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Latency Minimization with Optimum Workload

Distribution and Power Control for Fog Computing

Saman Atapattu, Chathuranga Weeraddana, Minhua Ding, Hazer Inaltekin and Jamie Evans

Abstract—This paper investigates a three-layer IoT-fog-cloud
computing system to determine the optimum workload and
power allocation at each layer. The objective is to minimize
maximum per-layer latency (including both data processing
and transmission delays) with individual power constraints. The
resulting optimum resource allocation problem is a mixed-integer
optimization problem with exponential complexity. Hence, the
problem is first relaxed under appropriate modeling assumptions,
and then an efficient iterative method is proposed to solve the
relaxed but still non-convex problem. The proposed algorithm
is based on an alternating optimization approach, which yields
close-to-optimum results with significantly reduced complexity.
Numerical results are provided to illustrate the performance
of the proposed algorithm compared to the exhaustive search
method. The latency gain of three-layer distributed IoT-fog-cloud
computing is quantified with respect to fog-only and cloud-only
computing systems.

Index Terms—Cloud computing, Fog computing, Internet of
Things (IoT), Latency, Power allocation.

I. INTRODUCTION

The fifth generation (5G) of wireless networks and beyond

are expected to support billions of connected devices, known

as Internet-of-Things (IoT), by using brand-new technologies

such as millimeter waves, small cells, multiple antennas, full-

duplex and cooperative communications [1]–[4]. To achieve

this goal, one key challenge is the efficient processing of

data generated at the network edge to meet stringent delay

and reliability requirements demanded by the wide range of

applications. The cloud computing alone is often not enough to

meet all the key performance indicators in these emerging use-

cases [5]–[7]. The fog computing presents a potential solution

for this problem by processing data locally at the fog devices.

A typical fog computing architecture can be modeled with

three layers of devices: IoT layer, fog layer, and cloud layer

[6]. To investigate different aspects of this set-up, various

analytic models for control reliability [7], computing delay [8],

transmission delay [8], and energy consumption [7]–[9] are

proposed in the existing literature and references therein. For

device-to-device fogging [10], an online task offloading prob-

lem is considered to minimize the average energy consump-

tion. In [11], an online joint radio and computational resource
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management algorithm is developed for multi-user mobile-

edge computing systems. In [12], the resource allocation is

performed between the end users and their associated small-

cell base-stations when they provide cloud-like computing.

For a mobile-edge computing system, the user and data-

set size selection is considered to minimize total energy

consumption subject to computing latency in [13]. A similar

system consisting of single user connected to a computation-

ally capable helper is considered in [14]. In [15], a computing

system where the end-users and the cloud are connected via

a BS is considered to minimize the energy consumption.

A delay-aware and energy efficient computation offloading

scheme is proposed in [16] to minimize the consumption

of the non-renewable grid energy. In [17], a collaborative

computation offloading is studied for cloud and mobile-

edge computing to minimize the total energy consumption.

The authors in [18] considered a cloud-fog architecture to

minimize the maximum computational latency. A trade-off

between power consumption and transmission delay in a fog-

cloud computing environment is investigated in [8]. Workload

allocation strategies within the fog layer subject to a power

efficiency constraint are explored in [19].

We note that the fog computing is essentially to complement

the cloud computing but not to replace the cloud. In general,

even the IoT layer can be equipped with certain computational

capabilities. Thus, unlike in existing literature, in this paper,

we consider a three-layer IoT-fog-cloud distributed computing

architecture, where each layer has its own computational

capacity. We investigate the problem of splitting the workload

generated by the IoT layer among the IoT, fog, and cloud.

The splitting is performed so that the maximum latency at

each layer is minimized subject to individual per-layer power

constraints. The resulting optimization problem is a mixed-

integer program, which is intractable in general. The problem

is relaxed with reasonable assumptions. An alternating opti-

mization method is proposed with guaranteed convergence for

computing a good feasible point of the relaxed non-convex

problem. For all considered empirical scenarios, negligible loss

of optimality is recorded. The latency gain due to the IoT-fog-

cloud computing is quantified with respect to fog-only and

cloud-only systems by using the proposed method.

II. SYSTEM MODEL

We consider a network consisting of an IoT device (I), a fog

node (F), and a cloud server (C), as shown in Fig. 1. While

the IoT device has computing resources, it may also offload

some of its processing to the fog and cloud layers. We assume

http://arxiv.org/abs/2001.11648v1
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Fig. 1. Configuration for three-layer IoT-fog-cloud computing system.

that the IoT device has total B [bits] to be processed. It may

decide to offload m [bits], m ≤ B, to the fog node and the

fog node in turn may decide to offload k [bits], k ≤ m, to the

cloud node. The workload distribution over the IoT, fog, and

cloud layers is then B −m, m− k and k [bits], respectively.

Processing time calculations in the proposed fog computing

set-up is modelled by introducing computing powers as deci-

sion variables. To this end, we start by considering a comput-

ing device with processing frequency f [cycles/sec]. Assuming

Ec [joules/cycle] is required to run each computing cycle, the

power consumption for processing data becomes Pp = Ecf
[Watts]. Here Ec is considered as an intrinsic device constant

depending on the underlying silicon chip technology. Note that

Pp is the total energy the computing device consumes per

second. Extending this naive approach, a more refined model

relating Pp and f is Pp = afβ + b [Watts], where β ranges

from 2.5 to 3, and a and b are positive constants obtained

by curve fitting against empirical measurements [8], [20].

The constant a embodies the effect of Ec and other device

parameters. Equivalently, f = ((Pp − b)/a)
1
β , which is the

maximum data processing speed at a given computing power

budget Pp. Now consider executing an algorithm A with some

given complexity C(n), as a function of the number of input

bits n and in units of processor cycles required for algorithm

completion. For simplicity, assume that the complexity is

linear and given by C(n) = cn for some positive c [cycles/bit].

Thus, allocating Pp to execute A with n bits requires a time

tp = c
n

f
= c n

(

Pp − b

a

)− 1
β

[sec]. (1)

An implicit constraint here is Pp > b. Let PtI, PtF and PtC

denote the total power budgets for the IoT, fog, and cloud

layers, respectively. Typically, PtI ≪ PtF ≪ PtC. The IoT

node needs to allocate PtI for its own data processing and

communication with the fog layer. Let the local IoT power

allocation for data processing and communication be denoted

as PpI and PcI, respectively, where PpI+PcI ≤ PtI. Similarly,

power levels PpF and PcF are allocated for data processing

and communication at the fog node, respectively, where PpF+
PcF ≤ PtF. Since the cloud only performs data processing at

power PpC, we require PpC ≤ PtC. Indexing the a, b and c
parameters in (1) with I, F and C, the data processing time at

each layer is

At I : tpI = cI(B −m)

(

PpI − bI
aI

)− 1
β

[sec],

At F : tpF = cF (m− k)

(

PpF − bF
aF

)− 1
β

[sec],

At C : tpC = cC k

(

PpC − bC
aC

)− 1
β

[sec].

The IoT and fog layers is connected via a wireless link with

channel gain hIF and bandwidth WIF. The fog communicates

with the cloud via a wireless link or an optical link having

channel gain hFC and bandwidth WFC. The throughputs for

the IoT-fog and fog-cloud links are given by

I to F : RIF = WIF log2

(

1 +
gIF PcI

N0WIF

)

[bits/sec],

F to C : RFC = WFC log2

(

1 +
gFC PcF

N0WFC

)

[bits/sec],

where gIF=|hIF|
2, gFC=|hFC|

2, and N0 is the noise spectral

density. The communication time over each link is given by

tc,IF =
m

RIF
[sec] and tc,FC =

k

RFC
[sec]. (2)

The total latency at each stage is determined as follows. For

local data processing at the IoT layer, we only have latency TI

for processing B−m bits. The latency TF for processing m−k
bits at the fog layer is the sum of communication latency of

m bits from the IoT layer to the fog layer and the processing

latency of the m − k bits. For the cloud, the latency TC for

processing k bits is the sum of processing time at the cloud and

communication latencies from the IoT layer to the fog layer

and from the fog layer to the cloud layer. Assuming that data

transmission and processing can be carried out simultaneously,

the latencies are given by

TI (m,PpI) = tpI; TF (m, k, PpF, PcI) = tc,IF + tpF

TC (m, k, PpC, PcF) = tc,IF + tc,FC + tpC.
(3)

Based on (3), the effective system latency to complete the

whole task is given by

T = max (TI, TF, TC) , (4)

where T is a function of workload distribution and power

allocations at IoT, fog, and cloud layers.

III. OPTIMUM RESOURCE ALLOCATION

A. The Latency Minimization Problem

Our goal is to discover the optimum workload distribution

and power allocations at IoT, fog, and cloud layers to minimize

T . This optimization problem can be formulated as

minimize T (m, k, PpI, PcI, PpF, PcF, PpC) (5a)

subject to 0 ≤ m ≤ B, 0 ≤ k ≤ m (5b)

PpI + PcI ≤ PtI, PpF + PcF ≤ PtF (5c)

PpI > bI , PpF > bF , bC < PpC ≤ PtC (5d)

k,m ∈ Z , (5e)

where PpI, PcI, PpF, PcF, PpC,m, and k are the decision vari-

ables. Note that the optimization problem in (5) is a mixed-

integer nonlinear problem and is intractable in general 1.

1Even in the case of mixed integer linear problems, no efficient solution
methods exists, except in certain special cases, e.g., total unimodularity
conditions hold, see [21, § 13.2].



However, a plausible strategy, especially when the solution

for m and k are expected to be large integers, is to relax

the integer constraints [21, p. 307]. More specifically, we

consider the related problem by replacing the integer constraint

k,m ∈ Z of (5) by k,m ∈ R, whose epigraph problem is

minimize t

subject to TI (m,PpI) ≤ t, TF (m, k, PpF, PcI) ≤ t, (6)

TC (m, k, PpC, PcF) ≤ t

Constraints (5b)-(5d) ,

with decision variables t, PpI, PcI, PpF, PcF, PpC, m, and k
[compare with (3) and (4)].

Lemma 1 (Total power usage). At any optimal point, the

power constraints of the problem (6) hold with equality, i.e.,

PpI + PcI = PtI, PpF + PcF = PtF and PpC = PtC.

Proof: The proof is omitted due to space limitations.

Using Lemma 1, the optimization problem in (6) can

equivalently be reformulated as in (7), which is at the top of

the next page, where the decision variables are t, α, γ,m, and

k. The parameters g = gIF/(N0WIF) and h = gFC/(N0WFC)
are introduced for clarity. Although the problem (7) does not

exhibit any convexity with respect to the decision variables

t, α, γ,m, and k, the problem possesses interesting structural

properties that facilitate the application of alternating opti-

mization techniques, as we will discuss next.

B. Solution Approach: Sequential Latency Minimization

For clarity, let αmax = 1 − bI/PtI and γmax = 1 − bF/PtF.

The key step in our method to solve (7) is to decompose the la-

tency minimization (7) into two manageable sub-problems that

can be solved sequentially in two stages until a convergence

criterion is satisfied. The main idea is illustrated in Fig. 2. Let

us consider the first iteration. At stage 1, the IoT layer solves

for the optimum number of bits m(1) (out of B) that it can

assign to the fog layer, so that the overall time to process B bits

at the IoT and fog layers is jointly minimized. In particular,

the following problem is solved at stage 1 of iteration 1:

minimize t

subject to cIa
(1/β)
I





B −m
(

[1− α]PtI − bI
)

1
β



 ≤ t

[

m

WIF log2 (1 + αgPtI)
+

cFa
(1/β)
F m

(PtF − bF)
1
β

]

≤ t

0 ≤ m ≤ B, 0 ≤ α ≤ αmax , (8)

where the decision variables are t,m, α only and the solution

is (t(1),m(1), α(1)). The optimization problem (8) is simply (7)

with k = 0, γ = 0, and without the 3rd constraint. The

idea is depicted in Figs. 2 and 3. In this example, the IoT

layer requires 7 [secs] to process B bits alone. After solving

stage 1 optimization problem (8), the IoT and fog layers

together require only 5 [secs] to process B bits, which is

around 30% latency improvement. The latency at stage 1

includes the processing time of
(

B−m(1)
)

bits at the IoT or

communication and processing times of m(1) bits at the fog.

In stage 2 of iteration 1, the fog solves for the optimum

number of bits k(1) that can be assigned to the cloud, so that

the overall time to process the already assigned m(1) bits at the

fog and cloud are jointly minimized, as illustrated in Fig. 2. In

other words, the following is solved at stage 2 of iteration 1:

minimize s

subject to
m(1)

WIF log2

(

1 + gPt,Iα
(1)

)

+
cFa

(1/β)
F

(

m(1) − k
)

((1 − γ)Pt,F − bF)
1
β

≤ s

m(1)

WIF log2

(

1 + gPt,Iα
(1)

) +
cCa

(1/β)
C k

(Pt,C − bC)
1
β

+
k

WFC log2 (1 + hPt,Fγ)
≤ s

0 ≤ k ≤ m(1), 0 ≤ γ ≤ γmax , (9)

where the decision variables are s, k, γ and the solution is
(

s(1), k(1), γ(1)
)

. The problem (9) is simply the problem (7),

while leaving its first constraint out and considering m = m(1)

and α = α(1). Fig. 3 illustrates a situation, where the the

aggregate time for communication of m(1) bits from the IoT

layer to the fog layer and the processing of (m(1) − k(1))
bits at the fog layer is 1 [sec]. So is the aggregate time to

communicate and process k(1) bits at the cloud layer. We

observe, however, that the total latency is still 5 [secs] since

the latency at the IoT layer does not improve after solving the

second stage optimization problem. This is the status at the

end of the first iteration.

To further improve the latency bottleneck at the IoT layer,

in the next iteration, we revert to the stage 1 optimization

problem again, which results in 3 [secs] to process (B −
m(1) − m(2)) bits at the IoT layer after solving (8) with

the updated workload distribution. See Fig. 3. The aggregate

communication and processing time of (m(1) +m(2)) bits at

the fog layer is now equal to 3 [secs], without any change in

the cloud latency. Then, the solution method again proceeds to

stage 2 of the second iteration. The process is thus repeated.

Fig. 3 shows the evolution of the aggregate time to process

the data at different layers for a case in which the two-stage

optimization procedure iterates twice.

Next, we will discuss the properties of the two-stage opti-

mization procedure.

C. Basis for the Two-Stage Optimization Procedure

Implementation of the proposed solution technique requires

solving the stage 1 and 2 optimization problems sequentially

in an iterative manner. In other words, in any iteration, first

the stage 1 optimization is performed followed by the stage 2
optimization. The stage 1 optimization in the ith iteration is



minimize t

subject to cIa
(1/β)
I

B −m

((1− α)PtI − bI)
1
β

≤ t,
m

WIF log2 (1 + αgPtI)
+ cF a

(1/β)
F

m− k

((1− γ)PtF − bF)
1
β

≤ t (7)

m

WIF log2 (1 + αgPtI)
+

k

WFC log2 (1 + γhPtF)
+

cCa
(1/β)
C k

(PtC − bC)
1
β

≤ t, 0 ≤ m ≤ B, 0 ≤ k ≤ m, α ∈ [0, αmax), γ ∈ [0, γmax).

B

IoT

0

Fog

0

Cloud

B −m(1)
m(1) 0

B −m(1) m(1)
− k(1)

k(1)

B −m(1)
−m(2) m(1) +m(2)

− k(1)
k(1)

m(1)

k(1)

m(2)

End of Stage 1

End of Stage 2

End of Stage 1

Fig. 2. Proposed Sequential Optimization Method: Alternating Stage 1 and Stage 2

IoT Fog Cloud

7

5 55

1 1

3 3

1

3
2 2

T
o
ta

l
T

im
e

IoT alone End of (Eof) Stage 1 Eof Stage 2 Eof Stage 1 Eof Stage 2

Fig. 3. Proposed Sequential Optimization Method: (Total Processing + Communication) Time Evolution.

generally expressed as

minimize t

subject to a1i(α)− b1i(α)m ≤ t, d1i(α) + c1i(α)m ≤ t

0 ≤ m ≤ B −
∑i−1

j=0 m
(j) (10)

0 ≤ α ≤ αmax −
∑i−1

j=0 α
(j) ,

where the decision variables are t,m, α and the solution is

(t(i),m(i), α(i)). 2 The problem parameters a1i, b1i, c1i and

d1i for i = 1, 2, . . . are defined in (11) on the next page.

For a fixed α, the solution of (10) can easily be computed

by considering the intersection of the lines a1i(α)− b1i(α)m

and d1i(α) + c1i(α)m. Specifically, m(i)(α) = a1i(α)−d1i(α)
b1i(α)+c1i(α)

and t(i)(α) = c1i(α)a1i(α)+d1i(α)b1i(α)
b1i(α)+c1i(α)

. Based on these, α(i)

which solves (10) is given by

α(i) = argmin
0≤α≤αmax−

∑i−1
j=0 α(j)

t(i)(α), (12)

which can be computed by using a scalar grid search over the

range of α. Substituting α(i) yields the solutions m(i) and t(i)

for (10), respectively.

Similarly, the stage 2 optimization in the ith iteration is

minimize s

subject to L2i + a2i(γ)− b2i(γ)k ≤ s

L2i + d2i(γ) + c2i(γ)k ≤ s

2The formulation ensures that the cumulative number of bits transmitted
from IoT by the end of stage 1 of ith iteration is no smaller than that of
(i− 1)th iteration and so is for the communication power.

0 ≤ k ≤
∑i

j=0 m
(j) −

∑i−1
j=0 k

(j) (13)

0 ≤ γ ≤ γmax −
∑i−1

j=0 γ
(j) ,

where the decision variables are s, k, γ and the solution is

(s(i), k(i), γ(i)). The problem parameters a2i, b2i, c2i, d2i and

L2i for i = 1, 2, . . . are given in (14) shown on the next

page. Steps for computing the solution (s(i), k(i), γ(i)) for

(13) are similar to those for computing (t(i),m(i), α(i)) in

(10). In particular, k(i)(γ) = a2i(γ)−d2i(γ)
b2i(γ)+c2i(γ)

and s(i)(γ) =
c2i(γ)a2i(γ)+d2i(γ)b2i(γ)

b2i(γ)+c2i(γ)
+ L2i, which are used to determine

(s(i), k(i), γ(i)). The optimal point γ(i) of (13) is given by

γ(i) = argmin
0≤γ≤γmax−

∑i−1
j=0 γ(j)

s(i)(γ), (15)

and k(i), s(i) are computed by evaluating their expressions

at γ(i).

D. Sequential Latency Minimization (SLM) Algorithm

In this section, based on the results in § III-C, we outline

the sequential latency minimization (SLM) algorithm followed

by its convergence properties.

The SLM algorithm is summarized in Algorithm 1. Step 1
initializes the SLM. Steps 2 and 3 are the stage 1 and stage 2
optimization problems, respectively. The stopping criterion is

checked at step 4. Finally, step 5 computes the aggregate

workload at the fog and cloud layers m⋆ and k⋆, together with

the power split values at the IoT and fog layers α⋆ and γ⋆,

respectively. The associated latency is given by t⋆. The SLM

algorithm always terminates after finitely many iterations, as



a1i(α) =







cIa
(1/β)
I

(

B −
∑i−1

j=0 m
(j)

)

([

1−
∑i−1

j=0 α
(j)

− α
]

Pt,I − bI

) 1
β






; c1i(α) =

1

WIF log2

(

1 + gPt,I

[

∑i−1
j=0 α

(j) + α
]) +

cF a
(1/β)
F

([

1−
∑i−1

j=0 γ
(j)

]

Pt,F − bF

) 1
β

;

b1i(α) =
a1i(α)

B −
∑i−1

j=0 m
(j)

; d1i(α) =

∑i−1
j=0 m

(j)

WIF log2

(

1 + gPt,I

[

∑i−1
j=0 α

(j) + α
]) +

cF a
(1/β)
F

∑i−1
j=0

(

m(j)
− k(j)

)

([

1−
∑i−1

j=0 γ
(j)

]

Pt,F − bF

) 1
β

. (11)

a2i(γ) = cF a
(1/β)
F







(

∑i
j=0 m

(j)
−
∑i−1

j=0 k
(j)

)

([

1−
∑i−1

j=0 γ
(j)

−γ
]

Pt,F − bF

) 1
β






; c2i(γ) =

1

WFC log2

(

1 + hPt,F

[

∑i−1
j=0 γ

(j) + γ
]) +

cCa
(1/β)
C

(Pt,C − bC)
1
β

, ;

b2i(γ) =
a2i(γ)

∑i
j=0 m

(j)−
∑i−1

j=0 k
(j)

; d2i(γ) = c2i(γ)

i−1
∑

j=0

k
(j); L2i =

∑i
j=0 m

(j)

WIF log2

(

1 + gPt,I

[

∑i
j=0 α

(j)
]) . (14)

Algorithm 1 SLM Algorithm

1: Initialization: Set i = 1, (m(i−1), α(i−1)) = (0, 0) and

(k(i−1), γ(i−1)) = (0, 0). Let ǫ > 0 be an accuracy level.

2: Solve problem (10) to yield t(i),m(i) and α(i).

3: Solve problem (13) to yield s(i), k(i) and γ(i).

4: If |t(i) − s(i)| ≤ ǫ, go to step 5. Otherwise, set i = i + 1
and go to step 2.

5: Output: Let t⋆=t(i), m⋆ =
∑i

j=0 m
(j), k⋆ =

∑i
j=0 k

(j),

α⋆ =
∑i

j=0 α
(j), and γ⋆ =

∑i
j=0 γ

(j) and STOP.

shown in Theorem 1, which is a consequence of following

lemmas.

Lemma 2. For any positive integer i, t(i) ≥ s(i).

Proof: This follows simply by noting that s = t(i), k = 0,

and γ = 0 is feasible for problem (13). Thus, the optimal value

s(i) of problem (13) no greater than t(i).

Lemma 3. The sequence t(i) is strictly monotonically decreas-

ing and bounded below. Moreover, the sequence s(i) is strictly

monotonically increasing and bounded above.

Proof: Only an outline of the proof is provided. At the

end of the first iteration, t(1) ≥ s(1) according to Lemma 2.

If t(1) = s(1), the algorithm exits. Otherwise, t(1) > s(1).
Assuming this is the case, consider the second iteration. To

solve the stage 1 problem, the left-hand sides of the first two

inequalities in (10) must be set equal, which leads to t(1) >
t(2) > s(1). Similarly, to solve the stage 2 problem in (13),

the left-hand sides of the first two inequality constraints must

be balanced, and thus s(1) < s(2) < t(2). Therefore, at the end

of the second iteration, t(2) < t(1), s(2) > s(1). The iterations

continue in this manner and the proof is concluded.

Theorem 1. The SLM algorithm terminates in finite time. In

particular, limi→∞

(

t(i) − s(i)
)

= 0.

Proof: The proof is based on Lemma 3.

IV. NUMERICAL RESULTS

In this section, numerical examples are provided to compare

SLM algorithm and the optimum exhaustive search method.

We consider a computing scenario in which the IoT, fog,

and cloud layers are implemented with processors Quark

X1000 400 MHz, Xeon E7450 Dunnington 2.4GHz, and Xeon

Platinum 8156-Intel 3.6GHz, respectively, with maximum

power dissipations of 2.2W, 90W, and 105W, as given in

various Intel CPU specifications. According to (1), we select

aI , aF and aC to satisfy these maximum powers for β = 3
and bI = bF = bC = 10−3. The signal-to-noise ratios

(SNRs) of the links between the IoT and fog layers and the

fog and cloud layers are defined as SNRIF = PtI/(N0WIF)
and SNRFC = PtF/(N0WFC), respectively. The wireless

channel gain between the IoT and fog layers is exponentially

distributed with unit mean. We set other parameters as cI = 5,

cF = 2, cC = 1, WIF = WFC = 500MHz, SNRFC = 32 dB,

and N0 = 10−10 Watts/Hz. We calculate the average latency

over 4000 channel realizations.
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Fig. 4. The average latency vs workload B for different SNRIF.

Figure 4 shows the average latency (in milli-seconds) vs

workload B (in Megabits) for both the proposed SLM algo-

rithm and the optimal grid search when SNRIF = 2, 5, 10dB.
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Fig. 5. The average latency vs SNRIF for different computing systems.

The optimum value is obtained through the exhaustive two-

dimensional grid search with a granularity of 10−2 in each

dimension. Clearly, the results of both methods coincide,

which suggests that the SLM algorithm performs very close to

the optimum method. Figure 4 also indicates that the latency

increases almost linearly with workload B. For example, for

the simulated range at SNRIF = 5 dB, latency increases

from 1.1ms to 4.5ms, where we need 2.9ms to process one

Megabits of data. Further, to achieve 2 ms latency, we can

process approximately 0.45, 0.75 and 1.35 Megabits when

SNRIF = 2, 5, 10 dB, respectively.

Figure 5 depicts the average latency (in milli-seconds)

vs SNRIF when workload B = 1Megabits. It compares

three different architectural choices: i) IoT-fog-cloud; ii) fog-

only; and iii) cloud-only. The average latency decreases when

SNRIF increases, as expected. Results shows that the IoT-fog-

cloud computing architecture always outperforms others. For

example, to yield a 1ms latency, the IoT-fog-cloud computing

system requires SNRIF = 8 dB, whereas the cloud-only com-

puting system needs SNRIF = 11 dB. The fog-only computing

system cannot yield a 1ms latency even when SNRIF = 20 dB.

The IoT-fog-cloud computing architecture always yields a

decrease in the latencies, irrespective of SNRIF. For example,

at SNRIF = 16 dB, the increase in latencies of the fog-only

and cloud-only computing systems, compared to the IoT-fog-

cloud computing system is 79% and 21%, respectively.

V. CONCLUSION

The power and workload allocation problem to minimize

data processing latency for a three-layer IoT-fog-cloud com-

puting systems was investigated. The resulting problem is non-

convex. To devise an efficient solution method, a constraint

relaxation was considered yielding, under reasonable grounds,

a very good approximation to the original problem formu-

lation. A sequential latency minimization (SLM) algorithm

based on alternating optimization was proposed to handle

the relaxed problem. Convergence of the SLM algorithm was

established. Numerical results suggested that the performance

of SLM algorithm was almost identical to that of the optimum

exhaustive search method for the relaxed problem. Finally,

we evaluated numerically the gains of the three-layer IoT-

fog-cloud computing over fog-only and cloud-only computing,

in terms of data processing latencies. Results suggest that

the three-layer computing is more potent, for yielding better

latencies, than fog-only or cloud-only computing systems.
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