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Abstract

Video surveillance systems have been introduced in var-
ious fields of our daily life to enhance security and protect
individuals and sensitive infrastructure. Up to now it has
been usually utilized as a forensic tool for after the fact in-
vestigations and are commonly monitored by human oper-
ators. In order to assist these and to be able to react in
time, a fully automated system is desired. In this work we
will present a multi camera surveillance system, which is
required to resolve heavy occlusions, to detect robberies at
ATM machines. The resulting trajectories will be analyzed
for so called Low Level Activities (LLA), such as walking,
running and stationarity, applying simple but robust ap-
proaches. The results of the LLA analysis will subsequently
be fed into a Bayesian Network, that is used as a stochastic
model to model so called High Level Activities (HLA). In-
troducing state transitions between HLAs will allow a tem-
poral modeling of a complex scene. This can be represented
by a Markovian process.

1. Introduction

One of the major aspects of automated visual surveil-
lance systems is to detect objects in the scene and track
these over time. The most challenging problem herein is
to segment people in complex scenes, where high object
density leads to occlusions. To model individual behav-
iors these have to be resolved robustly. Tracking techniques
based on a single view, such as the mean shift algorithm
[10], are able to track objects robustly, but require an initial-
ization of single objects prior to the group formation and the
subsequent handling of merge and split events [16]. How-
ever, in some cases a single view seems not sufficient to
detect and track objects due to severe occlusion, which as a
fact requires the utilization of multiple camera views.
Camera networks are frequently applied to extend the lim-
ited field of view of a camera, performing tracking in each
sensor separately and fusing this information [1]. In order
to deal with dense crowds, the cameras should be mounted

to view defined regions from different perspectives. Within
these, corresponding objects now have to be located. Ap-
proaches based on geometrical information rely on geomet-
rical constraints between views using calibrated data [25] or
homography between uncalibrated views, which e.g. Khan
[15] used to localize feet positions. This approach, though
very simple and effective, localizes feet and consequently
tends to segment persons into further parts. This can be
avoided by applying multi layer homography, as proposed
in [3], which is capable to create a 3D representation of the
scene. The detected object locations can now be utilized as
initialization for any tracking approach.

Having associated the single detections to trajectories, it is
possible to analyse a person’s behavior and additionally de-
tect anomalies on-line. This step is basically the most im-
portant one, as it moves the system from passive CCTV, that
is used for forensics, to an active system that enables secu-
rity staff to react in time and even prevent crimes. In this
work we will focus on the detection of robberies at ATM
machines, as these seem to occur quite frequently in unse-
cure urban regions. Therefore a system, which analyzes an
individual person’s behavior on a low level activity basis in
the first place and combines observations in a Bayesian Net-
work will be introduced in this work. We will show, that this
static representation will robustly detect Higher Level Ac-
tivities, without the cost of collecting a large amount of data
to train HMMs [18] or behavioral maps [6]. Despite the sce-
nario’s complexity and large inter class variance, some sce-
narios are though following a similar scheme, which can be
modeled by a Markov chain architecture. This is achieved
by the introduction of state transition between HLAs, allow-
ing a detailed dynamic scene representation. Observing this
we are able to detect scenarios with feeding expert knowl-
edge into the network structure.

The performance of this approach will be demonstrated on
the PROMETHEUS data sct [17], which has been created
for the comparison of tracking and behavior detection sys-
tems, and introduced new sensors such as thermal infrared,
3D cameras and also used audio. Ground truth is provided
both for the person locations and associated events.



Figure

2. The PROMETHEUS ATM Corpus

One of the integral parts of the PROMETHEUS corpus
is the security related outdoor scenario. It has been recorded
in an outdoor facility using three synchronized overview
Firewire cameras with a resolution of 1076 x 768pixels.
These were utilized to track persons along the paths and
the lawn in the scene. The cameras were setup respecting
the scene geometry, in order to resolve occlusions created
by trees and bushes. Furthermore lenses with a short fo-
cal length have been installed, to enlarge the field of view.
Additionally a detail camera with PAL resolution has been
installed at the ATM, providing a more detailed view on the
relevant region. This way even the persons limbs could be
modeled. Furthermore a photonic mixture device, that cre-
ates a depth image of the scene, has been used in in front of
the ATM, which can be used to resolve occlusions in dense
environments.

As the recordings were conducted in a public place multi-
ple people and groups could be observed in the video ma-
terial. Eleven actors have been engaged to simulate both
luggage [13] and ATM related events, which will be ad-
dressed in this work. Therefore actors were told to draw
money at a simulated ATM machine and eventually cue in
line behind a person operating the ATM. Throughout the
three hours of video material the behavior of operating the
ATM has been recorded twelve times, whereas only three
robberies occurred. While an actor was drawing money, in
some cases another actor has been instructed to rob the per-
son at the ATM. Therefore the robber would approach the
person, grab the money or hand bag and run away into a ran-
dom direction. As the actors did not know, when they might
be robbed the reaction was quite spontaneous and various
reactions have been observable. Some were shouting and
following the thief, others were just standing in front of the
ATM and screaming for help. Screams have been recorded
by a microphone array behind the ATM, although audio is
not used in this part of the work.

In order to be able to evaluate the system’s performance, the
entire amount of one hour of video material has been man-
ually annotated. Thereby the persons’ position has been
determined for every fifth frame in the sequence in world
coordinates. Furthermore the timestamps of ATM incidents

1. All four views of the PROMETHEUS outdoor scenario

have been also annotated. The database is available for re-
search purposes. For further details please contact the cor-
responding author.

3. Multiple Camera Person Tracking

In the first stage a synchronized image acquisition is
needed, in order to compute the correspondences of moving
objects in the corresponding views C1,Cs, ..., C,,. Addi-
tionally the sensors should be set up keeping in mind that
the observed region should be as large as possible and di-
rect occlusions of the sensor should be avoided. Therefore
a field of view looking down on the scenery from an ele-
vated point would be preferable.

Subsequently a foreground segmentation is performed in all
available smart sensors to detect changes from the empty
background BG [15] :

FGn<x7y7t) = In(xvyt) - BGn(aj»y) (1)

where the appropriate technique to update the background
pixel, here based on Gaussian Mixture Models [26], is cho-
sen for each sensor. It is advisable to set parameters, such
as the update time, separately in all sensors to guarantee
a high performance. Computational effort is reduced by
masking the images with a predefined tracking area. Now
the homography H; between a pixel p; in the view C; and
the corresponding location on the ground plane 7 can be
determined. In all views the observations zi1,Zs,..., %y
can be made at the pixel positions p1,ps,...,pn. Let X
resemble the event that a foreground pixel p; has a pierc-
ing point within a foreground object with the probability
P(X|z1,z9,...,2,). With Bayes’ law

P(X|xy,@a,...,2,) < P(xy,xe,...,2,|X)P(X) (2)

the first term on the right side is the likelihood of mak-
ing an observation 1,2, ...,Z, given an event X hap-
pens. Assuming conditional independence, the term can be

rewritten to
P(z1,...,2p]X) = P(x1|X) x ... x P(z,]|X) (3)

According to the homography constraint, a pixel within an
object will be part of the foreground object in every view

P(x;]X) oc L(w;) 4)
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Figure 2. a) Planar homography for object detection.b) Resolving
occlusions by adding further views.

where L(x;) is the probability of z; belonging to the fore-
ground. An object is then detected in the ground plane when

n

P(X|xy, 22, .. xn) o | [ L(z:) )

=1

exceeds a threshold 6. In order to keep computational ef-
fort low it is feasible to transform only regions of interest.
These are determined by thresholding the entire image, re-
sulting in a binary image, before the transformation and the
detection of blobs with a simple connected component anal-
ysis. This way only the binary blobs are transformed into
the ground plane instead of probabilities. Therefore eq. 5
can be simplified to

P(X|xy,22,...,a) o< »_ L(x;) (6)
=1

without any influence on the performance. The value of
theta ¢ is usually set dependent on the number 7 of camera
sensors to § = n — 1, in order to provide some additional
robustness in case one of the views accidentally fails. The
thresholding on sensor level has a further advantage com-
pared to the so called soft threshold [15], [7], where the
entire probability map is transformed and probabilities are
actually multiplied as in eq. 5. A small probability or even
x; = 0 would result in a small overall probability, whereas
the thresholded sum is not affected that dramatically. Us-
ing the homography constraint hence solves the correspon-
dence problem in the views C1,Cs,...,C), as illustrated
in fig 2a) for a cubic object. In case the object is human,
only the feet of the person touching the ground plane will be
detected. The homography constraint additionally resolves
occlusions, as can be seen in fig. 2a). Pixel regions located
within the detected foreground areas, indicated in grey on
white ground and representing the feet, will be transformed
to a piercing point within the object volume. Foreground
pixel not satisfying the homography constraint are located
off the plane, and are being warped into background regions
of other views. The piercing point is located outside the
object volume. All outliers indicate regions with high un-
certainty, as there is no depth information available. This
limitation can now be used to detect occluded objects. As
visualized in fig. 2b) the smaller cuboid is occluded by the

large one in view C1, as apparently foreground blobs are
merged. The smaller object’s bottom side is occluded by
the larger object’s body. In contrast both objects are visible
in view C, resulting in two detected foreground regions. A
second set of foreground pixel, located off the ground plane
m, in view C; will now satisfy the homography constraint
and localize the occluded object. This process allows the
localization of feet positions, although they are entirely oc-
cluded, by creating a kind of see through effect.

The implemented algorithm can be described as following:

e Foreground objects 1);,, are detected in all n views and
a binary map is created. Subsequently n object bound-
aries can be extracted utilizing connected components
analysis in the binary image

e Object boundaries are then being transformed into a
predefined reference view

Though any of the views can be chosen, the most con-
venient one is a top view on the ground plane, visual-
izing spatial relationships between objects.

e Next the intersections of the polygons are computed.
These can be calculated by a plane-sweep algorithm
within the reference view. The binary represented re-
gions B,

1if &
Bn(x,y)z{ Al ) € "} (®)

located within detected foreground, are now trans-
formed into the ground plane. In a subsequent step
these values are summed up to

=1

e The resulting map B(x,y) is subsequently thresholded
with the previously defined parameter 6 to encounter
possible object regions

1if B(z,y) > 6

0 else (10)

St = {
This is usually computed with 6 = n — 1 to obtain
higher reliability in the tracking process.

e Finally coherent regions indicating feet positions are
indexed applying a simple connected component anal-
ysis.

This procedure can be repeated for multiple heights besides
the ground layer to create a 3D view of the scenery, which
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Figure 3. Exemplary labeling of persons present in the scene on
the left. Occupancy of the ground floor on the right

will help rising the localization performance drastically [3].
Fig. 3 illustrates the localization results for two persons in
the scene, which can be directly labeled either in a field of
view or in a simplified occupancy map, that illustrates a top
view of the scenery.

As seen in fig. 3, there are bushes and trees present in the
scene, which occlude objects walking along the paths. In
quite extreme combinations a person will only be visible
in one or two camera views, and hence she will not be
detected by the homography algorithm. Setting a lower
threshold for required overlaps of blob transformations, is
not an adequate solution, as it will have an effect on the
entire scene and create multiple false positives. Therefore
it has been decided to incorporate contextual knowledge
into the scene. All obstacles are manually labeled, their
homographies are computed and assigned a unique label to
determine which camera is responsible for the homography.

4. Low-Level Trajectory Events

Human behavior is considered as very complex and a

wide range of varieties can be observed for each individual
behavior. Therefore it is frequently not possible to create
one meaningful model for a complex activity. In contrast
to a task like gesture recognition, which is quite limited in
appearance, it has been suggested to decompose complex
scenarios into common and simple to detect so called Low
Level Activities (LLA) [4] or pre-defined indicators (PDIs)
[8]. These can subsequently be further analyzed after being
detected. Following we will shortly describe the employed
LLAs and how these are robustly detected by simple means.
Stationary Object Detection:
For some scenarios, such as left luggage detection, objects
not altering their spatial position have to be picked up in a
video sequence. Due to noise in the video material or slight
changes in the detector output, ¢.g. the median of a particle
filter, the object location is jittering a little. A simple spatial
threshold over time is usually not adequate, because the jit-
ter might vary in intensity over time. Therefore the object
position is averaged over the last NV frames:

t
m:% Z 0i () (11)

t'=t—N

Subsequently the normalized variance in both x— and y—
direction

12)

is computed [5] [2]. This step is required to smooth noise
created by the sensors and errors during image processing.
Stationarity can then be assumed for object with a lower
variance than a predefined threshold

. . lifvar < 6
stationarity = Omoving else (13)

Given only the location coordinates this method does not
discriminate between pedestrians and other objects, en-
abling the stationarity detection for any given object in the
scene.

Detection of Loitering Persons According to authorities a
person would observe a scene for a while until the suppos-
able right point of time appears prior to performing a threat.
This is depending on external circumstances, which have
to be met. Observations are frequently performed from a
well-defined place in the scenery, where the person tries
not to draw attention to himself, requiring steady move-
ment in a crowded environment. Therefore it is important to
monitor the visibility of pedestrians in sensitive areas. The
PETS2007 challenge defines loitering as a subject being lo-
cated in the field of view more than a predefined hard time
threshold, here 0;,,. > 60 s [13].

This kind of behavior can be easily solved with a rule based
approach implemented into the person tracking modules
[2]. While tracking an individual object the age, meaning
the time an object is visible in the scene, can be determined
by simply counting the frames an object track is maintained.
Tracks older than 6y, will trigger an alarm. Analysis has
been performed only on blob level, not discriminating be-
tween objects and pedestrians. The integration of a luggage
piece detector as presented in [11] or a pedestrian detection
system [19] could eliminate false positives. Discriminat-
ing Between Walking and Running

In the past various gait recognition systems [23],[9] based
on machine learning techniques have been designed to rec-
ognize pedestrians from gait or discriminate between dif-
ferent kind of gait, such as walking and running. These
are commonly trained with 2D data acquired from a prede-
fined field of view, which cannot be granted in every real
world scenario. retraining these algorithms for every possi-
ble system setup is a rather expensive task, as video material
has to be collected and annotated. Considering the trajecto-
ries projected in a virtual top view a human operator would
probably be analyzing the object’s speed to discriminate be-
tween walking and running. This observation is utilized in



this work. Defining walking as movement up to a maxi-
mum speed, here vy, = 6 km/h = 1.66m/s, and faster
movements as running simple thresholding operation can be
performed

() = walking if v;(t) < Upae and stationary
s(t) = running if v; () > Vmax
(14)
The speed v;(t) can be easily computed with the covered
distance

d=/(x(t) —x(t = 1)) + (y(t) —y(t - 1))* (15

in meters and the frame rate of the captured video.

Once again jitter in the detection process is flattened by av-
eraging the frame based results over time. Experience has
shown that the summation of up to 25 frames is sufficient
for this task. While the discrimination between walking and
running relies solely on the covered distance, the direction
of motion can be simply computed by the difference be-
tween two adjacent positions vy = Ty — Tp—1.

Detection of Splits and Mergers

According to Hu [20] so called splits and merges have to be
detected in order to maintain IDs in the tracking task. Guler
[14] tried to handle these as low level events describing
more complex scenarios, such as people getting out of cars
or forming crowds. A merger usually appears in case two
previously independent objects o; and oy unite to a mostly
bigger one

012 = 01 U 09 (16)

This observation is usually made if two objects come ex-
tremely close to each other or touch one another in 3D,
whereas in 2D a partial occlusion might be the reason for
a merger. In contrast two objects 011 and 012 can be created
by one single splitting object o1, which might be created by
a previous merger.

While others analyze object texture and luminance [22], the
herein applied rule based approach only relies on the object
position and the region’s size. Basically disappearing and
appearing objects have to be recognized during the tracking
process, to incorporate a split or merge:

e Merge:One object disappears but two objects can be
mapped on one and the same object during tracking.
In an optimal case both surfaces would intersect with
the resulting bigger surface 01 N 012&01 N 012

o Split:Similar to the object split two objects at frame
t are mapped to onc object at time ¢ — 1, where the
objects both intersect with the old splitting one 011 N
01&012 N oy

Detection of Group Movements
As in various cases persons are interacting with each other

it seems reasonable to model combined motions. This can
be done according to the direction of movement, proxim-
ity of objects and velocity. As the direction of motion
can be simply computed, it is possible to elongate the mo-
tion vector ¥ and compute intersections with interesting
objects or other motion vectors. Further the distance be-
tween object positions can be easily detected with d;; =
V (@i(t) — z;(1))? + (yi(t) — y;(t))2. Thereby most rele-
vant LLAs can be detected applying simple heuristics, as
already employed for left luggage detection [5]. Among the
required activities following need to be detected:

e Approaching a stationary object or person: The
mean motion vector is simply clongated and intersec-
tions with stationary persons or objects are computed.
If an intersection is detected and maintained for a time
t > 0, the person is approaching a stationary object.

e Two persons walking or standing next to each
other: The distance between all objects in the scene
is computed continuously over time. In case the dis-
tance is constant over time, allowing some variance of
course, or getting smaller over time and are heading
into the same direction with the same speed, the ob-
jects are considered walking or standing next to each
other.

e A person following another one: Two persons are
heading in the same direction for a time ¢ > 6 for a
pre-defined time.

¢ Two persons approaching each other: The distance
of two persons is getting smaller over time and the
elongated motion vectors are intersecting at any time.

Utilizing this simple rules it is possible to model all cases in
a simple, yet effective fashion.

5. Bayesian Network Based Modeling of HLAs

Bayesian Networks (BN) have already been used to ana-
lyze behaviors in the past, as these are capable to model de-
pendencies between variables [12, 4]. Such a network can
be interpreted as directed acyclic graph, where the nodes
represent the state variables X and the edges represent the
conditional of nodes and their parent nodes. Thereby all
state variables X1,...,X,, are described by a previously
detected LLA. A BN can be completely described in struc-
ture and conditional probabilities by its joint probability dis-
tribution. Let NV denote the total of random variables, and
the distribution can be calculated as

1
P(Xy,...,Xy) = [ P (Xilparents(X,)) . (17)

i=1
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Figure 4. Structure of a Markov chain with state transitions for two
persons, who are interfering after some time.

The used BN in this work is enhanced by the capability to
handle soft evidences. The relationship between the LLAs
can now be used to describe a High Level Activity (HLA).
A HLA, as e.g. observing the ATM, can therefore be mod-
eled by a wide range of indicators, which would be standing
near the ATM, loitering near the ATM, or approaching the
ATM, meaning that the distance to the ATM is becoming
smaller. Utilizing the LLAs, context knowledge, object dis-
tances and velocity following HLA can be modeled by BNs:

e Operating an ATM

Loitering in the region of an ATM

Approaching an ATM while being operated

e Being approached while operating an ATM

Leaving the ATM in normal pace
e Running Away from ATM
e Leaving Luggage

The major advantage of this approach is its simplicity
and the ability to incorporate training material and expert
knowledge. As data is usually rather sparse and data col-
lection is quite expensive, this feature should be taken into
account. This way the recognition of HLAs, which are cas-
ily recorded, can be trained, while others can be determined
by a set of predefined probabilities.

6. Event Recognition With Dynamic Bayesian
Networks

A complex scenario unfortunately cannot be described
by relying on simple BNs, as these are not designed to
model temporal relationships. Therefore it seems reason-
able to create a dynamic model, in order to recieve a more

N 1 =

1: Operating ATM 2: Walking 3:Loitering at ATM
Figure 5. Detection examples for operating an ATM machine, once
with and once without cuing.

complex scenario description. The most obvious solution
would be to use the HLAS as states within a Markov chain,
the probably simplest form of a Hidden Markov Model
HMM [21]. A probability is given for every transition be-
tween two subsequent states, allowing for auto transitions,
in case the actual state does not change. A complex scenario
can hence be modeled as a sequence of observations, which
have been recognized by the previously trained Bayesian
networks. If a new HLA is detected, the most probable path
through a set of Markov chains is computed, in order to rec-
ognize the given scenario.

The process of drawing money at the ATM could therefore
be represented by observing the ATM as the person had to
wait in line, approaching the ATM and operating it and fi-
nally leaving the machine. An exemplary result for "oper-
ating ATM” is provided in fig. 5. Such models can now be
created for any given scenario.

Finally a model for an ATM robbery has to be created. One
obvious implementation of a Markov chain would probably
be that the person, that operated the ATM, leaves it in a
hurry and runs away in order to follow the thief. Unfortu-
nately there is no evidence why the person is actually run-
ning away. This can only be gained if other activities than
the robbed person’s one are analyzed. Therefore a second
Markov chain is evaluated in parallel. This is used to model
the potential theft. Thereby the thief would observe the
ATM, approach the person at the ATM, stand very close to
her and even merge with her before walking/running away
from the crime site. On the other hand this could of course
also describe someone meeting another person at an ATM.
At this place an inference, as illustrated in fig. 4, between
two concurring chains has been introduced. Thereby both
outputs are fed into the other network and the resulting sum



Figure 6. Recognition examples for a robbery at an ATM. Here ID
1 is robbing ID 2.

is analyzed by a transfer function. If a value larger than
a predefined threshold 6 is observed, an alert is produced.
This method can of course be used to model other events
that follow a sequential order with small adoptions.

7. Evaluation

As the performance of the homography tracking ap-
proach has been evaluated in previous works, this short
evaluation focuses on the event detection abilities. The lo-
calization precision has once more be confirmed to be appx.
0.15m, which is an acceptable value for the human class.
Furthermore only few ID changes have been observed, due
to simplicity of the tracking scenario. In order to evalu-
ate the behavior detection module, events have been anno-
tated manually, while only HLAs and few LLAs have been
considered. Tab. 1 shows the activities of interest. In the
first place some LLAs, here loitering, stationarity and run-
ning, were considered as meaningful LLAs for the scenario
recognition task. These could be recognized flawlessly with
little to none false positives. The HLAs queuing at ATM,
operating ATM and the complex scenario robbing an ATM
were basically the most important scenarios.

Tab. 1 illustrates the recognition results. All 17 person op-
erates ATM scenarios have been detected with an average
delay of 1.7s. Only two false positive has occurred, as per-
sons were walking by the ATM and were standing there for
a prolonged time period. Loitering at the ATM has also
been detected flawlessly, while creating only one false pos-
itive. The large amount of loiterings can be explained by
persons waiting in line or just observing the scene although
not being involved in the scenario. These can be basically
considered as correct detections. Nevertheless the loitering
and queuing persons could be discriminated quite well in
the end as all 15 events have been recognized with only two
false positives. As can be seen all four ATM robberies have
been flawlessly detected without any false positives and a
very short reaction time of 1.1 s. Besides the detection of
the event itself the temporal alignment ¢ has been of great
interest, as a real application requires short reaction times.
The delay of detection and incident has an average 1.1 s,
which could be computed by the delay in frames, as cameras

Event [#] det fpos At

Loitering 48 48 1 0s
Stationarity 3 3 0 0s
Sprint/Run 8 8 0 14s

Left Luggage 2 2 0 1.2s
2
3

Operate ATM 17 17 1.7s
Queuing at ATM 15 15 2.1s
Rob ATM 3 3 0 1.1s
Table 1. Evaluation of the behavior detection module. All ATM
related events could be recognized flawlessly

with 15fps are used. Furthermore two left luggage events
have been recorded for test purposes, which have also been
detected without error.

As the examples in fig. 5 and 6 illustrates the tracking
results are only visualized in one view. This is used as
overview camera during tracking evaluation. Nevertheless
it would be possible to transform them into any other view.
For a more convenient visualization of the events, the FOV
on the left hand side is chosen dynamically. In case the
thief leaves the FOV of the detail camera, the system auto-
matically switches to the best camera perspective, by simply
analyzing the persons direction and position in the plane.

8. Conclusion and Outlook

We have presented an integrated framework for the de-

tection of ATM related events in a multi camera surveillance
system in this work. The tracking part has been conducted
using multi layer homography, which has created reliable
results in previous applications already. Nevertheless track-
ing performance can be further enhanced by creating a 3D
model of the person using texture information and imple-
menting a parallel tracking of texture and blob position [3].
Furthermore the introduction of other sensors, such as 3D
cameras or thermal infrared, could provide a more reliable
segmentation of the scene.
Further it has been demonstrated, that a complex behav-
ior can be decomposed into multiple easy to detect LLAs,
where especially heuristics has shown high reliability with-
out the cost of an expensive training phase. The detected
LLA are subsequently fed into a Dynamic Bayesian Net-
work, allowing a stochastic model of behaviors. all ATM
related events, which are dynamic processes, could be reli-
ably detected. For future development it would be desired
to analyze persons in further detail and for instance recog-
nize even gestures [24], which will allow an exacter model
creation.
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