
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
2
4
4
4
2
/
b
o
r
i
s
t
h
e
s
e
s
.
8
7
6
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
4
.
1
1
.
2
0
2
4

A Unified Approach to

Architecture Conformance

Checking

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Andrea Caracciolo
von Zürich

Leiter der Arbeit:

Prof. Dr. O. Nierstrasz

Institut für Informatik



This dissertation can be downloaded from scg.unibe.ch.

Copyright ©2016 by Andrea Caracciolo
www.andrea-caracciolo.com

This work is licensed under the terms of the Creative Commons Attribution – Non

commercial – Share Alike 3.0 Switzerland license. The license is available at https:

//creativecommons.org/licenses/by-nc-sa/3.0/ch/

Attribution–NonCommercial–ShareAlike

ISBN: 978-1-326-55685-3
First edition, February 2016

scg.unibe.ch
www.andrea-caracciolo.com
https://creativecommons.org/licenses/by-nc-sa/3.0/ch/
https://creativecommons.org/licenses/by-nc-sa/3.0/ch/


Acknowledgments

I warmly thank every person who directly, or indirectly, contributed to this work.

First of all I would like to thank Oscar Nierstrasz for giving me the opportunity
to work at the Software Composition Group. He patiently guided me throughout
this journey and encouragedme to overcomemy limitations by providing insightful
advises.

I am grateful to Kim Mens for reviewing this thesis and for accepting to be on the
PhD committee, as well as for coming to Switzerland to join the jury of the PhD
defense.

I thank Haidar, for never saying no to a cup of coffee; Andrei, for keeping me mo-
tivated; and Boris, for his playfulness. Thanks to Mircea, for the interesting discus-
sions andhis contagious optimism. Thanks to Jan, formorally supportingmeduring
the early times in Bern; and Nevena, for bringing fresh air to the group. Thanks to
Oli, for being a good climbing partner; and Leo, for his friendly laughter.

Thanks to Yuriy, Natalia, Claudio and Mohammad for bringing fresh energy to the
group during the last stage of my thesis.

I am indebted to Bledar, Kirill and Oskar for their contributions to the technical
implementations.

I am grateful to Fabrizio, for helping me move the first steps when I first joined the
group; and Erwann, for the many thought-provoking discussions over coffee.

Thanks to Iris, for always being so helpful and kind.

I also want to thanks my parents, for walking me through the early stages of life;
and my dear sister Manuela, for always being on my side.

Thanks toManuel, Alain, Ada, Giulia, Matz, Simone and all other friends that made
me feel at home in Bern. Thanks to Aiko for the nice moments shared in the past
year.

i





Abstract

Architectural decisions can be interpreted as structural and behavioral constraints
that must be enforced in order to guarantee overarching qualities in a system. En-
forcing those constraints in a fully automated way is often challenging and not well
supported by current tools. Current approaches for checking architecture confor-
mance either lack in usability or offer poor options for adaptation.

To overcome this problem we analyze the current state of practice and propose an
approach based on an extensible, declarative and empirically-grounded specifica-
tion language. This solution aims at reducing the overall cost of setting up and
maintaining an architectural conformance monitoring environment by decoupling
the conceptual representation of a user-defined rule from its technical specification
prescribed by the underlying analysis tools. By using a declarative language, we
are able to write tool-agnostic rules that are simple enough to be understood by un-
trained stakeholders and, at the same time, can be can be automatically processed
by a conformance checking validator.

Besides addressing the issue of cost, we also investigate opportunities for increas-
ing the value of conformance checking results by assisting the user towards the full
alignment of the implementation with respect to its architecture. In particular, we
show the benefits of providing actionable results by introducing a technique which
automatically selects the optimal repairing solutions by means of simulation and
profit-based quantification.

We perform various case studies to show how our approach can be successfully
adopted to support truly diverse industrial projects. We also investigate the dy-
namics involved in choosing and adopting a new automated conformance checking
solution within an industrial context.

Our approach reduces the cost of conformance checking by avoiding the need for
an explicit management of the involved validation tools. The user can define rules
using a convenient high-level DSLwhich automatically adapts to emerging analysis
requirements. Increased usability and modular customization ensure lower costs
and a shorter feedback loop.
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1
Introduction

Software architecture can be defined as the composition of a set of fundamental de-
sign decisions [59]. As a system evolves, its architecture tends to drift away from its
intended design, leading to a phenomenon called architecture erosion [104, 26]. This
phenomenon is related to the fact that software systems have a natural tendency to
grow more complex and consequently less maintainable over time [73]. Architec-
ture erosion also stems from a lack of effective and easily applicable ways to encode
and preserve design knowledge [66]. This loss of knowledge can easily lead to an
incoherent architecture that violates its intended design [13].

Architecture erosion can be contained by means of different strategies. De Silva et
al. [26] present an extensive survey of all the techniques and technologies that have
been proposed to prevent, detect and mitigate architecture erosion. Among others,
the authors mention various approaches to ensure architecture conformance. These
approaches are described as simple, widely applicable and highly effective means
to prevent erosion. One of these approaches is defined as “architecture compliance
monitoring” (often also referred to as “architecture conformance checking”). Tech-
niques belonging to this category have the advantage of supporting full automation
and providing continuous feedback to the user. If carefully implemented and cor-
rectly maintained, these techniques can largely contribute to minimizing the impact
of architecture erosion.

1.1 Architecture Conformance Checking

Architecture conformance can be ensured using tools available on the market. Un-
fortunately, several studies [46, 50] show that these tools are not extensively used
for checking architectural conformance at the code level. The effort of implement-
ing and supporting them over a long period of time during system evolution is fairly
high [26]. We argue that this phenomenon is largely related to the low customizabil-
ity and usability of current tools.
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Problem Statement

Current techniques for checking the conformance of a system with respect to

project-specific architectural constraints are typically not cost-effective. Tools

available on the market are often dismissed because of their low usability and

the high effort required for customization.

Customizability

Software projects belong to different domains and must adhere to different policies
and constraints. Current approaches are designed around strong subjective assump-
tions and tend to address a very narrow problem space [106, 103]. To compensate
for these limitations, conformance checking tools should be designed to enable both
simple and advanced customization when needed.

Jaspan et al. report on a case study in a major company and state that the ability
to customize a tool is crucial to determine its value. [60]. They report that many
tools are marketed as general purpose, off the shelf products. On the other hand,
experiments have shown that default configurations often lead to suboptimal results
and that proper customization (consistent with the project’s goals) significantly im-
proves effectiveness and consequently adoptability of a tool [60].

Unfortunately, several studies report that many tools are not trivial to customize
[61, 6]. Users typically need to invest considerable effort in discoveringwhichwarn-
ings are actually relevant in their project. After that, they need to adapt the tool to the
obtained requirements by enabling or combining existing features and, if necessary,
implementing new project-specific or organization-specific rule checkers [6]. All
these tasks are highly time-consuming, technically demanding and unevenly sup-
ported by current tools. In some cases, practitioners do not even manage to adapt
the tool to their needs [61]. This might be due to inherent design choices made by
the developers of the tool or simply the lack of appropriate extension points.

Extensibility plays an important role also during the design phase. Woods et al.
claim that most ADLs (architectural description languages) are quite restrictive and
impose a particular architectural model on the architect [121]. As a consequence,
practitioners are often induced to extend their language of choice by adding new
views or constraints, or both [79]. Users value extensibility and mention it as an
important, currently unfulfilled, need for use in practice [79].

Usability

Poor usability is a major deterrent to widespread usage of conformance checking
tools. One way to evaluate its extent is by considering the effort required to specify
new architectural constraints. Existing solutions are based on different semantic
assumptions, syntactic notations and input formats.

2



Early approaches have been largely analyzed and criticized. Malavolta et al. [79]
show that one of the main reasons that prevents practitioners from using ADLs can
be attributed to their usability deficiencies. ADLs are described as over-formalized,
complex and heavyweight. Study participants also state that ADLs should be in-
tuitive enough to support communication among different stakeholders and at the
same time aim at a sufficient degree of formality to enable automatic analysis tasks
[79]. Unfortunately a lower degree of formalism typically implies more limited ex-
pressivity.

Some authors tried to trade the former in favor of the latter. Mens designed a logic
meta-programming language to express structural regularities [91] and later recog-
nized the actual obstacles that users had to face when they first approached his so-
lution [74]. The author concludes that while having a Turing-complete specification
language allows for great flexibility, in practice describingmost regularities requires
only the use of a small subset of the features of that language provides [74].

Other authors seem to share this opinion and propose solutions based on ad-hoc
DSLs (domain specific languages). DSLs allow solutions to be expressed in the id-
iom and at the level of abstraction of the problem domain [29]. If well designed,
DSLs can reduce the cost of the specification process by reducing the technical and
intellectual burden put on the user. Fowler argues that “business-readable” DSLs
can be used to build deep and rich communication channels between technical and
less-technical stakeholders1. DSLs can be more or less usable depending on how
close they are to the target domain that they intend to model. Pruijt et al. compare a
large number of DSL-based conformance checking solutions and observe that vari-
ous architectural constraints (documented in literature) can not be expressed in any
of the studied solutions [106]. Other constraints can only be specified through te-
dious workarounds, introducing a semantic gap between the user’s mental model
and the actual representation expected by the tool. This has a negative effect on the
maintainability of the specification.

Another usability concern that influences the adoption of conformance checking
tools is related to their operational process [98]. Current tools are highly special-
ized and typically handle only a small subset of the constraints that a user needs to
check [106]. For this reason, practitioners often need to use multiple tools [98]. The
results produced by the selected tools should preferably be integrated into a single
coherent report [6]. Automating this process and the execution of the tools in gen-
eral requires a considerable amount of effort [108]. The cost of workflow integration
can be seen as another aspect of the usability of a tool.

Finally, practitioners estimate the usefulness of a tool by criticizing theway its results
are presented. The fact that reported issues might not be easy to assess, fix or find
has a direct impact on the usability of the tool [61, 98].

1
http://www.martinfowler.com/bliki/BusinessReadableDSL.html
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1.2 Our Proposal: a Unified Approach

Thesis

To increase the cost-effectiveness of architecture conformance checking, we need

a unified approach based on an extensible, declarative and empirically-grounded

specification language.

As we have seen before, a good conformance checking tool should provide at the
same time adequate support for customization and good end-user usability. We
propose an approach that addresses both of these requirements.

Our approach (illustrated in Figure 1.1) is composed of two parts:

• Dictō: An empirically-groundedDSL that can be used to specify a wide range
of architectural rules;

• Probō: A tool integration framework that enables users to verify custom de-
fined rules using third-party tools.

Probō 

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus ut dui fermentum, 
blandit ligula vel, hendrerit velit. Donec laoreet, urna et sodales pretium, lacus sapien 
pharetra libero, nec sodales neque velit sit amet tortor. Phasellus vitae magna at leo
 sagittis tincidunt. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices 
posuere cubilia Curae; Praesent eu accumsan diam. Phasellus lectus enim, 
elementum sed ultrices vitae, volutpat eget urna. Aliquam vitae sagittis urna, 
in lobortis orci.

Dictō 
TestMethods = Class with annotation:"@Test"
Controllers = Package with name:”*controller*”, name!:
Core = {Controllers, Model} except {Tests, Utils}

Core cannot contain code clones 
only Controllers can catch ValidationExceptions
WebAPI must have latency < "100 ms"
Tests must have method Setup, Teardown

Core cannot contain code clones 
only Controllers can catch ValidationExceptions
WebAPI must have latency < "100 ms"
Tests must have method Setup, Teardown
XMLWebRoot must have child "servlet-mapping"

Figure 1.1: Approach overview

Dictō is a language that aims at supporting software architects in formalizing and
testing prescriptive assertions on functional andnon-functional aspects of a software
system. Instead of dealing with multiple tool-specific formalisms, one can define
several types of architectural constraints using one uniform, highly-readable, formal
language (see example in Figure 1.1).

Probō is an integration framework in which Dictō constructs can be defined along
with the logic required to validate the concepts they are expressing. Developers
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can create a new rule template (e.g., Method must be executed in < Integer ms) by
implementing a set of pre-defined data transformers for a given target tool. These
transformers must be capable of (1) generating an input specification that is consis-
tent with the user specified invariants; (2) interpreting the results produced by the
tool.

Our approach offers the following additional benefits:

• Separation of concerns: conceptual design (specification of constraints) and
operational effort (rule evaluation) aremanaged separately. Technically trained
developers can extend Probō to support emerging requirements while end-
users benefit from a specification language (Dictō) that adapts to these exten-
sions by automatically integrating new specification constructs. Extensions
are reusable and moderately sized.

• Support for communication: a specification encoding valuable architectural
knowledge should be accessible and readable by multiple parties, including
stakeholders that do not have the skills necessary to operate the tool used to
verify the expressed constraints. Our approach allows practitioners to encode
project-specific constraints using a highly readable and executable specifica-
tion language inspired by common documentation practices.

• Single integration point: Probō is designed to coordinate the interactionwith
multiple third-party tools. These tools generally need to be set up, automated
and integrated in the current workflow according to their specific operational
requirements. By proving a single unified infrastructure, we only require the
user to perform these actions once.

We designed a solution that is capable of addressing important operational needs
while focusing onmaintaining goodusability. Another aspect that affects usability is
the quality of the results produced during the analysis process. Violations reported
at the end of this process should be easy to understand and assess. To support these
requirements, we implemented a tool (Marea) that offers detailed suggestions on
how to removedetectedpackage cycles. By introducing similar tools and integrating
our results into various common process-automation platforms (e.g., SonarQube,
Teamcity), we gained a better understanding of what practitioners need and how
conformance checking solutions can be improved.

1.3 Contributions

The main contributions of this dissertation are:

1. An empirical analysis on how practitioners manage quality requirements.
Understanding the practical implications of describing, maintaining and val-
idating quality requirements is essential to build cost-effective conformance

5



checking tools. In our work, we analyze the state-of-the-art in industrial prac-
tice and identify various challenges that prevent practitioners from automat-
ically validating architectural constraints.

This study has been published in a conference [16].

2. Avalidated approach for specifying and evaluating architectural rules. Stud-
ies show that architecture is often checked for conformance using non-automatic
techniques. This is mostly due to the high cost involved in integrating, cus-
tomizing and maintaining solutions currently available on the market. We
propose a novel approach that addresses these issues. Our approach consists
ofDictō, a declarative practice-inspired DSL for specifying architectural rules,
and Probō an integration framework that evaluates those rules using third-
party off-the-shelf analysis tools.

We realized a prototype that supports rules for system implemented in Java,
PHP and Smalltalk2. This approach has been published in a conference [19],
a magazine [18] and a workshop [17].

3. A case study that demonstrates the benefit of actionable results for confor-

mance checking. Architectural violations should ideally be easy to assess, fix
and locate within the target code base. All major tools satisfy the latter re-
quirement but fail in providing contextual hints on how to fix complex viola-
tions. In ourworkwe presentMarea, a tool that simulates potential refactoring
strategies for removing user-specified cycles and provides practical feedback
to the user. We realized a prototype for systems implemented in Java [1] and
evaluated its utility in multiple case studies. This approach has been pub-
lished in a conference [20].

4. An empirical analysis on the adoption of conformance checking solution

in industrial organizations. Practitioners are reluctant to invest in new so-
lutions because of the difficulty of estimating the cost-effectiveness of a new
tool, scarce resources allocated to quality related activities and a general lack
of expertise in the domain. In this workwe investigate the dynamics involved
in choosing and adopting a new automated conformance checking solution
within an industrial context.

This study has been published in a workshop [21].

1.4 Outline

This dissertation is structured as follows:

2
http://scg.unibe.ch/dicto/

6

http://scg.unibe.ch/dicto/


Chapter 2 – We discuss the related work of this thesis. We present various solu-
tions to architecture conformance checking and analyze the main shortcomings in
the context of each approach.

Chapter 3 – We investigate the current state of practice by analyzing material col-
lected during a series of interviews and a questionnaire.

Chapter 4 – We propose a novel approach to architecture conformance checking.
The approach is designed to be both adaptable and convenient to use.

Chapter 5 – We discuss the value of actionable results by analyzing the benefit of
providing operational suggestions to the user.

Chapter 6 –We validate our approach to architecture conformance checking on three
distinct industrial projects.

Chapter 7 – We analyze the dynamics involved in choosing and adopting an auto-
mated conformance monitoring solution.

Chapter 8 – Concludes the dissertation and outlines future work.
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2
State of the Art

In this chapter, we survey the state of the art in supporting architecture conformance
checking. First, we discuss the theoretical foundation of this dissertation and pro-
vide a clear definition of the concepts that will be discussed in the remainder of this
work. Second, we review existing approaches for architecture conformance check-
ing and categorize them based on their ability to adapt to user’s needs (customiz-
ability) and their convenience of use (usability).

2.1 Theoretical Foundation

The study of software architecture is the study of how software systems are designed
and built [114]. A system’s architecture is the sum of all principal1 design decisions
that were taken during the development process to achieve some desired quality
attributes. In this dissertation, we define software architecture as follows.

Def. 1 (Software Architecture). The set of design elements that have a particular form,
explicated by a set of rationale. – Perry and Wolf [104]

The above definition distinguishes between three kinds of architectural elements:
processing elements; data elements; connecting elements. These elements are or-
ganized according to a suitably designed form, consisting of properties and relation-
ships. Properties and relationships are used to define constraints on architectural
elements. Constraints are determined by considerations ranging from basic func-
tional aspects to various non-functional aspects such as economics, performance and
reliability. The rationale explicates the satisfaction of the system constraints.

Fielding provides a similar interpretation, describing architecture as a set of ele-
ments constrained in their relationships in order to achieve a desired set of funda-
mental design properties [37].

1”Principal“ implies a degree of importance that grants a designdecision ”architectural status“. How
one defines ”principal“, according to Taylor et al., depends on what the stakeholders define as the system
goals.

9



Bass et al. define architecture as a set of software elements characterized by exter-
nally visible properties and the relationships existing among them [8]. By “exter-
nally visible properties”, the authors refer to assumptions other components can
make of a component, such as provided services, performance characteristics, fault
handling. In our interpretation, assumptions can be intended as contracts when
coupled with a complementary number of constraints that ensure their validity.

Taylor et al. define architecture as the set of principal design decisions governing a
system [114]. This definition is closely related to the previously named concept of
rationale (defined by Perry andWolf as a set of choices made in defining an architec-
ture). In our interpretation, we assume that design decisions eventually need to be
reified into structure by means of constraints.

Based on the previous definitions, we can conclude that architecture is partially de-
fined through design constraints. Architectural design constraints have been often
associated to patterns and styles [45, 8]. In this dissertation we opt for a broader
definition of the term.

Def. 2 (Architectural Design Constraint). A design constraint defines what the system,

or parts of it, may not do. – Bosch [13]

Architecture documentation can be at the same time prescriptive and descriptive
[22]. For some stakeholders it prescribes what should be true by placing constraints
on decisions to be made. For other audiences it describes what is true, by describing
decisions already made, about a system’s design. If constraints are intentionally
described in a prescriptive manner, they are typically referred to as rules.

Def. 3 (Architectural Design Rule). A design rule specifies a particular way of performing

a certain task. – Bosch [13]

Architectural rules are typically discussed and specified in industrial practice, but
are only vaguely outlined in academic literature. Several studies analyzed which
kind of quality attributes are more or less relevant to practitioners. How these re-
quirements are concretely pursued, remains an open question. In chapter 3, we
report on an empirical study which provides a taxonomy of the rules commonly
considered in the context of an industrial project. We also investigate which of the
techniques that are currently available (see section 2.3) are actually used to check
those rules.

When the implementation drifts away from its intended design and fails to com-
ply to the architectural constraints defined in its specification, we observe a phe-
nomenon called architectural erosion [104]. This phenomenon can be controlled by
periodically checking if the implemented architecture complies with the intended
architecture.

Def. 4 (Architecture Conformance Checking). Establishes the means to validate whether
the implementation is faithful to the intended architecture during both the development and

subsequent maintenance phases of a system. – De Silva et al. [26]

10



In this dissertationwe argue that current solutions for conformance checking are not
cost-efficient because they fail to provide at the same time good usability and exten-
sive customizability. In chapter 4, we propose a novel solution that addresses both
these aspects by offering a DSL which automatically adapts itself to the extensions
applied to the underlying analysis infrastructure.

2.2 Architecture Specification

Architecture might be specified in different forms and notations depending on the
purpose they serve. Considerable effort has been invested in defining formal nota-
tions for supporting the unambiguous description and analysis of an architecture.

Medvidovic et al. describe several languages that can be used to this end (e.g., Rapide
[75], ACME [42], Darwin [76], AADL [36], UML [12]). These languages are com-
monly referred to as ADLs (architectural description languages) or ALs (architec-
tural languages) and can be used to describe an architecture in terms of properties
and relations. Most of the proposed approaches (with the exception of UML) orig-
inated from academic research projects and are often criticized for their formal no-
tation and weak tool support [79]. Medvidovic et al. [85] state that ADLs need to be
extensible in order to accommodate the definition of new abstractions and reflect the
business context and application domain of the target project. Only few languages
(e.g., UML, AADL) have been used in some form of experimental code transforma-
tion process [86, 69], but in general it’s safe to assume that they are more frequently
used for design specification only.

Some of those modeling languages also provide dedicated constructs for the defini-
tion of constraints. Constraints are defined to complement the specification of the
architectural model. Aesop [41], for example, allows users to declare topological
invariants (i.e., allowed dependencies) as part of the definition of an architectural
style. Such an invariant can be used to perform a structural check of the model and
verify that entities of a certain type are only connected to other entities of a certain
type through pre-defined ports. SADL [95] and Wright [4] support the declaration
of first-order logic predicates for the definition of similar invariants. As in Aesop,
invariants are designed to control the type of entity defined as end-points of com-
munication links. Rapide [75] offers support for behavioral constraints that can be
used to define run-time invariants (e.g., message values, invocation sequences, ab-
stract state). ACME [42] relies on a separated constraint language called Armani.
This language allows the writing of first-order logic predicates and can be used to
define type constraints (like in previously mentioned languages) and heuristics (i.e.,
numerical thresholds for limiting the size of specific parts of the model). REAL is
another constraint language designed for AADL [36]. This language is used to ver-
ify type checking invariants and constraints on the graph structure. Finally, OCL
[100] is a language for defining constraints in UML models. UML is used in order
to describe a system in terms of entities and relationships. Entities can be annotated
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(e.g., stereotypes, fields, methods) and relationships can be either static or dynamic
(e.g., class diagrams, sequence diagrams). OCL provides a set of functions that can
be used to navigate the graph structure of a model and create assertions on identi-
fied elements. Assertions can be defined to constraint property values, entity types
and relationship cardinalities. OCL is a very expressive language which has been
taken as inspirational source in several other approaches for defining architectural
constraints [116, 84].

We can conclude by saying that all the solutions mentioned in this section are of
secondary importance to the vast majority of practitioners. Current approaches can
only be used to reason about abstract representations that are completely discon-
nected from the implementation. In such circumstances, a complete description of
the architecture is only valuable if considered in the context of a model-driven soft-
ware development process. Since this type of process is not yet largely practiced in
industry, we will refrain from further analysis.

In chapter 3 we report on how architectural constraints are actually specified in in-
dustrial practice. Our study shows that practitionerswrite architectural descriptions
with a clear goal and audience in mind and rarely rely on formal notations.

2.3 Architecture Conformance Checking

Software architectures are designed to guarantee a certain set of fundamental func-
tional and non-functional requirements. To ensure the correct realization of these
requirements, one may check that the system’s implementation complies to the con-
straints defined in its architecture. This process is called “architecture conformance
checking” and can be performed with the aid of various techniques and tools.

2.3.1 Comparison Framework

Conformance checking tools are used to test whether a given set of invariants are
correctly enforced in a target system. These tools can be evaluated and classified
according to numerous dimensions. In this dissertation, we choose to categorize
conformance checking techniques based on their degree of usability and customiz-

ability.

Usability – We define usability as the ease of a specific tool or technique to be un-
derstood, learned and used by the user [58]. Conformance checking tools are used
to evaluate the correctness of a given set of user-defined rules. These rules need to
be opportunely formalized using a textual or graphical description language. The
efficiency of such an activity strongly depends on the understandability and learn-
ability of the prescribed input notation. We distinguish between techniques based
on the following categories of specification languages:
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DSL (domain specific language): A domain specific description language is typ-
ically designed to formulate concepts in a form and notation that is familiar to
the user. DSLs typically do not assume any kind of specific technical knowl-
edge and are mostly declarative.

GPL (general purpose language): Some specification languages are built as ex-
tensions to other programming languages. While this ensures higher expres-
sive power it also discriminates against stakeholders that might not have the
necessary skills to approach the underlying technologies.

We argue that DSLs offer higher usability than GPLs, based on the following con-
siderations:

• Declarative languages aremoremaintainable than imperative languages. They
enable a form of specification that is naturally closer to the way human beings
would express a constraint without necessarily requiring the formulation of
a validation strategy [51].

• DSLs are more understandable than GPLs. They are semantically close to the
problem domain and are typically more concise than their general purpose
counterpart [29].

Customizability –We define customizability as the capability of a tool or technique
to adapt to changing requirements by enabling a specified modification to be imple-
mented [58]. Conformance checking tools should accommodate the specification
and analysis of constraints that are specific to the project at hand (as discussed in
chapter 1). The ability to support this task depends on the expressive power of the
notation used for specification and on the extensibility of the technique in use. In
the the remainder of this chapter we distinguish between techniques that are:

Configurable (adaptable by configuration): These techniques are designed to
adapt to different contexts only within the limits of their configurability. Any
further attempt of extending the provided functionality is not explicitly sup-
ported.

Extensible (adaptable by extension): These techniques are based on some kind
of extensible architecture that supports the integration of new functionality
within the general capabilities of the tool. Extension mechanisms might be
explicitly documented or indirectly deduced by inspecting the implementa-
tion’s code. Extension should not require the alteration of existing program
logic.

For the purpose of our classification we will rank existing techniques according to
their capability of fulfilling potential user requirements. This means that techniques
supporting more radical extensions are ranked higher than those that only support
foreseen changes.
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2.3.2 Tools and Techniques

After defining a comparison framework, we categorize currently known confor-
mance checking techniques according to the previously defined dimensions (Fig-
ure 2.1).

Configurable Extensible

External DSLs

Extensible Tools

Logic DSLs

Analysis Frameworks

US
AB

IL
IT
Y

CUSTOMIZABILITY

GPL

DSL

Internal  DSLs

Non-extensible Tools
Dictō

Figure 2.1: Comparison of conformance checking techniques

The tools and techniques analyzed in this chapter are only considered from the point
of view of the features they offer and the observable properties that characterize
them. To the best of our knowledge, there is no empirical study showing whether
and how these instruments are regularly used in practice. To clarify this aspect, we
performed a survey to assess how practitioners check for architecture conformance
(see chapter 3).

External DSLs (textual notation / standalone rule specification)

Solutions belonging to this category are capable of checking rules specified in a
dedicated textual DSL. These DSLs vary in expressive power and domain. DCL

[115], TamDera [48], Classcycle2, InCode.Rules [80],Macker3 are designed to define con-
straints on codedependencies (e.g., accesses, declarations, extensions). InCode.Rules
can also be used to identify classes affected by specific design flaws (e.g., god class,
data class). DCL and Classcycle allow the user to define rules as single statements
with a clearly defined syntactical structure. TamDera allows the user to define hier-
archical concepts, which slightly improves the modularity of the specification. In-
Code.Rules supports rule composition: each rule can be used to define an exception

2
http://classycle.sourceforge.net
3
https://innig.net/macker/
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to another rule. Macker relies on an XML-based specification language that is com-
parable to DCL in terms of expressivity.

Lattix Architect4 is a tool which has a graphical interface showing the dependencies
in a system through a DSM (dependency structure matrix). Architects can define
new constraints in which they allow or forbid dependencies between different types
of entities (e.g., interfaces, classes, packages). The notation used to accomplish this
task is similar to the one provided by other tools mentioned in this category (e.g.,
DCL, Classcycle). Developers can identify rule violations and cycles by visually
navigating the reverse engineered DSM.

All the tools belonging to this category are characterized by high usability and awell
defined strict specification language. The authors of DCL claim that their language
is more usable than other logic inspired alternatives (see category: Logic DSL) [115].
Those are supposedly based on a more complex and heavyweight notation and of-
fer poor performance. A similar claim is made by Lozano et al., who recognize the
difficulty that typical users encounter when approaching solutions that require a
basic understanding of logic programming [74]. Terra et al. also compare DCL to
alternative solutions based on refection models and dependency structure matrices
(see category: Configurable Tools), stating that their language is more expressive
and handles a wider set of constraint types [115]. A similar claim is also made by
Marinescu et al. [80]. All the mentioned languages are declarative and do not re-
quire any specific programming skill. None of the mentioned solutions offers any
suitable extension mechanism. Rules can be defined by using the constructs offered
by the supported notation. Each attempt to further customize the tools requires the
modification of the specification language parser as well as non obvious changes to
the core logic of the analyzer.

External DSLs (textual notation / embedded rule specification)

Some practitioners prefer to keep the specification of architectural rules as close as
possible to the elements that they constrain. DSLs like ArchFace [118], ArchJava [3],
CCEL [30] enable users to specify rules as an integral part of their code in the form
of comments or program statements using a pre-processed external DSL. In most
of the cases, rules are checked at build-time using a dedicated analyzer that reports
all encountered inconsistencies. ArchFace uses a slightly different approach and
compiles rules into contracts (i.e., aspects) that prevent undesired runtime behavior
(e.g., disallowed interactions between objects).

Having rules directly embedded in the source code should ideally reduce the gap
between a prescriptive specification and the corresponding target implementation.
Developers are directly exposed to architectural rules during their regular develop-
ment activity. They can adapt rules to the current implementation and vice-versa.
This approach guarantees a closer feedback loopwhich is reduced evenmore if rules

4
http://lattix.com
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are checked at compilation-time. On the downside, accepting that those that have
to follow the rules are also the ones that maintain themmight introduce a bias in the
process. Additionally, introducing new language constructs is likely to break tool
compatibility (e.g., IDE, analysis tools).

All the mentioned approaches do not support any explicit extension mechanism.
They can be used to formulate complex conditions by combining pre-configured
language elements, but they cannot be easily extended in their functionality.

External DSLs (textual notation / standalone query specification)

Architectural rules can also be encoded as queries. DSLs, such as CQLinq5 and
Semmle .QL [25], are languages that enable code exploration and that can be used to
check architectural constraints. Users may define invariants in the form of queries
which are not expected to yield results. In case a result is found, this is reported to
the user as an architectural violation.

Both CQLinq and Semmle .QL are based on a SQL-inspired syntax. A query consists
of a conditional select statement where code entities of various nature (e.g., Types,
Methods, Namespaces) are compared with specific values. Semmle .QL supports
the definition of new accessory macros that can be introduced to increase the read-
ability of the specification. Both solutions are implemented as IDE extensions but
could theoretically also be run standalone.

Passos et al. [103] compare Semmle .QL to similar solutions such as SAVE and Lat-
tix Architect. They conclude that Semmle .QL offers an expressive and intuitive
syntax but, compared to the other solutions, lacks adequate support for the repre-
sentation of high-level concepts (e.g., logical components). This limitation cannot be
circumvented, given the lack of support for extension. Architectural rules can only
be defined by composing supported operators and expressions.

External DSLs (graphical notation / standalone rule specification)

Solutions belonging to this category are characterized by high specialization and
limited configurability. Most tool supporting a graphical specification notation are
designed to check dependency constraints (using the reflexion models technique
[97]). Sonargraph6, SAVE [31], Structure 1017, ConQAT8 are some examples. These
tools require developers to draw a high-level model of their architecture in which
they specify components (opportunelymapped to packages through regular expres-
sions) and allowed/forbidden dependencies. Once defined, this model can be com-
pared with an actual target implementation to detect potential inconsistencies.

5
http://www.ndepend.com
6
https://www.hello2morrow.com/products/sonargraph
7
http://structure101.com
8
https://www.cqse.eu/en/
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These tools are mostly commercial and only require minimal initial setup effort.
Adaptability can be achieved by tuning the foreseen configuration options. Pruijt
et al. [106] compare all of the mentioned tools by encoding a reference set of rules
in each of the provided specification languages. Their experiment shows that more
complex rules are either not supported or very cumbersome to describe. This shows
that the tools belonging to this category are designed around a clear set of assump-
tions that highly constraints the type of rules that are supported. Limited expres-
sivity has the advantage of increasing the overall usability of the tool. On the other
side, these tools do not explicitly support extension, and adapting a solution to un-
foreseen needs is either very inconvenient or impossible.

Non-extensible Tools

Tools belonging to this category offer various kinds of analysis capabilities that can
be used to assess architecture conformance. The category comprises products like:
JMeter9, SoapUI10, LISA11. The execution process of these tools can be configured
through a convenient graphical interface. None of these solutions was designed to
explicitly support extensibility. The addition of new analysis features would require
major adaptations to the implementation. As a consequence, these tools are only
useful as long as the system under analysis is consistent with the assumptions upon
which the tools were built. Being bound to a graphical interface offers benefits in
terms of usability but also increases the cost of customization.

Logic DSLs

Architectural rules can naturally be translated into a language based on first order
logic. Languages like SOUL [93] , LogEn [32] and SCL [56] are good examples of
practical solutions that can be used for conformance checking.

SOUL is a Prolog-inspired internal DSL implemented in Smalltalk. A set of pre-
defined high-level predicates can be used to create architectural rules or define new
predicates. Pre-defined predicates are evaluated using dedicated analyzers. The
representation of the target architecture can be enriched by adding new facts to the
fact base.

LogEn is an internal DSL implemented in DataLog, a subset of Prolog. Rules and
generic predicates are conceptually specified in the same way as in SOUL. Facts are
automatically extracted from the source code using a static analyzer. Source code
entities can be grouped in logical sets (called ensembles) programmatically using
a dedicated predicate or declaratively using specific annotations in the analyzed
code.

9
http://jmeter.apache.org/

10
http://www.soapui.org/

11
http://www.itko.com

17

http://jmeter.apache.org/
http://www.soapui.org/
http://www.itko.com


SCL is an external DSL inspired by OCL. The language is used to define first-order
logic formulas that can be automatically evaluated against the source code of a tar-
get system. Users can express structural constraints in a declarative and language-
independent notation using pre-defined functions and predicates.

Languages belonging to this category have the advantage of being inherently exten-
sible within the boundaries set by the underlying languagemodel. In fact, users can
define new concepts by declaring and combining facts and predicates. This form
of extensibility allows developers to adapt the notation to the specific vocabulary
required to describe their architecture. Unfortunately this flexibility comes at the
price of usability. In fact, these languages entail programming capabilities which
typically go beyond the skills possessed by average software engineers. Lozano et
al. [74] observe that SOUL, despite being a declarative language, has repeatedly
proven to be rather impractical in a real scenario. Developers approaching the lan-
guage had to get out of their comfort zone and learn a new programming paradigm.
The authors recognize that a more lightweight and limited DSL (i.e., as opposed to a
Turing-complete language) is more appropriate for the specification of architectural
rules.

Internal DSLs

Some tools have been developed based on the intuition that an architectural specifi-
cation should be put close to the objects that it describes. This strategy is considered
to reduce the risk of incurring in outdated constraints. The assumption is that code is
a primary vector of information and will always be maintained more actively than
any other non-executable document. As a consequence, architectural constraints
should be encoded as code invariants using the same language employed for devel-
opment.

CoffeeStainer [11], defines constraints as code snippets which are checked at compile-
time using the reflective capabilities of the host language (i.e., Java). Code snippets
cannot be executed at run-time because they are definedwithin a comment block.

PDE [15] is another solution that exploits the features offered by the host language
(i.e., Java) to express architectural constraints. With PDE, developers can specify
rules using regular annotations. Rules are checked at compile-time and can be used
to inhibit hierarchical relationships (e.g., forbid extension, implementation or over-
riding of classes and methods) and dependencies (e.g., forbid instantiation or refer-
encing to a specific class). Both CoffeeStainer and PDE are completely non-invasive
techniques that can be used without altering the semantics of the system and with-
out breaking tool compatibility.

uContracts [74] is an internalDSLdesigned to express a broad range of structural con-
straints for Smalltalk systems. It can be used to define boolean contracts for specific
code entities or groups (e.g., class hierarchies). The user can express constraints on
naming conventions, code idioms and usage protocols. Rules can be formulated by
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combining different types of pre-defined boolean constructs. The solution is tightly
coupled to its host environment and uses the reflective capabilities of the language
in which it’s written to evaluate the specified rules. Rules are specified outside the
scope of the checked project. No explicit extension mechanism is defined.

Solutions belonging to this category are generally practical to define and and easy
to maintain. On the other hand, opting for a technical specification immediately ex-
cludes any non-technical stakeholder from the definition and specification process.
Architectural rules can only be defined through a person who is familiar with the
programming language in which the DSL is implemented. This might not be an is-
sue in open source communities with flat hierarchies, were everybody is generally
equally involved in the making of the system and sufficiently acquainted with the
technologies and tools used in the process. But, according to our experience, more
structured teams working in an industrial setting might have more defined roles.
In this context, stakeholders in higher positions (such as software architects, who
typically design architectural constraints) are not always directly involved in the
development process or might not have the time to handle implementation related
issues that are not directly affecting the stability of the system.

Moreover, keeping rules too close to the context where they should be applied has
also other disadvantages. Developers could be tempted to adapt the rules to the
implementation or to avoid specifying new rules when new functionality is added.
Transversal rules, involving entities defined in different locations spread across the
code base, could also be hard to specify if the chosen technique expects them to
be defined in the context where they apply (e.g., dependencies can be forbidden
by annotating the classes involved in the constraint; naming conventions should
better not be defined by annotating every entity that needs to be constrained). This
last problem can be solved by placing rules in an orthogonal context, as done in
uContracts.

Extensible Tools

Several commercial tools available on themarket are based on a plug-in architecture.
Sonarqube12, Findbugs [7], Checkstyle13, Pmd14 are popular examples of tools belong-
ing to this category. These tools are mostly used as off-the-shelf solutions designed
to look for violations of recommended programming practices.

They can be run with minimal setup overhead. Advanced users can extend the pro-
vided functionality by implementing newdetectors thatwill be executed at analysis-
time. Custom detectors are implemented in Java as AST visitors. Sonarqube and
Pmd also support XPath rules. These rules are used to enforce conditions on spe-
cific nodes of the AST and report violations when the query yelds any result.

12
http://www.sonarqube.org

13
http://checkstyle.sourceforge.net

14
https://pmd.github.io
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Sonarqube offers an intuitive graphical user interface where developers can enable
pre-built rules or write custom declarative constraints (using XPath). If the user
needs to perform more complex analysis or to integrate the functionality of a third
party tool, she will have to develop a new extension module that will be added as-is
to the analysis solution. This means that new rules need to be implemented, con-
figured and maintained by experts that have sufficient technical expertise to handle
the development of a Java plugin besides having a good understanding of the pro-
vided extension API. This would might become a major obstacle if end-users expect
to configure the implemented extensions from the main user interface.

Checkstyle, Findbugs and Pmd can adapt their behavior based on the content of an
xml configuration file. As for Sonarqube, plugins are AST visitors implemented in
Java. Checkstyle plugins can be parametrized though fields declaredwithin the xml
configuration file. This allows end-users to define extensions that can be adapted
to the analysis context. One downside of this approach is that rules are not self-
documenting. In fact, they are only described by the name of the plugin and (in the
case of Checkstyle) a set of named values. The semantic of the rule is completely
embedded in the implementation of the plugin and needs to be separately docu-
mented.

To summarize, all thementioned tools offer rich customization options but are based
on a configuration languages with very low expressivity. To define a rule, one can
only select the most appropriate analysis module and adapt a set of predetermined
parameters. Usability is improved in those tools where the user can define rules
using the more expressive XPath query language.

Analysis Frameworks

Full customizability can be obtained with GPL (general purpose language) analysis
frameworks. Solutions like Moose [99] and Rascal [62] offer the possibility to build
complex analysis routines using a Turing-complete programming language.

Moose is implemented in Smalltalk and can be used to query, manipulate an visu-
alize models extracted from object-oriented systems. These models are in-memory
object graphs that represent basic entities (e.g., classes, packages) as well as relation-
ships (e.g., method invocations, type references). Architectural rules can be defined
as algorithms that perform arbitrary complex lookups on the reverse engineered
model.

Rascal is a meta-programming language with IDE support. Users can define custom
visitors that are capable of navigating a given AST and filter out a set of elements
that match programmatically defined criteria. The resulting analysis routine can be
invoked manually or from command line.
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Both solutions mentioned in this category are highly customizable but require ex-
tensive technical knowledge. The tools do not offer any form of support for defining
architectural rules that can be easily maintained and checked on a regular basis.

2.4 Conclusion

In this chapter we introduced the main theoretical concepts that define the context
of this dissertation. Later, we categorized and evaluated the main approaches cur-
rently available for checking the architecture conformance. These approaches are
categorized as follows:

• External DSLs: Constrained, tool-specific languages with support for simple
and moderately complex predicates.

• Non-extensible Tools: Specialized and not extensible off-the-shelf tools.

• Logic DSLs: Formal languages that support the specification of rules as first-
order predicates. Extensibility is limited to the boundaries inherited from the
underlying logic formalism.

• Internal DSLs: Are used to define contracts directly within the source code.

• Extensible Tools: Off-the-shelf tools based on a plugin architecture. New func-
tionality is only partially adaptable by operators.

• Analysis Frameworks: Can be used to define complex architectural rules. Their
use is limited to developers with specific technical skills.

As we see, none of the approaches belonging to the abovementioned categories is at
the same time fully customizable and reasonably usable. End users need customiz-
ability as much as usability. The capability to adapt to a specific problem scenario
is fundamental, but becomes irrelevant if the specification that eventually needs to
be written to express the architectural concern is hard to maintain.

In the remainder of the thesis, we investigate current practices for checking archi-
tecture conformance. Based on our observations, we design Dictō, an intuitive and
executable DSL which adapts to new requirements by automatically adjusting to
new backend extensions. Our solution aims at satisfying both needs discussed in
this chapter offering full extensibility by preserving good end-user usability.
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3
State of the Practice

In this chapter we set out to survey whether the specification of architectural con-
straints is a common practice in IT companies. We want to understand whether
this activity is systematic and supported by tools and processes or rather based on
personal assumptions and using makeshift tools. Finally, we investigate whether
architectural constraints, given their importance, are also automatically validated
as the software system evolves.

Previous studies [36, 43, 77] propose solutions for specifying architectural invari-
ants. Other studies [5, 105, 112, 49] rank non-functional qualities (e.g., performance,
usability, availability, etc.,) by carrying out surveys. In neither case is effort made to
explore quality attributes from the point of view of practitioners.

In our study we focus on the following research questions:

• RQ1: What kind of architectural constraints do architects define in practice?

• RQ2: How are architectural constraints specified?

• RQ3: How are architectural constraints validated?

To answer these questions, we use empirical methods to identify quality attributes
that practitioners consider when designing their architecture. Furthermore we ana-
lyze how practitioners specify architectural constraints in their documentation and
explore the various techniques that are used for validation.

3.1 Research Method

This study uses a mixed research methods strategy: sequential exploratory design [23].
This approach consists of two different research methodologies: a qualitative inves-
tigation followed by a quantitative validation survey which triangulates the results
of the first.

In the first study, we focused on collecting qualitative data. The goal of this study
was to gain a possibly comprehensive overview of the state of practice in the defini-
tion and validation of architectural constraints. The questions have been iteratively
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# Role Org. Project (domain; type) team size

A CEO, architect C1 government / enterprise <5

B business manager C2 government / enterprise 10-50

C project manager C3 insurance / enterprise >50

D architect C4 logistic / enterprise(integration) <5

E developer C4 logistic / enterprise(integration) <5

F CTO C5 banking / enterprise >50

G architect C2 government / enterprise 5-10

H architect C2 government / enterprise 10-50

I architect C6 logistic / enterprise(migration) >50

J* developer C2 government / development support tool <5

K architect C5 banking / enterprise 5-10

L architect C6 transportation / control systems 5-10

M* developer C5 banking / source code analysis >5

N* architect C5 banking / development support tool 5-10

Table 3.1: Interview study participants. Candidates with an asterisk worked in
projects aimed at supporting architectural design. The remaining can-
didates worked as software architects or project managers in medium to
large projects and have more direct experience in architectural design.

refined by conducting three internal pilot interviews with PhD and master students
with professional experience in the field. The final list of questions, used as loose
guideline for the actual interviews, can be found in Appendix A. Fourteen peo-
ple working for six different organizations agreed to participate in our study (Table
3.1). More than 70% of the participants have been contacted indirectly through an
intermediary and had no relevant links to the academic community. The remain-
ing subjects were contacted directly and belonged to our industrial collaboration
network. All interviews were carried out independently, leading to a set of comple-
mentary and partially overlapping observations. A total of approximately 18 hours
of conversation have been recorded.

The main outcome of this qualitative study was the list of quality attributes pre-
sented in Table 3.2. These quality attributes were inferred by analyzing the inter-
views and synthesizing the main concerns using coding techniques [94]. To support
this activity, we identified and labeled architectural constraints in interview tran-
scriptions as well as the documentation files (i.e., Software Architecture Documents,
Developer guidelines) that we collected at the end of several interview sessions. To
gather more evidence that the observations coming from the first study actually re-
flected the state-of-practice of a broader community, we created an e-survey. Over
a time span of two months we collected 34 valid and complete responses. Invita-
tionswere sent to professionals selected among industrial partners and collaborators
(i.e., convenience sampling method), including people involved in the first phase of
the study. The survey was also advertised in several groups of interest related to
software architecture hosted by LinkedIn and on Twitter (i.e., voluntary sampling
method). Survey participants were asked to specify whether the quality attributes
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identified in the first study were ever encountered in a past project, their perceived
level of importance (on a scale from 1 to 5, with 5 being the highest), the formalism
adopted to describe them and the testing tool used for their validation. More details
about the survey can be found in Appendix B.

3.2 Learning from Practitioners: a Qualitative Study

During interviews, we tried to elicit a possibly wide range of distinct architecturally
significant quality attributes. We asked our respondents to enumerate those con-
cerns that could be considered fundamental for their architecture. For each of those,
we asked them to describe their main properties and the form in which they were
typically specified. Table 3.2 shows all identified quality attributes. For each quality
attribute, we also present additional details collected during our quantitative study
(columns 3-6 in Table 3.2).

Quality attributes are categorized based on the closest matching ISO-25010[57] qual-
ity characteristic. For simplicity’s sake, we decided to pair each attribute with one
single category. A list of explanatory constraints for all presented quality attributes
can be found in Appendix C.

3.2.1 Identified Quality Attributes

We now comment on the identified quality attributes.

Performance: performance was often mentioned as being a key concern. Require-
ments on response time and throughput are commonly part of the acceptance criteria
defined with the customer at the beginning of a project. Several respondents (e.g.,
A, B) define latency requirements on the execution of specific tasks (e.g., The sys-
tem has to answer each request within 10 ms). Others (e.g., A, D) set limits for the
accepted throughput (e.g., The system must be able to execute a certain task 10’000
times per hour). These requirements are often validated by collecting timestamps
during execution or simulating high traffic load with a script. Hardware infrastruc-
ture requirements, specifying the hardware resources required to support a specific
software implementation, also play a role in determining performance.

Compatibility: multiple interviewees (B, F, J) referred to communication and data
transmission as one of the most important aspects in their architecture. F built a
client simulator to test conformance with the prescribed communication protocol
and check syntactical/semantical data consistency. N defined a guideline stating
that data has to be passed from one layer to the other using Data Transfer Objects. G
wrote a detailed specification of all service interfaces composing his application (sig-
nature attribute). This included details regarding accepted parameter values and ac-
tivity diagrams describing themessage exchange protocol. Interoperability between
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Quality Attribute Importance Form.

Category (Internal / External /

Process)

Q1 Q2 Q3 Fam. Not.

Performance Response time (E) 3 4 5 15% 14%

Throughput (E) 3 4 4 26% 13%

Hardware infrastracture (I) 2 3 4 29% 0%

Compatibility Signature (I) 3 4 4 18% 52%

File location (I) 1 3 4 29% 18%

Data structure (I) 2 3 4 29% 47%

Communication (I) 2 4 4 15% 22%

Usability Visual design (E) 2 3 3.5 9% 21%

Accessibility (E) 1 2 3.5 50% 0%

Reliability Availability (E) 4 4 5 15% 14%

Recoverability (E) 2 3 5 32% 5%

Data integrity (I) 3 3 4 18% 23%

Event handling (I) 2 3 4 35% 25%

Software update (P) 1 2 3 59% 0%

Security Authorization (E) 4 4 5 3% 23%

Authentication (E) 3 4 5 21% 12%

Data retention policy (I) 2 3 4 12% 13%

Maintainability Meta-annotations (I) 1 3 4 32% 39%

Code quality (I) 2 3 3.5 15% 19%

Dependencies (I) 2.5 3 4 18% 53%

Naming conventions (I) 2 3 3 12% 38%

Portability Software infrastracture (I) 3 3 4 24% 8%

Table 3.2: Taxonomy of architectural constraints (grouped by supported quality
characteristic). Columns (from left to right): Matching quality charac-
teristic; Architectural constraint; Evaluated importance (first, second and
third quartile); Participants who encountered the constraint in a previous
project (familiarity); Participants who specified the constraint using a for-
mal notation. Columns 3-6 contain data collected during our quantitive
study.

different components and tools often requires files to be placed into pre-determined
folders or structure files according to a given shared schema (file location attribute).

Usability: visual design and compliance to accessibility guidelines were mentioned as
typical requirements for application front-ends. H developed a web interface that
had to conform to a set of rules defined in the corporate visual style guide. This
requirement was satisfied by defining global stylesheets and forcing their inclusion
into all related applications.

Reliability: robustness and fault-tolerance are important features for almost any
kind of application. H’s application was required to guarantee 96% availability and
a clear recovery procedure was defined for each type of fault that was likely to oc-
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cur. Data integrity is also a major concern. K managed to maintain internal data
consistency by defining data type classes for all supported business value types. H
and G constrained field values specifying Hibernate or Spring formatting annota-
tions. Specific rules were also defined to regulate strategies for handling events (e.g.,
exceptions, notifications) and update software packages (e.g., libraries).

Security: security is also considered critical and is often tested thoroughly. Verifi-
cation becomes a necessity when the system is directly exposed to a large untrusted
audience. Testing seems to have lower priority if the application is just deployed
within an intranet (E). Most of the time, widely known frameworks (e.g., JAAS) are
used to implement authentication and authorization rules.

Maintainability: class dependencies and syntactic code invariants are commonly con-
sidered tightly related to software architecture. H even claims that “dependencies
between modules are the main characteristic of a software architecture”. Require-
ments on these two aspects are defined to support architectural principles (loose
coupling, high cohesion) and minimize the cost of future maintenance.

Portability: requirements related to software infrastructure configuration are com-
mon. Prescriptions on technologies to be adopted can be found in almost every
specification document. J, for example, specifies that the “persistence layer” of his
application must use Hibernate as a persistence framework. Software infrastruc-
ture requirements are often related to rules addressing compatibility issues (i.e., file
location, data structure).

3.2.2 Specifying Architectural Constraints

All the participants of our study describe their architectural constraints in one or
more text documents. The vast majority adopt a well-known standard template
(e.g., 4+1[67], togaf1, arc422). Textual documentation is always complemented with
diagrams based on a common shared visual language (e.g., UML, BPML, BPEL,
flowchart, informal notation).

Documentation Audience

Documentation iswritten to satisfy the needs of threemain stakeholders: customers,
architects and developers.

For customers: documentation is written to meet contractual requirements. In this
case documentation is often seen as a burden for the architect and provides lim-
ited support to practitioners working on the project. It provides a non-technical
specification that can be used to prove compliance to agreed requirements during a
post-development validation phase (G).

1
http://www.opengroup.org/togaf
2
http://www.arc42.de
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For architects: documentation is written to maintain a general overview of the sys-
tem and support high-level design reasoning. Some respondents believe that de-
velopers are not interested in reading about architecture. “Developers only care
about functionality and tend to ignore non-functional properties” (E). This assump-
tion supports the idea that architecture and implementation are on different levels
of abstraction and are hard to link together. Low effort is usually dedicated to keep
documentation aligned and up-to-date with changes originated in the implementa-
tion. I stated that he rarely got any sort of feedback from the assumed recipients of
his documentation work.

For developers: documentation is a blueprint, providing a high-level description of
the system to technical users involved in the development process. It is particularly
useful as an initial entry-point for new developers learning about the system. D
said that “new developers start by reading the documentation, look into the code
and finally sort out remaining doubts by talking with colleagues”. Documentation
is used to transfer knowledge, is open for change and needs to be kept up-to-date.

Documentation Intent

In our study we identified two type of documentation styles: descriptive and pre-
scriptive.

Descriptive Documentation: is meant to provide sufficient evidence to support de-
velopers in decision making activities. It is not written to set precise guidelines
and rules but to help developers in evaluating alternatives and make good design
choices. Architects writing “descriptive documentation” are usually skeptical about
enforcing design rules through documentation. D said that “documented rules are
often perceived as pedantic and restrictive”. He added that “forcing developers to
learn them beforehand is a failing strategy and often leads to poor results” because
“they could be ignored and neglected”. Apparently a much better approach is to
provide useful feedback to developers when they break such rules.

PrescriptiveDocumentation: ismore oriented towards the definition of strict guide-
lines and rules. The goal is to limit developers in their design choices in order to
guarantee high-level properties (e.g., maintainability). In this case, it’s often con-
venient to express architectural constraints in a clear and objective way. Most of
the documents collected during our studies contained coding guidelines (general
practices and syntax format rules) and design constraints regarding data values and
event handling.

Formalization of Architectural Constraints

architectural constraints are rarely described formally. Formal specification is only
used in practice to support specific verification tools. In this case, users are forced

28



to extract architectural rules from the specification document and encode them in a
separate file using a tool-specific notation.

In rare cases, companies develop their proprietary description language. Nworked
in a company where all developed applications are documented as visual diagrams
based on a proprietarymeta-model. Theirmodels include a hierarchically organized
set of interlinked logical components. All types of entities are characterized by var-
ious properties (e.g., interface structure for components; message format, protocol,
integration type for communication links). Each system, consisting of a set of com-
ponents, is mapped to the specific infrastructural entity on which it is supposed to
be deployed. This last information is used to feed a semi-automatic process for ver-
ifying the actual deployment configuration. N said that the documentation model
adopted in his company is very helpful for keeping information consistent, accurate
and closed to interpretation.

In other cases, users face the lack of usability of current specificationmechanisms. D,
for example, decided to verify package dependencies using a specific testing frame-
work (JDepend). Unfortunately the test specification required by the adopted tool
was not readable enough to be included in the official documentation. To solve
this problem, he decided to specify the requirements in a spreadsheet and build a
parser to generate a corresponding set of tests. In this case, having a simplified and
testable representation of architectural rules justified the cost for building a conver-
sion tool.

3.2.3 Validating Architectural Constraints

Weobserved that architectural constraints are validatedusing various approaches.

Manual Validation

According to the answers collected during our study, one way of validating archi-
tectural constraints is simply by running the system and manually checking some
operational properties (e.g., Response time, Authentication). This validation strategy
is usually preferred when automated testing tools are not available or exist but are
too expensive to buy or customize. Scalability is sometimes verified by generating
a large number of requests using a script and evaluating responsiveness by inter-
acting with the application through an additional session. Properties that manifest
themselves in source code (e.g., Code conventions), are often checked through code
reviews. As mentioned by L, “the number of existing [testing] tools is far from be-
ing exhaustive”. He said that “companies rarely see the value of investing time in
researching new testing techniques”. In many cases manual validation seems to be
the most viable and frequently chosen alternative.
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No Validation

Some respondents avoid the need for direct verification by relying on a framework
or code generator. If the framework is not developed internally, the fact that certain
architectural constraints are actually fulfilled is based on trust. J, responsible for the
development of an internal framework used across multiple company projects, said
that “frameworks should not be invasive but support the developer by simplifying
his tasks and reducing possible design decisions in a non-invasive way”. Frame-
works that are built to limit implementation choices, as confirmed byM, are notwell
perceived by developers. A framework should convince developers to use its func-
tions by offering useful services that contribute to reducing the cost of development
(J). Code generators are typically used to simplify the maintenance and creation of
modules that depend on business needs that vary through time. Our interviewees
agreed on the fact that building testing tools is usually not an economically viable
option. Building testing tools is also seen as a challenging task requiring advanced
programming skills.

Automated Validation

When possible, architects prefer to use automated techniques. This can be done by
writing programmatic tests or relying on tools developed by a third party. Existing
tools do not always fit the needs of our respondents. Multiple respondents said
that some of the currently available tools were lacking in flexibility and usability. F
worked on a project where components could be identified by looking at the suffix
of class names. All the tools he tried supported package name matching as the only
mapping strategy. K was working on a system based on the OSGi framework3.
He was not aware of any tool that allowed him to automatically check whether the
specified dependencies existing between the OSGi bundles composing his system
were actually consistent with the architectural specification. The only way to verify
the alignment between implementation and specification was to manually inspect
large XML configuration files.

Most of the tools force users to operate on an overly technical level. This fact pre-
vents non-technical stakeholders from accessing valuable information and intro-
duces new costs for setting up and maintaining architectural tests. Current test-
ing solutions require the user to specify testing rules in separate files. Quality con-
straints must be specified twice: in the official documentation using natural lan-
guage (for supporting communication and reasoning) and in a purpose-built formal
specification file (for supporting a specific testing solution). The resulting fragmen-
tation leads to increased costs for maintaining multiple specifications aligned and
consistent.

3
http://www.osgi.org/
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3.3 Corroborating the Evidence: a Quantitative Study

To confirm the validity of our taxonomy on a larger scale, we developed a second
study. This study was aimed at obtaining a more uniform overview on how quality
attributes (identified in the first study and presented in Table 3.2) are considered by
practitioners.

We now report some of the main observations resulting from the analysis of the ob-
tained results.

O1. Most requirements are not formally specified: Our survey confirms that very few
requirements are formally or semi-formally specified (Table 3.2). In fact, only 2 ar-
chitectural constraints (Signature,Dependencies) out of 22 are formally specifiedmore
than 50% of the time. Signature architectural constraints are specified using UML
with custom profiles, XSD and IDLs (OMG IDL,MIDL,WSDL).Dependencies are de-
scribed using tool-specific notations (e.g., JDepend, ndepend, macker, DCL, SOUL),
Java annotations and UMLwith custom profiles. Others (Data structure,Naming con-
ventions) are also quite frequently formalized. Naming conventions can be specified
using regular expressions, EBNF grammars, tool-specific notations (e.g., SOUL for
IntensiVE) or Java (e.g., plugins for Checkstyle and PMD). Data structure architec-
tural constraints are either specified using standard schema definition languages
(DTD, XSD) or semi-formal modeling notations (ER, UML).

14% 51% 27%

18% 29% 41%

19% 13% 50%

22% 22% 44%

24% 5% 48%

25% 39% 14%

26% 33% 15%

31% 19% 31%

32% 42% 16%

38% 35% 23%

39% 6% 35%

42% 34% 16%

43% 7% 21%

48% 19% 19%

48% 33% 14%

50% 14% 7%

53% 19% 14%

56% 25% 13%

58% 24% 16%

58% 14% 11%

68% 10% 16%

70% 23% 5%
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Figure 3.1: Survey results: various approaches for validating architectural con-
straints.
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Constrained QA Tool Reported Testing Tools

authorization 15% SoapUI / other: Framework (JAAS)

throughput 26% Meter, LISA, Selenium, Lucust, Gatling, HP LoadRunner

response-time 17% JMeter, LISA, Selenium

data retention policy 8% no tool specified

authentication 3% other: Framework (JAAS, Spring)

data integrity 8% Moose / other: db-constraints, Framework

visual design 4% other: Framework

code quality 39% Sonar, Findbugs, Code critics, Checkstyle, Emma, Clover

meta-annotation 19% dclcheck

accessibility 0% no tool specified

communication 8% Moose, dclcheck

availability 10% DynaTrace, Gomez, Shell script + Selenium, Pingdom

event handling 12% dclcheck, Moose

data structure 16% Moose / other: Custom tools

software infrastr. 8% other: Automated declarative provisioning

signature 7% Moose, JMeter, soapUI

dependencies 22% SAVE, dclcheck, Patternity, Jdepend, Ndepend, Macker,

IntensiVE, SmallLint, DSM tool

recoverability 0% no tool specified

software update 0% no tool specified

hardware infrastr. 6% no tool specified

file location 0% other: Guaranteed by framework

naming conventions 11% Code critics, Checkstyle, PMD, FxCop, IntensiVE, Petit-

Parser

Table 3.3: Survey results related to tool-aided architectural constraints testing.
Columns (from left to right): Constrained quality attribute; respondents
using third-party tools for testing the constraint; adopted tools.

O2. Automated conformance checking is not commonplace: Results show that the use of
automated techniques (i.e., using white-/black-box testing or tools) for validating
architectural constraints is not commonplace (Figure 3.1). On average, 59% of the
surveyed population adopts non-automated techniques (e.g., code review or man-
ual validation) or avoids validation completely. Based on the results of our survey
(Figure 3.1), the following architectural constraints are mostly validated manually:
Dependencies (10 users), Visual design (8), Naming conventions (7), Communication (5).
architectural constraints that remainmost often unvalidated are: hardware infrastruc-
ture (50% of respondents), recoverability (48%) and software update (44%). Automated
validation is not commonplace and is mostly adopted to validate architectural con-
straints regarding end-user properties (e.g., Response time, Throughput) and security
(e.g., Authorization, Authentication, Data retention policy). Table 3.3 shows which tools
are used by the participants of our survey to validate constraints related to the iden-
tified quality attributes.
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O3. Tool support for automated validation is insufficient: One of the reasons why auto-
mated validation is not widespread seems to be related to the scarce availability of
industrial-strength tools matching some practitioner’s needs. A number of quality
attributes (e.g., Code dependencies, Naming conventions) can be checked with a large
number of tools, while others (e.g., Data integrity, Meta-annotations), considered as
equally important, can only rely on a much smaller range of solutions.

O4. Users’ needs are still not completely recognized: Figure 3.1 shows that several re-
quirements are also more frequently validated manually than automatically. The
most striking examples are Data structure, signature, dependencies. This suggests the
possibility that some requirements are still left unaddressed and need to be inves-
tigated further by conducting on-the-field studies. We believe that further analysis
of emerging requirements could lead to new opportunities for future research in the
field of tool development and tool building support.

O5. Emphasis is given to secondary requirements: Another interesting observation is
that quality attributes that were frequently encountered in the past (e.g., Software
update, accessibility) generally did not have a significant impact on the outcome of
related projects (See “familiarity” and “importance” columns in Table 3.2). Further
studies should analyze current design and specificationmethodologies and propose
improvements on existing documentation practices.

O6. Tools do not take advantage of existing formalizations: Figure 3.1 shows that some
constraints (e.g., dependencies, naming conventions) are more often formally specified
than automatically validated. However, formally specifying constraints without au-
tomatically verifying them is less than optimal. Based on our analysis, we observe
that some adopted notations do not provide sufficient details to support validation
(e.g. UML for describing signature) and other notations are not fully taken advantage
of by the existing tools (e.g. regular expressions for describing naming conventions).
We think thatmore empirical studies are needed in order to expose actual formaliza-
tion practices. The results of these studies might expose common flaws of existing
notations and provide concrete evidence of practitioner’s needs.

3.4 Discussion

In this section we discuss some general strategies that could help address the issues
raised in the previous section.
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Reduce the Gap between Specification and Implementation

As observed,many of the current tools force the user into a needlessly technical exer-
cise. Several dependency testing tools (e.g., JDepend, Dependometer), for example,
not only require the test specification to be written using a technical notation (i.e.,
Java or XML), but also offer poor documentation on how to do so.

Architects should be able to express their concerns in a single uniform format. Re-
spondentG said that having the option to embed a formal (yet readable) test specifi-
cation of his architectural rules in a Word document would be extremely appealing
to him. This would allow him to write well-formed testing rules in a familiar envi-
ronment with the additional benefit of automatic validation.

Terra et al. [115] and Marinescu et al. [80] proposed two different DSLs (Domain
Specific Languages) for expressing architectural constraints (See section 3.6). Both
languages serve the purpose of encoding valuable information in a testable yet read-
able format. Unfortunately the expressiveness of such DSLs is strongly defined by
the capabilities of the underlying tool. Völter [119] reports on a case study where a
DSL is defined progressively by interacting with the customer. The language, gram-
mar and support tooling is developed iteratively and will eventually be used as the
basis for code generation and analysis. Cucumber4, a behavior-driven development
framework, is based on a similar concept. Tests are written by non-technical stake-
holders and are checked by building an interpreter that translates the text into actual
unit tests.

These approaches show that having business-readable descriptions of relevant de-
sign properties helps keep alive the conversation between all involved stakeholders.
It also shows that a well-engineered DSL is useful for encoding information in a uni-
form and unambiguous manner, which can turn useful for supporting more sophis-
ticated testing activities. We believe that users should not be asked to describe their
architectural constraints within the boundaries defined by a testing tool. Instead,
tools should be employed to verify user-defined rules on a best effort basis.

Increase Awareness through Continuous Feedback

Several respondents (G, H, J) use Sonarqube as a guide for driving code review
activities. Sonarqube aggregates code analysis reports from multiple sources and
presents them in a customizableweb-based interface. Information is constantly kept
up-to-date, well integrated and easy to navigate. All aspects exposed by the tool
relate to general low-level characteristics of the system that are typically of little
interest for architects. The strength of Sonarqube mostly seems to be bound to its
integrability (analysis can be configured to run as a build step in a wide range of
continuous integration servers), the concreteness of its result and the fact that all
information are current and kept up-to-date.

4
http://cukes.info
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Having seamless access to a comprehensive set of system-wide properties and in-
fringed rules is a good way to exercise control over non-functional aspects of an im-
plementation. If architects had the chance to define domain-specific rules for testing
design constraints that are relevant for their architecture, theywould be able to reach
a higher and more targeted level of control. Our intuition is that monitoring plat-
forms, such as Sonarqube would largely benefit from being integrated with highly
customizable DSL-based tools (e.g., DCL [115], InCode.Rules [80]). Being able to
specify similar and more articulated rules on this and other aspects of the system
would eventually reduce the generality of the results minimizing the number of
false warnings and optimizing review-time.

3.5 Threats to Validity

Internal Validity

During our first study, we tried to gather impressions and opinions by conducting
semi-structured interviews. Our goal was to gather a clear answer to all the re-
search questions presented in the introduction. All discussions have therefore been
partially moderated by the interviewer. We did our best to minimize the influence
of the interviewer on the respondent, but we cannot exclude the existence of biased
answers. Some observations or questions made by the interviewer might have in-
duced the respondent to articulate his answer in an unnatural way. The effect of a
similar threat should have been mitigated by the number of different answers to the
same question.

Users taking part in the survey had the right to remain anonymous. 41% of them
chose not to share any identifying personal information (i.e., email address). Among
those, 71% (29% of the total population) did not specify their professional title. Due
to this lack of information, we are unable to make general statements over the pop-
ulation participating to the survey. It would anyway be reasonable to assume that
most of the people were either architects or professionals playing a comparable role.
The fact that we contacted people belonging to our industrial collaborators network
and that we posted invitations only on architecture-oriented virtual communities
should support our hypothesis.

External Validity

Another limitation could be seen in the relatively modest number of participants
who participated in each phase of the study. The first study involved 14 respon-
dents, while the survey counted 34 valid results. These numbers could appear small,
but in fact are comparable to those reported by similar studies. Four out of five of
all the interview-based studies centered around non-functional requirements [5] in-
volve 14 or fewer participants. If we consider the surveys related to the same topic
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[5], we see that two out of four studies draw their conclusions based on fewer than
34 responses.

3.6 Related Work

In our work we discuss the nature of architectural constraints and report on the
techniques used for their verification. We examine both topics from a very prag-
matic point of view, taking into consideration concrete examples and specific infor-
mation. To the best of our knowledge, no other empirical study covers the same
topics adopting a similar standpoint.

Several surveys related to NFRs (non-functional requirements) have been carried
out (See related work by Ameller et al. [5]). The main outcome of all these stud-
ies often consists of a ranking showing how non-functional requirements compare
based on the level of importance attributed by the users. All these studies focus on
generic quality characteristics ignoring actual quality attributes that practitioners
address in the requirements. Our study provides new insights from a complemen-
tary point of view, showing which quality attributes are considered relevant and
providing details of their validation.

Poort et al. [105] found a statistical correlation between the verification of NFRs and
project success. According to their results, the benefits of verification are also more
significant if NFRs are verified in early stages of a project. In our study we explore
how NFRs get actually validated in practice.

Various research contributions show that architecture-related requirements can be
formalized using ADLs (architectural description languages). ADLs allow one to
model an architecture as a set of interlinked components enriched with pre-defined
meta-annotations. These models are typically weakly related with the implemen-
tation. Tools are sometimes provided for checking the semantic consistency of re-
lationships and annotations but only at the model level. Moreover, there is scarce
evidence that the general concepts defined in ADLs (i.e., Components, Ports, etc.,)
actually reflect theway architects think about their architecture. Case studies, show-
ing evidence of the practical utility of the language, can only be found for a few of
the most prominent ADLs (i.e., AADL [35, 34] and xADL [14]). We think that the
lack of support for testing concrete architectures combined with the possible mis-
match between offered features and real needs can be the cause of the — by now
confirmed [79] — failure of adoption of ADLs by the general public. In this chapter
we draw observations that could help make ADLs more effective and useful.

Recent research efforts try to make up for these limitations by proposing more test-
oriented ADLs. Terra et al. [115] proposed a specification language for expressing
restrictions on the existence of certain types of relationships (e.g., access, extension)
between sets of classes. Marinescu et al. [80] supports the specification of undesired
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dependencies and class-level anti-patterns. Both ADLs are supported by custom-
built testing tools that enable rule verification at the code level. Other languages (i.e.,
SOUL [92] and LePUS3/Class-Z [44]) are more formal and support more complex
specifications. They provide the means to validate architectural constraints at code
level, but also require considerable training before usage.

3.7 Conclusion

We presented the results of two empirical studies that explore how architectural
constraints are defined and validated in practice. The studies show that architects
care about the validation of architectural constraint but are often unable to make
best use of the currently available tools.

We observe that the present offering of tools is limited in number and that several
solutions are not able to satisfy common requirements (see section 3.4). Practitioners
are rarely willing to develop solutions for governing architectural decay and are not
motivated to formalize their architectural constraints. Current formalization nota-
tions are typically strongly tied to specific testing solutions and are often lacking in
readability. To improve this situation, we propose some ideas for specifying archi-
tectural constraints and for reducing the cost of validation. Future testing solutions
should take advantage of existing formalizations and provide functionalities that
fulfill empirically recognized requirements.

In the future we plan to apply some of the discussed ideas by experimenting with
new solutions for supporting the specification and validation of architectural con-
straints.
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4
A Unified Approach to Conformance

Checking

Software erosion can be controlled by periodically checking for consistency between
the de facto architecture and its theoretical counterpart.

In the previous chapter we observed that this process is typically set in place but
often not automated. Developers still heavily rely on manual reviews, despite the
availability of dedicated tools [38] (See chapter 3).

This is partially due to the high cost involved in setting up and maintaining tool-
specific validation tests. Tools often fail to fulfill the needs of practitioners and are
hard to adapt to actual requirements. Most solutions are specialized for a single
domain and are based on a unique set of technical and conceptual assumptions.

To reduce this cost, we propose a novel approach that unifies the functionality pro-
vided by existing tools under the umbrella of a common business-readable DSL. By
using a declarative language, we are able to write tool-agnostic rules that are simple
enough to be understood by untrained stakeholders and, at the same time, can be
interpreted as a rigorous specification for checking architecture conformance.

4.1 Motivation

Architectural rules and constraints are essential to the formulation of architectural
specifications [59]. The compliance of a system to architectural constraints can be
monitored over time using various techniques (e.g., Reflexion models [97]) [26].

Unfortunately, the tools that implement these techniques are at best used to provide
basic support information during manual tasks. Studies show that developers still
heavily rely on manual reviews as a means to check architectural conformance. In
fact, static analyzers are used in only 33% of the cases [38]. The use of manual tech-
niques does not scale and entails additional costs that could be minimized by au-
tomating parts of the process and using existing solutions and technologies. These
observations are consistent with the results we obtained in our previous study in
whichwe showed that, on average, 59% of software architects adopt non-automated
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techniques (e.g., code review or manual validation) or avoid validation completely
(See chapter 3).

To understand the lack of adoption of automated techniques, we investigated our-
selves several tools. The first observation was that many tools provide insufficient
documentation material. We ran a small experiment in which we analyzed how
4 tools compare on the evaluation of several dependency constraints: JDepend1,
Macker2, Dependometer3 and Classcycle4. The first tool, JDepend kept failing with-
out reporting the cause of the error. Only later we realized that the tool required
the user to explicitly list all packages contained in the analyzed system. This un-
intuitive requirement was not documented and required a considerable amount of
time to be deduced. Dependometer also failed in delivering satisfying guidelines to
set up our experiment. In fact, the documentation artifact that helped us the most
in understanding how properly configure the tool was a loosely commented XML
configuration template published on the project’s website. Macker could not even
be set up. The documentation provided was not sufficient to cover our use case.

The reluctance of using available tools might be thus partially related to the general
problem of insufficient availability of industry strength solutions and to the steep
adoption curve that every individual tool presents. Practitioners have often a very
personal view on how architecture should be specified and are not aware of any best
practice which could support them in testing the conformance of a system. Where
conformance/analysis tools exist, users typically face several other obstacles that
hinder adoption. In the remainder of this section we identify threemain obstacles to
the adoption of architectural monitoring tools. Tomatch these obstacles we propose
corresponding requirements that, if fulfilled, can help mitigate them.

4.1.1 Scattered Functionality

Most existing tools are specialized on a narrow domain and are typically capable of
evaluating only a small number of constraint types. Pruijt et al. [106] compare sev-
eral tools for checking architecture conformance and conclude that “not one of the
tested tools is able to support all the [..] rule types included in our classification”.

In our previous study (see chapter 3), we show that tools used in industry are capable
of handling at most 3 out of the 22 quality requirements typically specified by prac-
titioners. If one, for example, had to check whether a given architecture correctly
fulfills a certain set of structural invariants (e.g., dependencies, meta-annotations,
signatures) andmeets predefined performance objectives (e.g., latency, throughput),
she would need to choose at least two different tools. In a real architectural specifi-
cation one would need to check many more constraints.

1
http://clarkware.com/software/JDepend.html
2
https://innig.net/macker/
3
http://source.valtech.com/display/dpm/Dependometer
4
http://classycle.sourceforge.net
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To reduce fragmentation and increase the operability of existing tools we suggest to:
⇒ Req. 1: Consolidate the functionality offered by existing tools under a single coherent

interface.

4.1.2 Specification Language Heterogeneity

Current tools are based on different specification languages that differ in both syn-
tax and semantics. In our experiment (introduced at the beginning of the section)
we encountered three different types of specification formats: XML, Java, textual
DSL.

The fact that tools operate independently, also increases the incidence of duplicated
information across specifications. To evaluate three dependency rules across all
tools, we had to write four specifications in four different languages. Common con-
figuration parameters (e.g., source code path, analyzed package filters, etc.) had to
be replicated multiple times.

Language heterogeneity appears to be a problem also when dealing with the output
of the analysis. Results are encoded in arbitrarily defined formats (e.g., XML, CSV).
The activity of merging the results of various tools into a single report is a time-
consuming and sometimes hard to automate task.

To mitigate the costs that stem from language heterogeneity we suggest to:
⇒ Req. 2: Decouple the specification from the various individual syntaxes.

4.1.3 Specification Language Understandability

The language used to specify architectural rules is of essence. In some cases stake-
holders invest effort into hiding the details of the specification language imposed by
the tool and in others, they jump through hoops to adapt to an inflexible language.

In our previous study we encountered an architect who specified the dependencies
allowed in his system as a dependency structure matrix inside a spreadsheet (see
chapter 3). To test these dependencies, he implemented a custom generator that
parsed the spreadsheet andproduced an executable JDepend test suite. For this user,
having a simplified and testable representation of his architectural rules justified the
cost for building a (functionally unnecessary) custom conversion tool.

In their experiment, Pruijt et al. note that some rules need to be specified though
workarounds (e.g., “X is only allowed to use Y” was expressed as a combination of
“X cannot use anything” and “X can use Y”)[106]. When that happens, the viewpoint
of the user has to adapt to the conceptual model imposed by the tool. This forms a
threat to maintainability since, once specified, rules cannot easily be traced back to
the originating concern that they are expressing [106].

41



Finally, the success of several test-oriented requirement formalization solutions, such
as FitNesse5 and Cucumber6 demonstrates the need for managing business and ar-
chitectural rules through a readable and accessible interface. These solutions clearly
separate the definition of a rule from the mechanisms used to test it. This enables
less-technical stakeholders to contribute to the definition of requirements that are at
the same time readable and testable.

To improve specification understandability we argue that:
⇒ Req. 3: Rules should be designed using a specification language that reflects current

practices.

4.2 Our approach in a Nutshell

We propose a novel approach to architecture conformance checking that addresses
the limitations identified in section 4.1. Our solution aims at utilizing the function-
ality offered by existing tools to test architectural rules specified using a single co-
herent specification language. This goal is achieved by integrating tools through
custom-developed adaptors and transforming user-defined rules into easily verifi-
able boolean predicates. In our approach, we decouple the specification, as formu-
lated by the user, from the conceptual and operational idiosyncrasies characterizing
the tools used to evaluate it.

Our approach consists of:

• Dictō: A DSL for the specification of architectural rules. The language aims
at supporting software architects in formalizing and testing prescriptive as-
sertions on functional and non-functional aspects of a software system.

• Probō: A tool coordination framework that verifies rules written with Dicto
using third-party tools. Supported tools and analyzers are managed through
custom crafted adapters.

With our approach, a software architect could define a new rule bywriting the state-
ment highlighted in Figure 4.1 (line 5).

This rule states that a certain number of subject entities (i.e., Test, View) must fulfill
a given constraint (i.e., depend on) with respect to a certain number of objects (i.e.,
Model, Controller). Different modifiers (e.g., must, cannot, only .. can) can be used
to change the semantics of a given rule. In our example, we require that all subject
entities can only depend on the object entities.

The remaining statements shown in our example (lines 1-4 in Figure 4.1), are used to
define themapping between the symbolic entities used in rules and the corresponding
concrete entities present in the system. Symbolic entities have a type (e.g., Package,

5
http://www.fitnesse.org
6
http://cukes.info
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1: Test = Package with name:"com.app.Test"
2: View = Package with name:"com.app.View"
3: Model = Package with name:"com.app.Model" 
4: Controller = Package with name:"com.app.Controller" 
5: Test, View can only depend on Model, Controller 

depend-on( com.app.Test, com.app.View )

depend-on( com.app.Test, com.app.Controller )

HaveMethod(…)[
1

2]

Dicto Rules

Probo

depend-on(…)

3

Figure 4.1: An overview of our approach: (1) rule normalization and predicate def-
inition (2) predicate evaluation (3) result presentation.

Class, Website) and are described by properties. A symbolic entity may be mapped
to multiple concrete entities by using regular expressions as property values (e.g.,
Test = Package with name:”*.*Test”) or specifying properties which are common to
multiple concrete entities (e.g., Test = Package with parentPackage:”org.test”).

Rules written in Dictō can automatically be validated by Probō (Figure 4.1-1). The
proposed tool suite is designed to evaluate constraints related to structural and be-
havioral properties which can be checked automatically at any point in time (this
excludes properties which cannot be directly measured by inspecting or execut-
ing intermediate development artifacts; e.g., usability, resource consumption). The
evaluator normalizes each rule into a conjunction of smaller and more manageable
sub-rules. Normalized rules are used to generate predicates, which are evaluated
through third-party tools. In our example, the considered rule can be evaluated by
assessing the truth-value of the following predicates7:

1 depend--on(com.app.Test, com.app.View)

2 depend--on(com.app.Test, com.app.Controller)

3 depend--on(com.app.Test, com.app.Test)

4 depend--on(com.app.Test, com.app.Util)

5 depend--on(com.app.Test, com.app.Model)

Predicates are evaluated by external tools through custom implemented adapters
(Figure 4.1-2). Adapters are assigned to predicates according to a set of pre-defined
syntactic matching criteria specified in the adaptor class. They are responsible of
generating a test specification that, once executed, produces sufficient information
to evaluate the predicates they are assigned to.

7In this chapter, predicates are represented using a Prolog-like notation.
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In our example, we evaluate the obtained predicates usingMoose8, a software analy-
sis platform that can be used to explore structural characteristics of an object-oriented
system using user-defined queries. Moose can be executed from the command line
and queries can be specified in a script passed as argument. To test our rule (line 5
in Figure 4.1), we generate a set of queries that check whether each pair of packages
indicated in the intercepted predicates are actually dependent on each other. The
results are fed back to Probō and used to compose an aggregated report that lists all
the rules violated in the analyzed system (Figure 4.1-3).

4.3 Formal Description

We here formalize the syntax of the Dictō language and describe how rules get eval-
uated in Probō.

4.3.1 Dictō Syntax

Dictō is designed to resemble the form and structure of industrial specifications. In
a previous study (see chapter 3), we collected several documentation artifacts used
in real projects. Some contained developer guidelines while other described higher
level design decisions and constraints. We focused on identifying statements that
could be categorized as rules. Hereafter we report selected sentences (translated and
adapted from German) encountered during the process :

1. MoneyAmountmust be annotatedwith@org.hibernate.annotations.Columns
[..].

2. The execution time of validateCombination()must be below 10 ms.

3. The (XML) Text Element must contain a Font Element with the following at-
tributes: size, style, [..].

4. ApplicationExceptions cannot automatically trigger a rollback when the ex-
ception is thrown by a method belonging to a BusinessService.

5. Models [..] cannot invoke operations from Business Services.

6. Throwable cannot be caught (only its subclasses).

7. [..] Domain.jar [..] can be accessed by WebService and Admin GUI. Write op-
erations can only be accessed by Admin GUI.

8
http://www.moosetechnology.org
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Based on this limited sample, we observe that rules are essentially predicates related
to a variable number of subjects through the use of modal verbs (e.g., must, can).
One of the documents that we analyzed clearly defines the modal verbs used in the
artifact. The list includes: must, cannot, should, should not, can. Since Dictō was
designed to support conformance checking, we chose to support must and cannot

(with its variations only can and can only).

All the rules reported above can be converted in Dictō statements as follows:

1 MoneyAmount must be annotated with "@[..]Columns"

2 ValidateCombination must be executed in < 10 ms

3 TextElement must contain FontElementWithAttributes

4 AppExThrownByBS cannot invoke Rollback

5 Models cannot invoke BSMethods

6 only ThrowableSubclasses can be caught

7 Domain can only be accessed by AdminGUI

These statements can be evaluated by third-party tools throughpurpose built adapters.
Each rule contains references to symbolic entities (capitalized) which are declara-
tively mapped to concrete entities existing in the project (e.g., package, class). The
first rule, for example, contains a reference toMoneyAmountwhich could be declared
as follows:

1 MoneyAmount = Class with name:"*.MoneyAmount"

A symbolic entity is characterized by a set of properties. Properties can be seen as
a complement to the information encoded in a rule. If, for example, we consider
rule number 3, we see that the rule not only requires that the (XML) element Text
contains Font, but also specifies that Fontmust have a certain number of attributes.
Instead of specifying these two conditions as two separate Dictō rules (which is also
possible), we can choose to write a single rule (as specified in the box above) and
describe the Font entity as follows:

1 FontElementWithAttributes = XMLElement with name:"Font--Element", attribute:"size", attribute:"style",

...

All the statements presented in this section are syntactically consistentwith the spec-
ification in Figure 4.2.

4.3.2 Meta-Model

Dictō specifications are evaluated using Probō. Probō transforms a parsed specifi-
cation into a model that conforms to the meta-model illustrated in Figure 4.3.

In our meta-model, R is the set of user-defined rules, S are user-defined symbolic
entities, and C are concrete software entities existing in the analyzed system. E is
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specification = (entity | rule)*
entity = symbol ‘=’ type ‘with’ prop ‘:’ val (‘,’ prop ‘:’ val)*
rule = (rule-subj (‘must’ | ‘cannot’ | ‘can only’) rule-pred)

| (‘only’ rule-subj ‘can’ rule-pred)
rule-subj = symbol (‘,’ symbol)*
rule-pred = predName (val | symbol) (‘,’ (val | symbol))*
prop = predName = symbol = type = String
val = StringLiteral | Integer

Figure 4.2: DSL syntax specification (EBNF)

the union of S andC. Π are the properties that describe both concrete and symbolic
entities, andP are the predicates intowhich a rule is converted. Concrete entities are
automatically deduced from the source code by using a fact extractor. This tool stat-
ically analyzes the project and returns a list of concrete entities found in the source
code. In our prototype implementation (section 4.4) we use VerveineJ9 as a Java
fact extractor. Elements belonging to the previously described sets are differenti-
ated through categorization elements defined on the right hand side of the model
diagram (illustrated with grey background in Figure 4.3). These categories are pre-
defined in Probō (based on the adapters supported or other types of configuration).
The categories are defined as the following sets: Rm is the set of rule modes allowed
for a rule, Et and Πn are the sets of entity types and property names supported by
the framework, and Pn is the set of predicate names for which dedicated adapter
support exists. Additionally we define V, a set containing primitive values defined
by the user (i.e., Strings and Integers).

The rule modes currently supported in our solution are the following: must, can-
not, can-only, only-can. Entity types and property names are defined based on the
information produced by the fact extractor. Our current fact extractor is able to de-
tect, for example, packages which are described by various properties (e.g., name,
is empty) and relationships (e.g., parent package, contained classes). Since we have
this information, we can decide to support entities of type “package” associated
with properties named “name” and “parentPackage”. Predicate names are defined
by the adapters installed in Probō. If an adapter declares that it is capable of han-
dling rules containing “depend on”, it means that we can provide support for rules
with predicate name “depend on”. User-defined rules may include multiple predi-
cates declared in different adapters.

4.3.3 Semantic domain

Entities belonging to previously described sets are related through various associa-
tions. Entities and properties support the associations described in Figure 4.4.

9
https://gforge.inria.fr/projects/verveinej/
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φ

EType (Et)

PName (Πn)

preds

PName (Pn)

type

name

name

predn

suppNamesprops

Property (Π)

obj

t1

RMode (Rm)mode

Entity (E)

objs

val

SymbolicEntity (S)

subjs

Value (V)

t2 t1
Predicate (P)

Rule (R)

name

ConcreteEntity (C)

Figure 4.3: Semantic domain meta-model. White entities are defined by the user
while grey ones depend on implementation choices taken in Probō.

name : E → String entity name (1)

type : E → Et entity type (2)

value : Π → V property value (3)

name : Π → Πn property name (4)

suppNames : Et → 2Πn supported property names (5)

props : E → 2Π entity properties (6)

π ∈ props(e) ⇐⇒ name(π) ∈ suppNames(type(e))

Figure 4.4: Domain functions for entities and properties. With 2S (eq. 5 and 6) we
denote the power set of S (i.e., P (S)).

In our previous example (shown below), we can identify 4 symbolic entities (i.e.,
Test, View, Model, Controller).

1 Test = Package with name:"com.app.Test"

2 View = Package with name:"com.app.View"

3 Model = Package with name:"com.app.Model"

4 Controller = Package with name:"com.app.Controller"

5 Test, View can only depend on Model, Controller

The entity s described in the first line has name(s) = “Test” and is of type(s) = Pack-
age. This entity is associated to a property π which has name(π) = name and val(π)
= “com.app.Test”. Since name ∈ suppNames(Package), we can say that π is a valid
attribute of s (π ∈ props(s)).
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Entity properties are used to define a declarative mapping between symbolic and
concrete entities. The mapping logic used in Probō is described in Figure 4.5.

str1 ∼ str2 string matching predicate (7)

str1 matches regular expression in str2

π1 ≈ π2 property compatibility predicate (8)

π1 ≈ π2 ⇐⇒ name(π1) = name(π2) ∧ val(π1) ∼ val(π2)

φ: S → C entity mapping function (9)

c ∈ φ(s) ⇐⇒ c ∈ “concrete entities in target system”∧
(∀πs ∈ props(s))(∃πc ∈ props(c))(πc ≈ πs)

Figure 4.5: Domain functions for entity mapping.

In our example, the entity s (named “Test”) is mapped to a concrete entity c (named
“com.app.Test”) with compatible properties (π′ ∈ props(c), π ∈ props(s) and
π′ ≈ π). A property is compatible with another if the value of the first matches the
regular expression defined as the value of the second.

mode : R → Rm rule mode (10)

subjs : R → 2S rule subjects (11)

objs : R → 2S∪V rule objects (12)

predn : R → Pn predicate name (13)

subs: R → 2R sub-rules (14)

r′ ∈ subs(r) ⇐⇒ subjs(r′) ⊆ subjs(r) ∧ objs(r′) ⊆ objs(r)
∧ mode(r′) = mode(r) ∧ predn(r′) = predn(r)

µ : R → 2R normalized rules (15)

r′ ∈ µ(r) ⇐⇒ r′ ∈ subs(r)∧
|subjs(r′)| = |objs(r′)| = 1, if mode(r) = M/C

|subjs(r′)| = 1 ∧ objs(r′) = objs(r), if mode(r) = CO

subjs(r′) = subjs(r) ∧ |objs(r′)| = 1, if mode(r) = OC

Figure 4.6: Domain functions for: Rule (R). The following abbreviations have been
used: M/C = must/cannot; CO = can-only; OC = only-can.

Rules are described by a mode, a set of subjects and optional objects (Figure 4.6).
Our example contains a single rule r, with mode(r) = can-only. The rule has two
subjects (subjs(r) = {Test, View}) and two objects (objs(r) = {Model, Controller}).
The predicate name of the rule is predn(r) = depend-on. Rule subjects are the sym-
bolic entities for which the rule needs to be evaluated. Subjects and objects will be
used to form the predicates derived from the rule (Equation 19).

Since rules can vary in complexity (i.e., the number of subject and object entities
is not constrained), they need to be broken down into smaller more manageable
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rules (called normalized rules). User-defined rules are equivalent to the conjunction
of all the normalized rules derived from them. In our example, the normalized rules
obtained from the original rule are the following:

1 Test can only depend on Model, Controller

2 View can only depend on Model, Controller

Normalized rules are obtained in different ways depending on themode of the orig-
inal rule (Equation 15). They share the common property of being a sub-rule of a
common ancestor rule (Equation 14). This means that all share a subset of the sub-
jects and objects associated to the rule they are derived from.

name : P → Pn predicate name (16)

t1 : P → E predicate term 1 (17)

t2 : P → (E ∪ V) predicate term 2 (18)

preds : R → 2P rule predicates (19)

p ∈ preds(r) ⇐⇒ name(p) = predn(r)∧
∃s ∈ subjs(r), o ∈ objs(r):
t1(p) ∈ φ(s) ∧ (t2(p) ∈ φ(o) or t2(p) ∼ o), if mode(r)= M/C

t1(p) ∈ φ(s) ∧ (t2(p) /∈ φ(o) or t2(p) ∼ o), if mode(r)= CO

t2(p) /∈ φ(s) ∧ (t2(p) ∈ φ(o) or t2(p) ∼ o), if mode(r)= OC

preds∩ : R → P common sub-rule predicates (20)

p ∈ preds∩(r) ⇐⇒ ∀r′ ∈ subs(r) : p ∈ preds(r′)

Figure 4.7: Domain functions for: Predicate (P). The following abbreviations have
been used: M/C = must/cannot; CO = can-only; OC = only-can.

Normalized rules are eventually transformed into predicates (Figure 4.7). Predicates
are generated to further simplify the evaluation process. In fact, adapters can safely
accomplish their task ignoring the original rule defined by the user. Their logic sim-
ply has to cope with boolean predicates generated by Probō. These predicates, if
evaluated correctly, provide sufficient information to derive whether the original
rule has been violated or not.

Let’s consider a sub-rule derived from the first of previously mentioned normalized
rule: Test can only depend on Model. If we assume that our system is made of 5 pack-
ages (View, Test, Model, Controller, Util), we obtain the following predicates:

1 depend--on(com.app.Test, com.app.View)

2 depend--on(com.app.Test, com.app.Controller)

3 depend--on(com.app.Test, com.app.Test)

4 depend--on(com.app.Test, com.app.Util)

5 depend--on(com.app.Test, com.app.Model)
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Predicates contain up to two terms and have a name. The first term is a concrete
entity to which one of the subjects of the normalized rule has been mapped (or not
mapped) to. The second term may be either a concrete entity corresponding (or
not corresponding) to an object of the same rule or a simple primitive value. The
first predicate p in our example has a name(p) = depend-on and two terms t1(p) =
com.app.Test and t2(p) = com.app.View. It was obtained by taking the subject (Test)
and object (Model) of the given rule and deriving all permutations existing between
the concrete entities corresponding to the first and the concrete entities not corre-
sponding to the second. This process varies according to the rule mode.

The predicates in our example are defined to prove the existence of relationships
between two given entities. The first predicate is true if com.app.Test depends on
com.app.View, and false otherwise. If the second term is not an entity, itmeans that the
evaluation implies the verification of a property (e.g., have-latency(MyWebsite, 10ms),

contain-code-clones(MyPackage)).

Equation 20 is an auxiliary function that is usedduring the evaluation of can-only and
only-can rules (See equation 22). This function returns the intersection of predicates
derived from the sub-rules of a given (normalized) rule. In our case, preds∩(r),
where r = Test can only depend on Model, Controller, equals to:

1 depend--on(com.app.Test, com.app.View)

2 depend--on(com.app.Test, com.app.Test)

3 depend--on(com.app.Test, com.app.Util)

Two predicates (depend-on([..].Test, [..].Controller) and depend-on([..].Test, [..]. Model))
are not included in the set, since they can only be generated fromone of the sub-rules
derived from r.

4.3.4 Semantic Interpretation

After describing the semantic domain of our model, we describe how user-defined
statements (conforming to the schema in Figure 4.2) are transformed into domain ob-
jects and how rules get eventually evaluated. The semantic equations in Figure 4.8,
are a complete abstract specification of the interpretation algorithm implemented in
Probō.

The spec equation takes a full user specification as input and returns the evaluation
results computed for every interpreted rule. Rules are defined in the stmt equation.
subj and obj are used to evaluate entities and values declared in a rule and link them
to entities defined beforehand by the user. We assume that all statements used to
define symbolic entities precede rule declarations. Entities are similarly interpreted
using the stmt and prop equation.
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spec: 2{>,⊥} stmt: R x S → R x S

prop: Π subj: S obj: S ∪ V

(a) specJSK = { eval(r), r ∈ rules }
where: (rules, entities) = stmtJSK(∅, ∅)

(b) stmtJS1; SnK(r, e) = stmtJSnK(stmtJS1K(r, e))
(c) stmtJNAME : TYPE with PROPSK(r, e) = (r, e’)

where e’ = e ∪ s, s ∈ S, props(s) = propJPROPSK, name(s) = NAME,

τ(s) = TYPE
(d) stmtJonly S can P OK(r, e) = stmtJS only-can P OK(r, e)
(e) stmtJS can only P OK(r, e) = stmtJS can-only P OK(r, e)
(f) stmtJS T P OK(r, e) = (r’, e)

where r’ = r ∪ rule, rule ∈ R, subj(rule) = subjJSK(e), obj(rule) = objJOK(e),
kind(rule) = T, predType(rule) = P

(g) propJP1, PnK = propJP1K ∪ propJPnK
(h) propJNAME = “VALUE”K = π

where π ∈ Π, τ(π)=NAME, value(π)=VALUE
(i) subjJS1, SnK(e) = subjJS1K(e) ∪ subjJSnK(e)
(j) subjJSK(e) = s where: s ∈ e, name(s) = S
(k) objJO1, OnK(e) = objJO1K(e) ∪ objJOnK(e)
(l) objJ“O”K(e) = o where: o ∈ V, o∼ O

(m) objJOK(e) = o where: o ∈ e, name(o) = O

Figure 4.8: Semantic transformations.

The user-defined rule in our example (Test, View can only depend on Model, Con-
troller) would define a rule object associated to two subject entities, two object enti-
ties and having a specific rule mode. A new rule model entity would be defined in
function f (invoked by a through e), which invokes i and j to define its subjects and
k and l to define its objects.

Once we obtain a full semantic model out of the initial user specification, we can
evaluate all the rules by using the two functions defined in Figure 4.9.

The eval function iterates over all the rules obtained through the previously de-
scribed interpretation process and evaluates them. The evaluation produces a pos-
itive outcome if none of the normalized rules derived from the given rule satisfies
the condition prescribed for its rule mode. The condition is tested through a λ func-
tion, which will be executed using the best matching adapter capable of handling
the given predicate.

In our example, none of the predicates in preds∩(n) (where n is a normalized rule
derived from the evaluated rule) are allowed to evaluate to true. We assume that
the results for the predicates derived from our normalized rule Test can only depend
on Model, Controller are evaluated as follows:

1 depend--on(com.app.Test, com.app.View) = false

2 depend--on(com.app.Test, com.app.Controller) = true
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λ : P → {>,⊥} predicate evaluation (21)

evaluate predicate through best matching adapter

based on user-provided project configuration.

eval : R → {>,⊥} rule evaluation (22)

eval(r) = > ⇐⇒ @n ∈ µ(r) :
p ∈ preds(n) ∧ λ(p) = ⊥, if mode(r) = M

p ∈ preds(n) ∧ λ(p) = >, if mode(r) = C

p ∈ preds∩(n) ∧ λ(p) = >, if mode(r) = CO/OC

Figure 4.9: Rule and predicate evaluation functions. The following abbreviations
have been used: M/C = must/cannot; CO = can-only; OC = only-can.

3 depend--on(com.app.Test, com.app.Test) = false

4 depend--on(com.app.Test, com.app.Util) = true

5 depend--on(com.app.Test, com.app.Model) = true

Predicates presented in bold are common to all the sub-rules of the considered rule.
Since the fourth rule belongs to all the sub-rules and evaluates to true, we can de-
rive that the evaluated basic rule fails. The original user-defined rule (Test, View can

only depend on Model, Controller) is the conjunction of its normalized sub-rules. Since
one of them (here discussed) fails, Probō can conclude that the original rule is not
correctly enforced in the target system.

4.4 Prototype Implementation

The approach, as described in section 4.2 and section 4.3, has been implemented in
a proof-of-concept prototype (available on our website10). The prototype is imple-
mented in Pharo Smalltalk11, a modern Smalltalk dialect, and currently supports 7
types of conformance rules (Table 4.1).

While building this prototype we chose to implement adapters for tools commonly
used by practitioners and belonging to different analysis domains. In its current im-
plementation, the prototype supports rules related to maintainability (dependen-

10
http://scg.unibe.ch/dicto/

11
http://pharo.org

12
http://www.moosetechnology.org

13
http://pmd.sourceforge.net

14See chapter 5
15
http://babelfish.arc.nasa.gov/trac/jpf

16
http://jmeter.apache.org

17
http://zn.stfx.eu/zn/index.html

18
http://www.unix.com/man-page/All/0/grep/

19
https://github.com/sputnick-dev/saxon-lint
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Rule Tool

Package [must, cannot, ..] depend on Package Moose12

Class [must, cannot, ..] invoke Method Moose
Method [must, cannot, ..] be invoked Moose
Package1, .., Packagen [must, cannot, ..] be layered Moose
System [must, cannot, ..] contain dead methods Moose
Class [must, cannot, ..] have method ”String” Moose
Method [must, cannot, ..] be named ”String” Moose
Method [must, cannot, ..] have annotation ”@String(..)” Moose
Method [must, cannot, ..] have annotation name ”String” Moose
Method [must, cannot, ..] have annotation type ”String” Moose
Class [must, cannot, ..] implement interface ”String” Moose
Method [must, cannot, ..] have method parameter Class Moose
Method [must, cannot, ..] throw Class Moose
Method [must, cannot, ..] catch Class Moose
Class [must, cannot, ..] be caught Moose
Class [must, cannot, ..] have empty catch block Moose
Class [must, cannot, ..] be thrown Moose
System [must, cannot, ..] contain code clones PMD13

System [must, cannot, ..] contain cycles Marea14

Class [must, cannot, ..] lead to deadlock JPF15

WebResource [must, cannot, ..] have latency < Integer ms JMeter16

WebResource [must, cannot, ..] handle load from Integer users JMeter
WebResource [must, cannot, ..] have content ”String” Zinc17

WebResource [must, cannot, ..] have content type ”String” Zinc
WebResource [must, cannot, ..] have content length > Integer Zinc
WebResource [must, cannot, ..] have status code Integer Zinc
File [must, cannot, ..] contain text ”String” grep18

File [must, cannot, ..] exist’ Probo
XMLTag [must, cannot, ..] have text ”String” saxon-lint19

XMLTag [must, cannot, ..] have child ”String” saxon-lint
XMLTag [must, cannot, ..] have attribute ”String” saxon-lint
XMLTagAttribute [must, cannot, ..] have value ”String” saxon-lint
XMLTagAttribute [must, cannot, ..] have name ”String” saxon-lint

Table 4.1: rule types supported in Dictō. Each rule is checked through the tool listed
on the right hand side of the table.

cies, code clones), performance (response time, throughput), compatibility (data
structure) and reliability (deadlock-freeness, availability).

To define a new adapter, we followed these steps:

• Task definition: gather requirements for the adapter based on the properties
that need to be tested.

• Tool selection: search for the best tool that fits the identified needs.

• Tool analysis: learn how to specify a valid test input in order to satisfy the
identified needs.

• Adapter implementation: implement an adapter that is capable of checking
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basic invariants derived from user-defined rules by interacting with the se-
lected tool.

The effort required to implement an adapter for a well-understood tool is relatively
modest. The average size of an adapter class is 64 lines of code. The size mostly
varies depending on the verbosity of the input schema prescribed by the adapted
tool.

Adapters are programmed to decide the truth value of a set of predicates that they
agreed on handling. To better understand how this happens, let’s consider the fol-
lowing predicate:

1 have--latency--less--than(http://www.xyz.com, "100 ms")

This predicate, in our current implementation of Probō,will be assigned to an adapter
that relies on JMeter16. The adapter generates an XML file (88 lines of code) contain-
ing the specification of a JMeter test plan. The adaptor also defines a set of pre-
specified commands that allow the execution of the generated test-case. The out-
put resulting from the execution will be analyzed by the adapter though a specific
function that decides whether a given predicate is actually verified or not. In this
adapter, test results are traced back to the corresponding predicates using alphanu-
merical identifiers defined in our model.

Other adapters are implemented using similar approaches. Some (e.g., the ones rely-
ing on JPF15 and PMD13) don’t require the generation of an input specification since
all configuration options are defined as command line parameters. Others (e.g., the
ones relying on UNIX command line utilities: ping?? and grep18) generate a UNIX
shell script which is then invoked by during execution.

4.5 Discussion

Dictō limits the cost of conformance checking by fulfilling the requirements pre-
sented in section 4.1. We here discuss how our solution addresses the proposed
requirements.

4.5.1 Scattered Functionality

We propose an integrated solution that employs the functionality of a variable num-
ber of tools to test a wide range of rules. The heterogeneity of the supported tools is
hidden behind a single uniform coordination framework called Probō. Support for
new tools is defined through adapters. Adapters are not built to directly expose the
features offered by a given tool to the end user. They are rather designed to exploit
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the functionality offered by a tool to obtain information that can be used to evaluate
rule-derived predicates.

This approach allows us to decouple Dictō, the high level language used for rule
specification, from the semantic and operational model associated to a specific tool.
Adding an additional level of indirection between users and tools also implies that
less control can be exercised on the configuration of the evaluation tool. Adapter
developers can choose which kind of parameters should be exposed to designers
(e.g., in a load test performed with JMeter, the number of concurrent connections)
and which, for the sake of simplicity and tool-independence, should be pre-defined
by the adapter (e.g., in the same test, “Use KeepAlive header” option defined in the
generated test case). Adapter developers are also encouraged to build parametrized
adapters, in which secondary configuration values that influence the outcome of the
analysis can be adjusted based on the designer’s needs.

Hiding the specifics of the tools used for evaluation has the advantage of saving de-
signers from discovering, learning and comparing tools. On the other hand, these
tasks still need to be performed to build adaptors. In our approach we hope to re-
duce the cost of these activities by curating an open repository of contributed tool
adapters. By adopting this strategywe hope to grow a collection of reusable compo-
nents that can be directly installed to support new functionalities. Users adopting
a contributed adapter are not required to learn about the operational details related
to the analysis tool used.

We plan to evaluate the possibility of sharing reusable adapters by running a case
study in which we examine the actual overlap between user requirements. This
study will be conducted by supporting various practitioners from different organi-
zations on defining a comprehensive set of rules for an active project in which they
are involved. Participants will partially be selected among the people involved in
our previous empirical study (see chapter 3). As we proceed, we will gradually be
able to assess whether the number of adapters needed to satisfy the user’s require-
ments grows or stabilizes over time.

4.5.2 Specification Language Heterogeneity

Dictō was designed to offer a single coherent specification language for expressing
architectural rules to software architects. This language is independent from the
specification mechanisms supported by existing tools. Tool-specific input is gen-
erated by adapters on the basis of a simplified model (consisting mainly of pred-
icates) derived from a more complex originally defined set of rules. Tool-specific
notations are indirectly supported through a well coordinated generative process
partially managed by adapters. Rule designers are not required to have any knowl-
edge regarding the tools that are employed to check their statements. This allows
them to focus on the task at hand without being distracted by arbitrary implemen-
tation choices taken by tool providers. Similarly, adapter developers do not need to
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cope with the full complexity of user-defined specifications. In fact, each rule de-
fined though the DSL is broken down into more manageable predicates, which can
be checked by evaluating the existence of simple relationships or properties in the
code base of the target system.

This level of indirection allows the user to avoid dealing with more technical nota-
tions (e.g., XML, Java) while using a friendlier high-level language. This allows for
a wider range of stakeholders to take part to the design process. In fact, very little
technical skill is required to read and write rules in Dictō. This may partially limit
the control of the designer over the final specification. It is the responsibility of the
adapter developer to expose the right amount of configurability to the end-user.

Dictō also provides support for model-to-code traceability. Traceability is achieved
though declarativemapping directives defined togetherwith symbolic entities. This
lightweight mechanism has the advantage of beingmostly unintrusive and compre-
hensible to untrained users. Concrete entities are automatically resolved by Probō,
thus not requiring adapters and tools to provide support for any kind of resolution
strategy.

A generative approach also allows us to minimize the amount of redundant infor-
mation that needs to be maintained. Tool specifications are mainly built based on
the information contained in a single uniform model that encodes the architectural
rules defined by the user. Additional configuration attributes (e.g., project source
folder, source code language) are specified per project and are also shared among
all adapters.

4.5.3 Specification Language Understandability

Dictō is a DSL designed to reflect how architectural rules are actually specified in
practice. The language, as discussed in subsection 4.3.1, resembles basic specifica-
tion patterns commonly encountered in industrial documentation artifacts. Dictō is
sufficiently expressive to enable multifaceted modeling. The syntax of the language
can be extended by installing new adapters or defining new concepts in Probō. This
guarantees support for a wide range of highly diversified rules belonging to differ-
ent domains and viewpoints.

Martin Fowler suggests that non-technical stakeholders (“business people”) should
become more involved in the design decision process of a software system20. He
suggests that software rules should at least be read and understoodwhen presented
to a non-technical audience. Pruijt et al. [106] conclude on a similar note, recom-
mending to “Minimize the difference between logical rules, as perceived by the ar-
chitect, and technical implementation in the tool”. TheDSLpresented in this chapter
may be used as an effective step towards achieving this objective. The syntax of our
DSL is largely consistent with other solutions [115, 109] and formalisms presented

20
http://www.martinfowler.com/bliki/BusinessReadableDSL.html
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in academic literature [106]. In the future we plan to evaluate the actual usability
of our language by involving different users in an experiment and asking them to
write, understand and adapt a pre-defined set of rules. By involving people with
different backgrounds and measuring the success rate for solving these tasks, we
aim at finding out how well the DSL matches practitioners needs from a usability
and knowledge management standpoint.

We are also currently involved in a project that aims at integrating Dicto into the de-
velopment process of a major open-source web-based learningmanagement system
(Ilias21). Our partners are interested inmonitoring the architectural integrity of their
system and supporting developers in the process of identifying relevant candidates
for reengineering [28]. Throughout the project, we will have the chance to verify to
which extent rules can be defined and understood by the numerous stakeholders
involved in the project.

4.6 Related Work

Our approach is designed to evaluate declaratively defined rules by using third
party analysis tools. We here review existing architecture conformance tools and
ADLs.

4.6.1 Architecture conformance tools

Architecture conformance tools have been analyzed and compared in various stud-
ies. De Silva et al. [26] proposes a taxonomy for categorizing existing techniques
and approaches. Prujit et al. [106] and Passos et al. [103] compare multiple tools
by evaluating their capabilities through an experiment. In both studies the authors
conclude that existing tools offer complementary features and none of them can be
considered as a perfect replacement for all the others. In a previous study (see chap-
ter 3) we run a survey to discover which tools practitioners use to test architectural
constraints.

Table 4.2 shows an overview of the most prominent conformance testing tools that
accept a textual specification as input. Many solutions (e.g., DCL, inCode.Rules)
verify constraints on relationships between classes and modules (e.g., access, decla-
ration, extension). Some languages (e.g., SOUL, LogEn, SCL) focus more on struc-
tural properties of classes and methods (e.g., identifiers, keywords, constructs). in-
Code.Rules [80] also detects code smells (e.g., God class, Data class).

21
http://www.ilias.de

22
http://classycle.sourceforge.net

23
http://www.ndepend.com

24
https://semmle.com
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constraint types

- relationships X X X X X X X
- elements X X X X X
- code smells X

detected RM relations

- convergence X X X X X X X X X X X
- absences X X - X - X X X - X -

- divergencies X X X - X - - - X X X

DSL extensibility

- new predicates - - - X X - - - - - -

programming language [J: Java; S: Smalltalk; P: Prolog; D: Datalog; C: C++]

- analyzed system J J J J/S J J/C J J J .net J

- tool implem. J P J S D J J J J .net J

Table 4.2: Comparison among conformance checking tools based on a textual DSL.

The largemajority of these solutions, with the exception ofDCL[115] andTamDera[48],
are only able to detect one of the following violations: absences or divergencies[96].
Only two of the reviewed solutions offer support for language-level extension (i.e.,
SOUL [93] and LogEn [32]). Both are logic programming languages in which new
predicates can be defined by composing existing predicates. The general lack of sup-
port for extensibility limits the expressiveness of the solution. Almost all techniques,
with the exception ofArchFace [118] andArchJava [3], assume that architectural con-
straints are specified in a separated text file. ArchFace andArchJava require the user
to define constraints directly in the source code by using special constructs that are
checked at compile time.

4.6.2 Architecture description languages

ADLs allow us to describe the architecture of a system in a formal, declarative and
human-readable way. Existing ADLs cover a wide range of use cases and fulfill
various practical needs (i.e., analysis, customization, etc.,). Despite this fact, most
ADLs are completely ignored by practitioners [65, 79].

Some languages allow the user to implicitly define constraints by supporting the
specification of meta-annotations on first-class model entities. AADL [36] has a pre-
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defined catalogue of properties for its different component types. xADL 3.0 [24]
allows the user to define new entity attributes by customizing the XML schema.
ACME [42] supports the specification of arbitrary named attributes for both compo-
nents and connectors. Unicon [111] can handle a pre-defined set of attributes intro-
duced to constrain the structure and relationships of components. MetaH [9] allows
the user to define timing-related constraints through component attributes. Rapide
[75] is one of the few ADLs that provides a rich vocabulary of well documented
constraints over observable events. Each constraint is defined as a set of boolean
conditions that is expected to hold or not hold when a specific event occurs. SADL
[95] allows run-time invariants on the state of a component to be defined. Wright
[4] supports the definition of architectural styleswhichmay include constraints over
the defined configuration. UML [47] models can be enriched through OCL [100], a
textual declarative language used for defining rules regarding elements and rela-
tionships of a model.

According to various studies, ADLs fall short in fulfilling the following require-
ments:

Extensibility: “Most ADLs are quite restrictive and impose a particular architectural
model on the architect, which often isn’t appropriate” [121]. In a study byMalavolta
et al. “about 68% of respondents extended the ALs [(architectural languages)] they
used by adding new views (about 48%) or constraints (13%) or both” [79].

Usability: ADLs “need to be simple and intuitive enough to communicate the right
message to the stakeholders involved in the architecting phase, but shall also enable
formality so to drive analysis and other automatic tasks” [79]. “Heavyweight and
complex ALs often deter practitioners. A good combination of features fulfilling
practitioners’ needs is crucial for adoption, and closing the gap between industry
and academia” [79].

Multifaceted modeling: In a large study “about 85% of respondents declare to use
multiple views for architectural description” [79]. The type of views mentioned are:
“structural (76%), behavioral (48%), physical (45%) and conceptual (41%)” [79]. Un-
fortunately, “many ADLs do not support multiple viewpoints” [54].

In our approach we propose Dictō, a DSL that dynamically adapts to the features
offered by the adapted evaluators. Usability concerns are addressed by offering a
compact and intuitive language that reflects current practice. The possibility ofmod-
eling different heterogeneous aspects of a system is guaranteed by the generality of
the language. In fact, Probō can be extended to reflect concerns related to various
domains.

4.7 Conclusion

We presented a novel approach that aims at optimizing the cost of architectural con-
formance checking. Software architects have the possibility to declaratively define
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and automatically check architectural rules without directly dealing with the id-
iosyncrasies of currently available tools. With our approach we reduce the effort
required to describe and maintain rules, involve a larger number of stakeholders in
the design process and effectively test system conformance reusing the functionality
offered by state-of-the-art tools.
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5
Assisted Quality Improvement

Studies have shown that developers are often disappointed by the results produced
by static analyzers [61, 108]. The information provided to the end-user is consid-
ered insufficient and only partially helpful to solve the issue at hand [98, 61]. Many
practitioners also express interest in being assisted with refactoring suggestions and
quick fixes [61].

In the previous chapter we introduced an approach that aims at reducing the overall
cost of conformance checking by offering increased usability for the end-user while
enabling rich extensibility for contextual adaptation. At the end of this process, the
user expects to be confronted with all the violations that invalidate the specified
architecture. Violations can be presentedwith a varying degree of detail. Depending
on the complexity of the system and the nature of rule leading to the violation, the
effort to fix a violation might be bearable or exceeding the allocated budget.

In this chapter we investigate how we can help users to assess and react to archi-
tectural violations by providing actionable results. In our analysis, we focus on a
specific type of constraint which typically leads to expensive violations entailing
considerable costs for refactoring. This type of constraint, predicating the absence
of cyclic dependencies among packages, is relatively easy to check but hard to sus-
tain. Existing tools provide details regarding the elements causing a violation, but
fail in supporting the user in devising a resolving strategy. By complementing the
results with a semi-interactive quality improvement tool, we may offer actionable
suggestions that help to quantify the effort required to eliminate the violation and
save the user from the cost of evaluating multiple inconclusive refactoring alterna-
tive strategies.

To validate the feasibility of our idea, we developed a tool that provides develop-
ers with advises on how to remove package cycles. Our tool, Marea, automatically
suggests the most cost-effective sequence of refactoring operations that will break
the unwanted cycle. The optimal refactoring strategy is determined based on a cus-
tom profit function. Our approach has been validated on multiple projects and was
successfully integrated in Probō.
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5.1 Dependency cycles

In this chapter, we explore the advantages of having actionable suggestions as part
of the results produced by a conformance checking analysis. We focus on a specific
type of architectural flaw, i.e., dependency cycles among packages.

Dependency cycles are a typical symptom of bad design [81, 82, 39] and are often
linked to architectural erosion [78] and defect-proneness [101]. Two or more pack-
ages belong to a cycle if they contain classes which are circularly dependent (See
subsection 5.2.1 for a more precise definition).

Empirical studies show that cycles can be found in almost any medium to large
object-oriented software system [89, 87]. Dependency cycles introduce deployment
constraints, forcing developers to bundle packages that are logically uncoupled,
and generally increase maintenance costs. Excessive coupling amongst packages
reduces the overall modularity of the project, precluding the possibility to homoge-
neously distribute the development effort between the members of the team. Scarce
modularity has also a negative impact on testability, since isolating the functional-
ity of low granularity units becomes more complicated. Martin defines the Acyclic
Design Principle [82] as one of the rules that govern the structure of object-oriented
software systems.

Given the proven importance of this architectural anti-pattern,many tools have been
developed to detect dependency cycles. Most of them are commercial tools (e.g.,
Structure1011, Lattix LDM2, SonarGraph3) and are commonly used by industrial
practitioners. The main functionality offered by most of these tools consists in pre-
senting a rich visualization of the package cycles existing within a given project.
Other tools (i.e., JooJ [90]), prevent the introduction of new cycles by monitoring the
development environment and offering real-time warnings.

One fundamental limitation of all the existing techniques is the absence of a con-
venient support for removing the detected cycles. Automatic fixes and refactoring
suggestions are highly appreciated by developers [108, 61]. Based on our interaction
with practitioners, we found that developers are often forced to undergo multiple
stages in order to eliminate a cycle. Refactoring actions are repeatedly interleaved
with reverse engineering steps, during which the user checks the impact of the ap-
plied modification. This can lead to a highly ineffective non-linear process that con-
tributes to frustration and higher maintenance costs.

Some tools (e.g., Pasta [52]) have tried to cope with this limitation by introducing
support for simulating basic refactoring operations over a reverse engineeredmodel
of the analyzed project. Users can drag and drop code elements (i.e., classes, meth-
ods) from one container (i.e., package, class) to another and immediately see how
this impacts package-level dependencies. Unfortunately, this kind of process is only

1
https://structure101.com
2
http://lattix.com
3
https://www.hello2morrow.com/products/sonargraph

62

https://structure101.com
http://lattix.com
https://www.hello2morrow.com/products/sonargraph


a slight improvement over the previously described one. In fact, the user still needs
to perform subjective choices with little guarantee that the outcome of his action
will eventually lead to the complete removal of the cycle. In addition to that, the
refactoring operations supported by these tools are very elementary. Other more
sophisticated techniques (e.g., dependency injection) often used in practice are sim-
ply ignored.

5.2 Basic Concepts

In this section we briefly introduce the main concepts characterizing the domain of
application of Marea. In order to make the description as concrete as possible, we
choose to restrict the scope of the discussion to systems developed in Java.

5.2.1 Terminology

Marea has been designedwith the purpose of detecting and removing package-level
dependency cycles. This form of cycle is detected by representing a system as a
graph where the nodes are packages and the edges are the dependencies between
them. Such a graph might contain strongly connected components (SCCs) that are
composed by one or more cycles. A cycle is a closed walk with no repetitions of
vertices and edges allowed.

If an entity x depends on another entity y, we write x ⇀ y.

We categorize the dependencies in a system as follows:

• ClassDependency (CD): concrete dependency relating a class to another. A ⇀
B, if the class A contains a reference to the class B.

• Package Dependency (PD): conceptual dependency between packages result-
ing from the aggregation of one ormoreCDs. Inmore concrete terms, suppose
class A in package PA depends on class B in package PB. Then PA depends
on PB, and the CD A ⇀ B is contained in the PD PA ⇀ PB.

• Shared Package Dependency (SPD): package dependency that is present in
more than one cycle.

Class dependencies are further classified into:

• Inheritance Dependency: A ⇀ B, if A is a direct subclass of B or A imple-
ments B (in case B is an interface).

• Reference Dependency: A ⇀ B, if

– a class field of A is of type B (Class Field).
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– a class field of A is initialized with an object of type B (Initialized Class
Field).

– a variable defined in a method in A is of type B (Local Variable).

– a variable defined in a method in A is initialized with an object of type
B (Initialized Local Variable).

– a parameter of a method in A is of type B (Parameter).

– the return type of a method in A is of type B (Return Type).

• Invocation Dependency: A ⇀ B, if a method in A invokes a method in B.

5.2.2 Refactoring Strategies

In our approach we use 4 distinct refactoring strategies. In the remainder of this
section we describe the different strategies and their applicability constraints.

Move Class (MC) : This refactoring strategy moves a class from one package to
another. This refactoring strategy has previously been used by Shah et al. [110] to
untangle dependency cycles.

In Figure 5.1 (Before), the package components ⇀ control (wewill ignore the specifics
of this dependency in the interest of simplicity) and the class Button ⇀ Light, which
induces the reverse dependency control ⇀ components. This cycle could be broken
by simplymoving Button to the package components. This refactoring strategy is very
simple but may not be semantically consistent with the overall design of the system.
In fact, in this case, the class Button should not be moved to components.

We will use the notation “MC: A to P” to describe the operation where class A is
moved to package P.

Move Method (MM): This refactoring is similar to Move Class. It has been previ-
ously investigated by Tsantalis et al. [117] as a means to remove Feature Envy bad
smells.

Let’s assume that the method Button.press() depends on the class Light (in Figure 5.1
(Before)). This invocation dependency could be removed by moving the method
from its original class (Button) to the target of the dependency (Light). We will use
the notation “MM: M to A” to describe the operation where method M is moved to
class A.

Abstract Server Pattern (ASP): This refactoring, described byMartin [83], is inspired
by the following principle: “Depend upon Abstractions. Do not depend upon con-
cretions”.
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Figure 5.1: The ‘Abstract Server Pat-
tern’ refactoring strategy
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Figure 5.2: The ‘Abstract Server Pat-
tern + Dependency Injec-
tion’ refactoring strategy

The refactoring can be used to invert the direction of a dependency in case its target
is a concrete class. In Figure 5.1, Button has a field of type Light. This dependency
can be inverted by creating a new interface, Switchable, in the package containing
the class from which the dependency is originated. This interface will then be im-
plemented by the class on the other end of the dependency (Light). By applying this
simple operation we inverted the dependency from control to components, and we
eliminated the cycle.

We use the notation “ASP: SourceElement for type TargetClass” to describe an instance
of this refactoring (in our example, wewould use: ASP: control.Button. light for type
components.Light).

Abstract Server Pattern + Dependency Injection (ASP+DI): This refactoring4 is an
extension of the previously introduced ASP refactoring. We use dependency injec-
tion to eliminate initialization code responsible for dependencies. In our example
(Figure 5.2), we first apply the ASP refactoring. Since Button.light is originally ini-
tialized using the default constructor of Light, we remove the assignment in the
field declaration (Light light = new Light()) and declare a new method (setLight()).
This method will eventually be invoked by an Inversion of Control (IoC) container
(e.g., Spring5) when the object is created. The actual value used for the initializa-
tion could be defined in a configuration file and the field might be annotated with
a framework-specific annotation.

Using this technique has a positive impact on maintainability, as dependencies can

4
http://www.martinfowler.com/articles/injection.html
5
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html
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be easily changed to adapt to new requirements or a different runtime environment.
On the other hand, the code will contain implicit references and will require some
sort of configuration logic in order to function properly. Fortunately, many appli-
cations (e.g., J2EE, Spring) already rely on a dependency injection framework and
therefore would not be required to introduce drastic architectural changes in their
system. Moreover, the introduction of semi-implicit indirectionmay have a negative
impact on understandability.

Since ASP+DI is essentially a more refined version of ASP, this refactoring can be
used to handle all the cases that are handled by its simpler counterpart. Neverthe-
less, every refactoring technique presented in this section has a different cost (i.e.,
implementation time) and semantic validity associated to it. The choice between
one refactoring or another cannot be automatically determined and must be taken
by the user. In our approach we simply test the applicability of each refactoring in
the context of the analyzed system.

We will use the notation “ASP+DI: SourceElement for type Class” to denote an in-
stance of this refactoring.

5.2.3 Strategy Applicability

Each refactoring strategy can be applied to break a variable number of class depen-
dencies. We provide a exhaustive overview showing the applicability of the various
strategies for each type of dependency (See Table 5.1).

dependency type MC MM ASP ASP + DI

Inheritance 3 - - -

Class Field 3 - 3 3

Initialized Class Field 3 - - 3

Local Variable 3 3(*) 3 3

Initialized Local Variable 3 3(*) - 3

Parameter 3 3(*) 3 3

Return Type 3 3(*) 3 3

Invocation 3 3(*) - 3(*)

Table 5.1: Applicability of the refactoring strategies (asterisk stands for limited ap-
plicability)

The MM refactoring strategy is not applicable in case the dependency is caused by
an inheritance relationship (e.g., Button extends Light) or a class field dependency
(e.g., Button.light is of type Light). In those cases the refactoring cannot be applied as
no method is involved in the dependency.

The ASP refactoring strategy cannot be used in case the dependency is caused by an
initialized class or local variable (e.g., Button.light is initialized to a concrete instance
of Light). In those cases, one should opt for the ASP+DI refactoring. This strategy
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is also not applicable to inheritance and invocation dependencies, as its application
would not completely invert the original dependency responsible of the violation.

The ASP+DI refactoring cannot be used in presence of an inheritance dependency
(e.g., if Button is a subclass of Light). In this case, the refactoring operation would
break desired properties deriving from the dependency (e.g., behavior reuse).

Special conditions apply in the circumstances marked with an asterisk (Table 5.1).
MM cannot be applied to remove the indicated dependencies if themethod presents
one of the following properties:

• The method is a constructor.

• The method returns this.

• The method accesses a variable with class-scope.

• The method has an invocation to a static method defined in the same class.

Furthermore, ASP+DI cannot be used if the dependency is caused by an invocation
and the invoked method is static, a constructor, or super(), as none of these can be
defined in an interface.

5.3 Our Solution

Marea executes in three phases (see Figure 5.3): (A) Initially it analyzes the input
system to detect cycles; (B) then it explores all possible refactoring sequences; (C)
and finally it suggest the most cost-effective refactoring sequence to the user. In the
remainder of this section we describe each phase in more detail. The prototype is
available for download on the web6.

5.3.1 Analyze Cycles

Detect Cycles – In order to start the process we have to identify the dependencies
in the target system. We do so by running a fact extractor7 based on Eclipse JDT8.
The extractor visits all the nodes of the AST reconstructed by the underlying Eclipse
platform and uses that information to build a FAMIX [27] model. This model will
later be imported in Moose [99], an analysis platform designed to simplify the task
of querying and manipulating FAMIX models. Once imported, the model is ready
to be analyzed. To detect the cycles, we define a graph G = (V,E), where V are all
the packages contained in the obtained model and E are the package dependencies
(as defined in subsection 5.2.1) existing among them. We use Tarjan’s algorithm

6
http://smalltalkhub.com/#!/~caracciolo/Marea/
7
https://gforge.inria.fr/projects/verveinej/
8
http://www.eclipse.org/jdt/
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[113] to detect the strongly connected components (SCC) in the graph. Each SCC is
subsequently untangled into individual cycles.

Analyze
Cycles

Compute 
Refactoring Paths

Accept 
Refactoring Step

select 
cycle

source 
code

select 
ref. path         

Marea

source 
code

A

B

C

Figure 5.3: The three main process phases of our solution

This phase can be executed in linear time (i.e., the computational complexity of Tar-
jan’s algorithm is O(|V|+ |E|)).

Rank Cycles – A typical project may contain a high number of cycles. To help the
user to optimize the refactoring effort, we rank the cycles based on their overlap-
ping degree and their size. This means that smaller cycles containing dependencies
that are shared among more cycles will be presented before larger ones with fewer
shared dependencies. To define our ranking, we sort all the cycles contained in the
system (in descending order) based on the following formula:

rank(cycle) =
|SPDcycle|

|CDcycle| ∗ |PDcycle|
(5.1)

where CDcycle, PDcycle, SPDcycle are the sets of all the CDs, PDs and SPDs con-
tained in cycle.

In the example illustrated in Figure 5.4, we have three cycles. Cycle 2 ranks best
because it has two SPDs and a relatively low number of PDs and CDs.

Rank Package Dependencies – Cycles are formed by at least two package depen-
dencies (PD). PDs are aggregations ofmultiple class dependencies and can be sorted
based on the following function:

rank(pd) =
| {cycle | pd ∈ SPDcycle} |

|CDpd|
(5.2)
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Figure 5.4: Example: ranking of 3 cycles

where CDpd is the set of all the CDs contained in the package dependency pd and
SPDcycle is the sets of all the SPDs contained in a cycle.

This ranking function favors package dependencies that are shared amongmany cy-
cles and are composed by a low number of class dependencies. These dependencies
have the highest probability to break multiple cycles at the lowest cost (i.e., refac-
toring steps are usually proportional to the number of CDs). An alternative method
for ranking package cycles is discussed in a recent work by Falleri et al. [33]. In their
approach, they assigning a higher rank to cycles that involve packages that aremore
distant in the package containment tree (e.g., rank({x, x.y.z}) > rank({x.y, x.y.z});
where x, x.y, x.y.z are the packages forming the ranked cycles). They also assume
that cycles with PDs with a lower number of CDs are more likely to have been in-
troduced accidentally and therefore should be ranked higher. The last assumption
is also reflected in our function.

5.3.2 Compute Refactoring Paths

User action: select Cycle – When the analysis of the target system is complete, the
user is asked to select the cycle she wants to remove. Her choice may be strongly
influenced by her expertise, past experience and priorities. For example, a cycle that
involves a core module is most probably more important than one between utility
packages.

Simulate Refactoring Paths – To find the best refactoring sequence, we build a de-
cision tree where each node represents a mutation of the model originally extracted
from the system (Phase A). Eachmodel variation is actually computed by cloning an
existing model and applying the modifications prescribed by one of the supported
refactoring strategies. The memory footprint of every new model is limited by the
fact that only the changes are saved (and not a full new model).

Figure 5.5 illustrates an hypothetical situation in which a class dependency, part
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Figure 5.5: Decision tree representing possible refactoring sequences

of the currently analyzed cycle, can be broken using all four refactoring strategies9.
Since all refactorings are applicable, we create 4 variations of the original model (v1-
4). For each newmodel we search again for cycles and recompute the dependencies
that still need to be removed in order to eliminate the cycle. In the model v1, we
might have to remove a dependency of type initialized class field. Since this depen-
dency can only be removed using MC or ASP+DI, we obtain 2 new variations of v1
(v1.1-2).

The depth of the tree will grow depending on the level of accuracy that needs to be
reached. Sometimes class dependencies might be impossible to break (e.g., the sug-
gested refactorings are semantically inconsistent with architectural design choices).
In this casemore elaborated design changes are required. In other cases, the removal
of a class dependency may introduce new cycles in the system, causing an overall
negative effect on the quality of the system. If this happens, the resulting refactoring
sequence should be applied with caution or avoided.

The construction of a tree terminates when the cycle at hand has been completely re-
moved. This means that every path connecting the root node to any leaf represents
a complete refactoring sequence that leads to the elimination of the given cycle. The
termination of the tree construction process is guaranteed to terminate, because at
least one refactoring strategy (i.e., MC) can always be applied. The process can be
prematurely terminated for performance reasons by defining a maximal tree depth.

Suggest Optimal Path – To distinguish between effective and potentially harmful
refactoring operations, we define a profit function that summarizes the gain ob-
tained by applying that operation. The function should favor measurable quality
improvements and should penalize high-effort refactoring operations. The function
is defined as follows :

9This might be the case when the class dependency is of the type: local variable; parameter; return type;
or invocation. See Table 5.1
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P =
w0

cycles + 1
+

w1

depth
+ w2

(1 − I f rom) + (1 − Ito)

2
+ w3

A f rom + Ato

2
(5.3)

where:

• cycles is the total number of cycles in the system.

• depth is the depth of the node within the decision tree.

• I f rom/to quantifies the instability [83] of the package from/to which the class
dependency is directed. This metric is an indicator of the package’s resilience
to change. The value can range from 0 to 1, where 0 indicates a completely
stable package.

• A f rom/to quantifies the abstractness [83] of the package from/to which the
class dependency is directed. This metric indicates the percentage of abstract
classes contained in the given package. The range for this metric is 0 to 1, with
1 indicating a completely abstract package. According to the Stable Abstrac-
tions Principle10, “packages that are maximally stable should be maximally
abstract”.

• wi are constants that can be tuned to assign less or more weight to the single
components of the equation. In our experiments, we chose to have all weights
set to 1.

The profit function was designed to guide the user towards the best result (i.e., low
number of dependency cycles and high structural quality) by minimizing opera-
tional costs (i.e., low number of required refactoring steps). The profit value of a
refactoring sequence is generally inversely proportional to the number of cycles ex-
isting in the system and the number of operations composing the given sequence.
Improvements in structural quality (decrease of instability or increase in abstract-
ness) contribute to increase the profit. Weights (i.e., wi) have been introduced to ac-
commodate project/organization specific customization. These parameters could
be tuned manually or automatically (based on previous interaction sessions).

This profit function is used in our approach to calculate the utility value of the single
nodes composing our decision tree. As the tree is completely constructed, we will
review all the leaf nodes and select the one with maximum profit. The refactoring
sequence corresponding to the path connecting the root of the tree to this node is the
sequence that will (according to our profit function) remove the cycle at the lowest
cost. In our example (Figure 5.5), the best refactoring sequence is Original→ v1→
v1.1. This refactoring sequence has a profit value of 3.1. In this example we assume
that all the sub-trees below v2-4 lead to lower profit leaf nodes.

10
http://www.objectmentor.com/resources/articles/stability.pdf
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5.3.3 Accept Refactoring Path

User Action: Select Refactoring Path – The optimal refactoring sequence might be
composed of a large number of refactoring steps. Some of these stepsmight be appli-
cable to the system under analysis while others might be semantically inconsistent
with the overall design of the project (as intended or formally specified by the stake-
holders). To opportunely guide the user in the process, we present her only with the
refactoring actions that compose the optimal path. Other sub-optimal refactoring se-
quences can be examined on request.

Update Dependency Graph – Once the user has chosen to apply a specific refac-
toring sequence, the process updates its internal model and starts again from the
beginning (i.e., phase A). All the selected refactoring operations are only simulated
and not applied to the code. Refactoring sequences could be exported in a textual
format and serve as an input for another tool that will perform the actual modifica-
tions to the source code.

5.4 Evaluation

To test the applicability of our approach, we used our proof-of-concept prototype to
analyze two projects (one open-source and the other commercial). In this section we
describe the outcome of our experiments.

5.4.1 JHotDraw

JHotDraw11 is an open-source project developed by Gamma et al., often chosen as
a reference object-oriented system for its sound design and rich use of design pat-
terns. We analyzed version 6.0 beta 1, consisting of 485 Java files and a total of 28,000
non-comment lines of code. During our analysis we detected 44 package cycles. Six
of them could probably be considering irrelevant, as they only involve packages be-
longing to the test modules (i.e., org.jhotdraw.test.**). The remaining ones are more
likely to be considered harmful and often involve packages (i.e., org.jhotdraw.con-
trib, org.jhotdraw.util) that, at first sight, should not belong to cycles. A subset of
cycles encountered in our analysis is presented in Table 5.2.

To test our prototype we followed the steps described in section 5.3. Since we could
not find an expert user who could help us discarding sub-optimal refactoring op-
tions, we blindly followed the suggestions offered by the tool without considering
the semantic implications that this could have on the overall design of the system.
As a result, we managed to discover a refactoring that allowed us to break all 44
cycles in 7 refactoring steps. This result was achieved through the following steps

11
http://www.jhotdraw.org
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(summarized in Table 5.2):

cycle #1 ({contrib, samples.javadraw, contrib.zoom}12): This cycle was removed by in-
verting the dependency contrib → samples.jhotdraw. This dependency has been se-
lected as best candidate for removal because of its relatively smaller number of com-
prising class dependencies (2 compared to the 18 dependencies existing in the oppo-
site direction) and its high number of dependency sharing (14 other cycles share the
same dependency). The cycle was removed by moving the class SVGDrawApp from
contrib to samples.jhotdraw. This was not only the optimal refactoring solution, but
also the only one applicable. In fact, the class SVGDrawApp inherits from org.jhot-

draw.samples.javadraw.JavaDrawApp. Therefore the only applicable refactoring strat-
egy is Move Class (see Table 5.1). Moving the class to samples.jhotdraw automatically
removes the second dependency, consisting of an invocation to the parent construc-
tor (using the super construct). After this step, the system still contained 26 unre-
solved cycles.

cycle #2-5 (2: {contrib, contrib.zoom}, 3: {test, test.samples.pert}, 4: {standard, contrib,
samples.javadraw, framework}, 5: {standard, contrib.dnd}): As the analysis continues,
more complex cycles are analyzed. Cycles 2, 3, 5 offer two refactoring options while
cycle 4 offers only one. In all four cases, the MC refactoring appears to be the more
convenient option (according to our profit function Equation 5.3). Proposed alterna-
tives feature a profit score that is very similar to the chosen optimal counterpart. This
means that, according to our profit function, all non-chosen refactoringswould have
been good candidates for the refactoring. In cycle #2, the second best refactoring
option suggested by our tool was ASP+DI on contrib.CustomSelectionTool.showPop-

upMenu([..]) for type contrib.zoom.ZoomDrawingView. This option scored 1.35 profit
points, compared to the 1.36 of the chosen refactoring strategy. Also in cycle #3, the
alternative solution (i.e., MM test.AllTests.suite() to test.samples.pert.AllTests) had
a similar score compared to the optimal solution (1.44 compared to 1.52). After this
step, the system still contained 3 unresolved cycles.

cycle #6 ({framework, util}): The weaker package dependency in this cycle consists
of nine class dependencies. For performance reasons, we decided to limit the depth
of the simulation tree to a maximum of three. The suggested refactoring reported
in Table 5.2 was obtained by combining the optimal paths computed during three
subsequent simulation phases. During each simulation step, the tool evaluated an
average of almost 30 different scenarios. Thewhole process had to be split into three
phases because of the considerable memory requirements required to compute the
individual simulation trees. This was done by applying the suggested refactorings

12A dependency cycle is described as a set of packages, where the element in position N depends
on N+1 and the last depends on the first. The common package name prefix “org.jhotdraw” has been
removed for readability purposes.
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# Refactoring Sequence

1 MC: contrib.SVGDrawApp to samples.javadraw
2 MC: contrib.CustomSelectionTool to contrib.zoom
3 MC: test.AllTests to test.samples.pert
4 MC: standard.StandardDrawingView to contrib
5 MC: contrib.dnd.DragNDropTool to standard

6

MC: framework.Handle to util;
MC: framework.DrawingView to util;
ASP: framework.HandleEnumeration.nextHandle() for type util.Handle;
ASP: framework.DrawingEditor.getUndoManager() for type UndoManager;
MC: framework.Tool to util;
MC: framework.DrawingEditor to util;
MC: framework.Locator to util;
MC: framework.Figure to util;
MC: framework.Connector to util;
MC: framework.ConnectionFigure to util;
MC: framework.Drawing.findFigureInsideWithout(int,int,Figure) to util;
MC: framework.DrawingChangeEvent.DrawingChangeEvent(Drawing,Rectangle) to util;
ASP: framework.DrawingChangeListener.drawingInvalidated([...]).e for type framework.DrawingChangeEvent
ASP: framework.DrawingChangeListener.drawingTitleChanged([...]).e for type framework.DrawingChangeEvent
ASP: framework.DrawingChangeListener.drawingRequestUpdate([...]).e for type framework.DrawingChangeEvent
MC: framework.Locator to util;

7

MC: util.UndoableCommand to standard
MC: util.UndoableTool to standard
MC: util.Figure to standard
MM: util.ConnectionFigure.startFigure() to util.Figure
MM: util.ConnectionFigure.endFigure() to util.Figure
ASP: util.GraphNode.node for type standard.Figure
MC: util.GraphLayout to standard
MC: util.ConnectionFigure to standard
MC: standard.RedoCommand to standard
MC: standard.UndoCommand to standard
MC: util.JDOStorageFormat to standard
MC: util.UndoableHandle to standard

Table 5.2: JHotDraw: detected cycles and refactoring sequences applied to remove
them.

in intermediate stages and restarting the analysis taking the new version of the sys-
tem as input.

The refactoring steps reported in Table 5.2 show that our tool tried to break the de-
pendency from framework to util by applying the MC and ASP refactorings in a pre-
cise sequence. The first operation consists in moving the class framework.Handle to
util. This operation introduces a new dependency between the two packages frame-
work and util, since framework.HandleEnumeration.nextHandle() has a return typeHan-
dle, and Handle is now in package util. To address this issue, the tool proposes to
apply ASP on framework.HandleEnumeration.nextHandle() (operation 3). The subse-
quent operations contribute further to reducing the number of dependencies. Only
the 8th operation (i.e., MC: framework.Figure to util) appears to be problematic. In
fact, by moving Figure into its new package, we introduce new dependencies. This
happens because another class contained in framework is heavily coupledwith Figure
(i.e., many methods return Figure or require arguments of type Figure) and moving
Figure to util, we automatically add 23 newdependencies from framework to util. This
contributes to increasing the effort required to remove the cycle. The new depen-
dencies are slowly removed by further applying theMC andASP refactorings. After
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this step, the system still contained 1 unresolved cycle.

cycle #7 ({framework, util}): This last iteration also had to be split intomultiple phases.
The number of steps within the optimal refactoring sequence is relatively contained
(12 refactoring operations), but the memory resources required to compute all the
possible alternative paths was considerable. Also in this case the tool preferred to
resort to MC in most of the steps. However, in few cases, it also suggested to use
the MM and ASP refactoring. MM could be seen as a variant of MC with a lower
impact on the design of the system (since a smaller part of functionality is moved
across packages). The reason why MC is often preferred over MM is that it pro-
vides a means to remove dependencies in a smaller number of steps. If no other
class depends on the moved class, then no negative side effect will result from the
refactoring.

5.4.2 Industrial Project

To further evaluate our tool, we approached a team working in one of the largest IT
companies in Switzerland. The team, composed of four people, was actively devel-
oping a module that was part of a larger project. The version that we could analyze
consisted of 865 Java files distributed across 159 packages for a total of 50.000 non-
comment lines of code.

Our contact person explained to us that the team prided itself for dedicating special
care to good object-oriented design practices. The quality of their software was,
according to them, superior to that of other modules developed within the same
project. The team also regularly used SonarQube13, a quality assessment tool that,
among other things, offers a report of all the cycles contained in a project.

During our analysis, Marea found 25 cycles formed across 22 packages. We asked
our collaborator (a member of the development team) to select the most relevant cy-
cles. From those, we chose to analyze the cycle represented in Figure 5.6. This cycle
involves two packages (i.e., [..].scout.client and [..].scout.server. services.process.stubs)
and is caused by a total of four dependencies involving three classes. Any detail
thatmay reveal the identity of the company has been omitted as explicitly requested.
Packages and classes have been labeled for convenience.

To break this cycle, Marea ranks the package dependencies based on Equation 5.2.
Since the dependency between C1 and C2 is caused by one single invocation, the
tool proceeds with the computation of all refactoring paths that may lead to its re-
moval. The result of the simulation phase is shown in Figure 5.7. As we can see,
Marea evaluates 4 alternative refactoring sequences. The first one consists in mov-
ing the class C1 to the package P2. This simple refactoring not only eliminates the
dependency from P1 to P2, but also the one from P2 to P1. In fact, at the end of the

13
http://www.sonarqube.org
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[..].scout.client [..].scout.server.services.process.stubs

..
registerStubbedServices()
execLoadSession()

[..]ClientSession getStubbedServices()
StubbedServiceRegistry

..
retriggerPostLoginActions()
updateSharedContextVariableMap(Shar
edVariableMap)

[..]MiscellaneousProcessServiceStub
C3

C2
C1

P1 P2

private void registerStubbedServices() [..] {
    Object[] stubbedServices = StubbedServiceRegistry.getStubbedServices();
    registerServices(getBundle(), 500, stubbedServices);
    stubPostLoginActions();
    setServiceTunnel(new StubbedServiceTunnel());
    setDesktop(new Desktop());   }

3

1

Figure 5.6: One of the cycles found in the industrial project
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Figure 5.7: Simulation tree for the cycle found in the industrial project

refactoring, all the classes involved in the cycle will be in one single package. This
solution obtains a profit score of 1.1, which makes it the best refactoring sequence.
An alternative solution, would have been to move the method C1.registerStubbed-

Services() to C2. This operation is similar to the previously described move class,
with the difference that only the method involved in the dependency needs to be
moved. Unfortunately, another method in C1 (i.e., execLoadSession()) depends on the
moved method. Because of that, the dependency from P1 to P2 is still not broken
and further steps must be taken. The tool evaluates 3 options: MC of C1 to P2; MM
of C1.execLoadSession() to C2; ASP+DI of C1.execLoadSession() for type C2. The first
refactoring simply replicates the approach taken in the optimal solution. The second
one moves the method that is now causing the dependency between the two pack-
ages to its target class. This solution breaks the cycle since C1.execLoadSession() has
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no incoming dependencies. The last refactoring inverts the dependency between the
two packages by removing the explicit reference to C2 in C1.execLoadSession() using
ASP+DI.

To test the full applicability of the obtained solutions, we performed all the proposed
refactoring operations using a common IDE. We initially opted for Eclipse14, but
eventually had to find an alternative. In fact, Eclipse supports all the required refac-
toring operations but failed in performing MM of C1.registerStubbedServices() to C2.
The reason is that the movemethod refactoring “cannot be used tomove potentially
recursive methods”. Despite the fact that C1.registerStubbedServices() is by no means
recursive, we could only complete the operation manually. In a second attempt, we
chose to use IntelliJ IDEA15. This IDE correctly performed the MM refactoring by
first adding a static modifier to C1.registerStubbedServices() and then moving it to its
target class. All subsequent refactoring operations were also correctly applied. In
the end we verified that all proposed solutions are sound and lead to the complete
removal of the cycle.

We asked one of the developers to comment on the proposed solutions. After an
attentive analysis of the code, he explained that:

• Solution 1 (MC), is simple andmight be applicable if there were no restriction
on how the two packages are deployed. Unfortunately client and server are
deployed separately. Moving the class C1 to the package P2would require to
include client libraries into the server bundle.

• Solution 2 (MM + MC), is meaningless since it reaches the same result as in
Solution 1 but in two steps instead of one.

• Solution 3 (MM+MM), is not a complete solution since themovedmethod (ex-
ecLoadSession()) overrides a method of its superclass. The method also calls it-
self using the super keyword (i.e., super.execLoadSession()). Moving themethod
to another class would break the functionality of the method. This particular
solution should have been discarded automatically by our tool. The discov-
ery of similar edge cases can be considered acceptable during the initial trial
period. We will address similar issues in following development iterations.

• Solution 4 (MM +ASP/DI), is the solution of choice of our subject. This refac-
toring is more time consuming and complex compared to all other ones, but
cleanly separates the concepts contained in the two packages. The function-
ality remains where it has been originally placed and a newly introduced in-
terface serves as a contract between the two classes causing the dependency.

One additional solution, that might apply only in this particular case, suggested by
our user was to move P2 under P1. In fact, P2 only contains lightweight classes with
few dependencies and no business logic. These classes have been created for testing

14
https://www.eclipse.org

15
https://www.jetbrains.com/idea/
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purposes and do not necessarily need to be deployed with any of the two packages.
Making P2 into a sub-package of P1 would quickly remove the cycle and only in-
troduce a minor semantic inconsistency. On one hand, the classes contained in P2
should logically belong to the scout.server package hierarchy, as they relate to the
server domain. On the other hand, moving them to P1would be acceptable because
they are exclusively used for testing purposes. This solution would not completely
remove the cycle, but, for our user, cycles contained inside architectural components
(i.e., scout.server, scout.client) are considered to be of secondary importance.

Solution 4 has been chosen as best refactoring strategy because it reflects a standard
refactoring adopted by the team to remove dependencies. In fact, many classes de-
ployed separately on client and server, share common interfaces. Concrete depen-
dencies are resolved through a dependency injectionmechanism based on AOP and
the exchange of serialized classes over HTTP. The preference expressed by the user
for this refactoring strategy could be explicitly factored into the profit function (i.e.,
in Equation 5.3, add another term: w4×number_of_ASPDI).

Solution 2 showed that the algorithm might lead to a meaningless solution when
the proposed refactoring path reaches a previously explored subgraph. This point
can be used to optimize the construction of the decision tree.

Solution 3 brought up another corner case that needs to be treated with special care.
This case will be addressed by implementing a dedicated guard in the algorithm
responsible for building the decision tree.

5.5 Discussion

5.5.1 The Package Blending Problem

Our approach is always guaranteed to reach a solution, as long as enough time and
memory are provided. In fact the MC refactoring can be applied in any circum-
stance, and will therefore always be used to approach an optimal solution. The
problem is that the MC refactoring might often not represent the most desirable
type of refactoring from a semantic point of view. The change implied by this refac-
toring is only justifiable if the behavior described in the moved class is consistent
with the category described by the target package. If we ignore this reasoning and
blindly move classes from one package to another (as we intentionally did in sub-
section 5.4.1), we will end up gradually dismantling the modularity of the system.
This behavior may possibly lead, in the extreme case, to the complete blending of
one package into another. If that happens wewill have eliminated a package depen-
dency causing a cycle but we would have significantly altered the high-level struc-
ture of the project. This contrasts with the separation of concerns design principle,
which advocates the isolation of cohesive functionality.
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This general tendency towards the unification of packages should primarily be pre-
vented by the user. The profit function often suggests MC as an optimal refactoring
strategy (See Table 5.2), as it offers a fast and uncomplicated way to get rid of a
dependency. Another approach to control the abuse of the MC refactoring strat-
egy, could consist of extending the profit function (Equation 5.3) with an additional
metric that measures package cohesion. One such metric could be an opportunely
adapted variation of LCOM [55], a metric that quantifies the number of responsibil-
ities of a given functional unit, or CRSS [88], a metric for good package design.

A further option to control the execution of the simulation algorithm could be to
support the specification of structural invariants that define the boundaries of al-
lowed refactorings. These invariants could explicitly forbid the relocation of classes
contained in specific modules or the separation of entities sharing some semanti-
cally relevant property. The specification of the architectural components (in terms
of sets of packages) would already be sufficient to prevent design breaking changes
(e.g., moving classes between a client and a server component).

5.5.2 Prototype Limitations and Tradeoffs

Simulating multiple refactoring scenarios, as we have seen in section 5.4, has its
cost. One of the main issues encountered during our experimentation is related to
the amount of memory required to store each evaluated simulation step. In our
prototype we tried to optimize memory consumption by using in-memory object
models that can be evolved by only saving the incremental changes that separate
one version of the model from another. This was possible thanks to a third-party
framework called Orion [71]. Despite the advantage of incremental change memo-
rization, we still encountered several cases in which the simulation exhausted the
available memory resources. This issue could probably be addressed by improving
the Orion framework or opting for a more scalable data management approach for
storing our models (e.g., a graph database). Another viable solution consists in opti-
mizing the simulation process by enhancing the profit function (subsection 5.5.4) or
by taking into account complementary information (e.g., architectural rules, build
configuration files) that leads to the definition of structural constraints.

During our experiment we decided to cope with the above mentioned limitation by
pruning the simulation tree at a pre-fixed depth. This choice might have a negative
impact on the accuracy of our technique. In fact, a partial sub-optimal refactoring
sequence could theoretically develop into an optimal solution in further steps of the
simulation. By varying the maximum length of a simulation path, we can vary the
tradeoff between the overall cost of the analysis and its level of precision.

Another significant aspect that needs to be considered when implementing our ap-
proach is the level of correctness of the simulated refactoring operations. In our
prototype, as mentioned, we delegated the versioning of our simulation models to
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a dedicated framework. This framework allows us to evolve existing models by ap-
plying predefined basic change operations (e.g., create/delete class, create/delete
method). The refactoring strategies discussed in this chapter (subsection 5.2.2) had
to be implemented by combining several of those change operations. This implies
investigating and managing all possible edge cases, updating references and main-
taining the system in a generally consistent state. Thiswhole spectrumof complexity
is well managed in commercial refactoring engines, but requires considerable effort
to be implemented from scratch. In our prototype, we did our best to address all
encountered issues and to handle the most recurring cases. Despite our effort, we
recognize the fact that implementing a fully correct refactoring operation requires
a considerable engineering effort. Furthermore, the completeness of the implemen-
tation also depends on the level of detail of the meta-model used to represent the
system under analysis. If certain details of the system are only partially captured in
the model, then those details are not guaranteed to be correctly updated to reflect
the applied refactoring. We plan to address the above mentioned limitations by en-
gaging in further experimentation and performing comparative studieswith current
implementations of refactoring algorithms (e.g., Eclipse JDT refactoring engine16).

5.5.3 Refactoring Application

As explained in subsection 5.4.2, applying the refactoring operations suggested by
Marea is not always easy. Our approach simulates the refactoring operations on
models that are only partially as complex as the reality they represent. This means
that all the details necessarily omitted in our models may play a role in the actual
applicability of the suggested operations. We try to prevent complex situations by
analyzing the properties of the involved code elements (e.g., MM cannot be applied
on methods that contain invocations to other static methods defined in the same
class). Our approach can be considered safe and unobtrusive. A possible evolution
of our approach could be based on the speculative application of refactoring step in a
code sandbox. This approach would be more pragmatic but might possibly require
more computation time, as the analysis model (on which decisions are taken) needs
to be reverse engineered after each iteration.

5.5.4 Profit Function

The profit function used in our approach and described in Equation 5.3, is a sim-
ple attempt at quantifying the effect of a refactoring strategy over a project. It was
designed to guide the user in choosing a better solution based on objective measure-
ments. Given that the optimal solution can only be decided by the user, we assume
that this function should only be used as a general heuristic for comparing compet-
ing alternative solutions. The metrics employed in the calculation are well known

16
http://www.eclipse.org/jdt/
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indicators of the structural stability of software packages. The function could be
improved by adding further metrics and changing their relative impact by modi-
fying their weight coefficients. A more adequate combination of weights could be
inferred by performing empirical studies and recording the paths typically chosen
by the majority of the users.

5.6 Related Work

Providing automatic support for the removal of dependency cycles is a complex
problem. Wehere report on themain researchdirections that havedeveloped around
this topic.

5.6.1 Refactoring Candidate Identification Heuristics

Some approaches are specialized in detecting the most critical elements in a depen-
dency cycle. These approaches do not advise explicitly on how to remove a cycle,
but rather provide hints on where to look in order to devise a proper refactoring
strategy.

Melton et al. present Jepends [89], a tool that identifies the classes that should be
refactored in order to remove a cycle. Each class in the system is analyzed and
ranked based on its number of incoming/outgoing dependencies and on the num-
ber of cycles it is involved into. Classes that most contribute to cycles and with
higher coupling are considered to be the best starting point for further inspection
and consequent refactoring.

Jooj [90] is another tool by Melton et al. that warns the user about the existence
of cycles as soon as they appear. The warnings are displayed within the IDE and
further instructions may be provided to remove critical dependencies. The main as-
sumption behind this solution is that, as long as the user is aware of the impact of
his actions, new cycles will not be introduced. The authors declare their intent to
implement refactoring suggestions based on patterns described by Lakos [68] (e.g.,
escalation, demotion, dumb data, manager class). No further information is pro-
vided regarding the challenges involved in adding this specific feature.

Laval et al. introduce CycleTable [70], a visualization technique that should guide
the user in the identification of critical code elements involved in cycles. CycleTable
does not focus on a single solution to break cyclic dependencies. It rather groups
classes based on their coupling profile. This approach could be compared to the
one used in Jepends [89], as both aim at classifying code units based on structural
metrics.

Laval et al. also present another tool, Ozone [72]. The tool suggestswhich dependen-
cies should be removed in order to obtain a layered package structure. The target
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architecture is inferred automatically based on the analysis of the source code and a
set of optional user-defined dependency constraints. The refactoring steps required
to concretely obtain the target architecture are left to the user to investigate.

All the mentioned approaches only provide small hints regarding what concretely
needs to be done to break a dependency cycle. In fact, presenting a list of candidates
for refactoringwithout further instructions on how to perform the actual refactoring
task only partially contributes to solving the problem of cycle removal.

Oyetoyan et al. [102] propose a new heuristic metric that can be used to guide the
removal of intra-class cycles. Their algorithm identifies an optimal refactoring strat-
egy that maximizes a set of structural metrics (e.g., coupling) and promotes specific
implementation choices (e.g., class attribute static modifier). The resulting refac-
toring is then applied to update an annotated graph model representing the sys-
tem. The algorithm can be applied multiple times until all class cycles have been
removed. The main difference between this approach and Marea is the fact that
Marea explores multiple refactoring options and evaluates combinations of multi-
ple refactoring strategies during each analysis step. Instead of simply applying a
pre-configured default refactoring, Marea simulates complete refactoring scenarios
and is therefore capable of measuring the impact of the overall refactoring instead
of just focusing on devising a solution based on step-wise optimization. Marea also
focuses on package cycles, instead of class cycles.

5.6.2 Refactoring Simulation

Many commercial tools provide support for removing cyclic dependencies by sim-
ulating refactoring operations.

In Structure10117, the user can move classes, methods, fields and packages using
drag-and-drop actions. No guidance is provided during the process. Refactoring
operations, such as move method, seem to be always easily applicable without con-
sidering the effects that such an operation would involve when applied on the cor-
responding code elements. The dependency graph of the analyzed system is hard
to navigate and cannot be reduced to isolate single cycles.

SonarGraph-Architect18 allows the user to identify the dependencies that cause a
cycle. These dependencies are ranked and described at the granularity of classes.
No hints are provided on how to remove the identified dependencies. The user can
move classes from one package to another and observe the impact of the operation
on the dependency structure of the system.

Lattix LDM19 visualizes cyclic dependencies using a Dependency Structure Matrix
[109]. Besides finding cycles, the tool also supports basic structural editing features

17
https://structure101.com

18
https://www.hello2morrow.com/products/sonargraph

19
http://lattix.com
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such as the renaming, moving and deletion of packages. This limited set of opera-
tionsmay help removing certain cycles, but will alsomost probably encourage users
to reduce the modularity of their system.

Pasta [52] is a tool developed by Compuware. Pasta, like Ozone [72], tries to derive
the best layering configuration for a given system and presents the user with all the
dependencies that need to be removed to implement that configuration. Pasta also
offers a graphical interface that supports the simulation of several refactoring oper-
ations by drag-and-drop: move package, move class. Simulated changes can even-
tually be automatically applied to the code. The author claims that a future version
of the application will also support advanced refactoring operations described by
Martin [82].

All the presented tools deal with dependency cycles in the same terms as one would
approach a graph problem. Each node composing the cycle can be moved around
regardless of the complexity of its underlying implementation. Little or no guidance
is provided on which operation may offer the best compromise between effort and
benefit. The user has the responsibility to decide between many refactoring options
that can only often be performed only on larger granularity elements (packages,
class). The gap between the simulated change operations and the actual refactor-
ings that might eventually be applied on the corresponding code elements remains
large.

If the editing features provided by the current commercial solutions could be ex-
tended with more sophisticated refactoring operations and supported by an intelli-
gent decision support system, we might have a complete solution for dealing effec-
tively with cyclic dependencies.

5.7 Conclusion

In this chapter we introduce a novel approach to guide developers in the task of
removing cyclic dependencies among packages. We propose a tool that simulates
various refactoring operations and identifies the optimal change sequence based on
a profit function. We also report on the challenges that we encountered during the
implementation and evaluation of the tool.

We conclude that assisting a user during the removal of an architectural violation (in
this case a cyclic dependency) is possible and worthwhile. Our prototype illustrates
the basic phases that such a process should support.

The addition of the described technique within the approach proposed in chapter 4
can help to further reduce the cost of conformance checking. The user would be
relieved from the burden of deriving a refactoring strategy by his own and will ben-
efit from having sufficient information for assessing the effort required to solve the
issue at hand.
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6
Industrial Validation

In chapter 3, we investigated the type of constraints that software architects are in-
terested in checking and discovered a wide range of requirements. Only a small
fraction of them is well supported by existing tools, and where tools exist only a
smaller part of the developer community is aware of them. We discovered that at-
tempts at automating architectural conformance checking often ended with failure,
given that the resources invested in the task often exceeded the allocated budget.
Practitioners are open to adopt quality assessment tools, but are not willing to pay
the cost of deployment and maintenance activities.

To relieve them from this additional cost, we developed a solution that allows users
to formulate architectural rules using a simple high-level domain specific language
(DSL) and automatically have them checked by third-party analyzers (See chap-
ter 4). This solution has the potential to aggregate the functionality of most existing
quality assessment tools under the umbrella of a single uniform and readable lan-
guage. By providing a familiar specification interface to the user and augmenting
the analysis results with operationally relevant recommendations (chapter 5), we
can reduce the overall cost of the process by reliving the user from automatable
tasks.

To evaluate the effectiveness of our solution we applied our tool suite in the con-
text of three distinct industrial projects. In this chapter we describe and analyze
the main results of our study. The case studies show that our approach has the po-
tential to engage stakeholders in discussions that would otherwise probably never
have taken place. Dictō, the DSL proposed as part of our solution, becomes a pow-
erful instrument for expressing and communicating architectural rules. Relying on
a highly extensible analysis platform allows developers to specify rules without tak-
ing directly into account the limitations of a particular analysis tool or the challenge
of maintaining rules written in multiple definition languages for multiple analysis
tools. Instead, they can quickly prototype rules and benefit from the reusability of-
fered by adapters developed in other contexts.
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6.1 Our Approach

Our goal is to streamline the process of validating architecturally relevant quality
constraints. This is done by offering Dictō – a common declarative specification
language as the main interface for the definition of rules and Probō – providing
a highly automated and extensible platform for the integration of heterogeneous
off-the-shelf analyzers. Dictō and Probō have already been described at length in
chapter 4. In this section we briefly summarize their key characteristics.

Dictō is a DSL whose design is based on requirements collected in a previous em-
pirical study (see chapter 3). It can be used to define entities and rules as in the
following example:

Test = Package with name:"org.*.test.**"

only Test can contain dead methods

A schematic representation of the language grammar is presented in Figure 6.1. Fur-
ther documentation can be found on our website1.

name : String
value : String

Attribute

arguments

type = {Package, Class, ..}
name : String

Entity

subjects

String

name : String
Predicate

mode = {must, cannot, can..only, 
only..can, must..some}

Rule

* *

*

*

1
Integer*

arguments

arguments

Figure 6.1: Dicto grammar (instantiated on previously mentioned example).

Probō: User-defined rules are evaluated by Probō. The application is based on a
pipeline architecture that can be described by the following sequential phases:

• Parsing: In this phase we analyze the provided source code, extract all the
necessary information and create an in-memory model of the target system.

• Transformation: All user-defined entities and rules are normalized and bro-
ken down into more manageable predicates. Those are forwarded to the most
appropriate adapter, which generates a specification for the tool it supports.
Adapters are lightweight data transformers that are built by technically spe-
cialized developers with deeper knowledge of the configuration and opera-
tion of a given target tool.

1
http://scg.unibe.ch/dicto/
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• Analysis: External tools are launched using the generated specification. It is
a tool’s responsibility to evaluate the given predicates and provide the infor-
mation necessary to identify the violations for the originally defined rules.

• Reporting: The output generated by the external tool needs to be interpreted
and processed to separate failing rules from passing ones. A report file sum-
marizing the outcome is eventually generated.

6.2 Case Studies

We evaluate our architectural monitoring solution in case studies with three de-
velopment teams working on distinct projects in two different companies (See Ta-
ble 6.1).

#
Organization

domain (n. employees)

Project

tech. - size

Team

size

C1 Transportation (1.000+) J2EE - 50 K 5

C2 Transportation (1.000+) J2EE - 0.5 M 30+

C3 e-Learning (12 vendors) PHP - 1 M 25

Table 6.1: Summary of case studies.

In the first case study (C1) we dealt with a group of senior developers responsible for
the development of a small, but architecturally very relevant, project within a large
swiss transportation company. The project consisted in a framework used by the
majority of projects developed in the company. The team was already using Sonar-
Qube2, a popular quality monitoring tool for overseeing some general aspects of
the evolution of the system (e.g., common coding anti-patterns, dependency cycles).
They showed genuine interest in our solution, but, after a first pilot project, they
abandoned the idea of actively supporting a full integration of our solution inside
their development process.

In C2we worked together with another team within the same company as C1. This
time we had the chance to interact with a person who championed our solution
until full deployment. During this second case study we had numerous iterations
in which we discussed rules and reviewed the resulting violations. In the end we
deployed our tool on one of the development workstations used in the project.

InC3we collaborated with 18 developers working for 12 vendors of an open-source
learning management system called ILIAS3. Those developers were all members
of a special interest group (SIG) established to discuss reengineering opportunities
for improving the system at the architectural level. The underlying motivation for

2
http://www.sonarqube.org
3
http://www.ilias.de/
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founding this group stemmed from the fact that the system has evolved for over
18 years without the guidance of a person responsible for defining and enforcing
a sustainable architectural policy. After multiple iterations, we integrated our tool
into Teamcity4, a continuous integration server used to build the core module of the
ILIAS application.

Each case study was organized around the following phases:

1. Endorsement seeking & Process definition: The first step is getting in touch
with a contact person from the organization andpersuading her of the value of
the offered solution. This is typically done by setting up an introductorymeet-
ing during which we present the main features of Dictō, some sample rules
currently checked by Probō, and an outlook over possible integration options
with currently employed monitoring solutions. After gaining the support of
our contact person, we attempt to discuss a deployment strategy for our so-
lution. This step must be tailored to the specific practices and needs of the
organization. The chances of success grow if the solution is introduced in an
unobtrusive, transparent and gradual way.

2. Rule elicitation & formalization: Stakeholders have typically different re-
quirements regarding which kind of architectural rules need to be defined.
They typically vary depending on the technologies adopted in the project and
the domain of the system. After outlining the requirements, we define a set of
rules that reflect all identified constraints. Rules are directly specified by the
user using Dictō and are iteratively refined to maximize their readability and
reusability.

3. Feedback automation: All defined rules need to be checked automatically on
a regular basis.

To enable this behavior, we develop the necessary Probō adapters (or reuse ex-
isting ones) and integrate our solution into the existing quality control system
(e.g., continuous integration server, dashboard). To make the solution effec-
tive, we need to stimulate the interest of the developersworking in the organi-
zation. This can be done by raising awareness (inviting users to acknowledge
the current violations and warning developers upon the introduction of new
violations) and rewarding users performing corrective maintenance.

In C2 and C3, we successfully deployed our solution within the organization. In
C1 we only reached phase 1. In this case the team failed to obtain the support of
management to fully deploy the solution in the context of their project.

The total duration of the case studies C2 and C3 was almost 1 year each. C1 ended
prematurely after 1 month.

4
https://www.jetbrains.com/teamcity/
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6.3 Evaluation

6.3.1 Endorsement Seeking & Process Definition

In all the three case studies, we initially interacted with one person who later sup-
ported us in introducing the concept of our solution to the rest of the organization.

In C1, we started a pilot project with the support of our primary contact person.
This person was a user of the framework being developed in the project taken into
consideration. As a user, he knew which kind of constraints needed to be enforced
on the developed code. These constraints were partially documented in an internal
wiki and partially derived fromdirect experience and orally shared knowledge. The
contact personwas genuinely interested in the evaluation the proposed solution and
thought that the team working at the project could well appreciate our effort. To
guarantee a successful introduction of the proposed solution in the context of the
project, we suggested to integrate the results produced by our tool into the software
quality monitoring dashboard already in use within the team. As we presented our
results to the leaders of the team, the general idea was well-received. Unfortunately
the extent of the presented rule set (in Listing 1) failed to convince them of the full
utility of the solution. The people attending themeeting commented that most rules
were, to some extent, already checked by other tools. Despite the flaws described
in section 6.4, they preferred not to invest any additional resources into improving
their current quality monitoring infrastructure. Their focus was also primarily on
structural aspects of the source code. Theywere skeptical towards introducing rules
that were not already tested (either manually or using commercial tools). The rule
set derived from the pilot project (Listing 1) is ultimately representative of some of
the constraints that needed to be checked in the project. Further cooperation could
have led to a more exhaustive and representative sample of rules.

1 SYSTEM cannot contain cycles

2 PersistencePackage cannot depend on ServicePackage

3 ImplClass must have annotation "@πService"

Listing 1: Pilot rules defined for case study C1 (π is the name of the project).

For anonymization purposes, we will use the symbol π as a way to implicitly refer
to the name of the projects analyzed in C1 and C2.

Similarly, in C2, we started our collaboration through a pilot project. Our contact
person was a developer working full time on the development of the project being
examined. He suggested to start by re-evaluating rules that were already tested by
another commercial tool currently employedwithin the project (Sonargraph5). After
assessing the effectiveness of our tool, he started proposing new rules that were
either defined in documented guidelines or that he, based on his experience in the

5
https://www.hello2morrow.com/products/sonargraph
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project, suspected of being important for maintaining the architecture of the system.
His main interest was in revealing existing architectural flaws and simplifying the
tasks involved in performing qualitative maintenance. The rule set presented to the
team consisted of 17 rules, mostly focused on code dependencies (See Listing 2).

As we presented our results, we agreed that the definition of the rules could be
undertaken by any member of the team, while the development or refinement of
new or existing adapters would initially require our intervention. The task of main-
taining adapters could eventually be transferred to a selected member of the team
following a personalized training sessions.

In C3, we established contact with a person who had interest in introducing a solid
quality monitoring solution within his organization. He is a co-founder of a special
interest group (SIG) established to promote and discuss project-wide reengineering
tasks that would improve the maintainability of the project. In order to implement
any new design specification, the SIG needed a mechanism to control which aspects
of the new architecture were correctly implemented and which part of the source
code still needed to be refactored towards the new design. Our solution offered the
help needed to define and check the actual realization of the prospective architec-
ture. The idea of adopting our solution required the approval of the SIG, the head
of development and some key members of the community (i.e., mostly representa-
tives of the various service providers). The SIGwas easily convinced of the utility of
the tool. They acknowledged the technical benefit but were worried about the po-
litical implications of introducing and maintaining such a solution. The issue was
discussed with the top management of the organization several months later, as we
eventually obtained permission to deploy the tool on a global scale. During this
last meeting, it was decided that new rules, discussed within the SIG, would need
to be approved during the bi-weekly physical meeting moderated by the head of
development. Our contact person would be involved in maintaining the necessary
adapters and would share his duties with other members of the development team
as a means of disseminating his expertise.

6.3.2 Rule Elicitation & Formalization

In each case study, we specified a set of rules that reflected some major architectural
concerns identified within the projects taken in consideration. Those rule sets were
defined in Dictō based on initially elicited requirements. In the interest of space,
we omit the definition of entities. The complete specifications can be found on our
website6.

In C2, we defined the rule set in Listing 2.

1 ClientScoutPackage can only depend on SharedScoutPackage

2 ServerScoutPackage can only depend on SharedScoutPackage, ServicePackage

6
http://scg.unibe.ch/dicto/case-studies.php
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3 ServicePackage can only depend on BusinessPackage

4 BusinessPackage can only depend on ServicePackage, PersistencePackage

5 CoreProject cannot depend on StammdatenProject

6 BetriebProject can only depend on AngebotProject

7 πProject can only depend on AngebotProject, BetriebProject

8 ServiceUiMethods, ServicePublicMethods must throw

9 πServiceException

10 ServiceImplClasses must have annotation "@πRemoteService"

11 πBatch cannot depend on πUiImpl

12 πBatch cannot depend on πPublicImpl

13 Persistence cannot depend on Service

14 Batch cannot depend on Persistence

15 ScoutClient cannot depend on ScoutServer

16 Util, Model can only depend on Util, Model

17 πProject can only depend on πProject, CoreProject, StammdatenProject, AngebotProject

18 ModelClasses, DTOClasses must implement "java.io.Serializable"

Listing 2: Rules defined in case study C2 (π is the name of the project).

The rule set is largely based on documented guidelines and previously checked con-
straints. The definition process required multiple iterations that took place over a
period of about 6 months. Each iteration allowed us to identify erroneous violations
and discuss over the specification of new rules or new language constructs.

In C3, we defined the rule set in Listing 3.

1 WholeIliasCodebase cannot invoke triggerError

2 WholeIliasCodebase cannot invoke exitOrDie

3 WholeIliasCodebase cannot invoke SetErrorOrExceptionHandler

4 WholeIliasCodebase cannot invoke eval

5 WholeIliasCodebase cannot depend on SuppressErrors

6 ilExceptionsWithoutTopLevelException can only depend on ilExceptions

7 GUIClasses cannot depend on ilDBClass

8 GUIClasses cannot depend on ilDBGlobal

9 only GUIClasses can depend on ilTabsClass

10 only GUIClasses can depend on ilTabsGlobal

11 only GUIClasses can depend on ilTemplateClass

12 only GUIClasses can depend on ilTemplateGlobal

13 IliasTemplateFile cannot contain text "on(blur|change|click|dblclick|focus|keydown|keypress|keyup|

load|mousemove|mouseup|mousedown|mouseenter|mouseleave|mouseout|mouseover|mousewheel|resize|

select|submit|unload|wheel|scroll)"

14 IliasTemplateFile cannot contain text "<script*>"

15 WholeIliasCodebase cannot invoke raiseError

16 IliasTemplateFile cannot contain text "javascript*:"

Listing 3: Rules defined in case study C3.

In C3, the rules were initially specified by our contact person. As soon as they were
made public, other members of the SIG started to propose their own rules. They
suggested three new rules (i.e., line 4, 5, 15 in Listing 3). Their suggestions often con-
sisted in syntactically valid specifications posted in the community forum together
with questions like: “Can this be checked?”. All the rules were formulated based
uniquely on previously presented examples. No formal training was required. The
rules definedwithin the SIGwere later discussed in a physicalmeetingduringwhich
additional rules (i.e., 7-14, 15 in Listing 3) were proposed. In this case, all rules were
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proposed by members of the community that have never been in any way exposed
to Dictō.

Some of the specified rules reflect general best practices (e.g., avoid the invocation of
disrupting functions – line 4) while others define constraints related to new architec-
tural concepts that need to be implemented over time (e.g., new exception handling
policy – lines 1-3). The remaining rules are mostly there to ensure a correct separa-
tion of concerns (e.g., MVC pattern – lines 7-12).

All rule sets presented here are in their final form which was reached after multiple
refinement iterations. All major changes applied during this process are discussed
in section 6.5.

6.3.3 Feedback automation

Our tool has been successfully integrated with pre-existing monitoring and contin-
uous integration solutions. In particular we managed to integrate with the Sonar-
Qube dashboard in C2 and with TeamCity continuous integration server7 in C3.

To integrate with SonarQube, we developed a plugin that evaluates user-defined
rules in Probō and transforms all reported violations into “issues”. SonarQube was
already used as an issue tracker within the team to define and assign development
tasks. By silently adding architectural violations as issues, we were hoping to un-
obtrusively deliver our results to the stakeholders involved in the trial evaluation.
Unfortunately, due to the company policy, we were not able to customize the Sonar-
Qube installation used by the whole team. Instead we installed our integrated solu-
tion (i.e., SonarQube with the Probō plugin) on the workstation of a developer.

In C3, we integrated our tool suite with TeamCity, a newly introduced continuous
integration service that was made accessible to the whole community. By develop-
ing a plugin, we managed to expose analysis results in a separate view inside the
web dashboard. Users could view which violations had been added or removed
since the last build and obtain a list of all those that were currently unresolved. If a
developer introduced or solved a violation she would receive an email notification
remaining her of the event. We also introduced a leaderboard where all contribu-
tors are ranked according to the number of fixed violations. This stimulated users
to contribute more and to pay attention to previously ignored quality concerns.

6.4 Results

At the end of our studies we measured how rule violations were introduced or re-
moved over time.

7
https://www.jetbrains.com/teamcity/
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In C2we detected a total of 270 violations. These violations were treated as follows:
27 (lines 8,9 and 17 in Listing 2) were classified as critical and fixed immediately; 158
(lines 3, 7) were considered of secondary importance and listed in the issue tracker;
85 (lines 1, 6, 14) were not fixed. Not addressed violations were mainly ignored be-
cause of the high complexity involved in the refactoring task. In fact, two rules (lines
1, 14) involved user interface dependencies, while another rule (line 6) concerned a
module which was no longer actively maintained. Nine out of twenty-seven rules
were correctly observed in the implementation and did not lead to violations.

In C3 we monitored the violations introduced and removed over an arc of two
months. During this time the total number of violations decreased from 606 to 600
(i.e., 10 violations were introduced and 16 removed). Given the size and age of the
system (1M lines of code and 18 years of development), we consider that to be a pos-
itive outcome. During this initial trial period, we contacted several developers who
either introduced or removed a violation. Contributors responsible for introducing
violations reported different reasons for their action, such as intrinsic complexity
of the context (i.e., making the contribution violation-free would have required ma-
jor changes) or general lack of time. One user said that the feedback “definitely
leverages the discussion about architecture and separation of concerns”. They also
considered the rule that they violated to be reasonable and legitimate. Users who
removed violations were mostly concerned with enhancing the quality level of a
module they developed or to increase their score on the leaderboard.

InC3, the analysis of some violations led to the discovery of repeating anti-patterns.
For the rule on line 8 (Listing 3), for example, our collaborators observed that devel-
opers consistently referenced a global variable defined for database access in GUI
classes. This was done to pass the reference down the invocation chain to model
classes. The identification of this common practice led to internal discussions and
to the decision to evaluate alternative dependency injection strategies. This case
shows how our solution supports complete feedback loops and enables dynamics
that were previously unattainable.

During the evaluation we found several cases in which quality assurance tools were
already employed by the organization. In those cases we re-encoded the rules de-
fined for the pre-existing tool into Dictō and discovered several divergences in the
results. Sometimes we found false positives (i.e., spurious violations reported by
our tool). Those were typically due to imprecisions in the specification and could
be quickly removed. More often we found false negatives (i.e., violations not re-
ported by the reference tool). False negatives can be symptomatic of a less precise
analysis technique. Since the specifications were equivalent, it could be that pre-
cision is sacrificed for the sake of performance and scalability. The analysis of the
encountered false negatives helped us to uncover some possible limitations of the
previously adopted tools.

In C1 we found that only three of the 18 package cycles identified in our analy-
sis were actually reported by the employed tool (SonarQube). All the 15 cycles
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ignored by the preceding tool were manually validated and categorized as actual
violations.

Based on our analysis, SonarQube failed to detect cross-module dependencies. This
means that if two classes located in two different projects reference each other, no
cycle will be detected. Our case study project is organized into 46 Maven mod-
ules. This configuration reduces versioning conflicts and simplifies maintenance
and deployment. In our experiment, SonarQube ignored cycles like π.service.code
→π.service.i18n→π.service.code (caused by dependencies among classes belong-
ing to the respective packages but contained in different build modules).

SonarQube also seems to ignore indirect cycles (i.e., cycles among more than two
packages). In fact, a cycle likeπ.service.code→π.service.i18n→π.service.i18n.code
→ π.service.code, failed to be detected as a violation.

Our analysis is based on hypotheses drawn from an end-user perspective. Many of
the encountered false negatives could not be linked to any of the above mentioned
conditions. To completely understand the reasons behind these errors, one should
have access to the full details of the analysis algorithm.

InC2, developerswere using Sonargraph tomonitor dependency constraints. In our
analysis we discovered 5 false negatives (Sonargraph reported 2 violations out of the
7 detected by Dictō). One possible explanation that could explain this inconsistency
is related to the strategy used to reconstruct the dependency graph for the analyzed
project. Based on our analysis, we suspect that Sonargraph detects dependencies by
parsing the import statements contained at the beginning of each source file. Our
tool relies on a parser that extends Eclipse RCP. This allows for a more sophisticated
dependency resolution strategy that traverses indirect references and locates the true
endpoints of a dependency.

In our case studies the technical leaders of the projects did not suspect any incom-
pleteness in the previously obtained results. Both tools employed by our partners
have a solid reputation. SonarQube is the de-facto standard for lightweight technical
debt management and its large user-base is typically seen as a proof of its reliability.
Sonargraph is one of the leading solutions for checking dependency violations and
is often seen as a primary choice for monitoring architectural quality.

False negatives are particularly hard to discover. End users are typically not aware
of them since the complete validation of the analysis results is practically infeasi-
ble and would require the inspection of the whole code base (not just the reported
violations). Discrepancies among results produced by different tools could be de-
tected by developing and running multiple adapters for the same type of constraint
and automatically comparing the violations reported by each analyzer. Providing
a mechanism that supports cross-checking of results produced by different tools,
greatly simplifies the task of comparing the accuracy of competing quality assur-
ance solutions.
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6.5 Discussion

6.5.1 Expressiveness in Practice

The expressiveness of Dictō evolved throughout the course of the case studies. Mi-
nor additions were made to the language itself. Other changes had to be performed
at the level of single adapters, to support more precise specification mechanisms.
We here provide an non-exhaustive list of changes that were discussed and imple-
mented during the case studies:

I. Rule type: In C3, one of the users involved in the development of the system
defined the following rule:

ilExceptions = PhpClass with name:"il*Exception*"

ilTopLevelException = PhpClass with name:"ilException"

ilExceptionsWithoutTopLevelException = {ilExceptions} except {ilTopLevelException}

ilExceptionWithoutTopLevelException must depend on ilException

This rule requires all application-specific exception classes (i.e., all classes named
“il*Exception*” except “ilException”) to depend on all the classes described by the
entity ilException. This rule was semantically wrong, since any Exception class not
depending on all ilException classes resulted in a violation. To fully express the
user’s intentions, we introduced a new kind of rule that only failed when the rule
subject entity did not depend on some of the elements described as the rule argu-
ment. The rule could thus eventually be rewritten in the following form:

ilExceptionWithoutTopLevelException must depend on some ilException

By revising the rule using the “must .. some” construct, we can express the condi-
tion that every element in ilExceptionWithoutTopLevelException must have a de-
pendency directed to at least one element in ilException.

II. Entity specifiers: At the beginning of our case studies, package entities were
described through selection attributes including simple wildcards (i.e., “*”). In C2,
we soon realized that this specification approach was not precise enough. In fact,
a pattern like “org.*.x” was designed to greedily match any package name starting
with “org” and ending with “x”, while our user wanted to have the option to ei-
ther match a single identifier (e.g., org.foo.x) or multiple ones (e.g., org.foo.bar.x). To
address this limitation we introduced a double wildcard character “**” (the syntax
was inspired by Apache Ant8). This allowed us to properly describe entities in the
following form:

8
http://ant.apache.org/manual/dirtasks.html#patterns
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BusinessPackage = Package with name:"π.*.business.**"

Similarly inC3, one of the users asked to define a rule that required the definition of
a more complex argument value as a means to detect compliance to a specific nam-
ing convention (line 13 in Listing 3). This request could be addressed by specializing
the adapter responsible for checking the rule and adding support for regular expres-
sions.

III. Entity selection attributemodifiers: At the beginning of our evaluation, entities
could only be defined by specifying a set of inclusive filters that described expected
characteristics exhibited by the target elements. Soon enough, we were asked to
also include the possibility of defining an exclusive filtering mechanism. This was
done by introducing a negation modifier for the assignment operator used to define
entity attributes. In C1, our user wanted to define a logical entity mapping to all
the packages matching the following expression: “π.*.persistence.**”. After analyz-
ing the results we found out that many of the elements resolved for that entity were
correctly matching the expression but were irrelevant in the context of the analy-
sis. After introducing the new modifier (i.e., “!:”), the rule could be rewritten as
follows:

PersistencePackage = Package with name: "π.*.persistence.**", name!:"π.*.service.**"

IV. Entity grouping construct: To further support the definition of more complex
entities, we also introduced a new language construct that enabled the conjunction
and disjunction of sets derived from the combination of previously defined entities.
This feature became a valid complement to the previously described selection at-
tribute modifiers. Complex entities, such as the above defined PersistencePackage,
could now be defined through the combination of other entities. InC3, for example,
the user could define a new entity by combining other previously defined entities:

ilExceptionsWithoutTopLevelException = {ilExceptions} except {ilTopLevelException}

WholeIliasCodebase = {ilClasses, assClasses}

V. Rule argument separators: In C3, we defined the following rule:

SetErrorOrExceptionHandler = {SetExceptionHandler, SetErrorHandler}

WholeIliasCodebase cannot invoke SetErrorOrExceptionHandler

This rule clearly states that the argument is a disjunction of two different logical
entities. The same pattern could be found in C2, where the user needed to specify
that a package could not depend on multiple other packages:
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ServerScoutPackage cannot depend on SharedScoutPackage

ServerScoutPackage cannot depend on ServicePackage

To support a simpler definition of such rules, we introduced a conjunctive (i.e., “,”)
and a disjunctive (i.e., “/”) rule argument separator. The rules could be rewritten as
follows:

WholeIliasCodebase cannot invoke SetExceptionHandler / SetErrorHandler

ServerScoutPackage cannot depend on SharedScoutPackage, ServicePackage

VI. Entity exclusion: As we analyzed the results obtained in C2, we quickly dis-
covered that many true positives (correctly reported violations) were not relevant.
These violations either referred to test classes or external libraries. Test classes are
typically not reviewed for quality and are simply regarded as secondary artifacts
with low maintenance priority. External libraries, on the other hand, are obviously
out of the scope of the project and as such should not be checked against architectural
rules. To exclude such exceptions, we initially thought of introducing a pre-parsing
step where the user can define (through a script) which classes and libraries should
be copied or ignored before building a model of the system. This solution was later
on discarded because it reduced the overall accuracy of the parsing process. We
eventually decided to specify the excluded artifacts in a project configuration file
through the following property:
IGNORE-ENTITY:”org.eclipse.**; **.zlr**; **Test”

This filter was effectively used to exclude all the entities that were previously iden-
tified as noise in the results produced by our analysis.

6.5.2 Expressiveness in Theory

To further test the expressiveness of Dictō, we performed a literature survey and
tried to encode architectural rules reported in other papers using our DSL. We col-
lected 44 rules by reviewing various sources [120, 74, 103]. The full list can be viewed
on our website9. All rules but three could be successfully expressed in Dictō. The
rules that could not be specified (listed in Table 6.2) presented some characteristics
(e.g., conditional constructs, interrelation between multiple entity groups) that will
be discussed in the following paragraph.

Dictō was successfully employed and evolved to accommodate the specification
needs of the users participating in our case studies. Despite our best efforts, sev-
eral rules (reported in Table 6.2) could not be encoded without introducing major
changes to the language and to the underlying model. One type of rule that is cur-
rently not supported by Dictō is the one which predicates an invariant that may

9
http://scg.unibe.ch/research/arch-constr/eval/Expressivness
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# Rule

U1 The classes implementing interface Tool must implement method activate if method isUsable
returns true.

U2 Calling method getLocator requires cloning the instance (calling method clone) to avoid that
the receiver of getLocator can change the internal behavior of a LocatorHandle.

U3 The names of the attributes of class FigureAttributeConstant should be used as suffixes of the
attributes of class ContentProducer starting with the prefix ENTITY.

Table 6.2: List of rules discovered during literature survey that cannot currently be
specified using Dictō

apply only upon the fulfillment of a condition (U1-2 in Table 6.2). This kind of con-
ditional rule did not appear during our case studies, but seem to be required in other
contexts. To support such rules, we not only would need to add a new construct
to the language but would also have to introduce the concept of conditional state-
ment to our model. This addition would imply the implementation of a catalogue
of parametrized conditional expressions for each supported entity type (since each
adapter would need to provide the necessary functionality to evaluate the validity
of the specified expression).

To better understand the impact of such a change, let’s suppose that we decide to
support this feature by extending our DSL in such a way that U1 could be written
as follows:

ToolClasses = Class with superClass:"**.Tool"

isUsable = Method with name:"**.isUsable"

ToolClasses must have method "activate" (if "isUsable" returns true)

Probō would recognize that the subject entity ToolClasses is of type Class and would
determine that the corresponding code element fulfills the conditional expression
defined between parentheses. This feature is not currently planned for implemen-
tation, since we have no concrete evidence that it might be of interest for our end-
users. One of the challenges of implementing such a construct would be to find a
way to specify the relationship existing between terms included in the conditional
block with entities mentioned in the rule. In fact, in our example, “isUsable” is not
explicitly related to the subject element of the rule.

Another limiting factor, is the lack of support for expressing correlation between
properties of the subject entity and values used as rule arguments (See U3 in Ta-
ble 6.2). In C1, we encountered the following rule:

All classes ending by "Impl" must implement an interface that has the

same name as the class, but without the suffix "Impl".

This kind of rule could have been implemented in a very ad hoc fashion by defining
a predicate that expresses exactly the above mentioned constraint. We decided to
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avoid this solution and tried to conceive a more flexible rule that could express ar-
bitrary naming patterns. Since at the time we could not come up with an adequate
solution, we decided to ignore the rule.

Later on, after completing the case studies, we introduced a new language feature
that allows the user to specify capture groups in entity selectors. The captured val-
ues can then be symbolically referenced in the predicate argument of a rule as shown
in this example:

ImplClass = Class with name:"**.(*)Impl"

ImplClass must have interface named "$1"

This additional feature allows us to create interrelations between subject elements
and predicate arguments. Given its late introduction, we cannot comment on its
practical applicability. In retrospective, we think it would have served as an elegant
way for expressing that particular type of rule.

6.5.3 Usability

In our case studies we tried to establish short iterations in order to acquire as much
feedback as possible. Our users often asked for minor non-functional changes that
could potentially improve their specification from the point of view of readability
and learnability. During the evaluation period we implemented the following re-
quested features:

I. New entity types: In C3, we used a fact extractor called PhpDependencyAnaly-
sis10 in order to extract the information needed to resolve user-defined entities and
to test the required rules. This tool generates a two dimensional collection repre-
senting all the binary dependency relationships existing in the analyzed code base.
After the first iterationwe introduced a new type of entity that we called “PhpDepen-
dency”. Entities of this type correspond to nodes of the graph derived by combining
the relationships identified by our extractor. The user could define entities such
as:

eval = PhpDependency with name:"eval"

ilDBGlobal = PhpDependency with name:"ilDB"

ilExceptions = PhpDependency with name:"il*Exception*"

After presenting these rules to other people involved in the project, we decided to
introduce other equivalent entity types with more suggestive names. This addition
was functionally inconsequential but greatly improved the readability of the rules.
The same entities could be re-defined as follows:

10
https://github.com/mamuz/PhpDependencyAnalysis

99

https://github.com/mamuz/PhpDependencyAnalysis


eval = PhpFunction with name:"eval"

ilDBGlobal = PhpGlobal with name:"ilDB"

ilExceptions = PhpClass with name:"il*Exception*"

To implement this change, we had to add the introduced types to our list of reserved
language keywords. The resolution algorithm implemented to retrieve the entities
with the new types was the same as the one used for “PhpDependency”.

II. Javadoc-like rule comments: In C3, we soon realized that rules defined by a
smaller group of users had poor chances of being fully understood by the com-
munity at large participating in the development of the project. Users reading the
results produced by the analysis questioned the rationale hidden behind the rule,
asked for examples of violations or for a reference to a more detailed source of in-
formation. As a consequence, we introduced a new language feature that allowed
users to provide documentation for single rules in the form of comments. This fea-
ture was used to briefly summarize the intent of the rules, suggest possible fixing
strategies and point users to more detailed reference pages hosted on the project
website.

During our evaluation we were also asked to make results actionable. In fact, in C1
andC2, we were able to detect cyclic or otherwise unwanted dependencies between
packages but we neglected to provide useful information on how to remove them.
In a second iteration we extended our analyzer and included a detailed description
of all the concrete dependencies (e.g., invocations, variable references) that actually
caused the violation. This made it possible to quickly validate the results and to find
the real source of the problem. To further improve the usefulness of our report, we
also added an additional errormessage attribute to each single violation description.
This new attribute contained a free form error message as returned by the employed
analysis tool.

All this information improved the understanding of the problem. To further support
the user in the resolution of the violation, we also introduced support for reporting
optional suggestions on how to actually proceed in the task. In a parallel project, we
developed a tool that not only detects cycles but also computes all possible refactor-
ing strategies that could be adopted to break them (See chapter 5). We integrated
this tool in Probō and successfully managed to provide detailed advice on how to
concretely eliminate the detected cycles.

To implement this change, we had to extend our model representation and adapt
the language parser.
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6.5.4 Performance and Scalability

Our prototype has been designed to be highly scalable and proved to perform ade-
quately even when confronted with large industrial projects.

To evaluate the performance of our tool, we measured the time required to com-
plete the phases described in section 6.1 (“Transformation” and “Reporting” were
combined as they both have minimal impact over the overall performance of the
system). The results are presented in Table 6.3. Execution times for each phase
were measured on a 2.6 GHz machine with 16 GB or memory and are expressed
in seconds. The projects taken into consideration are JHotDraw 6.0b1 (JHD) and
the projects from C1 and C2. The analyzed projects are ordered by increasing size:
JHotDraw has 28,000 NLOC; C1 has 55,000 NLOC; C2 has 460,000 NLOC.

# Project / rules Parsing

(sec / % total)

Transf.+Re-

porting (sec /

%)

Analysis

(sec / % total)

Total (sec)

1 JHD / 2 10.8 (46%) 1.1 (5%) 11.4 (49%) 23.4

2 JHD / 3 0 0.2 (17%) 1.43 (83%) 1.6

3 JHD / 4 10.7 (93%) 0.7 (6%) 0.1 (1%) 11.5

4 JHD / 2 0 0.3 (60%) 0.2 (40%) 0.6

5 CS1 / 3 9.8 (35%) 1.4 (5%) 17.0 (60%) 28.3

6 CS2 / 2 38.1 (100%) 0.3 (0%) 0 (0%) 382.0

7 CS2 / 67 38.1 (97%) 0.2 (0%) 10.7 (3%) 392.6

Table 6.3: Performance measurements for different phases of execution while ana-
lyzing seven rulesets on three projects.

The first phase, parsing, is typically the most costly one. In some cases (i.e., cases 2
and 4 in Table 6.3) it is not needed, as the entities specified by the user do not need
to be resolved to elements in the source code. This happens when the entities refer
to concepts that are not in the code (e.g., web resources) or the analysis tool does not
need to resolve them explicitly (e.g., the entity refers to thewhole code base). Parsing
time is strongly correlated with the size of the target system and its complexity (e.g.,
coupling, depth of inheritance). This phase typically takes between 35% and 100%
of the total execution time. The time required by this task also depends on the level
of detail expected from the resulting information. If a more coarse-grained model is
sufficient to support subsequent tasks, times could be reduced considerably.

Transformation+Reporting typically takes less than one second to be executed. The
only exceptions are in cases 1 and 5. In both cases the excess in execution time is
explained by the increase in the amount of information that is written to the report
file (both rule sets contain a constraint on the presence of package cycles). Based on
these results, we can conclude that the processing overhead of rules and results gen-
erated by external tools is minimal and not necessarily correlated with the number
of user-specified rules.
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Analysis is a phase that requires a highly variable amount of time to be completed. It
strongly depends on the precision and inherent complexity of the task at hand. The
choice of an efficient analysis strategy and of an adequate level of granularity in the
result are crucial for making the tool usable. In C3, the largest project we analyzed
so far, we spent a large amount of the time optimizing the analysis algorithm. We
reduced its execution time from more than one hour down to three minutes. The
optimization consisted mostly in introducing new caches, replacing the PHP inter-
preter (HHVM11 instead of Zend Engine12) and refactoring output printing state-
ments. This incredible improvement made the difference between a unacceptably
slow solution and one that could be periodically run after each commit. Most of the
applied optimizations are at the platform level and can be reused in other analysis
contexts. The execution time of this phase is also correlated with the size of the in-
put system and the number of rules that need to be checked. Its overall impact on
the overall execution time varies from 0% to 83% (in case 2 the analyzer needed to
measure the latency of a remote web resource).

In general, we can conclude that our approach is reasonably scalable and can be
applied to large industrial applications. The validation of a realistic rule set against
a project with half a million lines of code took 6.5 minutes (case 2). Smaller systems
can be analyzed under a minute (all remaining cases).

6.5.5 Portability and Reusability

The tool can be adapted to support other languages. This can be done by adding a
new parser for extracting the information necessary to resolve user-defined entities
in the code. Analyzers are also typically language specific and therefore need to be
modified to support the chosen technology. In C3we adapted our toolchain to sup-
port rules designed for PHP applications. The effort to do so was relatively modest
and, due to the pipeline architecture, heavily localized. To fulfill the needs of other
organizations, we plan to provide support for C and C++.

We also analyzed the reuse potential of the adapters developed thus far. We ob-
served that the choice of rules in the three case studies is quite homogeneous (e.g.,
dependency constraints are defined in all rule sets). Adapters developed to check
these rules could be reused across organizations as far as the underlying technolo-
gies were the same (C3 required a new adapter for checking dependencies within
its PHP project).

6.5.6 Extensibility

Our solution was designed to be easily extensible. Support for new analysis tools
can be added by developing relatively simple adapters that act as data transformers

11
http://hhvm.com/

12http://php.net/
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between Probō and the chosen external tool. This mechanism allowed us to support
most of the rules encountered in our case studies with little effort.

During our evaluation we also encountered some rules that could not be supported
in a straightforwardway. Some of these rules were simply too ambitious andwould
have involved the use of very specific and extensive analysis techniques that were
not available in common off-the-shelf tools. These rules typically concerned behav-
ioral aspects of the system, such as inter-process communication (every test case
must use the local database for testing), execution time (test cases should be exe-
cuted within a given time interval) and application state (test methods have to per-
form a rollback at the end of their execution). All these rules would require some
form of instrumentation and the definition of a clearly defined application-specific
testbed for exercising the properties of interest. This would probably result in a
more complex execution pipeline and changes to the architecture of our tool. Upon
discussion, we decided to limit the scope of our tool to rules that can be tested us-
ing non-invasive analysis techniques that do not require any upfront preparation or
modification of the target system. We use static analysis to check rules that concern
source code properties and on-demand query-based tools for evaluating other rules
(e.g., latency, file structure).

# Rule

X1 The method init should be called after creating or loading a CompositeFigure, that is, after
calling the method new or read.

X2 Calls to the method addInternalFrameListener should occur before calling the method add
when implementing or overriding the method addToDesktop in the class MDIDesktopPane.

X3 The status linemust be created (i.e. call to setStatusLine) before a tool is set (i.e. call to setTool).
X4 After calling viewDestroying on an object you cannot do anything else on that object (seen in

class ViewChangeListener).
X5 If you call activate or deactivate from the class Tool you should call isActive before (seen in

class DrawApplication).
X6 If method mouseUp of class AbstractTool is overridden, the last statement should be a super

call.
X7 If method mouseDown of class AbstractTool is overridden, the first statement should be a

super call.

Table 6.4: List of rules discovered during literature survey which can currently not
be checked by Probō

Also some of the rules found during our survey would be hard to check using cur-
rently known analysis tools. For example, the rules X1-5 in Table 6.4 could theoreti-
cally be checked by extending one of the tools supported by our platform. Unfortu-
nately this would require amore fine-grained parsing analysis than the one adopted
at the moment. The parsing algorithm should take into account the order in which
invocations occur within methods. Implementing this feature would require a ma-
jor engineering effort, since it would impact multiple components of the analysis
tool. A similar limitation was identified for rules that require details regarding the
order in which statements appear within amethod body (i.e., X6-7). To support such
rules, one should again extend the analysis tool to also analyze the single statements
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occurring in a source code file. The current implementation only considers coarse
grained structural elements (such as classes, fields, methods) and ignores anything
beyond that. This limitation is inherent to the current implementation of FAMIX
[27], the meta-model used to represent the system under analysis.

6.6 Related Work

In this chapter we discuss a series of case studies that show how our approach (de-
scribed in detail in chapter 4) can be applied in an industrial context.

Quality assurance tools: There exist various tools that can be employed to evalu-
ate architectural conformance. Murphy et al. [96] introduced the idea of reflexion
models, a verifiable representation of the logical dependencies expected to exist in a
given target system. This technique has been widely exploited to build a consistent
number of academic [31] and commercial tools (e.g., Sonargraph, Structure10113,
Semmle14). Some of these solutions offer additional complementary features. Some
allow the definition of rules through a textual DSL [115, 48]. Others contributed new
visual representations that support the reverse engineering of large systems [109].

All these techniques have been compared with respect to their functional capabili-
ties in multiple studies [103, 63, 106]. As a result, we know that existing tools offer
complementary features and none of them can be considered to subsume all the oth-
ers. Pruijt et al. [106] also identify a set of conformance rules that are not supported
by any of the analyzed tools (e.g., naming conventions, subclass inheritance). Such
rules could be checked using tools such as SOUL [93], uContracts [74], LogEN [32] or
SCL [56]. Unfortunately such solutions are mostly proofs of concept and are rarely
tested in a realistic industrial environment. These solutions, despite offering valu-
able support for the task they aim to support, suffer from several flaws on aspects
that range from the usability of the specification to the scalability of the rule checking
algorithm. Some commercial counterparts, .QL[25] and CQLinq15, have managed
to address those aspects. Despite the availability of these solutions, dealing with
the singularities of multiple tools is often considered as a significant inconvenience
when dealing with quality assurance solutions. We propose an approach that hides
the operational details of such tools behind a uniform and readable high-level DSL
called Dictō.

Empirical evaluation: Other researchers have focused on the empirical foundations
of existing techniques. Weinreich et al. [120] presents a case study in which rules
are tested on a reverse engineered model of a banking system. Lozano et al. [74]
present a collection of rules encountered while analyzing source code comments in
JHotDraw. They also present a survey of structural relationship rules specified in

13
https://structure101.com

14
https://semmle.com

15
http://www.ndepend.com/docs/cqlinq-syntax
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previous literature. Passos et al. [103] validates existing static conformance check-
ing tools by comparing their ability to test a given selection of rules. All the rule
sets encountered in these studies are typically used by the authors as a baseline for
validating an approach or a tool. In our work we tried to encode the reported con-
straints in Dictō as a means to test the expressivity of our language. The results are
discussed in subsection 6.5.2.

Albuquerque et al. [2] evaluate the usability of their DSL borrowing techniques
coming from the human-computer interaction domain. Their approach consists in
comparing competing languages based on quantitative experiment. This strategy
works well in case one is interested in artificially proving the superiority of one DSL
towards another in terms of language features, but does not answer the question
whether the language is capable of dealing with real world specification require-
ments. Since our main interest is in evaluating the capabilities of Dictō within an
industrial context, we chose to adopt a more empirical approach.

Ganea et al. [40] evaluate their quality assurance tool by defining a non-comparative
experiment involving industrial users. The subjects were asked to perform analysis
tasks with and without the evaluated tool. The results show that tool-assisted users
are more efficient at solving quality related tasks. In our work, we assume that this
finding can be extended to any tool that provides contextual information regarding
specific properties of a system.

6.7 Conclusion

In this chapter we show the effectiveness of our approach for monitoring architec-
tural quality (introduced in chapter 4) through 3 case studies. Our results reveal
that our approach can be applied in an industrial context. It is sufficiently usable
to allow the definition of new rules even by untrained users. Results can be con-
veniently integrated into existing monitoring solutions (e.g., dashboard) enabling
short feedback loops that advance the understanding of the system and encourage
proactive behavior. Scalability can be ensured by limiting the extent of the analysis
required for checking rules. The language we designed for supporting specifica-
tion of rules (Dictō) could be evolved to accommodate emerging requirements and
successfully managed to fulfill the needs of our users. The limitations discovered
during our study appear to be minor and will be possibly addressed in future iter-
ations. Since our goal is to reduce the cost of architectural conformance checking,
we value simplicity over completeness. In conclusion, we claim that the possibility
of easily integrating the capabilities offered by existing analysis tools, and of speci-
fying rules without the need of acquiring specific knowledge over the tool used for
checking it, are twodeciding factors thatmaywell contribute to building an effective
quality monitoring solution.
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7
The Path to Industrial Adoption

In this chapter we aim to empirically assess the dynamics involved in choosing and
adopting an automated conformance monitoring solution. We investigate the crite-
ria that need to be taken into account when designing, adapting and/or deploying
an automated quality monitoring solution within a company. We analyze a set of 14
interviews conducted with practitioners involved in architectural duties working in
four distinct Swiss companies to derive a list of criteria that influence the decision
of whether to adopt a conformance monitoring solution.

These criteria describe the different priorities that professionals take into account
when evaluating the possibility of transitioning to a new quality assessment tool for
conformance checking. Understanding which forces are involved and how to max-
imize one factor over another can make a difference between setting up a solution
that everybody ignores and one that actually contributes to improving the quality
of a system. To further understand how these criteria are valued in an industrial
context, we planned 3 case studies. We developed our own prototype and tried to
lead various professionals to adopt it within one of their projects.

Thanks to the acquired experience we identified five phases that might be encoun-
tered on the path towards successful adoption of a conformance checking solution.
Each phase is related to multiple judgement criteria that, based on our experience,
are worth taking into account in order to maximize the chances of higher acceptance
and impact of the conformance monitoring solution. Different criteria may be con-
sidered to be more or less important depending on various socio-technical aspects
that characterize the target organization.

7.1 Background

During our previous in-the field study (chapter 3), we observed that software ar-
chitects are clearly aware of having little control over the implementation of their
architecture. They typically express design decisions in terms of guidelines or spec-
ification constraints. These are supposed to be read and periodically checked by
developers but this hardly happens. As a project grows, quality checks become less
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frequent and more arbitrary. Knowing whether a certain architectural invariant is
actually correctly reflected in the implementation often becomes a matter of trust.

To overcome this issue and properly assess the conformance of a software system
with respect to a set of formerly defined architectural constraints, practitioners typ-
ically resort to specialized commercial tools (e.g., SonarQube1, SonarGraph2). Un-
fortunately the setup and maintenance costs related to such tools often outweigh
the benefits that can be derived from their results. In fact, most of these tools suffer
from three main limitations:

Poormaintainability: Tools are typically hard to set up and configure. Practitioners
are often afraid of adopting new solutions because of the effort typically required
for customization and integration. This effort is hard to estimate and to justify to
higher management.

Narrow scope: The tools currently available on the market are very specialized and
typically offer support for checking at most a couple of rule types. This means that
practitioners are likely to need multiple tools, based on heterogeneous conceptual
models and with low chances of integration.

Low usability: Introducing a new solution typically involves training dedicated
personnel, and producing explanatory documentation. The specification of rules is
typically a non-collaborative process and which requires specific technical knowl-
edge.

In our study, 4 out of 14 participants said they used tools in the past and later on
decided to switch to manual inspections due to the excessive costs involved in the
process. 6 participants did not even attempt to set up an off-the-shelf automatic so-
lution. The reasons behind these choices could often be related to missing support
from key stakeholders, lack of availability of an adequate tool and limitations in
formalizing and testing the desired invariant. Participants reported that the value
of conformance checking is often underestimated by decision makers. The “cost
of misalignment is not perceived” (A) and the “return of investment [of a confor-
mance checking solution] is not clearly seen” (A). “Developers do not care about
non-functional requirements” (E). “Automatic validation [of architectural constrain-
ts] would be useful and will eventually probably be implemented, but is not fea-
sible at the moment” (J) since “it’s not a high priority and nobody would exactly
know how to do it” (I). In other cases practitioners recognize that “there are things
which can’t be verified and decided automatically” (B). Sometimes, “verification is
not heavily used because most of the concerns cannot be formalized” (E). In those
cases “it’s better to delegate to humans (e.g., pair-programming, checklists)” (E). This

1
http://www.sonarqube.org
2
https://www.hello2morrow.com/products/sonargraph
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might be due tomismatches between a specific architecture and an existing tool (e.g.,
F could not use JDepend because the tool did not allow him to identify components
over package naming). Sometimes professionals recognize that “all their rules could
be checked with static analysis” (J) and that “if a tool existed it would be very use-
ful” (I). Unfortunately “the tools available today are not enough” (I) and nobody
feels qualified to contribute a new one on his own.

After collecting a considerable number of opinions, we reached the conclusion that
an automated conformance checking solution was typically desirable but consid-
ered to be too expensive to set in place. To solve this problemwe started developing
a solution that could at the same time address most of the identified requirements
and minimize the drawbacks encountered by the interviewed practitioners. The
prototype that we eventually developed reflected our understanding of this multi-
tude of viewpoints and experiences. We developed an informal and intuitive model
for describing the needs and expectations of our ideal user matured further as we
started using the prototype in multiple case studies. During almost two years of
collaboration, we started discovering new concerns, similar adoption patterns and
unexpected requirements across different organizations. This led us to explicitly
analyze and characterize all different factors that influence the way an automated
conformance checking solution is evaluated by professional users. In the remain-
der of the chapter, we try to reconstruct and analyze the process that needs to be
followed in order to establish a quality assessment solution within an industrial or-
ganization.

7.2 Study design

In this chapter we report on a blocked subject-project study [10]. Our goal is to
observe different case studies and generalize the adoption process through common
characteristics. To carry out our case studies we developed a prototypical solution
which was refined in response to emerging requirements and feedback. The aim
of this study is not to prove intrinsic properties of the tool, but rather classify the
events that happen around its introduction process.

Before planning our case studies, we interviewed 14 professionals working on tasks
related to software architecture (See chapter 3). We recorded approximately 18 hours
of conversation and collected several project documents (e.g., architecture specifica-
tion, developer guidelines). The qualitative data collected in this preliminary phase
were analyzed using coding techniques [94]. Our goal at this stage was to identify
important factors that may have a role in deciding on the selection, adoption and
maintenance of a quality assurance tool for monitoring architectural conformance.
As a result, we identified most of the criteria described in section 7.3.

In a subsequent phase, wedeveloped aprototypical tool formonitoring architectural
conformance (see chapter 4).
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Finally, we carried out five industrial case studies (see chapter 6 and Table 7.1) with
the intension of introducing our tool in the context of a live development project.

In the first case study (i.e., C1) we dealt with a consortium of vendors of an open-
source PHP application called Ilias3, an e-learning platform used internationally by
millions of users. In C2 and C3 we approached two teams working for a company
with one of the largest IT divisions in Switzerland. The team in C2 counts more
than 30 developers working full-time on a 10+ year migration project (from Cobol
to J2EE) of a B2B application used for managing orders and coordinate traffic. C3
was a smaller team responsible for the development of a J2EE basic framework em-
ployed in almost all the hundreds of projects running in the company. In C4 we
approached a medium-sized consulting company with public sector contracts. In
C5 we tried to establish a collaboration with a branch of one of the largest Swiss
insurance companies.

#
Organization

domain (employees)

Project

tech. - size (team)

Phase

Reached

C1 E-learning (12 vendors) PHP - 1 M (25) 5

C2 Transportation (1.000+) J2EE - 0.5 M (30+) 4

C3 Transportation (1.000+) J2EE - 50 K (5) 1

C4 E-government (1.000+) J2EE - 50 K (5) 1

C5 Insurance (1.000+) J2EE - n/a (n/a) 1

Table 7.1: List of project teams participating to our case studies.

The study was conducted over the span of almost one year. All the companies were
using some sort of commercial quality assurance tool. In C1, the collaboration was
carried out through a special interest group (SIG) responsible for the proposal and
design of new architectural concepts that could improve the overall quality of the
system.

The case studies reached various stages of maturity (See section 7.4). In the first case
study (C1), the tool was fully deployed and integrated into the production environ-
ment. In the second, we got it installed on single workstations and have it used
in isolation. In all other case studies, the tool was officially presented to the team
but was never fully adopted. In C3, we introduced the tool by showing some vio-
lations that we knew were relevant and partially already checked by the team. The
inability to continue to further stages highly depended on a general lack of trust and
low motivation. In C4, we interacted directly with higher management and imme-
diately gained interest and willingness to collaborate. Unfortunately the company
was subsequently acquired and restructured by a larger company. Our agreement,
which was in the process of being formally defined by the legal department of one
of their clients, was never made official. In C5, we similarly got in touch with higher
management and presented our tool. After the initial meeting we tried to propose
a project, but we didn’t hear back from them.

3
http://www.ilias.de
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7.3 Decision Factors

In this sectionwe characterize the decision factors that play a decisive role in driving
decisions when discussing over the adoption of a conformancemonitoring solution.
This classification is non-exhaustive and is entirely based on our direct experience.
It includes factors that were discovered by analyzing 18 hours worth of interviews
applying coding techniques (as described in section 7.2). Additional categories (i.e.,
performance, accuracy, feature set, analytics support) were discovered during the
case studies.

7.3.1 Product

Cost – As in almost any industry, cost is often a primary concern. Embracing a new
quality assurance solution typically entails new licensing costs and often requires
skilled labor for adapting and maintaining the acquired solution. “The automation
of conformance tests is expensive” (interviewee A) and “budget resources allocated
to quality related tasks is limited” (G) in most of the cases. “Automatic checking
[of architecturally relevant constraints] would be a big advantage” (G), but is not
always a “high priority” (J), given that the customer and non-technical management
often think that “the only important thing is that the product is delivered with the
right functionalities” (G). This leads to situationswhere architectural conformance is
checked “manually” (G), through generic tools (e.g., SonarQube (H)) or “is evaluated
[on the client side] on the basis of produced specification documents” (A). In general,
software quality“ is hard to quantify and management is always skeptical because
it concerns issues out of its domain”.

Usability – A usable software product should be easy to understand, learn and use
[58]. “Software architects usually do not care about [implementation] details, they
reason on a more abstract level” (K). They typically find themselves in the situa-
tion of taking decisions over architectural invariants which, in order to be checked,
would require them to deal with variably complex tools. Some architects “prefer vi-
sual representationswhen it comes to understand architectural structure” (H). Some
may even develop their own toolchain in order to check dependencies as specified in
an easily maintainable Excel spreadsheet (D). This shows that non-technical declar-
ative specifications are normally preferred over tool-specific configurations.

Performance – Software efficiency can be measured in terms of time and resources
consumed to complete a given task [58]. Analysis execution time is an important
feature of a quality assessment tool. If architectural invariants need to be checked
in near real-time (e.g., at commit-time, on request), performance becomes key in
providing a usable experience.

Accuracy – This quality is ensured if the software product is able to provide results
with the needed degree of precision [58]. Analysis results need to be as correct and
complete as possible. In our studies, we spent a considerable amount of time in
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validating the results of our tool. This process was crucial to increase the reliability
of our solution and to proceed with our evaluation.

Feature set – Users select and compare software products according to the features
they support [58]. In our case, the ability to describe and check multiple character-
istics of a system was relevant to our collaborators. It influenced the requirements
elicitation phase and was a clear discussion point when deciding on the adoption of
the tool. Features are often used for comparison with other commercial products.

Integrability – Software products don’t exist in isolation, but need to co-exist and in-
teract with other, independently-developed products in the target environment [58].
Conformance checking solutions are typically introduced into established contexts
and have to harmonize with pre-existing processes and tools. Practitioners expect
that a new solution can non-intrusively enrich their experience by providing infor-
mationwhen andwhere required. In fact, G advocated a conformance checking tool
with “integration with Word or Enterprise Architect” while J said that “it would be
nice to have rules checked by an IntelliJ plugin”. Some organizations have some
kind of periodic reporting mechanism already in place (e.g., email reports gener-
ated during the nightly build (G)) and would appreciate if those could be extended
instead of being replaced or replicated.

Proactiveness – To effectively enforce guidelines and guarantee architectural invari-
ants, one needs to be proactively reminded of relevant anomalies and opportunities
for improvement. “Constraints cannot be enforced if they are simply described in
a document; they either need to be implemented in a framework or a verification
tool must check them” (K). In fact, “people forget about rules or don’t even know
of their existence” (I). “An architectural specification is almost worthless” and “it’s
important to have continuous feedback (e.g., checks integrated in the continuous in-
tegration server)” (E). Developers need to be reminded of their mistakes and tools
should support them to prevent accidental violations.

7.3.2 Process

Transparency – Architects and developers are keen to have an accurate and up-to-
date overview of particular aspects of their system. More transparency over quality
related issues leads to “easier risk assessment and reduced hidden costs” (N). For
example, “detecting a dependency violation early during development [..] would
be very helpful” (K). Delivering convenient reporting reduces the risk of incurring
technical debt and “exposes conceptual fallacies” (K).

Analytics support – Rules and analysis results may have managerial value (e.g., es-
timate relevance/effort of tasks, validate new design concepts). In our studies we
observed that violations can be used to show progress over maintenance or migra-
tion processes. Thiswas achieved by describing the desired target architecture in the
form of constraints and considering the number of deriving violations as a metric
for estimating the time required for completing the transition towards the defined
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goal. Similarly, rule specifications can be used as a means to assess the feasibility
and effort involved in realizing complex design changes.

7.3.3 User

Engagement – Another important factor that contributes to the success of a con-
formance checking solution is its level of acceptance. As we have seen, developers
need to be properly motivated and encouraged to contribute. If they don’t feel suf-
ficiently involved in the process of defining and following common objectives, the
solution is likely to be soon ignored and eventually abandoned.

7.4 Adoption phases

In this section we describe the phases that we encountered while introducing an
actual prototypical solution in various IT companies. Each phase is linked to one
or more decision factors that must be taken into consideration during that particu-
lar phase of the process. The single phases and the associated decision factors are
described in Figure 7.1 and in the subsequent sections.

Promo%onDeployment
Rules	
Elicita%on

Process
Defini%onEndorsement

1 2 3 4 5

- Transparency
- Engagement
- Integrability

- Cost
- Accuracy
- Feature set

- Usability
- Accuracy
- Feature set

- Integrability
- Performance
- Proactiveness

- Engagement
- Proactiveness
- Analytics support

Figure 7.1: Adoption of an automated conformance monitoring solution: process
phases and influencing decision factors.

7.4.1 Endorsement

Introducing a new technical solution within a company requires support from a
competent and motivated person who understands the value of the proposed tool
and the implications that this has on a chosen project. We typically approached this
phase by setting up an introductory meeting with our contacts during which we
presented the main features of our solution. The presentation also included some
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exemplifying rules, and an outlook over possible integration options with currently
employed monitoring solutions.

In our experience we tried to approach different kind of users: developers and ar-
chitects. In C1, our first case study, we interacted with a special interest group (SIG)
consisting of 18 members founded to discuss architecturally relevant refactorings.
This community was clearly aware of the benefits that can be derived from extra-
functional maintenance activities. They have a distinctively proactive mindset, as
their group has set the goal to propose new tasks aimed at improving the overall
quality of the system. In this context we could easily convince them of the advan-
tages of our prototype. Most of the discussion that followed concerned the possible
political implication that the introduction of a new tool would have had on the or-
ganization.

In C2 we also interacted with a quality-aware proactive senior developer who be-
lieved in the benefits of quality assurance tools. He recognized the limits of the cur-
rent monitoring environment and was willing to experiment with other solutions.
In this case, the major concern was regarding the capabilities and the accuracy of
the proposed solution. As a developer, he was very interested in uncovering new
existing flaws and inconsistencies. Since his role did not entitle him to take any or-
ganizational decision, we had to follow a long procedure to define a pilot project.
During this procedure, we had to negotiate the terms of our collaboration with the
legal department of the company and subsequently discussed the project with the
leader of the team our contact person was part of.

In C3 we interacted with the heads of a team responsible for a smaller, yet very
strategical, project run within a larger organization. These 4 people maintained a
framework that was used as a foundation by most of the 200 projects developed in
the same company. Unfortunately, they were less inclined to consider the adoption
of a new quality monitoring solution. We analyzed their code base and showed
them new violations that they were not capable of finding with their current toolset.
Despite that, they dismissed the idea of refactoring the uncovered flaws and pre-
ferred to maintain their code base in its current state. Their attitude towards code
quality was more reactive. If somebody reported a major architectural violation,
they would have looked into the problem and discussed a solution. Introducing an
automated tool that supported this task was in contradiction with their approach.
The effort invested in preventive maintenance had to be kept to the minimum.

In C4, we had the chance to discuss the adoption of the solution with two company-
wide branch managers responsible for all major architectural decisions. Having
the opportunity to discuss the subject with technically competent decision makers
clearly facilitated our task. We could easily convince them of the utility of our pro-
totype and we could quickly define a pilot project for testing it out. Getting in touch
with these persons was less complicated because of the limited size of the company
(100-150 employees). The advantage of encountering less resistance during the first
encounter was lessened by the fact that both stakeholders were often very busy and
tended to schedule subsequent meetings at longer time intervals (compared to the
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other case studies).

Relevant Decisional Factors

Cost: One of the primary concerns when discussing the adoption of the new tech-
nical solution was its cost. In our experience, especially when dealing with people
having little or no decision power, we encountered appreciation for our choice of
relying on open-source analyzers. On the other hand, the interest seemed to de-
crease when discussing analysis features that were offered by equivalent commer-
cial tools already in use in the company. In C3, the architects were already using a
rather expensive tool for checking dependency constraints. The possibility of inte-
grating the results produced by the existing solution with the information produced
by our tool seemed to be less appealing since money had already been invested in
the competing solution. Also in C2 developers were using a commercial solution
for checking dependencies. In that case, the person responsible for maintaining and
operating the tool clearly admitted that the costs related to the use of that solution
(i.e., licensing, training) were clearly not proportional to the benefits offered. Given
the tight budget typically allocated for quality analysis related tasks, it is important
to define a price which is reasonably contained and proportional to the amount of
distinguishing features offered.

Accuracy: The results produced by an automated qualitymonitoring solution should
be sufficiently precise in order to be considered useful. In C2 and C3 we discovered
that our tool found between 400% to 500% more violations than the competing tool
currently in use within the project (C2: our tool found 7 illegal logical dependencies,
SonarGraph only 2; C3: our tool found 18 dependency cycles, SonarQube only 3).
This difference in accuracy is due to different analysis strategies employed by the
different tools. In C2, accuracy played a significant role in deciding on the utility
of the proposed solution. In C3, accuracy was overshadowed by the cost of setting
up and integrating a new tool, justifying its existence to management and investing
effort into dealing with the detected violations.

Feature Set: One of the differentiation factors that distinguishes our prototypical
solution from competing alternatives is the support for a wider variety of constraint
types. The possibility of specifying rules concerning multiple design facets in the
same specification was a key deciding factor in C1. During the first meeting, partic-
ipants immediately started to think about the type of invariants that could be useful
to check in their project. Several people even proposed new types of rules that were
not described in the initial presentation. Learning about the extensibility of our ap-
proach and the option of designing new custom analyses with a relatively modest
effort was clearly one of the main arguments that convinced them to invest in the
solution. In C5, one of the software architects participating in the initial meeting
asked about the possibility of defining and checking cross-project invariants. Also
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in this case we can see how functionality is an important factor when discussing the
high-level characteristics of a conformance monitoring solution.

7.4.2 Process Definition

If an organization agrees on supporting the introduction of the proposed solution,
one must define how this can be done in concrete terms. In our case studies, we
typically discussed various aspects. We analyzed how the solution was supposed
to be integratedwith the current infrastructure aswell as theway future stakeholder
would have to interact with it. Technical aspects are easily outlined and should be
quickly sorted out by the service provider. Changes to the process require more
careful analysis, since they may have a deeper impact on the performance of the
organization. If a tool heavily interacts with current procedures and does not pro-
vide obvious advantages to its users, this tool will soon be neglected. Our solution
provides contextual information that exposes anomalies in the developed code. By
delivering our information through an existing information medium, we reduce the
chance of altering established procedures and minimize the training costs.

In C2, we were asked to implement rules for expressing constraints described in an
internal documental repository (i.e., wiki website). All developers were asked at one
point in time to read them, but few of them managed to keep them in mind and to
periodically check whether they were updated. To reduce the overhead caused by a
potentially useless activity, we decided to combine the existing documentation with
executable rules that could be used to check the consistency of the developed sys-
tem. This would have required them to delegate the task of defining new rules to
the author of the guidelines. Rules written by this person would have, where nec-
essary, required the intervention of a technical facilitator trained to integrate third
party analyzers to support the checking of the defined rules. This technical facil-
itator would have initially been assisted by the original author of the tool. At the
end of an initial training phase, the facilitator should have been capable of dealing
with common integration scenarios. More complex cases, requiring deeper changes
in the evaluation process, would have still required the knowledge of the original
developers. The users ultimately inspecting the violations resulting from the val-
idation of the rules, were expected to autonomously understand and react to the
reported anomalies. Results were expected to be displayed through a pre-existing
dashboard and handled through an integrated ticket system (See Section 7.4.3).

In C1, we discussed the target process together with the participants of the refactor-
ing SIG. These people warned us of the risk of developing a solution that could not
be fully accepted inside the community. In the past, another user deployed a contin-
uous integration server that periodically built the core module of the project. This
service was largely ignored because it was badly advertised to the community. Our
solution had the potential of supporting vital quality assurance tasks but needed to
be promoted in a convincing way. The tool had thus to be silently deployed and re-
vealed as a complementary feature of a new, yet to be set up, continuous integration
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server. The plan consisted in assigning the responsibility of deciding on new rules to
the SIG. New rules would have been announced during a bi-weekly physical meet-
ing that involved representatives of the major vendors involved in the community.
People participating in this meeting should be gradually sensitized towards non-
functional issues and should have the right to veto the proposed rules. The discus-
sion of rules should not require too much time, as the meeting is mostly designed
to propose and discuss over functional requirements. Users should eventually be
encouraged to look into the current violations by reporting the results produced by
our tool. The details of each violation can be found in the continuous integration
web front-end.

Relevant Decisional Factors

Transparency: In C1, users were positively inclined towards policies that supported
and encouraged transparency. The fact of being part of an open community with
a flat hierarchy made them more prone to engage in public assessment activities.
Despite this, we decided to report on the introduction of new violations upon com-
mit sending only private emails to the developers responsible for their introduc-
tion. During the bi-weekly meeting it was also expected that only the positive inter-
ventions (i.e., violation removal) were mentioned publicly. Transparency is a good
principle if counterbalanced by respect for the dignity of the involved people. In
C2, developers were divided in 2 categories: internal (i.e., developers contracted by
the company) and external (i.e., consultants hired through a third-party company).
External developers can be easily dismissed and care more about maintaining their
reputation. Exposing flaws that could be associated to them was immediately con-
sidered as a threat to their position. Based on this consideration, we decided to
first test our solution within a smaller group of users exclusively composed of de-
velopers. This strategy would have helped to avoid unnecessary tensions and to
gradually change the attitude of the team towards quality related issues.

Participation: In C2, we had the chance to interact with the developer responsible
for maintaining a previously established dependency checking tool. This person
emphasized that providing prompt feedback to the users is a key feature of any
quality assessment tool. This must be true for users interested in the results of the
analysis asmuch as for users interested inmaintaining the rules checked by the used
tool. In our case we aimed at integrating our tool with a dashboard system that was
regularly refreshed after each build of the project. Rules defined for our tool would
be defined though a dedicated web editor that supported the ability to interactively
check their applicability to the target system. New tickets and email notifications
would be created after the introduction of new violations. Pre-configurable ticket
prioritizationmay also be used to direct the attention of the user. In C1, participation
was seen as a key ingredient of a successful service. To reach a sufficient number of
developers, we aimed at maximizing transparency and introducing new incentives
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for rewarding active developers. Users would be automatically listed in a leader-
board where the most contributors are ranked based on the number of violations
they have removed. Another strategy to promote the involvement of developers
consisted in presenting only the latest introduced violations while consulting the
online report displayed within the continuous integration service. This reduces the
chance that the user may feel overwhelmed and makes the effort required to elimi-
nate the violations more easy to estimate. Remaining violations can still be browsed
by expanding the view.

Integrability: Quality assessment tools are typically expected to be naturally stream-
lined into the process. In C2, the previously adopted dependency checking tool
offered support for integrating the results into SonarQube. This feature was fun-
damental for making the violations visible to the developers. Separately produced
reports cannot be regularly inspectedwithout a clear incentive. SonarQube not only
provides current measurements of the system but is also used to manage change
tasks. This last feature makes it an essential platform of communication, that hap-
pens to be visited frequently by all the users involved in the development process.
Our choice of creating new tickets for newly introduced violations reduces even
more the distance of our solution from the center of attention of our target users.
In C1, we chose to integrate our results inside TeamCity. This service already re-
ports failed unit tests. By adding an additional view that shows the results pro-
duced by our tool, we emphasize the duality of a software system by displaying
non-functional violations side-by-side with functional failures. Also in this case,
having all information seamlessly integrated behind one coherent interface is likely
to reduce resistance to adoption and increases productivity. The possibility to also
link violations to impacted code elements also increases the convenience of the so-
lution.

7.4.3 Rules Elicitation

Architects and developers have a very personal understanding of what constraints
regulate the architecture of their system. This interpretation is typically vague and
might not always fit the framework proposed by quality assessment tools. To bridge
the gap that separates tools from design ideas, we first started by designing a lan-
guage that could beused to replicate actually observed specification patterns. Putting
language before functionality increased our chances of acceptance and played an
important role in reducing the barriers to usage of our prototype.

The language that we used in our case studies, Dictō, is based on a simple model
(Figure 7.2). Dictō can be used to describe properties and relations on and between
entities defined in a system. Rules can be expressed in different modes (e.g., Test-
Methods must have annotation ‘@Test’ or only TestMethods can have annotation
‘@Test’). The DSL resulting from this model proved to be effective in eliminating
any distraction related to unimportant technicalities linked to the the tools used for
the analysis. The languagewas generic and abstract enough to accommodate a large
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variety of concrete rules. This encouraged our collaborators to explore very different
requirements and led us to iteratively adapt and refine the language to meet their
requests.

mode: {must, cannot, ..}
argumentConnective : {∨,∧}

Rule

RelationRule
PropertyRule

Entity

argu
men

t

subject

arguments: String[]

*

*

Figure 7.2: Language meta-model

In both case studies, rules were initially defined based on examples provided for
illustration purposes. This helped us to gain familiarity with the general concepts
governing our language. Later on we encouraged them to engage in the definition
of more experimental rules. We suggested to examine current developer guidelines
and to formalize rules that were (or that could have been) specified in such a con-
text.

InC2, the user formalized a set of dependency constraints thatwere currently checked
on his project through another tool (i.e., SonarGraph). The specification of these con-
straints was previously regarded as technically demanding and was managed by
one single developer, trained for the task. In its new translated form, the rules were
finally under the control of our collaborator. This helped him to get a better under-
standing of the current architecture and to extend the current set of invariants with
new rules concerning the module he was working on.

To enable the analysis of other documented guidelines and constraints, we were re-
quired to extend our tool. As our collaborators realized that unsupported require-
ments could be easily integrated in the solution, they started to discuss additional
ideas and to propose constraints that divergedmore andmore from the initially sup-
ported feature set. The proposal of unusual and unpractical rules represented a clear
achievement, as it meant that our users could fully concentrate onwhat theywanted
to check without considering how this could be done. In other words, our DSL has
been effectively used as a design tool instead of just being considered as a pure spec-
ification tool. Relying on a declarative language that can be easily understood by
humans as well as tools, reduces the cost of formalizing and communicating knowl-
edge and favors discussion.

In C1, other stakeholders started to propose rules related to their area of expertise or
to recent tasks. Some managed to formulate syntactically correct rules by observing
previous specifications. Others provided more prosaic descriptions. But eventu-
ally everybody could understand the rules written by others without any particular
assistance. One of the points that contributed to making this possible was the in-
troduction of inline Javadoc-like documentation in rule specifications. Thanks to

119



this beneficial outcome, the refactoring SIG started to discuss new refactoring ideas
together with enforcement policies. New rules were presented to superior decision
organs and could be fully discussed without any previous instruction.

In both case studieswe established short feedback loops duringwhichwe iteratively
defined, analyzed and corrected each respective project ruleset. In each iteration we
put care into manually validating the violations reported as a result of our rule anal-
ysis. By doing so, in C2, we discovered several infractions that were acknowledged
as concrete issues and were ignored by other tools currently employed by the team
(e.g., SonarQube, SonarGraph). This increased the trust in our tool and reduced the
distance between our solution and other comparable commercial products. In C1,
the analysis of some reported violations brought the discovery of a previously un-
known design anti-pattern (known as courier anti-pattern4). This in turn led to a
new refactoring initiative and consequent rules that guarantee its implementation.
In this case we observed how our solution could actually concretely support a feed-
back loop model for continuous quality improvement.

Relevant Decisional Factors

Usability: This was clearly one of the most deciding factors. In C1, stakeholders
indirectly involved in the experiment were able to autonomously define new rules
(e.g., IliasCodebase cannot depend on eval; IliasCodebase cannot depend on SuppressErrors).
The addition of documentation comments in the specification (used for describing
the semantics of rules) reduced the gap between ordinary informal documentation
and the more formal syntax of our language. Rules could be easily discussed with-
out the presence of the original author. The overall friendliness of the language
was partially undermined by the absence of comprehensive documentation and a
proper rule evaluation environment (i.e., sandbox environment). In C2, team mem-
bers carefully avoidedmaintaining the rules specified for SonarGraph because of the
poor usability of its configuration language. This shortcoming limited participation
to a much smaller and less representative group of stakeholders.

Feature set: The capabilities of our prototype were soon questioned when users
started to carefully consider their requirements. Questions like “is it possible to
define..” or “how can I check if..” started to appear in C1 during physical and vir-
tual discussions as soon as more users were involved in the process. Other users
suggested rules (e.g., “IliasCodeBase must be compatible with PHP5.3”) that were
syntactically correct but could hardly be checked using any kind of tool currently
available on the market. Negotiating the scope of the offered service is a clear re-
sponsibility of the solution provider and will help him to focus the requirements
elicitation process.

4
https://r.je/oop-courier-anti-pattern.html
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Accuracy: In C2 and C3, we defined rules concerning the presence of cycles and
dependencies in the project. In both cases, our analysis reported violations that
were completely ignored by popular commercial tools used by the organization
(e.g., SonarQube, SonarGraph). These tools have a good reputation and a solid user
base but, without a means to establish the accuracy of their evaluation, it is hard to
question the value of their application. Offering some reference measurements and
generally assessing the accuracy of the produced results will increase trust in the
proposed solution.

7.4.4 Deployment

Once defined, rules need to be verified automatically on a regular basis. To en-
able this behavior, we have to integrate our solution with an existing quality control
system (e.g., continuous integration server, dashboard). The challenges posed by
this process may vary depending on the technical environment, the current devel-
opment process and the general attitude of the team towards automated feedback
mechanisms. In our case studies we opted for a simple setup (see Figure 7.3).

     
       R1
       R2

Rules

Checker

Reporting System
R2’

Tools

R1’

Figure 7.3: Automated conformance checking solution

In short, we analyze the rules defined during the previous phase through a set of
pre-adapted off-the-shelf analyzers. The results are then integrated into a visual
reporting system (e.g., dashboard).

In C1, our collaborators decided to display the results as a customviewwithin Team-
City5, a continuous integration system. Through this approach they succeed in ad-
dressing both functional (i.e., unit test) and non-functional (i.e., architecture confor-
mance rules) aspects within a single interface. This allowed also for skeptical users,
who should at least care about functional tests, to be exposed to architectural issues.
In our implementation, we put care in not overwhelming the user by only showing
the violations introduced in the latest build. All violations, including those intro-
duced in the past, are still available for inspection by switching to a secondary view.
This choice was mostly due to the fact that developers may be more interested in
fixing issues introduced by recently contributed changes. Users might also be more
motivated to address the issues if they see a smaller number of work items. An
additional summary report was produced every two weeks and served as basis for

5
https://www.jetbrains.com/teamcity/
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discussion during the periodic physical meetings organized by all the organizations
participating to the community.

In C2, the team used SonarQube as main issue tracker. We initially aimed at extend-
ing the current installation by automatically adding our violations as new issues.
This strategy would have allowed for a very smooth transition with no changes
in the workflow and full integration of our analysis. Unfortunately all SonarQube
installations available in the organization stem from the same customized imple-
mentation. This made it almost impossible, given the size of the company and the
intricacies of their governance, to extend the reach of our experiment to all themem-
bers of the team involved in the case study. As an alternative we decided to deploy
our solution locally on one of the workstations used in the project. As a result we
could simulate the productive environment and observe how our solution would
have been used in the originally planned scenario.

Relevant Decisional Factors

Process Integration: One of the developers working in C2 and assigned to themain-
tenance of SonarGraph said that “integration is key”. He himself had to integrate
the results produced by his tool into SonarQube before and recognized that without
that step nobody would have cared about the violations it reported. Extending a
familiar and consistently used reporting instrument is essential to reach out to the
end-user instead of requiring him to change his practice. In C1, we introduced our
results by enhancing a long needed continuous integration application. The appeal
of this new application granted sufficient support for our solution.

Performance: The time needed to complete our analysis played an important role
during the deployment phase. In C1, we spent considerable effort to bring the time
needed to check our rules from hours to minutes. To make this possible we had to
optimize our prototype and improve some analysis techniques. Without this engi-
neering effort, the solution would have been useless since developers expect feed-
back shortly after they commit. Also in C2, we had to deal with a large code base.
This meant that multiple iterations were just dedicated to reduce analysis time. In
both cases we had to make compromises over the precision of the analysis. This
meant discussing with our collaborators over the minimum amount of information
needed to describe violations in such a way that they could lead to a concrete action
plan.

Proactivness: A developer in C1 emphasized that that “immediate feedback is im-
portant”. There is evidence [64] that providing timely feedback on potentially de-
grading quality issues can significantly contribute to preventing architectural decay.
In C2 we sent email to contributors after each commit to expose violations that she
introduced in her last change. Once again we tried to reduce the burden on the user
by reaching out to her.
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7.4.5 Promotion

One of the main focuses of our solution, as stated by our collaborators, should be to
actively contribute to improving code quality and to communicate the value of the
implied effort to management. In C1 the reactions towards our tool were initially
rather conservative, since the tool had no commercial history and was not believed
to be reliable. By involving our collaborators in all the phases of the study and
openly discussing possible improvements and limitations we slowly gained their
trust. We gladly observed that the representatives of the various sub-communities
could be involved in the process of discussing new rules. In fact, our tool-agnostic
specification could be used to provide a concrete insight into the activities of the
SIG as well as enabling management to take decisions on the concrete aspects that
defined them. OurDSLbecame an effective tool for negotiatingwork items, express-
ing new concerns and assessing completed tasks. The support so far provided by
management, was essential to establish a wide and legitimated dialogue. The fact
that this assembly usually prioritizes the discussion over functional features and
typically finds place under tight time constraints, does not guarantee that the dis-
cussion will continue to be kept at regular intervals. We assume that backing from
a motivated sub-community (i.e., SIG) needs to continue to be provided.

After observing the beneficial contribution of our solution, other members of the
community volunteered to deploy our solution in their own environment. In fact,
beside the main branch, accessed by the whole community, there were other client
specific customizations maintained by single vendors. One of those vendors is cur-
rently working towards integrating our solution in his own continuous integration
server (i.e., Jenkins6).

Relevant Decisional Factors

Engagement: In C1, we carried out a survey and found that developers were pos-
itively impressed by our solution. They observed that “it definitely leverages the
discussion about architecture and separation of concerns”. They commented that
rules were readable and meaningful for the project. To further incentivize them, we
also decided to create a leaderboard7 that tracks who removed the most violations
from the code base. This simple expedient, already exploited in other communities
(e.g., StackOverflow8), helped us increasing curiosity towards our analysis. One
contributor said: “I searched very deliberately for violations within our modules
and fixed them, on one hand to get our modules violation-free and on the other
hand the leader board influenced me”.

6
https://jenkins-ci.org
7
http://ci.ilias.de/DictoStats
8
http://stackoverflow.com
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Proactiveness: In C1, every developer that we managed to contact through meet-
ings or surveys stated that he is strongly in favor of architectural checks. Yet, when
it comes to proactive actions, most people do not seem to have the time to work on
quality related issues. This led us to focus on the proactive elements of our integra-
tion with the continuous integration server. We paid attention to setting up passive
mechanisms that required minimal or no effort from the user. Analysis results are
generated and communicated automatically and results are easily reachable in a con-
text where the user would already be looking if she is interested in reports related to
quality. Also the rule definition process should support proactive thinking. In C1,
rules are defined to guarantee the correct implementation of new design ideas. By
continuously inspecting and discussing the violations resulting from the analysis of
those rules, developers grew their understanding of the system and even discovered
new architectural anomalies that needed to be addressed. This unexpected virtuous
circle once again confirmed the role of a well engineered conformance solution in
high-level design related discussions.

Analytics Support: As previously mentioned, reports produced by our tool were
also used to show progress over ongoing development tasks. Violations could show
how far the current implementation was compared to a specific target architectural
design resolution. This helped at the same time to strengthen the sense of control
over non-functional aspects of the system as well as increasing the transparency of
the development process.

7.5 Discussion

Our case studies help to gain a practical insight into how an architectural confor-
mance solution can be introduced in an industrial context. We ran several case stud-
ies and report on the strategies employed to gain full adoption of our tool. Despite
our best efforts, we did not manage to cover all the phases outlined in our model
(section 7.4) for every case study. We recognize that our study required a signifi-
cant commitment by both involved parties and that most industrial organizations
are skeptical towards innovative ideas. This explains why most case studies ended
during the first phase. At the beginning it is important to gain the support of an
active community or a relevant decision maker, and this did not happen in some of
those cases. In general, we observed that political tensions that pre-existed within
the organization had the biggest influence over the success of our project. Differ-
ent social aspects (like fear of being discredited, of exposing inconvenient truths, of
contradicting a superior or losing credibility in front of the colleagues) played an
important role over the decisions that were taken along the way.

Despite the partial completeness of some case studies, we still believe that our expe-
rience helped us gain a deeper understanding into the process undergone while in-
troducing a generic architecture conformancemonitoring solution. Our case studies
show that the users involved in the adoption process might have different priorities
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but normally share the same concerns. The decision factors described in section 7.3
were partially identified before the beginning of the study and proved to be im-
portant points in our decision making process. Some of the decisions we took had
observable effects which could be later on evaluated and discussed. The usability of
our prototypical language, for example, appeared to be a relevant discussion point
during the elicitation phase and showed its beneficial effects towards the end of the
study, when more users started to participate to the definition of rules. Similarly,
the integration of our solution within the existing infrastructure was considered rel-
evant as we had to define the overall process required to sustain the solution and
appeared to be a crucial aspect in later phases of the study (according to surveys
and usage statistics). The decision factors that we analyzed in this chapter should
be considered for general guidance when defining a plausible adoption strategy.
The analyzed criteria described in our work won’t necessarily help in reaching a
successful outcome but should contribute in reinforcing the assumptions that one
might have towards the general process.

The phases described in section 7.4 and elaborated more in detail in the following
sections have been inferred directly from our experience. We compared the different
case studies and tried to factor our common activities and processes. As an outcome
we obtained a sequence of replicable phases that can be used to break down our case
studies. The resulting process model should be sufficiently general to be recognized
in almost any context that entails the introduction of a new system for technical
support. Themain purpose of themodel is to create a link between easily observable
phases and the deciding factors identified to answer RQ1. The fact that those phases
could be used to describe the case studies encountered in our experience provides
empirical evidence that those phases can be used to establish a successful quality
monitoring solution within an industrial organization.

7.6 Related Work

Several authors report on the application of tools for checking architecture confor-
mance in an industrial context.

Rosik et al. [107] describes an industrial application of a technique based on reflexion
models [96]. The authors conclude that developers value their solution positively
but violations are not fixed in a timely manner. Our studies were considerably more
complex (i.e., more developers, legacy code, more type of rules) and partially con-
firmed the observations reported by Rosik et al.. We observed that violations are
typically resolved as long that the effort involved is contained and adequate incen-
tives are provided. Herold et al. [53] elaborate on the technical details of a rule-
based architecture conformance checking tool used in an industrial case study. The
approach is conceptually similar to ours but restricted to a particular type of rule
(i.e., dependency constraints). The studies show the importance of process integra-
tion and the use of a simple and user-friendly formalism to increase maintainability.
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Ganea et al. [40] evaluate their quality assurance tool by defining a non-comparative
experiment involving industrial users. The authors recognize the importance of re-
ducing the number of false positives, seamless integration, unobtrusive feedback,
performance and user feedback. All conclusions are drawn from a controlled ex-
periment, but still provide a comprehensive picture of what factors may influence
the acceptance of a quality assessment tool. In general all mentioned authors tend to
focus mostly on describing their solution instead of analyzing the process followed
to introduce it within a specific organization.

Other studies explicitly analyze the impact of introducing a quality assurance tool in
an industrial context. Sadowski et al. [108] describe a programanalysis platform that
integrates multiple lint tools and exports all detected issues to a review system. The
authors emphasize the importance of actionable results and workflow integrability.
Users are particularly sensitive to false positives and value the ability to share their
configuration with the other members of their team. Despite the slightly different
nature of the tools discussed in their study, Sadowski et al. reach similar conclusions
as those reported in this chapter. Johnson et al. [61] interview 20 practitioners that
use static analysis tools on a regular basis. The conclusions drawn from this study
are similar to those reported by Sadowski et al.. Participants criticize the poor us-
ability of the tools (e.g., result navigation, result understandability, settings sharing,
customizability) and stress the importance of quick feedback.

7.7 Conclusion

In this chapterwe describe how an automated conformancemonitoring solution can
be adopted in the context of an industrial project. We describe this process in terms
of its composing phases and the deciding factors that influence its course. Our aim
is to offer a comprehensive overview of the forces involved in such a delicate course
of events.

Our experience shows that a quality assurance solution should be above all cus-
tomizable and usable. Developers are typically not encouraged to react to quality-
related issues andneed to be properly informed andmotivated. This can be achieved
through continuous automated analysis, non-overwhelming reporting and various
types of incentives (e.g., reputation points). Architectural inconsistencies need to
be communicated as small and easily manageable tasks. Resistance to change can
be overcome by integrating the new solution with a pre-established quality control
system.

Through our experience we hope to provide guidance to professionals and aca-
demics who intend to introduce a similar solution in a company.
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8
Conclusions

In this last chapter we summarize the contributions made by this dissertation and
point to directions for future work.

8.1 Contributions of this Dissertation

In this thesiswe argue that usability and extensibility are crucial aspects of any archi-
tecture conformance checking solution. We state that a cost-effective solution should
hinge on a unified approach based on an extensible, declarative and empirically-
grounded specification language.

We presented Dictō, a DSL for defining architectural rules, and Probō, a rule check-
ing engine designed for extension. By using a semi-formal practice-inspired declara-
tive language, we are able towrite tool-agnostic rules that are accessible to untrained
stakeholders and, at the same time, can be automatically processed by a confor-
mance checking validator. Dictō is designed to seamlessly adapt to new extensions
of the backend. The language can specialized to the requirements of a specific project
without compromising its usability. Our approach has proven to be applicable in the
context of various industrial projects.

Our contributions are the following:

1. We surveyed existing approaches (chapter 2) and performed an extensive on-
the-field study (chapter 3) to understand the main opportunities, challenges
and obstacles faced by practitioners when performing architecture confor-
mance checking.

2. We presented a novel approach to architecture conformance checking (chap-
ter 4). The approach was empirically validated by performing various indus-
trial case studies (chapter 6, chapter 7).
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3. As part of our approach, we iteratively designed a language for describing
architectural constraints (chapter 4). We analyzed different usability trade-
offs and took into consideration practitioner’s feedback (chapter 6).

4. We presented a novel approach for enriching the results of a conformance
checking analysis by providing refactoring hints for guiding the user in the
removal of dependency cycles (chapter 5).

5. We analyzed the social and technical implications of introducing a new archi-
tecture conformance checking solution in the context of an industrial project
(chapter 6, chapter 7).

8.2 Future Research Directions

Having defined our approach to architecture conformance checking and discussed
various opportunities to reduce the overall cost of this quality assurance activity, we
identify scope of further work in this area.

Simplified Specification Process: During our on-field study, several professionals ex-
pressed interest at having a solution that seamlessly integrated with the cur-
rent environment used to describe and document software architecture. With
a dedicated plugin, Dictō rules could be directly embedded in a Word docu-
ment or specified in a separate view of an IDE. Developers might also be in-
terested in specifying rules in the code (using specially annotated comments).
Investigating and comparing different options might lead to a better under-
standing of practitioner’s needs and expectations.

Reducing the Feedback Loop: Ruleswritten inDictō can be validated through Probō
in a single batch execution step. The solution is designed to be run offline and
periodically. To increase the effectiveness of our approach, one could imagine
having a real-time solution that notifies the user of new violations at the same
moment in which they are introduced. Results could be displayed directly
in the IDE and could point directly to the artifacts affected by the detected
inconsistency.

Automatic Rule/Fix Mining: In our approach, rules are defined by a user who has a
good understanding of the architecture of the system and is capable of formu-
lating rules that reflect the implied constraints. These rules could be also auto-
matically mined from existing software corpora and suggested to the user on
the basis of some previous technical choices (e.g., adopted framework). Rules
(and relative fixes) could be detected by looking at homogenous set of files
(e.g., Xml configuration files, classes with a special annotation) and searching
for regularities and outliers. By analyzing a sufficiently large amount of data,
we could infer new rules and, by taking into account historical data, we could
extract previously applied fix patterns.
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Relevant Rules: At the beginning of our work, we performed various studies to find
out which rules are normally considered relevant for professionals. While
developing and evaluating our prototype we encoded some of these rules
and discovered others over time. As of today, we still lack a comprehensive
overview of which rules software designers need to enforce on a system’s im-
plementation. Further empirical studies are needed to investigate current re-
quirements and provide solid ground for the development of future analysis
solutions.

Logic Programming: Our approach is related to logic programming in general and
modal logic in particular. By closely analyzing the similarities between Dictō
and existing logic formalisms, one could study alternative ways for express-
ing rules or exploit existing inference engines for validation. By reimplement-
ing our solution based on amore formal foundation, we could benefit of addi-
tional guarantees regarding internal consistency (e.g., absence of logical con-
tradiction) and correctness of the results (tools developed in this field are ma-
ture and reliable).

Model Driven Development: Dictō is a declarative textual specification language for
encoding architectural rules. In some domains (e.g., automotive, embedded
systems), professionals use similar languages for describing the design of their
system. Languages like AADL are used as input for MDD (model driven de-
velopment) processes to define the main architectural features of embedded
systems. Studying such languages and their platforms could lead to a better
understanding of the requirements commonly encountered by practitioners
and the challenges related to their implementation.

8.3 Summary

We propose a novel approach to architecture conformance checking. By providing
an extensible, declarative and empirically-grounded specification language to the
user and augmenting the analysis results with operationally relevant recommen-
dations, we can reduce the overall cost of the process. This result is achieved by
reliving the user from automatable tasks and increasing the overall usability of the
task.
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A
Qualitative Study - Interview Questions

The quantitative study, described in chapter 3, was based on the questions reported
in this appendix.

• Briefing:

– Describe a recent noteworthy project;

– What was your role?;

– Who designed the architecture?;

– Which process was adopted?

• Architectural requirements:

– Which were the most important aspects in the architecture and why?;

– Were they expressed as quality requirements (QR)?

• QR specification:

– How was architecture documented?;

– How were QR specified?;

– What was the specification used for?;

– Was the specification maintained?

• QR validation:

– Which QR were tested and how?;

– When are they validated?;

– Based on which criteria did you decide what to test?;

– Which tools did you use?;

– Who defined and maintained the tests?
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B
Quantitative Study - Survey Questions

In this chapter we include some fragments of the survey submitted to the partici-
pants of the quantitive study described in chapter 3. The full survey is available in
the form of screenshots on our website1.

6/5/14, 11:11 AMArchitecture Constraints Survey

Page 1 of 1http://scg.unibe.ch/survey/survey.php

Thanks for your collaboration.
Andrea Caracciolo
caracciolo (at) iam.unibe.ch

Survey on Quality Requirements

In the following survey you will be asked to estimate the relevance of several quality requirements. 
At each step you will be presented with:

a quality concern: an interest which pertains to the system's development, its operation or any other
aspects that are critical or otherwise important to one or more stakeholders.
some examples of quality requirements related to the specified quality concern.
questions related to the quality concern.

The evaluation is subjective and should be based on your personal professional experience. 
Before expressing your evaluation, please make sure you carefully read and understand the examples given for
each quality concern. All information obtained from this study will be kept anonymous. 

Motivation
The architecture of a software system is the result of a number of design decisions that aim at satisfying a given set
of quality requirements, such as ease of evolution, good run-time performance, and rapid build times.
Architecture is rarely explicit in code and alignment between intended and actual architecture is often very difficult
to validate and requires consistent human effort.
There have been several attempts to address this problem (e.g. component dependencies: JDepend, Sotograph,
Structure 101; performance: JMeter) but there are still many aspects that remain ignored.
Our goal is to develop new ways for expressing and validating quality requirements. 
We envision a set of tools that help identifying implementation solutions that break specified architectural
requirements. This questionnaire will help us to identify the most relevant and commonly specified aspects of an
architecture. This will provide a solid starting point for our research project. 

Start Survey

Figure B.1: Landing page

1
http://scg.unibe.ch/download/AC/Survey.pdf
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6/5/14, 11:16 AMArchitecture Constraints Survey

Page 1 of 1http://scg.unibe.ch/survey/survey.php?id=11112&q=1

 natural language

 semi-formal notation: 

 ad-hoc formal notation

 common formal notation: 

 tool-specific notation: 

 other: 

 no verification

 code review

 blackbox test

 whitebox test

 testing tool: 

 other: 

Step 1 / 22

NextBack

quality concern

Naming conventions

examples of requirement related to this concern

 • Component Interfaces end with the suffix '_CI'.
 • Java bean classes end with the suffix 'Bean'.
 • File names must conform to the following pattern: [DATE]_[SOME-ID].txt

questions (REQUIRED)

a. FAMILIARITY
Have you ever seen this kind of requirement in a project ?

 Yes  No

b. IMPACT ON PROJECT SUCCESS
How important was it to satisfy this kind of requirement ?

 1
No impact on the
project

 2
Low impact

 3
Moderate impact

 4
High impact

 5
Critical to project
success

questions (OPTIONAL)

c. FORMALISM
How was the requirement specified ? 

d. VERIFICATION
How was the requirement validated during development ?

e. COMMENT
Do you want to share any comment or personal example for this kind of requirement ?

Figure B.2: Constraint evaluation page
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C
Qualitative Study - Taxonomy examples

The taxonomy, described in section 3.2, consists of a set of quality attributes. Here
we provide exemplary constraints for each identified quality attribute.

• Authorization: Access to the service is restricted to users having role A or
being part of group B.

• Meta-annotations: Attributes of type DateTime must be annotated with
@Date(format = “d-m-Y”).

• Response time: The system is time-critical and has to answer each request
within 10 ms.

• Authentication: The user has to confirm his identity using the central authen-
tication service.

• Code metrics: Code-coverage for unit tests must be > 85

• Dependencies: Component A cannot invoke method X of component B.

• Signature: A web service must provide the following API: push(Message),
pull():Result.

• Communication: Communication must be synchronous. Protocol used must
be HTTPS.

• Software update: New security updates must be installed within 1 week from
their release.

• Data retention policy: Only the last 4 digits of a credit card number can be
stored.

• Availability: The system must be reachable 99% of the times from 6h00 to
20h00.

• Data integrity: Instance values of datatype IBANmust start with an ISO 3166-
1 country code.

• Data structure: pom.xml contains: <dependency><groupId>junit</groupId>
..</dependency>
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• Event handling: Exceptions of typeMyExmust be handled in the layer where
they were generated.

• File location: web.xml must be located at src/main/webapp/WEB-INF/

• Hardware infrastructure: The server must have 48GB RAM and 2 x 2.6GHz
Intel Xeon processor.

• Throughput: The system must be able to execute a certain task 10’000 times
per hour.

• Visual design: The web front-end must comply to the standard corporate de-
sign guidelines.

• Naming conventions: Java bean classes end with the suffix “Bean”.

• Recoverability: The system has to be operational againwithin 1h after a crash.

• Software infrastructure: Components communicate with each other using
CORBA.

• Accessibility: The web front-end must be accessible to color blind users.

• System behavior: The system state has to be consistent with a given state ma-
chine diagram.
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