
2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 17-20, 2021, New Paltz, NY

AUTO-DSP: LEARNING TO OPTIMIZE ACOUSTIC ECHO CANCELLERS

Jonah Casebeer] Nicholas J. Bryan[Paris Smaragdis][

] University of Illinois at Urbana-Champaign, [Adobe Research

ABSTRACT

Adaptive filtering algorithms are commonplace in signal process-
ing and have wide-ranging applications from single-channel denois-
ing to multi-channel acoustic echo cancellation and adaptive beam-
forming. Such algorithms typically operate via specialized online,
iterative optimization methods and have achieved tremendous suc-
cess, but require expert knowledge, are slow to develop, and are
difficult to customize. In our work, we present a new method to au-
tomatically learn adaptive filtering update rules directly from data.
To do so, we frame adaptive filtering as a differentiable operator
and train a learned optimizer to output a gradient descent-based up-
date rule from data via backpropagation through time. We demon-
strate our general approach on an acoustic echo cancellation task
(single-talk with noise) and show that we can learn high-performing
adaptive filters for a variety of common linear and non-linear mul-
tidelayed block frequency domain filter architectures. We also find
that our learned update rules exhibit fast convergence, can optimize
in the presence of nonlinearities, and are robust to acoustic scene
changes despite never encountering any during training.

Index Terms— adaptive filtering, adaptive optimization, learn-
ing to learn, meta-learning, acoustic echo cancellation

1. INTRODUCTION

Adaptive filtering algorithms are ubiquitous and include single-
and multi-channel denoising, dereverberation, echo cancellation,
system identification, noise cancellation, feedback cancellation,
and more. Such algorithms typically operate by applying an on-
line, iterative optimization method, such as least mean square
filtering (LMS), normalized LMS (NLMS), or recursive least-
squares (RLS), to solve an optimization problem over time (e.g. es-
timating a time-varying transfer function for echo cancellation) [1,
2, 3, 4, 5]. The derivation and implementation of these methods re-
quires careful attention, customization, expertise, and/or a laborious
tuning process (e.g. tuning per hardware device) per application.

One of the most prevalent adaptive filtering applications is
acoustic echo cancellation (AEC). In this case, an adaptive fil-
ter is used to remove echo within a telecommunication system.
Customized AEC adaptive filters take many forms including algo-
rithms based on sparsity [6], adaptive normalization [7], and adap-
tive learning-rates [8], as well as data-driven approaches for select-
ing learning rates automatically [9, 10] and based on a meta-step-
size [11, 12]. More recently, deep learning techniques have been
used as AEC sub-components including learned residual echo sup-
pressors [13, 14, 15], double-talk detectors [16], and nonlinear dis-
tortions blocks [17, 18, 19, 20, 21]. These approaches, however,
commonly do not use neural network modules that adapt at test

Code & demo: https://jmcasebeer.github.io/projects/auto-dsp/

farend

room
acoustics

output noisemicrophone

Optimizer Optimizee

Figure 1: A learned optimizer, gφ, updates the adaptive filter fθ
in an online fashion. The optimizer parameters φ are meta-learned
directly from data and do not use any external labels. The dashed
curved line denotes adaptation during training, but not inference.

time, do not have matching training and testing steps, and/or do
not directly learn adaptive filter update rules end-to-end.

In the machine learning literature, there have been exciting
developments in meta-learning, automatic machine learning, and
learning how to learn methods. Methods include using one neural
network to control the weights of another [22, 23, 24], pre-training
deep networks that quickly fine-tune [25], and learning offline
stochastic gradient descent update rules via neural networks [26].
The latter work is most relevant, shows how offline learned opti-
mizers can outperform their hand-designed counterparts for certain
neural network architectures, and inspired further work in optimizer
architectures [27] and training [28, 29]. We believe this work is sig-
nificant and, while not previously explored, offer tremendous po-
tential for the field of signal processing and adaptive filtering.

In this work, we formulate the development of adaptive filter-
ing algorithms as a meta-learning problem and learn to optimize
adaptive filters. To do so, we frame adaptive filtering itself as a dif-
ferentiable operator and train a learned optimizer from data, without
external labels, using truncated backpropagation through time. By
doing so, we create an automatic digital signal processing (Auto-
DSP) approach that learns optimal adaptive filters without any need
for hand-derived gradients and can be used for a variety of applica-
tions. To demonstrate our approach, we learn to optimize an AEC
task as shown in Fig. 1 for a single-talk in noise scenario. We use
the Microsoft AEC Challenge dataset [30] to learn update rules for
a variety of common linear and nonlinear multidelayed block fre-
quency domain filters (MDF) [31]. We compare our results to hand-
engineered, grid-search-tuned block NLMS and RMSprop [32] op-
timizers, as well as the open-source Speex AEC [8, 33]. We find our
learned optimizers outperform all of these methods for our tasks, ex-
hibit fast convergence, require little-to-no manual design interven-
tion for training, can optimize in the presence of nonlinearities, and
converge quickly and robustly to unseen acoustic scene changes.

ar
X

iv
:2

11
0.

04
28

4v
1

 [
cs

.S
D

]
 8

 O
ct

 2
02

1

2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 17-20, 2021, New Paltz, NY

2. AUTO-DSP OPTIMIZATION

To learn an adaptive filter update rule from data, we first define a
learned optimizer, gφ(·), as a function doing the optimizing and an
optimizee, fθ(·), as a differentiable adaptive filter to be optimized,
and J(·) as the optimizee loss. Second, we set the optimizer to
be a neural network that accepts as input raw optimizee gradients
∇fθn(·) and a state vector h and outputs a learned gradient descent
update rule,

θn+1 = θn + gφ(∇fθn(·),h), (1)

where θ are optimizee parameters and φ are optimizer parameters.
The state, h, is also updated. Note, the raw gradient inputs used here
are provided by automatic differentiation and are not implemented
manually. Third, we assign the optimizer and optimizee an ob-
jective function or loss and use truncated backpropagation through
time (BPTT) [34] to fit the optimizer parameters to data.

2.1. Optimizee architecture & loss

The optimizee, or adaptive filtering being optimized, provides the
architecture used for filtering signals. It is defined by filter param-
eters θ, a filtering architecture fθ(·), and an optimizee loss func-
tion. For illustrative purposes, we can consider a basic time-domain
adaptive filter optimizee. In this case, the optimizee parameters θ
correspond to transversal finite impulse response (FIR) filter co-
efficients θ = {ŵn ∈ RN}, the optimizee architecture corre-
sponds to the inner product between an input vector un ∈ RN and
the filter coefficients fθ(un) = yn = ŵH

nun, and the optimizee
loss corresponds to a mean squared error objective, J(yn, dn) =
1
N

∑N
n |yn − dn|

2, where dn ∈ R is the desired, known response.
In this case, we can reduce the optimizee update (1) to

ŵn+1 = ŵn − gφ(un · (ŵH
nun − dn)∗), (2)

where ∗ denotes complex conjugation and H denotes Hermitian
transposition.

While we manually derive the gradient vector∇fθn(·) here, in
practice gradients are computed via automatic differentiation. Be-
cause of this, we can use more advanced optimizees such as lat-
tice FIR filters, block frequency-domain filters [1, 4], multidelayed
block frequency domain filters [31], or non-linear variants such as
(polynomial) Volterra filters [35], or Hammerstein filters [36] with
ease. We can also use alternative differentiable optimizee losses
such as negative log-likelihood or mutual information.

2.2. Optimizer architecture & loss

The optimizer gφ(·), or function doing the optimizing, is parameter-
ized by φ and used to adapt the optimizee parameters θ over time.
The optimizer accepts as input raw optimizee gradients and outputs
an optimized, learned update rule. For a basic time-domain adaptive
filter optimizee, we can define the optimizer architecture as a single
step-size µ and reduce (2) to

ŵn+1 = ŵn − µ · un(ŵH
nun − dn)∗, (3)

or the well known LMS algorithm. For a more powerful optimizer,
however, we can define the optimizer gφ(∇J(·)) to be a neural net-
work module such as a recurrent neural network (RNN), convolu-
tional neural network (CNN), fully connected network, or similar.
The design of the optimizer, however, has tremendous implications
on computational complexity of the approach. Thus, we make the

Algorithm 1 Meta-learning training algorithm.

Precondition: J(·), METAOPT, Ni, No
1: function INNERLOOP(φ,h, θ,u,d)
2: L← 0
3: for ni ← 0 to Ni do
4: yni ← fθni

(uni)
5: L← L+ J(yni ,dni)

6: ∇̂,h← gφ(∇J(yni ,dni),h)

7: θni+1← θni − ∇̂
8: end for
9: return L, θNi ,h

10: end function
11: function OUTERLOOP(φ,h, θ,u,d)
12: for no ← 0 to No do
13: L, θno+1,h← INNERLOOP(φno ,h, θno ,uno ,dno)
14: φno+1← METAOPT(φno ,L)
15: end for
16: return φNo

17: end function

optimizer agnostic of the optimizee layout by applying the opti-
mizer independently to each element of the optimizee parameters θ.
That is, the optimizer update is applied element-wise to each opti-
mizee parameter. This allows us to efficiently vectorize our update
rules and perform weight sharing in the optimizer, while maintain-
ing independent state dynamics per optimizee parameter.

In terms of the optimizer objective, we set it to be the sum of a
collection of optimizee losses averaged across a dataset, which re-
quires no additional labels. However, this can be modified to favor
different optimization dynamics or design constraints. For exam-
ple, we could use a weighted sum where earlier (or later) losses are
weighted more. This would enable training an optimizer special-
izing in early (or late) convergence. Other schemes could produce
optimizers that favor small updates, sparse updates, etc.

2.3. Learning the optimizer

To train our optimizers, we follow the procedure outlined in Algo-
rithm 1. The procedure consists of two basic steps: an inner loop
and an outer loop. The inner loop process runs an adaptive filter
optimizee for a finite number of time steps, Ni, updates the opti-
mizee parameters as it goes, and accumulates the optimizee loss for
a fixed optimizer state using BPTT. The outer loop invokes the in-
ner loop, uses a standard deep learning optimizer denoted as a meta
optimizer (METAOPT) to update the learned optimizer module, and
repeats for a finite number of outer loop steps, No. In practice, the
outer loop is vectorized and runs across a randomized collection
of signals (i.e. batches) continuously sampled from data until the
optimizer loss convergences. This procedure allows us to train our
optimizer on long sequences and helps minimize exploding gradient
issues. After training, the learned optimizers are used like conven-
tional optimizers and do not use the inner/outer scheme.

3. EXPERIMENTAL SETUP

3.1. Optimizee configuration

To demonstrate our approach, we consider the adaptive filtering task
of acoustic echo cancellation or interference cancellation. For our
AEC optimizee architecture, we use an MDF filter with an optional

2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 17-20, 2021, New Paltz, NY

parametric nonlinearity. The optimizee parameters θ include fre-
quency domain filter coefficients and a small set of nonlinear coef-
ficients. The filter coefficients are partitioned into multiple delayed
blocks and used within the framework of overlap-save short-time
Fourier transform processing [37]. MDF filters are commonly used
for AEC and leverage the benefits of both frequency-domain adap-
tation [4] and low latency. For our optimizee loss, which implicitly
defines the optimizer loss, we use the mean squared error.

In more detail, our MDF filter consists of frequency domain fil-
ter coefficients W ∈ CM×N , where M is the number of delayed
blocks, N is the fast Fourier transform (FFT) size, P =M ·N/2 is
the number of filter parameters, and L is the filter length in sam-
ples. The filter matrix is applied to the delayed frequency do-
main near-end inputs U ∈ CM×N to yield a filtered output via
yn = last N/2 terms of{FFT−1((W � U)>1N)}, where > is a
matrix transpose, � is the hadamard product, and 1N is an N × 1
matrix of ones. To construct U, we buffer the time-domain near-
end signal to length N with time overlap R, forming uñ ∈ RN ,
shift Um = Um+1 for m = 1, 2, · · · ,M − 1, and assign
UM = FFT(uñ). Finally, we antialias W after each update so
that each block has N/2 nonzero time-domain parameters. For our
nonlinearity extension, we preprocess each element un of the far-
end reference signal through a parametric sigmoid

γ(un) = α4

(
2

1 + exp(α2ûn + α3û2
n)
− 1

)
(4)

where ûn = (un · α1)/(
√
|un|2 + |α1|2) and αi∀i are adapted.

3.2. Optimizer configuration

We implement a complex-valued gated recurrent unit (GRU) opti-
mizer architecture composed of a complex linear layer with output
sizeH , two weight-tied complex GRU layers, and a complex output
linear layer. The GRU layers share a single H dimensional hidden
state h ∈ CH . All layers are followed by complex rectified linear
units (ReLU). The GRU layers use complex-valued hyperbolic tan-
gent (tanh) and sigmoid activation functions. We use the initializa-
tion scheme proposed in [38] and test two optimizer sizes: H = 24
andH = 48 with 3.6k and 14k complex-valued parameters, respec-
tively. To train this model, we use the mean-squared error optimizee
loss averaged across a batch of optimizees.

As a preprocessing step to our GRU-based optimizer, we mod-
ify the feature extraction in [26] to operate in the complex domain.
Specifically, we input complex optimizee gradients∇ and then limit
the dynamic range by clipping and compressing the gradient mag-
nitudes via:

∇̃ =
log(max(e−p,min(|∇|, ep))) + p

p
ej∠∇, (5)

where p is a hyperparameter that controls the clipping and e is the
exponential function. The purpose of this is to leave the phase of
the gradient unchanged. We set p = 10 in all experiments.

3.3. Evaluation metrics

To measure the average performance of our learned adaptive
filters and compare to known baselines, we use the average
echo return loss enhancement (ERLE), which is defined as
10 log(

∑
n |dn|

2/
∑
n |yn − dn|

2). To understand convergence
speed and provide further qualitative analysis, we also use the seg-
mental ERLE, or the ERLE computed on short windows of size N .

3.4. Dataset

We train and test our optimizers using the synthetic portion of the
Microsoft AEC Challenge dataset [30]. This dataset includes far-
end noise, near-end noise, and far-end nonlinearities. We preprocess
the data by resampling to 8kHz and remove near-end speech from
all near-end recordings for focus and leave learning double-talk ro-
bust optimizers for future work. Note that the dataset is composed
of 80% nonlinear scenes and 20% linear scenes.

3.5. Training

For training, we follow Algorithm 1 together with a standard train-
ing, validation, and testing setup. We use Adam (lr= 10−4) with
gradient clipping as our meta-optimizer, and halve the learning rate
if ERLE performance on the validation set does not improve for
10 consecutive epochs and cease training after 25 epochs with no
ERLE improvement. We define an epoch to be 200 batches of op-
timization runs where each optimization run consists of an initial
filter state, a 10 second far-end signal and a 10 second near-end
signal. We alternate between inner and outer updates as defined in
Algorithm 1 and set Ni = 10. No is set to be the number of inner
loop updates that will fit within a 10 second sequence. We found
that optimizers did not converge well when the value of Ni was set
much higher than 20 or lower than 5. Our implementation is written
using the JAX framework [39]. Training an optimizer takes one to
ten days depending on optimizer/optimizee complexity on two RTX
2080 TI GPUs.

4. RESULTS & DISCUSSION

We evaluate our learned optimizers across multiple optimizer con-
figurations and optimizee configurations as well as linear and non-
linear scenes and compare against standard hand-derived update
rules. Our baselines consist of step-size tuned block frequency-
domain NLMS optimizer with smoothing constant (β = .9, .99),
a step-size tuned frequency-domain RMSprop optimizer, and the
Speex AEC. While Speex is representative of a well-engineered
hand-tuned optimizer it was not optimized for this dataset whereas
the other optimizers are. Baseline results are shown in the first sec-
tion of Table 1. We denote the learned optimizer hidden size by H ,
the number of filter parameters as P , the FFT size asN , the number
of MDF blocks asM , the overlap between blocks asR, whether the
optimizee has a nonlinear component with γ, and provide both the
average µ and standard deviation σ ERLE. All baseline and learned
optimizees have an effective filter length of L = 2048 taps.

4.1. Feature extraction

We evaluate our proposed feature extraction by training optimiz-
ers (H = 24, P = 2048, N = 2P,M = 1, R = 1/2, and no
γ) with and without this preprocessing and display the results in
the second portion of Table 1. As shown, our proposed features
improve performance by ≈ 2dB and ≈ 3dB dB in nonlinear and
linear scenes, respectively. By inspection, we found that that the
distribution of gradient magnitudes was heavily skewed and we hy-
pothesize that clipping and compressing gradient magnitudes acts
as a form of whitening that approximately normalizes the distribu-
tion. Given this result, we use the proposed feature extraction for
all further experiments.

2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 17-20, 2021, New Paltz, NY

Optimizer Optimizee ERLE (dB)
Nonlinear

ERLE (dB)
Linear

M N R γ µ σ µ σ

NLMS (β = .9) 1 4096 7/8 7 4.40 11.82 9.57 6.01
NLMS (β = .99) 1 4096 7/8 7 4.07 4.54 5.20 2.57
RMSprop 1 4096 7/8 7 5.58 2.94 7.71 2.56
Speex 4 1024 1/2 7 9.79 4.56 8.55 3.51
Speex 8 512 1/2 7 9.83 4.50 8.72 3.55
GRU (H = 24,∇) 1 4096 1/2 7 3.24 1.78 4.68 1.85
GRU (H = 24, ∇̃) 1 4096 1/2 7 5.69 2.86 7.78 2.13

GRU (H = 48, ∇̃) 1 4096 1/2 7 5.87 2.93 7.95 2.15
GRU (H = 48, ∇̃) 1 4096 3/4 7 8.26 4.03 11.22 2.93
GRU (H = 48, ∇̃) 1 4096 7/8 7 10.40 5.18 14.21 4.29

GRU (H = 48, ∇̃) 4 1024 1/2 7 8.11 4.40 9.46 3.26
GRU (H = 48, ∇̃) 4 1640 3/4 7 10.20 5.15 13.62 3.87
GRU (H = 48, ∇̃) 8 512 1/2 7 8.45 4.58 9.54 3.32
GRU (H = 48, ∇̃) 8 912 3/4 7 10.75 5.46 13.93 3.94

GRU (H = 48, ∇̃) 1 4096 7/8 X 10.53 4.04 13.45 3.55
GRU (H = 48, ∇̃) 4 1640 3/4 X 9.17 3.73 11.66 4.02
GRU (H = 48, ∇̃) 8 912 3/4 X 10.17 4.12 11.61 4.07

Table 1: Optimizer comparison using the ERLE metric. The op-
timizee column shows the number of blocks M , the FFT size N ,
the proportion of block overlap R, and the optimizee nonlinearity
extension γ. All optimizees have a filter length of L = 2048.

4.2. Optimizer capacity & computational complexity

Next, we increase the hidden state size H to 48 and compare dif-
ferent proportions of overlap in the third portion of Table 1. At
R = 1/2 and 3/4, the learned optimizer outperforms NLMS and
RMSprop. When R is increased to 7/8, performance improves
by multiple dB and the learned optimizer outperforms all baselines
with a slightly higher standard deviation than Speex. For this con-
figuration, the optimizee has P = 2048 and uses 240 mega-MACS
per update. On an i9-9820X CPU the real-time factor is .36 using
one thread and .13 using multiple threads. This is remarkable, given
the engineering expertise and effort distilled into our baselines.

4.3. Learned optimizer dynamics

We evaluate how our learned optimizers respond to an abrupt
change in the echo path using the final setup from Section 4.2. The
learned optimizers were trained on static scenes with a duration of
10 seconds. However, test scenes here are twice as long and formed
by concatenating two test set files. The Block NLMS and RMSprop
baselines were tuned on static scenes to match the learned optimizer
setup. In Fig. 2, we compare ERLE across time. To match the num-
ber of updates, we run Speex with 4 blocks.

In both linear and nonlinear scenes the learned optimizer con-
verges rapidly and achieves a steady-state in ≈ 2 seconds. In
linear scenes, block NLMS is competitive and reaches a steady-
state ERLE at ≈ 6 seconds. However, after the scene change at
10 seconds, the learned optimizer is the only optimizer that re-
covers its full performance. In nonlinear scenes, Speex displays
strong steady-state performance and overtakes the learned opti-
mizer. Though, after the scene change, the learned optimizer recov-
ers and is not surpassed. On average, our optimizer outperforms all
baselines for both steady-state and early convergence and demon-
strates it can generalize to novel and challenging environments.

−10

0

10

20

E
R

L
E

(d
B

)

Linear Scenes

0 2 4 6 8 10 12 14 16 18 20
Time (s)

−10

0

10

20

E
R

L
E

(d
B

)

Nonlinear Scenes

Auto-DSP
Tuned
RMSprop

Tuned
Block NLMS

Default
Speex

Figure 2: ERLE (dB) performance across time in linear (top) and
nonlinear (bottom) scenes. The echo path changes ten seconds into
the scene. Lines represent mean performance and shaded regions
represent ± 1

2
a standard deviation. Our optimizer converges faster

than other optimizers and quickly adapts despite being trained on
shorter scenes and never encountering scene changes in training.

4.4. Optimizee architecture

In our final set of experiments, we learn optimizers for a variety of
optimizee architectures. That is, we construct MDF adaptive filters
with 4 and 8 blocks (instead of one block) and also experiment with
incorporating a parametric nonlinear distortion block and adjusting
the overlap R. Results can be found in the last two sections of
Table 1. Note that these optimizees may have P > L parameters.
For all adaptive filters, we use identical optimizer hyperparameters,
training scheme, and architecture. In effect, no manual architecture
design intervention is required for any of our learned optimizers.

First, we find that our learned optimizers successfully scale to
more complex linear adaptive filter architectures. Second, we find
that we can learn to optimize nonlinear variants of MDF, and gener-
ally outperform their hand-tuned counterparts in nonlinear scenes.
This suggests we can learn optimal update rules per filtering ar-
chitecture to fit design trade-offs like latency versus computational
complexity without needing to hand-derive anything and has the
potential to fundamentally change how we develop adaptive filters.

5. CONCLUSION

In this work, we formulate the optimization of adaptive filters as
a meta-learning problem and successfully replace hand-derived up-
date rules with learned update rules. We call this method Auto-
DSP and apply it in acoustic echo cancellation where we learn op-
timization rules in a data-driven fashion, without any external la-
bels. Using an identical optimizer configuration, we experiment
with learning update rules for multidelay block frequency domain
filters both with and without parametric nonlinearities. We evaluate
performance across scenes with nearend noise and far-end distor-
tion, and find we can outperform tuned block NLMS and RMSprop
optimizers and a popular open source filter (Speex). In all, we be-
lieve learning adaptive filter update rules from data is an exciting
new signal processing methodology and has tremendous potential.

2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 17-20, 2021, New Paltz, NY

6. REFERENCES

[1] B. Widrow and S. D. Stearns, Adaptive Signal Processing.
Prentice-Hall, 1985.

[2] E. Hänsler and G. Schmidt, Acoustic echo and noise control:
a practical approach. John Wiley & Sons, 2005.

[3] J. Benesty, T. Gänsler, D. R. Morgan, S. L. Gay, and M. M.
Sondhi, Advances in Network and Acoustic Echo Cancella-
tion. Springer, 2001.

[4] S. S. Haykin, Adaptive filter theory. Pearson, 2008.

[5] J. A. Apolinário, J. A. Apolinário, and R. Rautmann, QRD-
RLS adaptive filtering. Springer, 2009.

[6] S. L. Gay, “An efficient, fast converging adaptive filter for
network echo cancellation,” in IEEE Asilomar Conference on
Signals, Systems and Computers, 1998.

[7] D. L. Duttweiler, “Proportionate normalized least-mean-
squares adaptation in echo cancelers,” IEEE Transactions on
Speech and Audio Processing, 2000.

[8] J.-M. Valin, “On adjusting the learning rate in frequency do-
main echo cancellation with double-talk,” IEEE Transactions
on Audio, Speech, and Language Processing, 2007.

[9] W. Dabney and A. Barto, “Adaptive step-size for online tem-
poral difference learning,” in AAAI, 2012.

[10] A. R. Mahmood, R. S. Sutton, T. Degris, and P. M. Pilarski,
“Tuning-free step-size adaptation,” in IEEE ICASSP, 2012.

[11] R. S. Sutton, “Adapting bias by gradient descent: An incre-
mental version of delta-bar-delta,” in AAAI, 1992.

[12] N. N. Schraudolph, “Local gain adaptation in stochastic gra-
dient descent,” in ICANN, 1999.

[13] H. Zhang, K. Tan, and D. Wang, “Deep learning for joint
acoustic echo and noise cancellation with nonlinear distor-
tions.” in INTERSPEECH, 2019.

[14] A. Fazel, M. El-Khamy, and J. Lee, “CAD-AEC: Context-
aware deep acoustic echo cancellation,” in IEEE ICASSP,
2020.

[15] J.-M. Valin, S. Tenneti, K. Helwani, U. Isik, and A. Krish-
naswamy, “Low-complexity, real-time joint neural echo con-
trol and speech enhancement based on PercepNet,” arXiv
preprint arXiv:2102.05245, 2021.

[16] L. Ma, H. Huang, P. Zhao, and T. Su, “Acoustic echo cancel-
lation by combining adaptive digital filter and recurrent neural
network,” arXiv preprint arXiv:2005.09237, 2020.

[17] A. N. Birkett and R. A. Goubran, “Acoustic echo cancellation
using NLMS-neural network structures,” in IEEE ICASSP,
1995.

[18] A. B. Rabaa and R. Tourki, “Acoustic echo cancellation based
on a recurrent neural network and a fast affine projection al-
gorithm,” in IEEE IES, 1998.

[19] S. Zhang and W. X. Zheng, “Recursive adaptive sparse expo-
nential functional link neural network for nonlinear AEC in
impulsive noise environment,” IEEE Transactions on Neural
Networks and Learning Systems, 2017.

[20] M. M. Halimeh, C. Huemmer, and W. Kellermann, “A neural
network-based nonlinear acoustic echo canceller,” IEEE SPL,
2019.

[21] J. Malek and Z. Koldovskỳ, “Hammerstein model-based non-
linear echo cancelation using a cascade of neural network and
adaptive linear filter,” in IEEE IWAENC, 2016.

[22] J. Schmidhuber, “Learning to control fast-weight memories:
An alternative to dynamic recurrent networks,” Neural Com-
putation, 1992.

[23] I. Bello, B. Zoph, V. Vasudevan, and Q. V. Le, “Neural opti-
mizer search with reinforcement learning,” in ICML, 2017.

[24] D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” arXiv preprint
arXiv:1609.09106, 2016.

[25] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-
learning for fast adaptation of deep networks,” in ICML, 2017.

[26] M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoff-
man, D. Pfau, T. Schaul, B. Shillingford, and N. de Freitas,
“Learning to learn by gradient descent by gradient descent,”
in NeurIPS, 2016.

[27] O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G.
Colmenarejo, M. Denil, N. Freitas, and J. Sohl-Dickstein,
“Learned optimizers that scale and generalize,” in ICML,
2017.

[28] L. Metz, N. Maheswaranathan, J. Nixon, D. Freeman, and
J. Sohl-Dickstein, “Understanding and correcting pathologies
in the training of learned optimizers,” in ICML, 2019.

[29] T. Chen, W. Zhang, Z. Jingyang, S. Chang, S. Liu, L. Amini,
and Z. Wang, “Training stronger baselines for learning to op-
timize,” in NeurIPS, 2020.

[30] K. Sridhar, R. Cutler, A. Saabas, T. Parnamaa, H. Gam-
per, S. Braun, R. Aichner, and S. Srinivasan, “ICASSP 2021
acoustic echo cancellation challenge: datasets and testing
framework,” arXiv preprint arXiv:2009.04972, 2020.

[31] J.-S. Soo and K. K. Pang, “Multidelay block frequency do-
main adaptive filter,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, 1990.

[32] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks
for machine learning lecture 6a overview of mini-batch gradi-
ent descent,” 2012.

[33] J.-M. Valin, “Speex: A free codec for free speech,” arXiv
preprint arXiv:1602.08668, 2016.

[34] P. J. Werbos, “Backpropagation through time: what it does
and how to do it,” Proc. of the IEEE, 1990.

[35] V. J. Mathews, Circuits and Systems Tutorials: Adaptive poly-
nomial filters, 1991.

[36] M. Scarpiniti, D. Comminiello, R. Parisi, and A. Uncini,
“Hammerstein uniform cubic spline adaptive filters: Learning
and convergence properties,” Signal Processing, 2014.

[37] L. R. Rabiner, B. Gold, and C. Yuen, Theory and application
of digital signal processing. Prentice-Hall, 2016.

[38] M. Wolter and A. Yao, “Complex gated recurrent neural net-
works,” in NeurIPS, 2018.

[39] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas,
S. Wanderman-Milne, and Q. Zhang, “JAX: composable
transformations of Python+NumPy programs,” 2018. [On-
line]. Available: http://github.com/google/jax

http://github.com/google/jax

	1 Introduction
	2 Auto-DSP Optimization
	2.1 Optimizee architecture & loss
	2.2 Optimizer architecture & loss
	2.3 Learning the optimizer

	3 Experimental Setup
	3.1 Optimizee configuration
	3.2 Optimizer configuration
	3.3 Evaluation metrics
	3.4 Dataset
	3.5 Training

	4 Results & Discussion
	4.1 Feature extraction
	4.2 Optimizer capacity & computational complexity
	4.3 Learned optimizer dynamics
	4.4 Optimizee architecture

	5 Conclusion
	6 References

