
ar
X

iv
:1

90
7.

11
86

4v
2 

 [
cs

.L
G

] 
 3

0 
O

ct
 2

01
9

Uncertainty in Model-Agnostic Meta-Learning using Variational Inference

Cuong Nguyen

University of Adelaide

cuong.nguyen@adelaide.edu.au

Thanh-Toan Do

University of Liverpool

thanh-toan.do@liverpool.ac.uk

Gustavo Carneiro

University of Adelaide

gustavo.carneiro@adelaide.edu.au

Abstract

We introduce a new, rigorously-formulated Bayesian

meta-learning algorithm that learns a probability distribu-

tion of model parameter prior for few-shot learning. The

proposed algorithm employs a gradient-based variational

inference to infer the posterior of model parameters to a

new task. Our algorithm can be applied to any model

architecture and can be implemented in various machine

learning paradigms, including regression and classifica-

tion. We show that the models trained with our proposed

meta-learning algorithm are well calibrated and accurate,

with state-of-the-art calibration and classification results

on two few-shot classification benchmarks (Omniglot, mini-

ImageNet and tiered-ImageNet), and competitive results in

a multi-modal task-distribution regression.

1. Introduction

Machine learning, in particular deep learning, has

thrived during the last decade, producing results that were

previously considered to be infeasible in several areas. For

instance, outstanding results have been achieved in speech

and image understanding [1–4], and medical image analy-

sis [5]. However, the development of these machine learn-

ing methods typically requires a large number of training

samples to achieve notable performance. Such requirement

contrasts with the human ability of quickly adapting to new

learning tasks using few “training” samples. This difference

may be due to the fact that humans tend to exploit prior

knowledge to facilitate the learning of new tasks, while ma-

chine learning algorithms often do not use any prior knowl-

edge (e.g., training from scratch with random initialisa-

tion) [6] or rely on weak prior knowledge to learn new tasks

(e.g., training from pre-trained models) [7]. This challenge

has motivated the design of machine learning methods that

can make more effective use of prior knowledge to adapt to

new learning tasks using few training samples [8].

Such methods assume the existence of a latent distribu-

tion over classification or regression tasks that share a com-

mon structure. This common structure means that solving

many tasks can be helpful for solving a new task, sampled

from the same task distribution, even if it contains a lim-

ited number of training samples. For instance, in multi-

task learning [9], an agent simultaneously learns the shared

representation of many related tasks and a main task that

are assumed to come from the same domain. The extra

information provided by this multi-task training tends to

regularise the main task training, particularly when it con-

tains few training samples. In domain adaptation [10, 11],

a learner transfers the shared knowledge of many training

tasks drawn from one or several source domains to perform

well on tasks (with small training sets) drawn from a tar-

get domain. Bayesian learning [12] has also been explored,

where prior knowledge is represented by a probability den-

sity function on the parameters of the visual classes’ prob-

ability models. In learning to learn or meta-learning [13,

14], a meta-learner extracts relevant knowledge from many

tasks learned in the past to facilitate the learning of new fu-

ture tasks.

From the methods above, meta-learning currently pro-

duces state-of-the-art results in many benchmark few-shot

learning datasets [15–22]. Such success can be attributed

to the way meta-learning leverages prior knowledge from

several training tasks drawn from a latent distribution of

tasks, where the objective is to perform well on unseen tasks

drawn from the same distribution. However, a critical issue

arises with the limited amount of training samples per task

combined with the fact that most of these approaches [15,

16, 18, 19, 23] do not try to estimate model uncertainty –

this may result in overfitting. This issue has been recently

addressed with Laplace approximation to estimate model

uncertainty, involving the computationally hard estimation

of a high-dimensional covariance matrix [24], and with vari-
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ational Bayesian learning [20, 25] containing sub-optimal

point estimate of model parameters and inefficient optimi-

sation.

In this work, we propose a new variational Bayesian

learning by extending model-agnostic meta-learning

(MAML) [19] based on a rigorous formulation that is

efficient and does not require any point estimate of model

parameters. In particular, compared to MAML [19], our

approach explores probability distributions over possible

values of meta-parameters, rather than having a fixed value.

Learning and prediction using our proposed method are,

therefore, more robust due to the perturbation of learnt

meta-parameters that coherently explains data variability.

Our evaluation shows that the models trained with our

proposed meta-learning algorithm is at the same time well

calibrated and accurate, with competitive results in terms

of Expected Calibration Error (ECE) and Maximimum

Calibration Error (MCE), while outperforming state-of-the-

art methods in some few-shot classification benchmarks

(Omniglot, mini-ImageNet and tiered-ImageNet).

2. Related Work

Meta-learning has been studied for a few decades [13,

14, 26], and recently gained renewed attention with the use

of deep learning methods. As meta-learning aims at the

unique ability of learning how to learn, it has enabled the

development of training methods with limited number of

training samples, such as few-shot learning. Some notable

meta-learning approaches include memory-augmented neu-

ral networks [15], deep metric learning [18, 23], learn how

to update model parameters [16] and learn good prior using

gradient descent update [19]. These approaches have gener-

ated some of the most successful meta-learning results, but

they lack the ability to estimate model uncertainty. Con-

sequently, their performances may suffer in uncertain envi-

ronments and real world applications.

Bayesian meta-learning techniques have, therefore, been

developed to incorporate uncertainty into model estima-

tion. Among those, MAML-based meta-learning has at-

tracted much of research interest due to the straightfor-

ward use of gradient-based optimisation of MAML. Grant

et al. [24] use Laplace approximation to improve the ro-

bustness of MAML, but the need to estimate and invert

the Hessian matrix makes this approach computationally

challenging, particularly for large-scale models, such as the

ones used by deep learning methods. Variational inference

(VI) addresses such scalability issue – remarkable examples

of VI-based methods are PLATIPUS [25], BMAML [20]

and the methods similar to our proposal, Amortised meta-

learner [27] and VERSA [28] 1. However, PLATIPUS op-

timises the lower bound of data prediction, leading to the

1Amortised meta-learner [27] and VERSA [28] have been developed

in parallel to our proposed VAMPIRE.

need to approximate a joint distribution between the task-

specific and meta parameters. This approximation compli-

cates the implementation and requires a point estimate of

the task-specific parameters to reduce the complexity of the

estimation of this joint distribution. Employing point es-

timate may, however, reduce its ability to estimate model

uncertainty. BMAML uses a closed-form solution based on

Stein Variational Gradient Descent (SVGD) that simplifies

the task adaptation step, but it relies on the use of a ker-

nel matrix, which increases its computational complexity.

Amortised meta-learner applies variational approximation

on both the meta-parameters and task-specific parameters,

resulting in a challenging optimisation. VERSA takes a

slightly different approach by employing an external neu-

ral network to learn the variational distribution for certain

parameters, while keeping other parameters shared across

all tasks. Another inference-based method is Neural Pro-

cess [29] that employs the train-ability of neural networks to

model a Gaussian-Process-like distribution over functions

to achieve uncertainty quantification in few-shot learning.

However, due to the prominent weakness of Gaussian Pro-

cess that suffers from cubic complexity to data size, this

might limit the scalability of Neural Process and makes it

infeasible for large-scale datasets.

Our approach, in contrast, employs a straightforward

variational approximation for the distribution of only the

task-specific parameters, where we do not require the use

of point estimate of any term, nor do we need to compute

Hessian or kernel matrices or depend on an external net-

work. Our proposed algorithm can be considered a rigorous

and computationally efficient Bayesian meta-learning algo-

rithm. A noteworthy non-meta-learning method that em-

ploys Bayesian methods is the neural statistician [30] that

uses an extra variable to model data distribution within each

task, and combines that information to solve few-shot learn-

ing problems. Our proposed algorithm, instead, does not in-

troduce additional parameters, while still being able to ex-

tract relevant information from a small number of examples.

3. Methodology

In this section, we first define and formulate the few-

shot meta-learning problem. We then describe MAML, de-

rive our proposed algorithm, and mention the similarities

and differences between our method and recently proposed

meta-learning methods that are relevant to our proposal.

3.1. Few­shot Learning Problem Setup

While conventional machine learning paradigm is de-

signed to optimise the performance on a single task, few-

shot learning is trained on a set of conditional indepen-

dent and identically distributed (i.i.d.) tasks given meta-

parameters. The notation of “task environment” was for-

mulated in [31], where tasks are sampled from an unknown
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Figure 1: (a) Hierarchical model of the few-shot meta-learning, aiming to learn θ that parameterises prior p(wi; θ), so that

given a few data points z
(t)
ij = (x

(t)
ij , y

(t)
ij ) from the support set of task Ti, the model can quickly adapts and accurately predicts

the output for the query set z
(v)
ij = (x

(v)
ij , y

(v)
ik ); (b) and (c) Visualisation between MAML and VAMPIRE, respectively, where

VAMPIRE extends the deterministic prior p(wi; θ) and posterior p(wi|Y
(t)
i , θ) in MAML by using probabilistic distributions.

task distribution D over a family of tasks. Each task Ti in

this family is indexed by i ∈ {1, ..., T } and consists of a

support set {X
(t)
i ,Y

(t)
i } and a query set {X

(v)
i ,Y

(v)
i }, with

X
(t)
i = {x

(t)
ij }

M
j=1 and Y

(t)
i = {y

(t)
ij }

M
j=1 (X

(v)
i and Y

(v)
i

are similarly defined). The aim of few-shot learning is to

predict the output y
(v)
ij of the query input x

(v)
ij given the

small support set for task Ti (e.g. M ≤ 20). We rely on

a Bayesian hierarchical model [24] to model the few-shot

meta-learning problem. In the graphical model shown in

Figure 1a, θ denotes the meta parameters of interest, and

wi represents the task-specific parameters for task Ti. One

typical example of this modelling approach is MAML [19],

where wi are the neural network weights adapted to task

Ti by performing truncated gradient descent using the data

from the support set {X
(t)
i ,Y

(t)
i } and the initial weight val-

ues θ.

The objective function of few-shot learning is, therefore,

to find a meta-learner, parameterised by θ, across tasks sam-

pled from D, as follows:

θ∗ = argmin
θ
−

1

T

T∑

i=1

ln p(Y
(v)
i |Y

(t)
i , θ) (1)

where T denotes the number of tasks, and, hereafter, we

simplify the notation by dropping the explicit dependence

on X
(t)
i and X

(v)
i from the set of conditioning variables.

Each term of the predictive probability on the right hand

side of (1) can be expanded by applying the sum rule of

probability and lower-bounded by Jensen’s inequality:

ln p(Y
(v)
i |Y

(t)
i , θ) = lnE

p(wi|Y
(t)
i

,θ)

[

p(Y
(v)
i |wi)

]

≥ L
(v)
i ,

where:

L
(v)
i (θ) = E

p(wi|Y
(t)
i

,θ)

[

ln p(Y
(v)
i |wi)

]

. (2)

Hence, instead of minimising the negative log-likelihood

in (1), we minimise the upper-bound of the corresponding

negative log-likelihood which can be presented as:

L(v)(θ) = −
1

T

T∑

i=1

L
(v)
i . (3)

If each task-specific posterior, p(wi|Y
(t)
i , θ), is well-

behaved, we can apply Monte Carlo to approximate the

expectation in (3) by sampling model parameters wi from

p(wi|Y
(t)
i , θ). Thus, depending on the formulation of the

task-specific posterior p(wi|Y
(t)
i , θ), we can formulate dif-

ferent algorithms to solve the problem of few-shot learning.

We review a deterministic method widely used in the liter-

ature in subsection 3.2, and present our proposed approach

in subsection 3.3.

3.2. Point Estimate ­ MAML

A simple way is to approximate p(wi|Y
(t)
i , θ) by a Dirac

delta function at its local mode:

p(wi|Y
(t)
i , θ) = δ(wi −w

MAP
i ), (4)

where the local mode wMAP
i can be obtained by using max-

imum a posterior (MAP):

w
MAP
i = argmax

wi

ln p(Y(t)|wi) + ln p(wi; θ). (5)

In the simplest case where the prior is also assumed to be

a Dirac delta function: p(wi; θ) = δ(wi − θ), and gradient

descent is used, the local mode can be determined as:

w
MAP
i = θ − α∇wi

[

− ln p(Y
(t)
i |wi)

]

, (6)

where α is the learning rate, and the truncated gradient de-

scent consists of a single step of (6) (the extension to a larger



number of steps is trivial). Given the point estimate assump-

tion in (4), the upper-bound of the negative log-likelihood

in (3) can be simplified to:

L(v)(θ) =
1

T

T∑

i=1

− ln p(Y
(v)
i |w

MAP
i ). (7)

Minimising the upper-bound of the negative log-

likelihood in (7) w.r.t. θ represents the MAML algo-

rithm [19]. This derivation also explains the intuition be-

hind MAML, which finds a good initialisation of model pa-

rameters as illustrated in Figure 1b.

3.3. Gradient­based Variational Inference

In contrast to the deterministic method presented in sub-

section 3.2, we use a variational distribution q(wi;λi), pa-

rameterized by λi = λi(Y
(t)
i , θ), to approximate the task-

specific posterior p(wi|Y
(t)
i , θ). In variational inference,

q(wi;λi) can be obtained by minimising the following

Kullback-Leibler (KL) divergence:

λ∗i = argmin
λi

KL
[

q(wi;λi)‖p(wi|Y
(t)
i , θ)

]

= argmin
λi

∫

q(wi;λi) ln
q(wi;λi)p(Y

(t)
i |θ)

p(Y
(t)
i |wi)p(wi; θ)

dwi

= argmin
λi

L
(t)
i (λi, θ) + ln p(Y(t)|θ)

︸ ︷︷ ︸

const. wrt λi

.

(8)

where:

L
(t)
i (λi, θ) = KL [q(wi;λi)‖p(wi; θ)]

+ Eq(wi;λi)

[

− ln p(Y
(t)
i |wi)

]

. (9)

The resulting cost function (excluding the constant term)

L
(t)
i is often known as the variational free energy (VFE).

The first term of VFE can be considered as a regularisa-

tion that penalises the difference between the prior p(wi; θ)
and the approximated posterior q(wi;λi), while the second

term is referred as data-dependent part or likelihood cost.

Exactly minimising the cost function in (9) is computation-

ally challenging, so gradient descent is used with θ as the

initialisation of λi:

λi ← θ − α∇λi
L
(t)
i (λi, θ) , (10)

where α is the learning rate.

Given the approximated posterior q(wi;λi) with param-

eter λi updated according to (10), we can calculate and op-

timise the upper-bound in (3) to find a local-optimal meta-

parameter θ.

In Bayesian statistics, the prior p(wi|θ) represents

a modelling assumption, and the variational posterior

Algorithm 1 VAMPIRE training

Require: task distribution D
Require: Hyper-parameters: T, Lt, Lv, α and γ

1: initialise θ

2: while θ not converged do

3: sample a mini-batch of tasks Ti ∼ D, i = 1 : T
4: for each task Ti do

5: λi ← θ

6: draw Lt samples ŵ
(lt)
i ∼ q(wi;λi), lt = 1 : Lt

7: update: λi ← λi −
α
Lt

∇λi
L
(t)
i (λi, θ) {Eq (10)}

8: draw Lv samples ŵ
(lv)
i ∼ q(wi;λi), lv = 1 : Lv

9: L
(v)
i (θ) = 1

Lv

∑Lv

lv=1 ln p
(

Y
(v)
i |ŵ

(lv)
i

)

{Eq. (2)}
10: end for

11: meta-update: θ ← θ + γ
T
∇θ

∑T

i=1 L
(v)
i (θ)

12: end while

q(wi;λi) is a flexible function that can be adjusted to

achieve a good trade-off between performance and com-

plexity. For simplicity, we assume that both q(wi;λi) and

p(wi; θ) are Gaussian distributions with diagonal covari-

ance matrices:
{

p(wi; θ) = N
[
wi|µθ,Σθ = diag(σ2

θ)
]

q(wi;λi) = N
[
wi|µλi

,Σλi
= diag(σ2

λi
)
]
,

(11)

where µθ,µλi
,σθ,σλi

∈ R
d, with d denoting the num-

ber of model parameters, and the operator diag(.) returns a

diagonal matrix using the vector in the parameter.

Given the prior p(wi|θ) and the posterior q(wi;λi)
in (11), we can compute the KL divergence of VFE shown

in (9) by using either Monte Carlo sampling or a closed-

form solution. According to [32], sampling model parame-

ters from the approximated posterior q(wi;λi) to compute

the KL divergence term and optimise the cost function in (9)

does not perform better or worse than using the closed-form

of the KL divergence between two Gaussian distributions.

Therefore, we employ the closed-form formula of the KL

divergence to speed up the training process.

For numerical stability, we parameterise the standard de-

viation point-wisely as σ = exp(ρ) when performing gra-

dient update for the standard deviations of model parame-

ters. The meta-parameters θ = (µθ, exp(ρθ)) are the ini-

tial mean and standard deviation of neural network weights,

and the variational parameters λi = (µλi
, exp(ρλi

)) are

the mean and standard deviation of those network weights

optimised for task Ti. We also implement the re-

parameterisation trick [33] when sampling the network

weights from the approximated posterior to compute the ex-

pectation of the data log-likelihood in (9):

wi = µλi
+ ǫ⊙ exp(ρλi

), (12)



where ǫ ∼ N (0, Id), and ⊙ is the element-wise multiplica-

tion. Given this direct dependency, the gradients of the cost

function L
(t)
i in (9) with respect to λi can be derived as:







∇µλi
L
(t)
i =

∂L
(t)
i

∂wi

+
∂L

(t)
i

∂µλi

∇ρλi
L
(t)
i =

∂L
(t)
i

∂wi

ǫ⊙ exp(ρλi
) +

∂L
(t)
i

∂ρλi

.

(13)

After obtaining the variational parameters λi in (10),

we can apply Monte Carlo approximation by sampling Lv

sets of model parameters from the approximated posterior

q(wi;λi) to calculate and optimise the upper-bound in (3)

w.r.t. θ. This approach leads to the general form of our

proposed algorithm, named Variational Agnostic Modelling

that Performs Inference for Robust Estimation (VAMPIRE),

shown in Algorithm 1.

3.4. Differentiating VAMPIRE and Other Bayesian
Meta­learning Methods

VAMPIRE is different from the “probabilistic MAML”

- PLATIPUS [25] in several ways. First, PLATIPUS uses

VI to approximate the joint distribution p(wi, θ|Y
(t)
i ,Y

(v)
i ),

while VAMPIRE uses VI to approximate the task-specific

posterior p(wi|Y
(t)
i , θ). To handle the complexity of

sampling from a joint distribution, PLATIPUS relies on

the same point estimate of the task-specific posterior as

MAML, as shown in (4). Second, to adapt to task Ti,
PLATIPUS learns only the mean, without change the vari-

ance. In contrast, VAMPIRE learns both µθ and Σθ for

each task Ti. Lastly, when adapting to a task, PLATIPUS

requires 2 additional gradient update steps, corresponding

to steps 7 and 10 of Algorithm 1 in [25], while VAM-

PIRE needs only 1 gradient update step as shown in step

7 of Algorithm 1. Hence, VAMPIRE is based on a sim-

pler formulation that does not rely on any point estimate,

and it is also more flexible and efficient because it al-

lows all meta-parameters to be learnt while performing less

gradient-based steps.

VAMPIRE is also different from the PAC-Bayes meta-

learning method designed for multi-task learning [34] at

the relation between the shared prior p(wi; θ) and the vari-

ational task-specific posterior q(wi;λi). While the PAC-

Bayes meta-learning method does not relate the “posterior”

to the “prior” as in the standard Bayesian analysis, VAM-

PIRE relates these two probabilities through a likelihood

function by performing a fixed number of gradient updates

as shown in (10). Due to this discrepancy, the PAC-Bayes

meta-learning needs to maintain all the task-specific poste-

riors, requiring more memory storage, consequently result-

ing in an un-scalable approach, especially when the number

of tasks is very large. In contrast, VAMPIRE learns only

the shared prior, and hence, is a more favourable method

for large-scaled applications, such as few-shot learning.

Our proposed algorithm is different from BMAML [20]

at the methods used to approximate task-specific posterior

p(wi|Y
(t)
i , θ): BMAML is based on SVGD, while VAM-

PIRE is based on a variant of amortised inference. Al-

though SVGD is a non-parametric approach that allows a

flexible variational approximation, its downside is the com-

putational complexity due to need to compute the kernel

matrix, and high memory usage when increasing the num-

ber of particles. In contrast, our approach uses a straightfor-

ward variational method without any transformation of vari-

ables. One advantage of BMAML compared to our method

in Algorithm 1 is the use of Chaser Loss, which may be

an effective way of preventing overfitting. Nevertheless, in

principle, we can also implement the same loss for our pro-

posed algorithm.

VAMPIRE is different from Amortised Meta-

learner [27] at the data subset used to update the

meta-parameters θ: whole data set of task Ti in Amortised

Meta-learner versus only the query subset {X
(v)
i ,Y

(v)
i } in

VAMPIRE. This discrepancy is due to the differences in the

objective function. In particular, Amortised Meta-learner

maximises the lower bound of marginal likelihood, while

VAMPIRE maximises the predictive probability in (1).

Moreover, when deriving a lower bound of marginal log-

likelihood using VI [27, Derivation right before Eq. (1)],

the variational distribution q must be strictly greater than

zero for all θ and variational parameters. The assumption

that approximates the variational distribution q(θ;ψ) by a

Dirac delta function made in Amortised ML [27, Eq. (4)]

is, therefore, arguable.

Another Bayesian meta-learning approach similar to

VAMPIRE is VERSA [28]. The two methods are differ-

ent at the methods modelling the parameters of interest

θ. VAMPIRE relies on gradient update to relate the prior

and posterior through likelihood function, while VERSA is

based on an amortisation network to output the parameters

of the variational distributions. To scale up to deep neu-

ral network models, VERSA models only the parameters of

the last fully connected network, while leaving other param-

eters as point estimates that are shared across all tasks. As a

result, VAMPIRE is more flexible since it does not need to

define which parameters are shared or not shared, nor does

it require any additional network.

4. Experimental Evaluation

The goal of our experiments is to present empirical eval-

uation of VAMPIRE compared to state-of-art meta-learning

approaches. Our experiments include both regression and

few-shot classification problems. The experiments are car-

ried out using the training procedure shown in Algorithm 1.
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Figure 2: Qualitative and quantitative results on multi-

modal data – half of the tasks are generated from sinusoidal

functions, and the other half are from linear functions: (a)

and (b) visualisation of MAML and VAMPIRE, where the

shaded area is the prediction made by VAMPIRE ± 2×
standard deviation, (c) reliability diagram of various meta-

learning methods averaged over 1000 tasks, and (d) ECE

and MCE of the Bayesian meta-learning methods.

All implementations of VAMPIRE use PyTorch [35].

4.1. Regression

We evaluate VAMPIRE using a multi-modal task distri-

bution where half of the data is generated from sinusoidal

functions, while the other half is from linear functions [25].

A detailed configuration of the problem setup and the model

used as well as additional visualisation results can be re-

ferred to Appendix.

The results in Figures 2a and 2b show that VAMPIRE

can effectively reason which underlying function generates

the training data points as the predictions are all sinusoidal

or linear. In addition, VAMPIRE is able to vary the predic-

tion variance, especially when there is more uncertainty in

the training data. In contrast, due to the deterministic na-

ture, MAML can only output a single value at each input.

To quantitatively compare the performance between

VAMPIRE and other few-shot meta-learning methods, we

use the reliability diagram which is based on the quantile

calibration for regression [36]. A model is perfectly cal-

ibrated when its predicted probability equals to the actual

probability, resulting in a curve that is well-aligned with

the diagonal y = x. We re-implement some few-shot

meta-learning methods, train until convergence, and plot

their reliability diagram for 1000 tasks in Figure 2c. To

have a fair comparison, BMAML is trained without Chaser

Loss, and Amortised Meta-learner is trained with a uniform

hyper-posterior. Due to the deterministic nature, MAML

is presented as a single point connecting with the two ex-

treme points. For a further quantitative comparison, we

also plot the expected calibration error (ECE), which av-

erages the absolute errors measuring from the diagonal,

and the maximum calibration error (MCE), which returns

the maximum of absolute errors in Figure 2d. Overall, in

terms of ECE and MCE, the model trained with VAMPIRE

is better than BMAML and Amortised Meta-learner, while

competitive with PLATIPUS. The performance of BMAML

could be higher if more particles and Chaser Loss are used.

Another observation is that Amortised Meta-learner has

slightly lower performance than MAML, although the train-

ing procedures of the two methods are very similar. We

hypothesise that this is due to overfitting induced by using

the whole training data subset that includes {X
(t)
i ,Y

(t)
i },

while MAML and VAMPIRE use only the query data sub-

set {X
(v)
i ,Y

(v)
i } to train the meta-parameters, which is con-

sistent between the training and testing scenarios.

4.2. Few­shot Classification

The experiments in this sub-section are based on the N -

way k-shot learning task, where a meta learner is trained on

many related tasks containing N classes and small training

sets of k samples for each class (i.e., this is the size of Y
(t)
i ).

We benchmark our results against the state of the art on the

data sets Omniglot [8], mini-ImageNet [16, 23] and tiered-

ImageNet [37].

Omniglot contains 1623 different handwritten characters

from 50 different alphabets, where each one of the charac-

ters was drawn online via Amazon’s Mechanical Turk by

20 different people [8]. Omniglot is often split by randomly

picking 1200 characters for training and the remaining for

testing [16, 18, 19]. However, for language character clas-

sification, this random split may be unfair since knowing a

character of an alphabet may facilitate the learning of other

characters in the same alphabet. The original train-test split

defined in [8] suggests 30 alphabets for training and 20 al-

phabets for testing – such split clearly avoids potential infor-

mation leakage from the training set to the testing set. We

run experiments using both splits to compare with state-of-

the-art methods and to perform testing without any poten-

tial data leakage. As standardly done in the literature, our

training includes a data augmentation based on rotating the

samples by multiples of 90 degrees, as proposed in [15].

Before performing experiments, all Omniglot images are



5-WAY 20-WAY

1-SHOT 5-SHOT 1-SHOT 5-SHOT

OMNIGLOT [8] - ORIGINAL SPLIT, STANDARD 4-LAYER CNN

MAML 96.68± 0.57 98.33 ± 0.22 84.38 ± 0.64 96.32± 0.17

VAMPIRE 96.27 ± 0.38 98.77 ± 0.27 86.60± 0.24 96.14 ± 0.10

OMNIGLOT [8] - RANDOM SPLIT, STANDARD 4-LAYER CNN

MATCHING NETS [23] 98.1 98.9 93.8 98.5

PROTO. NETS [18] 2
98.8 99.7 96.0 98.9

MAML [19] 98.7± 0.4 99.9± 0.1 95.8± 0.3 98.9± 0.2

VAMPIRE 98.43 ± 0.19 99.56 ± 0.08 93.20 ± 0.28 98.52 ± 0.13

OMNIGLOT [8] - RANDOM SPLIT, NON-STANDARD CNNS

SIAMESE NETS [38] 97.3 98.4 88.2 97.0

NEURAL STATISTICIAN [30] 98.1 99.5 93.2 98.1

MEMORY MODULE [39] 98.4 99.6 95.0 98.6

RELATION NETS [40] 99.6± 0.2 99.8± 0.1 97.6± 0.2 99.1± 0.1

VERSA [28] 99.70± 0.20 99.75 ± 0.13 97.66± 0.29 98.77 ± 0.18

Table 1: Few-shot classification accuracy (in percentage) on Omniglot, tested on 1000 tasks and reported with 95% confidence

intervals. The results of VAMPIRE are competitive to the state-of-the-art baselines which are carried out on a standard 4-

convolution-layer neural networks. The top of the table contains methods trained on the original split defined in [8], while

the middle part contains methods using a standard 4-layer CNN trained on random train-test split. The bottom part presents

results of different methods using different network architectures, or requiring external modules and additional parameters

trained on random split. Note that the Omniglot results on random split cannot be fairly compared.

down-sampled to 28-by-28 pixels to be consistent with the

reported works in the meta-learning literature [16, 19, 23].

Mini-ImageNet was proposed in [23] as an evaluation for

few-shot learning. It consists of 100 different classes, each

having 600 colour images taken from the original ImageNet

data set [41]. We use the train-test split reported in [16] that

consists of 64 classes for training, 16 for validation, and 20

for testing. Similarly to Omniglot, the examples in mini-

ImageNet are pre-processed by down-sampling the images

to 84-by-84 pixels to be consistent with previous works in

the literature.

Tiered-ImageNet [37] is a larger subset of ImageNet that

has 608 classes grouped into 34 high-level categories. We

use the standard train-test split that consists of 20, 6, and 8

categories for training, validation and testing. The experi-

ments on tiered-ImageNet is carried with input as features

extracted by a residual network that was pre-trained on data

and classes from training meta-set [22, Section 4.2.2].

For Omniglot and mini-ImageNet, we use the same net-

work architecture of state-of-the-art methods [16, 19, 23].

The network consists of 4 hidden convolution modules,

each containing 64 3-by-3 filters, followed by batch nor-

malisation [42], ReLU activation, and a 2-by-2 strided con-

volution. For the mini-ImageNet, the strided convolution is

replaced by a 2-by-2 max-pooling layer, and only 32 filters

are used on each convolution layer to avoid over-fitting [16,

19]. For tiered-ImageNet, we use a 2-hidden-layer fully-

connected network with 128 and 32 hidden units. Please

refer to Appendixfor detailed description on the configura-

tion and the hyperparameters used.

The N -way k-shot classification accuracy measured on

Omniglot, and mini-ImageNet, tiered-ImageNet data sets

are shown in Tables 1 and 2, respectively. Overall, the

results of VAMPIRE are competitive to the state-of-the-art

methods that use the same network architecture [16, 19, 23].

On Omniglot, our results on a random train-test split are

competitive in most scenarios. Our proposed method out-

performs some previous works in few-shot learning, such as

siamese networks [38], matching networks [23] and mem-

ory models [39], although they are designed with a focus

on few-shot classification. Our result on the 20-way 1-

shot is slightly lower than prototypical networks [18] and

VERSA [28], but prototypical networks need more classes

(higher “way”) per training episode to obtain advantageous

results and VERSA requires an additional amortised net-

works to learn the variational distributions. Our results are

also slightly lower than MAML, potentially due to the dif-

ference of train-test split. To obtain a fair comparison, we

run the public code provided by MAML’s authors, and mea-

sure its accuracy on the original split suggested in [8]. Us-

2Trained with 60-way episodes.



MINI-IMAGENET [16]

1-SHOT 5-SHOT

STANDARD 4-BLOCK CNN

MATCHING NETS [23] 43.56 ± 0.84 55.31 ± 0.73

META-LEARNER

LSTM [16]

43.44 ± 0.77 60.60 ± 0.71

MAML [19] 48.70 ± 1.84 63.15 ± 0.91

PROTO. NETS [18] 2
49.42 ± 0.78 68.20± 0.66

LLAMA [24] 49.40 ± 1.83

PLATIPUS [25] 50.13 ± 1.86

BMAML [20]3
49.17 ± 0.87 64.23 ± 0.69

AMORTISED ML [27] 45.00 ± 0.60

VAMPIRE 51.54± 0.74 64.31 ± 0.74

TIERED-IMAGENET [37]

1-SHOT 5-SHOT

MAML [44] 51.67 ± 1.81 70.30 ± 0.08

PROTO. NETS [37] 53.31 ± 0.89 72.69 ± 0.74

RELATION NET [44] 54.48 ± 0.93 71.32 ± 0.78

TRNS. PRP. NETS [44] 57.41 ± 0.94 71.55 ± 0.74

LEO [22] 66.33 ± 0.05 81.44 ± 0.09

METAOPTNET [45] 65.81 ± 0.74 81.75 ± 0.53

VAMPIRE 69.87± 0.29 82.70± 0.21

Table 2: The few-shot 5-way classification accuracy re-

sults (in percentage) of VAMPIRE averaged over 600 mini-

ImageNet tasks and 5000 tiered-ImageNet tasks are com-

petitive to the state-of-the-art methods.

ing this split, VAMPIRE achieves competitive performance,

and outperforms MAML in some cases.

On mini-ImageNet, VAMPIRE outperforms all reported

methods that use the standard 4-layer CNN architecture

on the 1-shot tests, while being competitive on the 5-shot

episodes. Prototypical Networks achieve a higher accuracy

on the 5-shot tests due to, again, the use of extra classes

during training. Although our work does not aim to achieve

the state-of-the-art results in few-shot learning, we also run

an experiment using as input features extracted by a resid-

ual network that was pre-trained on data and classes from

training meta-set [22, Sect. 4.2.2], and present the results,

including the state-of-the-art methods that employ much

deeper networks with various architectures, in Appendix.

Note that deeper networks tend to reduce intra-class varia-

tion, resulting in a smaller gap of performance among many

meta-learning methods [43].

On tiered-ImageNet, VAMPIRE outperforms many

methods published previously by a large margin on both 1-

and 5-shot settings.

To evaluate the predictive uncertainty of the models, we

2Trained with 30-way episodes for 1-shot classification and 20-way

episodes for 5-shot classification
3Produced locally
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Figure 3: (a) Uncertainty evaluation between different

meta-learning methods using reliability diagrams, and (b)

expected calibration error (ECE) and maximum calibration

error (MCE), in which the evaluation is carried out on 5-

way 1-shot setting for
(
20
5

)
= 15504 unseen tasks sampled

from mini-ImageNet dataset.

show in Figure 3a the reliability diagrams [46] averaged

over many unseen tasks to compare different meta-learning

methods. A perfectly calibrated model will have its val-

ues overlapped with the identity function y = x, indicating

that the probability associated with the label prediction is

the same as the true probability. To have a fair comparison,

we train all the methods of interest under the same config-

uration, e.g. network architecture, number of gradient up-

dates, while keeping all method-specific hyper-parameters

the same as the reported values. Due to the constrain of

GPU memory, BMAML is trained with only 8 particles,

while PLATIPUS, Amortimised Meta-learner and VAM-

PIRE are trained with 10 Monte Carlo samples. Accord-

ing to the reliability graphs, the model trained with VAM-

PIRE shows a much better calibration than the ones trained

with the other methods used in the comparison. To further

evaluate, we compute the expected calibration error (ECE)

and maximum calibration error (MCE) [46] of each models

trained with these methods. Intuitively, ECE is the weighted

average error, while MCE is the largest error. The results

plotted in Figure 3b show that the model trained with VAM-

PIRE has smaller ECE and MCE compared to all the state-

of-the-art meta-learning methods. The slightly low perfor-

mance of Amortised Meta-learner might be due to the usage

of the whole task-specific dataset, potentially overfitting to

the training data. Another factor contributed might be the

arguable Dirac-delta hyper-prior used, which can be also

the cause for the low prediction accuracy shown in Table 2.

5. Conclusion

We introduce and formulate a new Bayesian algorithm
used for few-shot meta-learning. The proposed algorithm,
VAMPIRE, employs variational inference to optimise a
well-defined cost function to learn a distribution of model



parameters. The uncertainty, in the form of the learnt dis-
tribution, can introduce more variability into the decision
made by the model, resulting in well-calibrated and highly-
accurate prediction. The algorithm can be combined with
different models that are trainable with gradient-based opti-
misation, and is applicable in regression and classification.
We demonstrate that the algorithm can make reasonable
predictions about unseen data in a multi-modal 5-shot learn-
ing regression problem, and achieve state-of-the-art calibra-
tion and classification results with only 1 or 5 training ex-
amples per class on public image data sets.
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SUPPLEMENTARY MATERIAL

A. Regression experiments

A.1. Training configuration

As mentioned in section 4.1, the experiment is carried out on a multi-modal structured data, where a half of tasks are

generated from sinusoidal functions, while the other half of tasks are from linear functions. The sinusoidal functions are in

the form ofA sin(x+ϕ), where the amplitudeA and the phase ϕ are uniformly sampled from [0.1, 5] and [0, π], respectively.

The linear functions are in the form of ax+b, where the slope a and the intercept b are sampled from the uniform distribution

on [-3, 3]. The input x is uniformly sampled from [-5, 5]. In addition, a Gaussian noise with zero-ed mean and a standard

deviation of 0.3 is added to the output.

The model used in this experiment is a 3-hidden fully connected neural network with 100 hidden units per each hidden

layer. Output from each layer is activated by ReLU without batch normalisation. The optimisation for the objective function

in (3) is carried out by Adam. Note that for regression, there is we do not place any weighting factor for the KL divergence

term of VFE. Please refer to Table 3 for the details of hyperparameters used.

Hyperparameters Notation Value

Learning rate for variational parameters α 0.001

Number of gradient updates for variational parameters 5

Number of Monte Carlo samples for variational parameters Lt 128

Number of tasks before updating meta-parameters T 10

Learning rate for meta-parameters γ 0.001

Number of Monte Carlo samples for meta-parameters Lv 128

Table 3: Hyperparameters used in the regression experiments on multi-modal structured data.

A.2. Additional results

In addition to the results in Figure 2, we also provide more qualitative visualisation from the multi-modal task distribution

in Figure 4.

We also implement many Bayesian meta-learning methods, such as PLATIPUS, BMAML and Amortised Meta-learner, to

compare with VAMPIRE using reliability diagram. We train all the methods of interest in the same setting used for VAMPIRE

to obtain a fair comparison. The mean-squared error (MSE) of each method after training can be referred to Table 4. Please

note that for probabilistic methods, MSE is the average value across many Monte Carlo samples or particles sampled from

the posterior distribution of model parameters.

Method MSE

MAML 1.96

PLATIPUS 1.86

BMAML 1.12

Amortised Meta-learner 2.32

VAMPIRE 2.24

Table 4: Mean squared error of many meta-learning methods after being trained in the same setting are tested on 1000 tasks.

B. Classification experiments

This section describes the detailed setup to train and validate the few-shot learning on Omniglot and mini-ImageNet

presented in Sec. 4.2. Following the notation used in Sec. 3.1, each task or episode i has N classes, where the support set

Y
(t)
i has k samples per class, and the query set Y

(v)
i has 15 samples per class. This is to be consistent with the previous works

in the literature [16, 19]. The training is carried out by using Adam to minimise the cross-entropy loss of the softmax output.



Figure 4: Additional qualitative results with tasks generated from either sinusoidal or linear function. The shaded area is the

prediction made by VAMPIRE ± 1× standard deviation.

The learning rate of the meta-parameters θ is set to be γ = 10−3 across all trainings, and decayed by a factor of 0.99 after

every 10,000 tasks. Other hyperparameters used are specified in Table 5. We select the number of ensemble models Lt and

Lv to fit into the memory of one Nvidia 1080 Ti GPU. Higher values of Lt and Lv are desirable to achieve a better Monte

Carlo approximation.

DESCRIPTION NOTATION
OMNIGLOT MINI-IMAGENET

5-WAY 20-WAY 5-WAY

NUMBER TASKS PER META-UPDATE T 32 16 2

NUMBER OF ENSEMBLE MODELS (TRAIN) Lt (TRAIN) 1 1 10

NUMBER OF ENSEMBLE MODELS (TRAIN) Lv (TRAIN) 1 1 10

NUMBER OF ENSEMBLE MODELS (TEST) Lt (TEST) 10 10 10

NUMBER OF ENSEMBLE MODELS (TEST) Lv (TEST) 10 10 10

LEARNING RATE FOR wi α 0.1 0.1 0.01

LEARNING RATE FOR θ γ 10
−3

10
−3

10
−3

NUMBER OF INNER GRADIENT UPDATES 5 5 5

Table 5: Hyperparameters used in the few-shot classification presented in Sec. 4.

For the experiments using extracted features [22] presented in Table 6 for mini-ImageNet, and the bottom part of Table 2

for tiered-ImageNet, we used a 2-hidden fully connected layer with 128 and 32 hidden units. The learning rate α is set as

0.01 and 5 gradient updates were carried out. The learning rate for meta-parameters was γ = 0.001.

Both the experiments for classification re-weight the KL divergence term of VFE by a factor of 0.1.

B.1. Model calibration for classification ­ ECE and MCE

We provide the results of model calibration, in particular, ECE and MCE in the numeric form. We also include the 95%

confidence interval in Table 7, although they are extremely small due to the large number of unseen tasks.



MINI-IMAGENET [16]

1-SHOT 5-SHOT

NON-STANDARD CNN

RELATION NETS [40] 50.44 ± 0.82 65.32 ± 0.70

VERSA [28] 53.40 ± 1.82 67.37 ± 0.86

SNAIL [47] 55.71 ± 0.99 68.88 ± 0.92

ADARESNET [48] 56.88 ± 0.62 71.94 ± 0.57

TADAM [49] 58.5 ± 0.30 76.7 ± 0.30

LEO [22] 61.76 ± 0.08 77.59 ± 0.12

METAOPTNET [45] 64.09 ± 0.62 80.00 ± 0.45

VAMPIRE 62.16 ± 0.24 76.72 ± 0.37

Table 6: Accuracy for 5-way classification on mini-ImageNet tasks (in percentage) of many methods which uses extra

parameters, deeper network architectures or different training settings.

Method ECE MCE

MAML 0.0410± 0.005 0.124

PLATIPUS 0.032± 0.005 0.108

BMAML 0.025± 0.006 0.092

Amortised Meta-learner 0.026± 0.003 0.058

VAMPIRE 0.008± 0.002 0.038

Table 7: Results of ECE and MCE of several meta-learning methods that are tested in 5-way 1-shot setting over 15504 unseen

tasks sampled from mini-ImageNet dataset.

C. Pseudo-code for evaluation

Algorithm 2 VAMPIRE testing

Require: a new task TT+1, θ, Lt, Lv, α and β

1: λT+1 ← θ

2: sample ŵ
(l)
T+1 ∼ q(wT+1|λT+1), where lt = 1 : Lt

3: update: λi ← λi −
α
Lt

∇λi
L
(t)
i |Y(t)

T+1

4: draw Lv ensemble model parameters ŵ
(lv)
i ∼ q(wi;λi)

5: compute prediction Ŷ
(v)
i using Lv ensemble models.


