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Abstract—Communication and computation services support-
ing Connected and Automated Vehicles (CAVs) are characterized
by stringent requirements, in terms of response time and relia-
bility. Fulfilling these requirements is crucial for ensuring road
safety and traffic optimization. The conceptually simple solution
of hosting these services in the vehicles increases their cost
(mainly due to the installation and maintenance of computation
infrastructure) and may drain their battery excessively. Such
disadvantages can be tackled via Multi-Access Edge Computing
(MEC), consisting in deploying computation capability in net-
work nodes deployed close to the devices (vehicles in this case),
such as to satisfy the stringent CAV requirements. However,
it is not yet clear under which conditions MEC can support
CAV requirements and for which services. To shed light on this
question, we conduct a simulation campaign using well-known
open-source simulation tools, namely OMNeT++, Simu5G, Veins,
INET, and SUMO. We are thus able to provide a reality check on
MEC for CAV, pinpointing what are the computation capacities
that must be installed in the MEC, to support the different
services, and the amount of vehicles that a single MEC node can
support. We find that such parameters must vary a lot, depending
on the service considered. This study can serve as a preliminary
basis for network operators to plan future deployment of MEC
to support CAV.

Index Terms—5G Simulation; MEC; Connected and Auto-
mated Vehicles

I. INTRODUCTION

In order to safely and efficiently perceive their surroundings,
make real-time decisions, and navigate complex environments,
CAVs need some computational resources, e.g., CPU, GPU,
and RAM, to perform some algorithmic tasks. Computational
requirements may fluctuate depending on road traffic condi-
tions. Installing a large amount of computational resources
to be ready to perform peak computation at any moment
is very costly and would make vehicles too expensive, thus
severely restricting the market for CAV. Moreover, a large
amount of computation consumes power, thus reducing vehicle
autonomy or requiring big, heavy, and expensive batteries.
Cloud Computing partially addresses this problem by offering
offloading capabilities. However, CAVs have stringent require-
ments regarding latency and bandwidth that can hardly be
met by Cloud Computing [1]. Hence, MEC emerges as an
alternative capable of meeting those requirements, thanks to
deploying computational resources very close to vehicles, i.e.,
in the base stations or in the Road Side Units (RSUs). Also,
the reliability, the high bandwidth, and the extensive coverage
offered by 5G networks, together with the integration of MEC,

offer promising conditions for a large penetration of CAVs. In
this context, a question remains open:

With which computational capacity should MEC nodes be
equipped in order to support the different CAV services?

To answer this question, we first present a basic queue-
ing theory model to find the lower bounds on the required
computational resources (§IV). We then perform a simulation
campaign (§V-VI). We simulate the realistic mobility of
vehicles using SUMO. Packet exchanges between vehicles and
the MEC, as well as CAV service computation, are simulated
using essentially OMNeT++ [2], Simu5G [3], and Veins [4].
Our code, released in open source1 can be used by other
researchers as a base to study the feasibility of MEC-based
CAV services.

We find that for some CAV services, such as remote
driving and cooperative sensing, the amount of required MEC
resources is high, and only a few vehicles can be supported
at the same time by a MEC node, making MEC a difficult
avenue to follow. For other CAV services such as cooperative
maneuver and awareness, instead, MEC is more promising,
being able to support a larger number of vehicles.

II. BACKGROUND AND MOTIVATION

CAVs are categorized into different levels of automation, as
defined by the Society of Automotive Engineers (SAE) [5].
These levels range from level 0 (no automation) to level 5
(full automation). For this work, we consider scenarios with a
higher level of automation (from Level 3 to 5), which means
that vehicles can perform the majority of driving tasks, such
as platooning, collision avoidance, or cooperative sensing.

In these scenarios, vehicles communicate using vehicle-
to-everything (V2X) communications, which can be with
other vehicles (vehicle-to-vehicle or V2V), the infrastruc-
ture (vehicle-to-infrastructure or V2I), pedestrians (vehicle-
to-pedestrians or V2P), or the network (vehicle-to-network
or V2N). Performing in the edge node computation per-
taining to the aforementioned driving tasks relies on V2N
communications, enabling communication with the MEC. In
this case, we talk about vehicle-to-edge and edge-to-vehicle
communications.

Moving a large part of driving-related computation from
vehicles to edge nodes provides several advantages. Such
advantages have been shown for platooning [6], but they

1https://github.com/zazim13/Simu5G-MecBasedAV
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TABLE I: Use cases requirements

Use cases End-to-End Latency Threshold Reliability
Remote driving 20ms 99%

Cooperative sensing 10ms 95%
Cooperative maneuver 100ms 99%
Cooperative awareness 100ms 95%

extend, more generally, to various CAV applications. Notably,
the MEC facilitates interoperability among diverse CAV hard-
ware, enabling a central controller to simplify collaboration
between different vehicle types. In addition, edge nodes can
be made more resilient by appropriate redundancy practices.
If appropriately positioned, edge nodes can be less susceptible
to shadowing when communicating with vehicles. Finally,
an edge node can aggregate information from multiple ve-
hicles, fostering enhanced cooperation and facilitating global
decision-making, as showcased in [7] and [8].

However, while the MEC provides improved latency com-
pared to the Cloud, it does introduce some latency in con-
trast to on-board computations. Studies such as [9] suggest
balancing the computational load between the edge node and
the Cloud, based on latency considerations. In our approach,
we only focus on leveraging the MEC, as our goal is to
comprehend its limitations in supporting CAV services.

III. VEHICULAR SERVICES AND ARCHITECTURE

A. Vehicular applications

We consider the following CAV services, related to the high
degree of automation, characterized by stringent requirements,
as described in [10].

• Remote driving allows vehicles to be driven by a human
operator or an application outside the vehicle.

• Cooperative sensing involves exchanging sensed data to
enhance a vehicle’s environmental perception.

• Cooperative maneuver consists of exchanging messages
to synchronize vehicles’ maneuvers, such as lane chang-
ing or platooning.

• Cooperative awareness: information exchange to inform
vehicles about relevant events, such as Emergency Vehi-
cle Alerts, electronic emergency brake signals, etc.

For these use cases, the acceptable requirements are pro-
vided in [10] and [11]. Table I summarizes these requirements.
The requirements pertain to end-to-end latency, signifying the
delay from the transmission of a message to its reception at
the application level, and reliability, indicating the probability
of successfully transmitting data within the end-to-end delay
threshold, as in [11].

B. Communication behavior

Our objective is to assess the feasibility of deploying
applications in the MEC to serve the use cases described in
§III-A. Since our paper is not a study on the internals of the
aforementioned applications, we made a deliberate decision
not to implement each specific application in detail, which
would be time-consuming. Instead, we simulate a generic
parametric application. By adjusting the parameters to match

Fig. 1: Communication behavior of type “Dissemination”.

the application characteristics (as in Table III), we can mimic
the behavior of the different applications at a high level, only
focusing on network-related characteristics. By mimicking,
we mean generating communications that such an application
would perform, consuming the same bandwidth, with the
same data rate, and demanding the same processing load. We
consider two communication behaviors that represent the most
distinct services.

Dissemination. For cooperative applications, data such as
cooperative sensing, warning alerts, or traffic flow infor-
mation needs to be shared with nearby vehicles or RSUs.
Our approach emphasizes vehicle-to-edge and edge-to-vehicle
communication, following the methodology in [6] for platoon-
ing services. In this model, the edge node processes data,
runs algorithms, and disseminates results to relevant vehicles.
We introduce the ’dissemination radius’ parameter, creating
a circle around the data-producing vehicle for information
sharing. Each vehicle wishing to cooperate sends its data to
the edge node, which processes it and shares the information
in a unicast manner with all vehicles within the dissemination
circle. While broadcast is an option, it complicates limiting
dissemination to the specified circle. This behavior is depicted
in Fig. 1.

Client-Server. For remote driving service, the edge node
is generally used to offload certain tasks, such as object
recognition and parking assistance (as in [12]). In this paper,
we assume that the edge node is completely in charge of
remotely operating cars. This means that remotely driven
vehicles send data (videos, LiDAR, or sensed data) to the
edge node, which handles the execution of the necessary tasks
and sends the right commands, e.g., steering, braking, and
accelerating.

We choose a proactive behaviour for all applications, mean-
ing that data are periodically sent to the edge node then
shared when needed, and deploying the service is trigering
the sending of data, no particular event is waited.

IV. PERFORMANCE CHARACTERIZATION

The total delay is composed of several components, as
depicted in Fig. 2. Each application running in the MEC
(MecApp), related to one service and one vehicle, is allocated
a limited amount of processing resources. For the sake of
simplicity, we here only focus on the CPU deployed in an edge



node. We assume that the CPU of the edge node is allocated
among several MecApps using a fair sharing discipline [13]. A
MecApp operates as a queueing system for incoming packets.
Queued packets are processed sequentially, with the processing
time determined by the allocated CPU and task complexity.
The CPU allocation directly influences both processing time
and end-to-end delay, a critical factor for meeting reliability
requirements in the context of automated vehicles.

If we aim to achieve a reliability of Rreq, meaning that
more than Rreq percent of the packets should be successfully
transmitted within the end-to-end delay requirement Dreq , we
must ensure that for an end-to-end delay D.

P (D ≤ Dreq) ≥ Rreq (1)

From §V-A2 the packet generation follows a Poisson pro-
cess, and we also assume that the arrival rate at the MecApp
follows a Poisson distribution. In addition, the processing time
is assimilated to an exponential distribution. Given that, each
MecApp can be assimilated to a queueing system, we can
approximate these queues as M/M/1 queues. Consequently, the
time taken by each packet within the MecApp (queueing and
processing delay) follows an exponential distribution, with a
parameter µ− λ, where λ represents the packet arrival rate at
the MecApp and µ, the processing rate (in packets/s).

To ensure that the requirement can be met, it’s crucial
that the time taken by each packet within the MecApp Dmec

respects the condition (1) i.e. a necessary condition to meeting
the reliability requirement is :

P (Dmec ≤ Dreq) ≥ Rreq (2)

then we obtain:

µ ≥ λ− ln(1−Rreq)

Dreq
(3)

where Rreq is the overall reliability requirement and Dreq is
the overall delay requirement.

Given that:

µ =
CPU

E(IPR)
(4)

Where CPU is the amount of CPU (in instructions/s)
allocated to the MecApp and IPR is defined in §V-A2. The
minimum CPU that should be allocated to each MecApp in
order to respect the necessary condition (2) is:

CPUmin =

(
λ− ln(1−Rreq)

Dreq

)
· E(IPR) (5)

We compute these minimum CPU allocations regarding the
requirements presented in Table I. They are summarized in
Table III. Observe a notable discrepancy among the CPU
required for different services.

Fig. 2: Delay components

Fig. 3: Simulation frameworks diagram

V. SIMULATION ENVIRONMENT

We use several open-source software and frameworks to
perform our simulations. Fig. 3 illustrates the diagram of
interconnectivity within these frameworks. Our work is mainly
based on Simu5G [3], a popular open-source 5G simulation
library, because it provides 3GPP-compliant 5G New Radio
Access and integrates MEC features. Simu5G is based on the
OMNeT++ framework [2] and integrates INET [14], which is
an open-source framework providing tools for communication
network simulation. In order to enable a vehicular network
with realistic mobility, we use SUMO [15]. SUMO allows us to
generate road networks and traffic demand, specifying routes
and vehicles with realistic behavior. SUMO provides an API
[16] for interacting with the vehicles it generates, and Veins
(especially its subproject Veins INET), another open-source
vehicular network simulation framework allows us to access
this API within the OMNeT++ simulation environment and
give to vehicles in Simu5G the realistic mobility provided by
SUMO. With these tools, we can simulate scenarios aligning
with our vehicle-to-edge and edge-to-vehicle communication
approach.

A. Simulation parameters

1) Radio conditions: Simu5G offers a number of parame-
ters to tune the 5G New Radio network. It also provides a real-
istic channel model that supports fading, path loss, shadowing,
and attenuations. We choose to use macro base stations in an
urban scenario. Other parameters are summarized in Table II
and are essentially taken from [17].

2) Use cases specifications: Our generic application aims
to mimic real-world application behaviors. To achieve this
objective, we studied these behaviors in the literature and
collected specifications such as distributions, values, and other



TABLE II: Simulation radio parameters

Parameter name Value
Number of gNBs 1
Carrier frequency 6GHz
Bandwidth 80MHz(100 PRBs)
Numerology 2
Fading (Jakes) + shadowing enabled
gNB Tx power 46 dBm
gNB antenna gain 8dBi
gNB noise figure 5dB
UE antenna gain 0dBi
UE noise figure 7dB
Path loss model (3GPP - TR 36.873)
Blershift 5

metrics for parameters like uplink or downlink bandwidth us-
age, data rates, and more. These specifications are summarized
in Table III.

It is generally assumed in the literature, as in [18], that the
packet generation process follows a Poisson distribution for
IoT-based applications. Then, assuming a constant data accu-
mulation by IoT devices, the payload size of each sent packet
can be approximated as an exponential random distribution.

The processing time is directly related to the size of
the packet to be processed, which follows an exponential
distribution, we then also assume that the processing time
itself is exponentially distributed. In Simu5G’s MEC imple-
mentation, it is through instructions required by the packet
being processed that the processing time is tuned, as they
are proportional. For each use case, we consider that each
packet requires certain tasks to be performed. We introduce the
parameter IPR for Instructions Per Request i.e. the number
of instructions required per each request. We detailed in
Table III values of IPR for each use case. We extract them
from [12], where we can find task instructions requirements
for tasks related to automated vehicles. Each use case is
attributed with sufficient IPR to handle essential tasks such as
steering control, alongside characteristic tasks corresponding
to each use case (e.g., object recognition for remote driving
or parking assistance for cooperative maneuvers). We use
MIPS (Millions of Instructions Per Second) and MI(Million
Instructions) as a measure of computational capability and
number of instructions to align with Simu5G.

Once processed, an answer with the processed information
is transmitted back to the sending vehicle, and in the case
of cooperative applications, to neighboring vehicles as well.
These transmitted packets include processed information, such
as steering control, alerts, acknowledgments, and more. In
[19], a downlink bandwidth of 0.25 MBit/s is assumed for self-
driven cars, with downlink packets containing steering control
information. With a sending rate of 100 messages per second
in our remote driving scenarios, this implies an answering
rate of 100 messages per second. Consequently, we assume
a payload size of 313 bytes for each packet, considering it to
be adequate to accommodate all potential types of responses
across various use cases.

Each use case is defined by a communication range, repre-
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(a) Remote driving
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(b) Cooperative maneuver
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(c) Cooperative awareness
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(d) Cooperative sensing

Fig. 4: Success rate of each Edge CPU

senting the area over which V2X messages can be transmitted.
We adopt a circle of dissemination approach, where the radius
of this circle determines the communication perimeter. We
assume that this radius follows a uniform distribution within
the specified range detailed in [10], as indicated in Table III.

3) Simulation scenario: In our simulations, we essentially
tune two parameters: the CPU capacity available at the edge,
shared among the MecApps of the cars, and the number
of injected vehicles. The processor used and their computa-
tional capacities are displayed in Tables IV. Each experiment
corresponds to a simulation involving a specific edge node
processor and a certain number of injected vehicles. Every
experiment is repeated five times with different seeds (i.e.,
five repetitions in OMNeT++), and each simulation lasts 180
seconds. The road map corresponds to a district of Paris of 1
square kilometer.

VI. RESULTS

Figure 4 illustrates the success rates across various exper-
iments, where the success rate is defined as the percentage
of repetitions meeting the reliability requirement out of all
experiment repetitions. The red limitation denotes a threshold
where CPU allocation meets the minimum requirements for
each MECApp as outlined in Table III. Simulations below
this threshold fail to meet the reliability criteria. However,
simulations above this threshold show improved performance
but still encounter challenges despite sufficient CPU allocation
for each MECApp. This issue stems not only from delays
inherent to the MEC node performance, addressed by the
condition in (2) which specifies the minimum CPU allocation
required for each MEC application, but also from additional
uplink and downlink delays. An increase in the number of
vehicles leads to reduced bandwidth per vehicle, consequently
increasing the end-to-end delay and highlighting the need for
scaling edge nodes in proportion to network resources.

With their speed, processors id3 and id4 can effectively
handle scenarios such as remote driving or cooperative sensing



TABLE III: Use cases specifications

Use cases Uplink bandwidth (Mb/s) Uplink rate (msg/s) Uplink payload (Bytes) Downlink payload (Bytes) IPR [12] Dissemination radius Min CPU(MIPS)
Remote driving 32 [20] Pois(100) Exp(40000) 313 [19] Exp(500) - 165130
Cooperative sensing 10 [10] Pois(100) [21] Exp(12500) 313 [19] Exp(200) Uniform(0-200m) [10] 79915
Cooperative maneuver 1.3 [10] Pois(10) [6] Exp(16250) 313 [19] Exp(500) Uniform(0-500m) [10] 28026
Cooperative awareness 0.12 Pois(10) [21] Exp(1500) [10] 313 [19] Exp(200) Uniform(0-500m) [10] 7992

TABLE IV: Processor Processing Speed

Id Processor Processing Speed(MIPS) [22]
1 AMD Ryzen Threadripper 2356230
2 AMD Ryzen 9 749070
3 Intel Core i9-9900K 412090
4 Intel Core i5-11600K 346350

for up to 2 vehicles, awareness tasks for 20 vehicles, and
maneuvering tasks for 10 vehicles. However, even doubling
the processing speed with processor id2 does not significantly
increase the number of vehicles that can be managed, with
only a modest improvement observed in remote driving and
cooperative sensing services. This underscores the challenge
of scaling up the number of vehicles through improving the
MEC node performance.

Moreover, our observations indicate that services with more
stringent requirements support fewer vehicles given the same
edge node capacity. Specifically, services like remote driving
and cooperative sensing, which demand lower end-to-end
delays, can support fewer vehicles than cooperative maneuver
and awareness service. The latter services are therefore more
promising.

VII. CONCLUSION

We conducted a simulation campaign using diverse tools
to assess the limits of integrating 5G networks and edge
computing via the MEC paradigm to handle various CAVs
services requirements. Our focus includes evaluating the feasi-
bility of edge-based control, where MEC manages all required
computations. We show a basic queuing model to provision the
minimum computational capability to satisfy different MEC
application requirements. Our results highlight a discrepancy
in required resources for specific CAV services. This indicates
that even if controlling CAVs from the edge is feasible, the ef-
ficiency greatly varies depending on the service. Additionally,
we reveal challenges in improving such efficiency by scaling
up the edge, as the communication delay can hinder the correct
operation of vehicular services from the edge. A limitation of
our approach is that we did not conduct an in-depth study of
the communication delay nor did we consider cloud or vehicle
computational resources. We plan to incorporate these factors
in our future works to provide a more comprehensive analysis.
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