystemSt
SCustomer; SAccount; AHolds

Overall system state is constrained by the system’s
global invariants (see Fig. 1); schema representing these
are placed in predicate of overall system Z schema:

System
SystemSt

CorporateHaveNoSavings ∧ HasCurrentBefSavings
TotalBalIsPositive

3.2. Behavioural Diagrams

BDs presented here are have two purposes: (a) syntac-
tic sugar, enabling users to have an overview over the
functional units of some package, and (b) to set well-
formedness rules1. BDs assert that certain operations must
exist and be defined; they also impose certain visibility
rules, which helps in achieving VCL models that are
meaningful and well-structured; rules are as follows: (a)
in a local scope it is possible to see local operation of
associated structure; (b) local operations are not available
to the outside world.

3.3. On Importing

VCL Importing enables composition of contracts and
constraints. Semantically, importing is conjunction. When
a constraint imports another, the meaning is the conjunc-
tion of predicates of importer and imported constraints.
Similarly for contracts, importing gives conjunction of pre-
and post-conditions of importer and imported contracts.
The precise meaning of importing, however, can be con-
trolled as follows:

• VCL provides two means of importing: total and
partial. Total importing means that both predicate and
variables are imported; as explained in section 2.4,
this is selected through symbol ↑. Partial importing

1. BD’s package-based introduced in [4] have other meanings.

(the default mode) means that only predicate is im-
ported; in this case those variables of the imported
unit (constraint or contract) that are not declared in
the importer unit are hidden.

• In importing, variables are shared or merged when
they have the same name. When importer and im-
ported contracts share a variable then the binding
involved in the communication does not need to be
made explicit. An imported variable is hidden, when
its contract is partially imported and it is not declared
in the importer contract.

• As explained in section 2.4, importing may be subject
to renaming of variables in the imported contract.
This is used to tune the composition when names of
variables differ across units.

3.4. Constraint Diagrams

CntDs are represented as Z schemas describing a pred-
icate over a particular state structure or ensemble. Seman-
tics of visual expressions of a predicate compartment are
as follows:

• An object or blob connected through a property edge
to another object or blob is represented as predicate
involving a binary operator, which is equality if no
user specified operator is provided. A property edge
with an object as source is a predicate referring to
the object’s state; those with a blob as source refer
to a set of objects.

• A relational edge denotes a tuple of a relation if it is
drawn between objects, and denote domain and range
restrictions of the associated relation if there is a blob
at one of the ends.

• The inside relation denotes subsetting, unless the
label of the enclosing blob is preceded by symbol
©, in which case it denotes equality (or definition).

• When a relational edge is enclosed by some blob,
insideness may have different interpretations. If only
the relation edge is enclosed, that means that the
enclosing set is defined as the set of tuples of relation
subject to restrictions. The enclosing blob can be de-
fined as the domain and range or relation (subject to
restrictions), if relational edge and blob representing
either domain or range (respectively) are enclosed.

• Communication edges are represented separately in a
Z schema; they state a relation between variables.

• Importing of constraints is subject to rules of import-
ing described in section 3.3.

3.4.1. Illustration. Z representation of operation
GetBalance of Fig. 3 (left) is:

AccountGetBalance
Account
accBal! : Z

accBal! = balance

SAccountGetBalance == ∃ Account •
ΦAccountO ∧ AccountGetBalance

This uses an observe promotion schema (see [9], [3]).
Z definition of AccGetBalance of Fig. 3 (right) is:

AccGetBalance == System ∧ SAccountGetBalance

Z definitions of operations of Fig. 4 are as follows:

GetCustAccounts
System
c? : O CustomerCl
accs! : P (O AccountCl)

accs! = ran({c?}C holds)

GetAccsInDebt
System
acs! : P (O AccountCl)

acs! = {ac : O AccountCl | (stAccount ac).balance < 0}

3.5. Contract Diagrams

CctDs are represented as Z schemas. They define a
relation between pairs of states. They are interpreted
similarly to CntDs, differing in the following:

• They involve a pair of states, rather than a single state.
This is expressed in Z using the delta schema con-
vention; the variables of post-condition compartment
are primed in resulting Z schema.

• Constraints placed on either pre- or post-condition
compartments are composed using Z conjunction.

3.5.1. Illustration. Local operations of Figs. 5 and 6 are
represented in Z as follows:

AccountNew
Account ′

accNo? : AccID
aType? : AccType

accNo′ = accNo?

balance′ = 0

aType′ = aType?

AccountDelete
Account

balance = 0

AccountWithdraw
∆ Account
amount? : N

accNo′ = accNo ∧ aType′ = aType
balance′ = balance− amount?

SAccountNew == ∃Account ′ • ΦSAccountN ∧ AccountNew
SAccountDelete == ∃Account • ΦSAccountD ∧ AccountDelete
SAccountWithdraw == ∃∆Account • ΦSAccountU
∧ AccountWithdraw

HoldsAddNew
∆Holds
a? : O AccountCl
c? : O CustomerCl

rHolds′ = rHolds ∪ {(a?, c?)}

Global operations OpenAccount and AccWithdraw
follow ZOO specification of system operations (see [9],
[3]). Operation OpenAccount is defined in Z as:

ΨOpenAccount == ∆System ∧ ΞSCustomer
OpenAccount0 == [c? : O CustomerCl; ∆System |

c? ∈ sCustomer]

ConnAccountNew == [accNo? : ACCID | accNo? ∈ ACCID]

OpenAccount == (ΨOpenAccount ∧ SAccountNew
∧ OpenAccount0 ∧ ConnAccountNew
∧ AHoldsAdd[a!/a?]) \ (accNo?, a!)

Above, the two channels of Account.New not declared
in contract OpenAccount (accNo? and a!) are hidden.

Z definition of operation AccWithdraw is:

ΨAccWithdraw == ∆System ∧ ΞSCustomer ∧ ΞAHolds
AccWithdraw == ΨAccWithdraw ∧ SAccountWithdraw

4. Discussion
VCL. This paper outlines the syntax and semantics of
VCL and introduces VCL’s approach to behavioural mod-
elling. It introduces the notations of behavioural and
contract diagrams. Work presented here, together with
VCL’s approach to structural modelling presented in [6],
and VCL’s coarse-grained modularity approach based on
packages presented in [4] makes design of overall VCL,
a language designed for modular abstract specification of
software systems at level of requirements.
Modularity. This paper highlighted VCL’s modularity.
VCL contracts and constraints are pieces that can be used
in multiple contexts. This enables separation of concerns at
the level of specification of behaviour; local operations are
specified separately and independently from global ones
and composed to form many global behaviours. Contract
compositions illustrated here involve conjunction only, but,
it is possible to use disjunction and negation.
Design of VCL. VCL’s formal semantics outlined here
was part of the process of designing and experimenting
the language. Many features of VCL were obtained by
abstracting the structures generated by ZOO. However,
although designed with Z and ZOO in mind, VCL is more
general providing a set of visual primitives to express
structures and concepts that are independent from their
various mathematical representations. We are experiment-
ing VCL with the Alloy formal language. Full formal Z
semantics of VCL model used here is given in [4].
Verification and validation. Formal Z semantics of VCL
outlined here enables verification and validation of VCL
models using Z theorem provers. [11], [3] presents a visual
approach to formally validate ZOO models using UML
object diagrams; we intend to incorporate this approach
in VCL in the future.
Usability. As discussed in [6], VCL has been designed to
be well matched to meaning and to enable users to infer
meaning from patterns, following usability guidelines.
This can be observed in declarations, pre-conditions and
post-condition compartments of contract diagrams, which
closely mimic underlying structure of operations.
Expressiveness. Unlike UML, VCL contracts specify be-
haviours totally. UML behavioural descriptions are par-
tial. UML sequence and collaboration diagrams describe
scenarios (or traces); UML state diagrams describe state

Total
Lines of Z

From vi-
sual

Percentage
of visually

VCL 490 484 98.8%
UML of [3], [9] 439 195 44.4%

Table 1. Visual expressiveness in relation to
generated Z: VCL vs UML-based model of [3], [9].

transitions of components as a whole, hiding behaviour
behind actions (usually complemented with OCL).

VCL described all eight system operations of package
Bank (see [4]). UML-based specification of [9], [3]
needed to resort to Z to totally describe them. Table 1
compares VCL model of Bank package presented here
with UML-based model of [9], [3] in relation to generated
Z. VCL gives a 54.4% increase in terms of what is
expressed visually. The 1.8% that could not be expressed
visually corresponds to invariant TotalBalIsPositive (see
Fig. 1) that could not be expressed visually and was
expressed directly in Z by embedding the Z text into a
CntD (see [6], [4]).

VCL contract diagrams notation is designed to describe
simple pre- and post-conditions and compositions of local
operations. It does not support quantification directly. For
more involved pre- or post-conditions that require quan-
tification, user may draw a constraint diagram and then
place it in either the pre- or post-condition compartment.
In the application of VCL to a large case study [12], we
did not require quantification to express contracts.
Practical Value. VCL is visual and modular for practical
reasons: visual representations have proved valuable in
engineering [1], and modularity helps tackling complexity.
VCL was applied successfully to a large case study [12];
we found that it was more productive to specify in VCL
than in Z directly2, and that the visual nature of VCL
enhanced usability, readability and communication. These
claims are to be subject to empirical rigorous validation
(future work). Currently, we are developing tool support
for VCL3 [6] to further enhance VCL’s practical value.

5. Related Work
Use of left and right compartments to mean pre-

and post-conditions is inspired by Catalysis’ snapshot-
pairs [13], which represent specific system states. VCL
contracts denote a relation between before and after states.

Several approaches represent contracts as pairs of UML
object-diagrams. Lohmann et al. [14], [15], [16] translates,
using graph transformation rules, UML class diagrams
and contracts to Java skeletons and JML assertions. These
rules are akin to the differential meaning of VCL contract
diagrams. Visual OCL [17], [18] also uses graph transfor-
mations to go from contracts to OCL. Like VCL, these
approaches follow a translational approach to semantics.
Hausmann [19] provides a modelling technique based on
graph transformation rules, which supports some degree of
modularity because rules can be invoked. VCL however

2. See [12] for details; the Z expert developer found that it was more
productive to specify in VCL than in Z directly; the non Z experts could
learn VCL more easily than Z.

3. http://vcl.gforge.uni.lu

http://vcl.gforge.uni.lu

is at higher-level of abstraction; unlike [19], no order is
prescribed on the execution of operations; VCL enables
combination of rules using not only conjunction, but also
disjunction and negation, closely mimicking the rules of
the Z schema calculus.

Constraint diagrams [20], [21] notation has many sim-
ilarities with VCL; it describes behaviour based on pre-
and post-conditions and uses circles to represents sets and
insideness to represent subset relationship. Unlike VCL,
this approach does not take a translational approach to
semantics; instead, the language is given a semantics to
enable modelling and reasoning at the visual level. Con-
straint diagrams, however, is a formally defined notation;
VCL presented here is a design of a language with an
outline of a formal semantics. VCL’s design presented
here, however, provides better modularity mechanisms
than all these approaches to contracts.

6. Conclusions and Future Work

This paper outlines the syntax and semantics of VCL
notations of structural, behavioural, constraint and contract
diagrams, and introduces VCL’s approach to behavioural
modelling. This is part of our ongoing work on VCL, a
visual and formal language for modular abstract speci-
fication of software systems. Work presented here com-
plements [6], which presents VCL’s approach to struc-
tural modelling and studies expressiveness of constraint
diagrams. This paper outlined formal semantics of VCL
described in formal language Z; full Z specification of
case study’s VCL model used here to illustrate VCL is
given in [4], together with complete VCL model. We are
currently formalising VCL’s syntax and semantic mapping,
and developing VCL’s tool [6].

Most relevant contribution of VCL’s design presented
here is its modular approach to modelling, together with
modular properties of VCL’s contracts and constraints.
This integrates well with VCL’s coarse-grained modularity
mechanism based on packages presented in [4] and used
heavily in [12]. To our knowledge, no other visual-contract
language achieves such a level of modularity.

References

[1] E. S. Ferguson, “The mind’s eye: nonverbal thought in
technology,” Science, vol. 197, no. 4306, 1977.

[2] B. Anda, K. Hansen, I. Gullesen, and H. K. Thorsen,
“Experiences from introducing UML-based development in
a large safety-critical project,” Empirical Software Engi-
neering, vol. 11, no. 4, pp. 555–581, 2006.

[3] N. Amálio, “Generative frameworks for rigorous model-
driven development,” Ph.D. dissertation, Dept. Computer
Science, Univ. of York, 2007.

[4] N. Amálio and P. Kelsen, “The visual contract language:
abstract modelling of software systems visually, formally
and modularly,” Univ. of Luxembourg, Tech. Rep. TR-
LASSY-10-03, 2010, available at http://bit.ly/9c5YwQ.

[5] N. Amálio and P. Kelsen, “VCL, a visual language for
abstract specification of software systems formally and
modularly (short paper),” in Diagrams 2010, ser. LNAI,
vol. 6170. Springer, 2010.

[6] N. Amálio, P. Kelsen, and Q. Ma, “Specifying structural
properties and their constraints formally, visually and mod-
ularly using VCL,” in EMMSAD 2010, ser. LNBIP, vol. 50.
Springer, 2010, pp. 261–273.

[7] B. Meyer, “Applying “design by contract”,” Computer,
vol. 25, no. 10, pp. 40–51, 1992.

[8] N. Amálio and P. Kelsen, “The abstract syntax of structural
VCL,” Univ. of Luxembourg, Tech. Rep. TR-LASSY-09-
02, 2009, available at http://bit.ly/d2jNty.

[9] N. Amálio, F. Polack, and S. Stepney, “An object-oriented
structuring for Z based on views,” in ZB 2005, ser. LNCS,
vol. 3455. Springer, 2005, pp. 262–278.

[10] J. Woodcock and J. Davies, Using Z: Specification, Refine-
ment, and Proof. PH, 1996.

[11] N. Amálio, S. Stepney, and F. Polack, “Formal proof from
UML models,” in Proc. ICFEM 2004, ser. LNCS, vol.
3308. Springer, 2004, pp. 418–433.

[12] N. Amálio, P. Kelsen, Q. Ma, and C. Glodt, “Using VCL
as an aspect-oriented approach to requirements modelling,”
Transactions on Aspect Oriented Software Development,
vol. VII, pp. 151–199, 2010.

[13] D. D’Souza and A. C. Wills, Objects, Components and
Frameworks with UML: the Catalysis approach. Addison-
Wesley, 1998.

[14] M. Lohmann, S. Sauer, and G. Engels, “Executable visual
contracts,” in IEEE Symposium on Visual Languages and
Human-Centric Computing, 2005, pp. 63–70.

[15] G. Engels, M. Lohmann, S. Sauer, and R. Heckel, “Model-
driven monitoring: an application of graph transformation
for design by contract,” in ICGT 2006, 2006.

[16] R. Heckel and M. Lohmann, “Model-driven development
of reactive information systems: from graph transformation
rules to JML contracts,” International Journal on Software
Tools for Technology Transfer, vol. 9, no. 2, 2007.

[17] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer, “A
visualisation of OCL using collaborations,” in UML 2001,
vol. 2185, 2001, pp. 257–271.

[18] K. Ehrig and J. Winkelmann, “Model transformation from
visual OCL to OCL using graph transformation,” ENTCS,
vol. 152, pp. 23–37, 2006.

[19] J. H. Hausmann, “Dynamic meta modeling: A semantics
description technique for visual modeling languages,” Ph.D.
dissertation, University of Paderborn, 2005.

[20] A. Fish, J. Flowe, and J. Howse, “The semantics of aug-
mented constraint diagrams,” Journal of Visual Languages
and Computing, vol. 16, pp. 541–573, 2005.

[21] J. Howse, S. Schuman, and G. Stapleton, “Diagrammatic
formal specification of a configuration control platform,”
ENTCS, vol. 259, pp. 87–104, 2009.

http://bit.ly/9c5YwQ
http://bit.ly/d2jNty

	Introduction
	Syntax of VCL
	Visual Primitives
	Structural Diagrams
	Illustration

	Behavioural Diagrams
	Illustration

	Constraint Diagrams
	Illustration

	Contract Diagrams
	Illustration

	Semantics of VCL
	Structural Diagrams
	Illustration

	Behavioural Diagrams
	On Importing
	Constraint Diagrams
	Illustration

	Contract Diagrams
	Illustration

	Discussion
	Related Work
	Conclusions and Future Work
	References

