
HAL Id: cea-03155307
https://cea.hal.science/cea-03155307v1

Submitted on 1 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Electromagnetic Fault Injection as a New Forensic
Approach for SoCs

Clément Gaine, Driss Aboulkassimi, Simon Pontie, Jean-Pierre Nikolovski,
Jean-Max Dutertre

To cite this version:
Clément Gaine, Driss Aboulkassimi, Simon Pontie, Jean-Pierre Nikolovski, Jean-Max Dutertre. Elec-
tromagnetic Fault Injection as a New Forensic Approach for SoCs. 2020 IEEE International Work-
shop on Information Forensics and Security (WIFS), Dec 2020, New York, United States. pp.1-6,
�10.1109/WIFS49906.2020.9360902�. �cea-03155307�

https://cea.hal.science/cea-03155307v1
https://hal.archives-ouvertes.fr

Electromagnetic Fault Injection as a New Forensic
Approach for SoCs

Clément Gaine∗, Driss Aboulkassimi∗, Simon Pontié∗, Jean-Pierre Nikolovski∗, Jean-Max Dutertre†
∗CEA Tech, Centre CMP, Equipe Commune CEA Tech - Mines Saint-Etienne, F-13541 Gardanne FRANCE

∗Univ. Grenoble Alpes, CEA, LETI, MINATEC Campus, F-38054 Grenoble, FRANCE
†Mines Saint-Etienne, CEA-Tech, Centre CMP, Departement SAS, F - 13541 Gardanne France

Email: ∗firstname.lastname@cea.fr, dutertre@emse.fr

Abstract—Smartphones have a complex hardware and soft-
ware architecture. Having access to their full memory space can
help solve judicial investigations. We propose a new privilege
escalation technique in order to access hidden contents and
execute sensitive operations. While classical forensic tools mostly
exploit software vulnerabilities, it is based on a hardware security
evaluation technique. Electromagnetic fault injection is such a
technique usually used for microcontrollers or FPGA security
characterization. A security function running at 1.2 GHz on a
64-bit SoC with a Linux-based OS was successfully attacked.
The Linux authentication module uses this function to verify
the password correctness by comparing two hash values. Hence,
this work constitutes a step towards smartphones privilege
escalation through electromagnetic fault injection. This approach
is interesting for addressing forensic issues on smartphones.

Index Terms—Electromagnetic Fault Injection; SoC; Forensic;
Smartphones;

I. INTRODUCTION

The security of sensitive data stored in integrated circuits
(IC) can be altered by passive hardware attacks such as side-
channel (e.g. the electromagnetic (EM) side-channel [1]) or ac-
tive attacks (e.g. physical tampering or fault injection). Various
techniques are used to stress the attacked devices, such as laser
[2], voltage glitch [3], electromagnetic perturbations [4]–[11]
or even the software-induced CLKSCREW attack [12]. Faults
Injections intentionally disrupt the operations of a system and
obtain behaviors not anticipated by designers. This can be data
flow or control flow modifications. The exploitation is obtained
by inverting the result of a conditional test, by skipping a
branch instruction or exiting a loop prematurely (as discussed
in Section V).

In this paper, we focus on Electromagnetic Fault Injection
(EMFI) by applying a transient EM pulse on the device under
test. A voltage pulse is transmitted to a fault injection probe, an
electromagnetic coil, to generate this field. It targets the phys-
ical implementation of a microprocessor to corrupt its control
flow. This may allow a privilege escalation or an information
leakage. In the case of smartphones, their exploitation can
reveal a large amount of personal data.

EMFI is routinely used for security characterization of
microcontrollers: circuits that have a simple architecture and

WIFS‘2020, December, 6-11, 2020, New York, USA.
978-1-7281-9930-6/20/$31.00 ©2020 IEEE.

run at low frequency. Smartphones use complex hardware
and software architectures. They also run at higher frequency
(1 GHz or above). This explains why there was to date no
report of successful data extraction from a smartphone through
an EMFI technique. EMFI may also be used to complement
conventional forensic tools (e.g. using fault injection to recover
boot-ROM dumps in order to identify weaknesses that can be
exploited in a standard methods).

In our research, we studied a smartphone-grade 64-bit
System on a Chip (SoC) running a Linux OS. Our intent was to
ascertain the ability to use privilege escalation through EMFI
for forensic purposes. Interesting effects created on the target
by the EMFI process were identified during preliminary tests
(i.e. the fault model).

This article is organized as follows. Section II reviews the
state-of-the-art of EMFI and introduces the aim of our work.
Our experimental setup and settings are described in section
III. Section IV reports on our first experiments on our SoC
target. Then, an attack path is identified and validated in
section V. In section VI we discuss the use of the technique
in a forensic context. Section VII concludes the paper.

II. RELATED AND PREVIOUS WORK

A. State of the art of EMFI attacks

To the best of our knowledge the first time that physical
attacks have been introduced as a potential forensic application
was by Aboulkassimi et al. [1] in which the authors showed
how to use side channel analysis for recovering data from a
mobile device. We extend this approach to active hardware
security techniques. EMFI was mainly used against microcon-
troller or FPGA targets running at low frequencies, as in [4].
This has been the subject of numerous publications, and stud-
ies about fault models (i.e. the characteristics of the induced
faults). Zussa et al. [5] proposed that faults are produced
by timing violations. This assumption was reinforced with
Schaumont et al. [6] and their study at different levels: wire-
level, chip-network level and gate-level. Most of injections
target the CPU, through some (as Menu et al. [13]) rather
faulted data transfers from the Flash memory to the data buffer
of a cortex-M microcontroller.

So far little work has been done about SoC, due to their
complexity: advanced hardware technology, numerous soft-
ware layers with an OS, high operating frequencies. However,

Fig. 1. Probe designed for EM Injection on a SoC target

in the past few months, new results on SoCs have begun to
emerge in the field of hardware security. Yet, EMFI has not
been proven for forensic purposes in this context.

Regarding EMFI on SoCs, Majeric [7] [8] successfully
conducted a Differential Fault Analysis (DFA) to extract the
secret key of a software Advanced Encryption Standard (AES)
running on a A9-Cortex (32-bit ARM core). On the same
device, Proy et al. [9] caused software loop exits.

Majeric et al. [7] also studied a A7-Cortex (32-bit ARM
core). They were able to bypass a secure boot with the
repeatability of 0.78%. They also tried to realize EMFI attacks
on a software running in a Trusted Execution Environment
(TEE) on a A53-Cortex (64-bit ARM core).

Recently, Trouchkine et al. [10] worked on a A54-Cortex
(a 64-bit ARM core). Studying loops, they showed that the
EMFI effects were different in bare metal mode w.r.t. using
an OS. The difference is related to how the cache memories
are managed. In the case of a bare metal target, they were
able to attribute the faults to the cache memories (L1 and
L2) and to the Memory Management Unit. Ait el Mehdi
[11] tried to bypass the lock screen of a 64-bit ARM target
running Android 8 with EMFI. He proposed a theoretical attack
scheme which was demonstrated in simulation, but its practical
implementation failed.

Other fault injection methods have also been used with
SoCs. A laser attack on Android smartphone targeting the
secure boot sequence was made by Vasselle et al. [2]. Timmers
et al. [3] showed that Voltage Fault Injection allows a full
control of a Linux OS without any logical vulnerability.

A new class of fault attack that can be exploited on SoCs
is the CLKSCREW attack [12]. Controlling the Dynamic and
Voltage Frequency Scaling system (DVFS) allows to modify
the power voltage and clock frequency by software means for
the purpose of conducting an attack.
Instruction skips are predominantly the effects of fault injec-
tions [3], [4], [9], however Proy extended the classification
with 3 other observable effects at Instruction Set Architecture
(ISA) level: register most-significant half-word reset, register
corruption or source operand substitution.
Among of all the publications presented, there are two objec-
tives: (1) extracting secrets [1], [8], [12] , or (2) bypassing
security features [2], [3], [11], [12]. However, of all these
publications, only one was in a forensic context [1]. This latter
work is based on passive method, we chose here to conduct
our research using an active method: EMFI.

Fig. 2. EM pulse injection setup

B. Contributions, EMFI in the forensic field

In this paper, we propose a new technique using physical
attacks as a new approach for EMFI based forensic application.
We focus on an A53-Cortex core. It is a 64-bit multi-core SoC
used in many smartphones, mainly at entry and mid-range
price levels. We propose a fault model at the ISA level. We
also propose an attack scenario on the same target running
an OS. [3] has shown that fault injection can exploit various
attack paths. We limited ourselves to one path, but with another
method: EMFI. This technique could be used on a critical
command, allowing Super User privilege escalation on Linux
(su). This is the first study on a 64-bit chip with a complete
software architecture, usable in a smartphone. This can be used
for forensic purposes to access protected or hidden data or to
execute code.

III. EXPERIMENTAL SETUP

A. Targeted SoC

The targeted SoC, based on 4 ARM Cortex cores A53 with
32-bit and 64-bit support, is part of a development board for
mobile platforms. Its operating frequency can be set between
800 MHz and 1.2 GHz. An external 1 GB RAM is soldered
on the board. So, the chip is directly accessible via EM
injection. Removing a part of the plastic package of the chip
or modifying the board was not necessary to perform EMFI

The target was flashed with a Linux-based system: the Sumo
release of the Yocto Project with a Linux kernel 4.14. Yocto
allows having a custom Linux distribution, however we haven’t
made any major system change.

B. EMFI platform and injector

The source of the EM perturbation is a voltage pulse
delivered to an injection probe. This probe is a coil for creating
a magnetic field, which is guided by a ferrite rod. For this
experiment, the pulse generator can provide a voltage pulse
amplitude of up to 400 V with a rise time of 2 ns in nominal
operation. The EM injection probe is shown in Figure 1. A thin
ferrite rod of 750 µm in diameter was chosen together with a
thin enameled copper wire, featuring 5 turns. Its characteristics
improve the locality of the induced perturbations. This is
necessary for EM injection on small advanced technological
nodes used in SoC. Due to the locality of the EM perturbation
radiated, the probe must be placed close to the chip. The probe
position is finely controlled by a XYZ motorized stage.

A Unit Control (Raspberry Pi Board) completes the elec-
tromagnetic fault injection platform, presented in Figure 2. It
communicates with the board using 2 UARTs: one for the
control console and the other for the data. A signal trigger is
produced through one GPIO of the SoC to trigger the voltage
pulse generator. A controlled delay may be added between the
reception of the trigger signal and the actual pulse generation.

IV. IDENTIFICATION OF A PHYSICAL VULNERABILITY

Inducing faults into a SoC is more difficult than into a
microcontroller due to many factors. This is due first, to
a small technological node. Thus we have to make a very
precise location scan using an EM probe with a small diameter.
Moreover, the target size (55 mm2 for the targeted SoC) is
larger than that of general-purpose microcontrollers (about
ten mm2). This enlarges the area to be explored. Due to
the higher operating speed, the cycle time is also shorter,
which implies increasing the time resolution and accuracy of
the scans. Besides, there are many uncontrollable desynchro-
nization sources. Finally, this requires a higher EM field and
therefore more powerful equipments. On another aspect, the
multiple reboots and the loading time of the OS on a SoC is
long, which lengthens the time needed to perform the data
acquisition campaigns.

The first part of our methodology is to learn how to inject
faults (ie identify a physical vulnerability). A simple test code
is used to find the time and space injection parameters and
deduce the fault model.

A. Identifying when to fire

The aimed target is complex, for the sake of simplicity we
chose to force the CPU frequency at 1.2 GHz. Then we always
used the same configuration, in order to improve repeatability.

We use the Code Under Test (CUT) given in Listing 1,
to obtain faults by EMFI. To alleviate the synchronization
constraints, this test code was chosen long enough (300 ns) to
be easily faultable. It consists in a series of subtractions by one
from an initial value passed successively to ten registers and
iterated 32 times. We use no loop in the test code in order to
highlight the fault effect on the registers rather than alterations
of the loop control flow, which are harder to interpret.

//Initialisation x28 = 368 = 0x170
mov x28, #0170
//Following sequences repeated 32 times
sub x19, x28, #0x1
sub x20, x19, #0x1
sub x21, x20, #0x1
...
sub x28, x27, #0x1

Listing 1. Code working with registers

The registers we are manipulating, x19 to x28, are 64-bit
registers that are dumped in memory at the end and readback.
When no fault is injected, the expected result corresponds to
a decreasing series of hexadecimal numbers (from 39 to 30),
as shown in the reference A line of Table I.

Fig. 3. Delay identification using SEMA, without EM fire

A Simple ElectroMagnetic Analysis (SEMA) was used to
identify the relevant timing of the EMFI. It consists in recording
an image of the computational activity of the target through its
EM emanations, which are sampled using a passive EM probe
connected to an oscilloscope through a low noise amplifier.
While listening, it is not possible to perform EM shots to avoid
damage to the acquisition system. In figure 3, we can see, in
green color, the EM trace captured via a Langer probe and
its amplifier positioned near the processor. The trigger signal
is colored in blue. It is raised, then no operation instructions
(NOP) are executed, followed by the test code and other NOPs
and finally the trigger is lowered. NOPs allow us to isolate
the CUT, which also makes it easier to view in SEMA. We can
observe the EM emissions produced by the CUT 2.1 µs after
the trig up with a 300 ns duration.

Delay and jitter are introduced by the code and characteris-
tics of the equipment. The minimum delay between the GPIO
raising instruction and the shot is about 420 ns and the jitter is
50 ns. The use of a trigger signal and the SEMA analysis of the
target activity allowed us to synchronize the EM perturbation
with the CUT. As a result, any timing uncertainty is suppressed.
The next step was to find a spatial location of the injection
probe that makes it possible to inject faults into the target.

B. Identifying where to fire

It turns out that only one Central Processing Units (CPU)
out of the four embedded in the targeted SoC was sensitive to
EMFI. The other three CPUs couldn’t be faulted. In order to
keep the parameters identical throughout the campaign, it was
chosen to run the test programs only on this CPU. Injecting
a fault without controlling the CPUs is nevertheless possible,
but it lengthens the duration of the campaigns. Similar results
were obtained with different chips of the same reference.

The first tests were also done with a large diameter probe,
1.5 mm of ferrite’s diameter, to save time by identifying the
sensitivity of a larger area. To test the sensitivity of a larger
area, tests should be done with the maximum available voltage
to highlight sensitive areas. The area is considered sensitive
when freezing or rebooting the SoC. Once a sensitive area is
found, we reduce the probe diameter and the voltage to locate
the most sensitive point, and look for some exploitable faults.

Fig. 4. Localization of EMFI-sensitive areas on an IR image of the target

C. Results

By iterating, the best configuration (position, timing, stress
intensity) could be found. Figure 4 displays the effects ob-
tained due to EMFI overlaid to a picture of the target silicon
die. These effects are classified as: no fault when the target
behavior is undisturbed, succeed when the registers return is
corrupted, and crash when the target initiates an autoreboot
or freezes (i.e. communication is lost). One result of this
campaign is presented in Figure 4. The categorization of data
has been simplified and is as follows: undisturbed results
(no fault), modifications of registers (succeed) and crashes
including auto-reboots and freeze. Auto-reboots correspond
mainly to a report of an illegal modification of the Program
Counter, which is corrected by reboot. We consider a freeze
when the card does not respond to any request on UARTs.

The green box that contains the region with the vulnerability
measures 1mm by 1mm. The interesting area, with fault
on when manipulating the registers, is lower than 0.4mm2.
It’s located in an area that appears to be close to the CPU
represented in red. The values returned from the registers are
given in Table I.

Ref. Occurrences Result (x19, ..., x28) Proportion
A 27287 39,38,37,36,35,34,33,32,31,30 71.0%
B 5314 Communication lost 13.8%
C 4899 43,42,41,40,3F,3E,3D,3C,3B,3A 12.7%
D 48 39,38,37,36,35,3E,3D,3C,3B,3A 0.1%
E 28 39,42,41,40,3F,3E,3D,3C,3B,3A 0.1%

...

TABLE I
RESULT OBTAINED WITH EMFI ON THE CODE IN LISTING 1

During a campaign, pulse delays and positions are varied,
thus maximizing the types of faults. Approximately 30% of
faulty results are obtained. The majority are communication
losses (14%, reference B), due to a restart of the board or
a closing of the application. This mostly happens in the first
50 ns of code execution. This can be seen in figure 5 which
depicts the obtained faults as a function of the delay between
the trigger signal and the actual EMFI.

Reference C corresponds to EMFI induced between the 1st

and 310th sub instructions (13% of the results). We analyze
it as an instruction skip (i.e. the fact that one instruction is
not executed). It breaks a chain of 10 successive subtractions
made on the ten registers. As a result, the returned values are
higher than expected (an increase by 0x0A). Note that, we

Fig. 5. Number of faults by function type versus pulse delay

cannot conclude on the exact number of skipped instructions
because any value between 1 and 9 would produce the same
faulted result. This analysis is further strengthened by reading
the time repartition of these faults in Fig. 5 (i.e. from 50 ns to
300 ns of the faults window).

Reference D and E correspond to fault induced during the
10 lasts sub. Their frequency rate are around 0.1%. The first
part of the results correspond to the expected values, but the
following ones are incremented by 10 (highlighted in red).
This means that the execution of one instruction have been
skipped, and we observe the values of the previous round.
By considering the case of the fault injection mechanism
reported in reference E, skipping the sub x20,x19,#1
instruction left x20 content unchanged at 42. This faulted
value breaks the chain of subtractions: the subsequent sub
instructions also produce faulted values (with an increment
of 10 w.r.t the correct values). Note that skipping several
successive instructions produces the same result. These results
therefore occur when the shooting takes place during the last
instructions. The timing analysis in Figure 5 confirms it. These
results show that we can modify the behavior of the SoC.
The effect obtained is that of an instruction skip. The code
used does not make it possible to determine the number of
instruction skips made (between 1 and 10). However, further
testing showed that only one instruction is skipped. The rest
of the methodology is devoted to change the behavior of a
security function.

V. PRIVILEGE ESCALATION EXPLOITING THE PHYSICAL
VULNERABILITY

A. Analyze the code to identify an attack path

The results obtained with a test code are now applied to a
more complex code used by a security application. EM-induced
instruction skip can be exploited. By choosing the instruction
to skip, as an instruction branch, we should successfully
modify the control flow. Indeed, in the case of a loop, if we
skip an instruction branch, we should exit it prematurely. So
we looked for these instructions in a software code.

It was chosen to try to achieve an escalation of privilege in
order to have a full access to the system. The command chosen
was the su command of Linux. This Substitute User command
is used to acquire privileges of another user account. su uses
the libpam library (Pluggable Authentication Modules LI-
Brary) to authenticate a user before providing new privileges.

libpam asks the user to provide an administrator password,
once verified and validated, it opens an administrator console
with full permission. Obtaining administrator rights with a
wrong password is considered as a successful attack.

A first attack path is to modify the control flow of the
authentication function. A jump of the branch instruction
that check the password allows to continue the elevating
procedure even if the password is wrong. However a protection
introduces a jitter of 1 second if the password is wrong. We
don’t know the password, so we’ll have a random delay of
about a second introduced before the targeted branch. The
synchronization must be accurate to the nanosecond, so this
makes it impossible in practice to attack. We therefore looked
for another instruction before this random delay.

The validity of the entered password is not assessed by
comparing it directly to the stored password. At first it is
hashed (using a hash function) and then compared to the hash
of the stored password. The strcmp function from the LIBC
library is used to compare the two hash strings. This chain has
a length of 106 bytes and consists of the hash id, the seed and
the hash separated by $. Two examples are shown below.

• 6wWxFc—tJdeOI05—KNO$lAAh—w8Th...
• 6wWxFc—tJdeOI05—KNO$Uung—4U7s...

Comparison of the 2 hashes (ASCII representation)
The strcmp function compares 8-char blocks from left to

right. If it encounters two different blocks, the check is stopped
and the two strings are reported as different. Regardless of
the password entered, the first two 64-bit words are identical
because they correspond to the prefix of the hash function.
A premature loop exit during the 1st or 2nd word comparison
would cause all passwords to be interpreted as valid pass-
words. Nevertheless, an injection at the 3rd comparison will
also cause a loop exit, but the password will be considered as
wrong and won’t allow the privilege escalation.

In order to validate this analysis, the behavior in the event
of a loop exit was tested. An extract of the strcmp function
is shown, in listing 2. This code loads two words, performs the
comparison, checks if there is a difference (or for the end of the
chain), then continues the comparison or stops. The Compare
and Branch on Zero instruction (cbz), highlighted in red, is
in charge of branching to the beginning of the function to
perform the next block comparison, or to end the comparison.

A first validation was conducted on simulation basis, we
used the gdb debugger tool to run the strcmp function on
our target and emulate the effect of skipping the cbz instruc-
tion. An instruction skip on the 1st or 2nd cbz instruction exit
the loop without detecting any password difference. It validates
the proof of concept of this vulnerability. The control flow
could theoretically be modified, the next step was to assess
the practical feasibility of this vulnerability.

B. Preparation to facilitate the characterization of strcmp

With the previous simulation results, the exploitation of this
vulnerability seems attractive. The rest of the methodology is
to prove the vulnerability of strcmp in an experimental way.

L(loop_misaligned):x ...
ldr data1, [src1], #8
ldr data2, [src2], #8
sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f
eor diff, data1, data2 /*Non-zero if
differences found*/
bic has_nul, tmp1, tmp2 /*Non-zero if
NUL terminator*/
orr syndrome, diff, has_nul⌊
cbz syndrome, L(loop_misaligned)
b L(end)

Listing 2. Code of strcmp

We decided to start by proving the concept only on a strcmp
comparison code identical to that used by su.

For the best understanding of fault injection mechanism to
obtain privilege escalation, the adopted approach consist in
starting by strcmp which is used in su, before attacking su
itself. The idea was to ascertain experimentally the existence
of a vulnerability on a simpler case. A code calls it and passes
two different character strings in argument. These strings are
entered directly into the code, which, unlike the su code,
doesn’t make calls to the flash memory. This allows a less
important jitter than in the real case. We could directly monitor
the output of strcmp, which is not possible with the su code,
in order to check if there has been a modification of the control
flow. The trigger is set just after the reception of the password.

We managed to get a success rate of 2%, which corresponds
to a success every 2 minutes, for a code running always on
the same CPU with a fixed probe position at a fixed frequency.

C. Results and Exploitation

The success obtained in the previous part encouraged us
to demonstrating the proof of concept of a more complex
attack. As we already observed that only one core of the
target is vulnerable to EMFI, we use a program to launch the
su process on this very specific CPU. It has been chosen to
always send the same incorrect password. A trigger was added
in a modified libpam. This trigger is managed by the module
libpam_misc and the file misc_conv.c. This trigger is
set up after the password reception and set down after the call
of the strcmp function. The area of interest, bordered by the
trigger, is 200 ns.

The test was successful when the operating frequency was
set at 1.2 GHz, but it was also successful with the Dynamic
Voltage and Frequency Scaling activated. Once the settings
have been made, we obtained 21 success for 6,000 tests. This
is equivalent to obtaining a success every 300 shots, which
corresponds to a successful authentication every 15 minutes.

We can authenticate quite regularly, but the board restarts as
soon as the authentication is successful. In order to circumvent
this limitation and in the scenario of an attack, one can add to
the call of su the parameters ”chmod + s /bin/bash”
allowing to make persistent the root access to the terminal.

The command had time to be executed before the restart.
Thus, we can set the SETUID to allow a permanent escalation
of privilege. This is observed by the flag ”s” instead of ”x”
for all users in the Unix permissions. These results show the
effectiveness of EM injection attacks on a SoC for the purpose
of inducing privilege escalation.

VI. TOWARDS A FORENSIC USE

A. Discussion of results

The first compromise we made on a real scenario was
to move most processus to different CPU to keep only one
CPU for the code under test. Regarding this point, tests have
shown that this only influences the success time rate and, by
multiplying the campaign time by the number of CPUs we
can find equivalent results. This has been implemented, and,
in order to have a uniform distribution of the code under test
on all the CPUs, a program soliciting the processor is used.
This allows a frequent change of the CPU where the code to
be faulted runs, and therefore in our case, decreases only by a
factor of 4 the success rate. Forcing the code to run on a CPU
therefore has the effect of speeding up the manipulation.

The study was done on a SoC, which can also be used with
Android OS, but the attack should be adapted.

Using a trigger signal in order to have an ideal synchroniza-
tion was particularly interesting to understand the fault model.
For a forensic use, this technique cannot be used because it
assumes root access to the SoC in order to authorize the use
of GPIOs. In a more realistic case, we would look for another
way to synchronize as explained hereafter.

B. Synchronize EMFI without a GPIO

In the case of forensic use on a real mobile device, we
cannot have all the accesses we have on a development board,
so it is wise to pose the problem of EMFI synchronization
without using a trigger from a GPIO.
The first idea when we want to perform a simple synchroniza-
tion would be to use a fake usb keyboard to enter the password
and get a good synchronization. Before carrying out such
an analysis, the jitter due to the code was estimated. A first
analysis showed a standard deviation of approximately 5 ms
between the reception of the password by the su and the call
of the strcmp function. By keeping the optimal parameters
of the injection bench and according to our estimates, several
weeks experimentation should be conducted to generate one
successful fault injection. This could be achieved, but the lapse
time of attack strongly encourages the development of tools
to improve synchronization. A solution could be to exploit
the EM fields emitted by the processor in order to generate a
trigger signal.

C. Use Cases for Forensic

One of the problematic points in the forensic is to bypass
secure boot or root access. Commercial forensic solutions
work using specific software flaws. EMFI is an alternative
because it targets the hardware. Our results show that EMFI,

similarly to software attacks, can be used to gain access to the
data of a smartphone, execute or plan the execution of a code.

EMFI-based hardware forensic may also be used as a first
step in order to increase the potentiality of the usual forensic
software tools. Indeed, EMFI could provide new contents to
be analyzed. We can imagine using EMFI to unlock security
in order to dump a boot-ROM. Then, the extracted code can
be analyzed, in order to identify a software flaw and to be
exploited by using conventional tools. Thus, the joint use of
these two techniques can push forward the limits of forensic
tools.

VII. CONCLUSION AND FUTURE WORKS

This paper shows that it is possible to apply successfully
EM fault injection on a smartphone-grade SoC despite the
complexity of the hardware and software architectures of the
target. The reported exploitation case consists in bypassing the
root privilege protection of the target. The proof of concept
has been demonstrated, even if the real scenario would require
a synchronization tool. As the objective of this article is to
present a new approach for forensic, we also suggested some
use cases. Future works will focus on bypassing a secure boot
on a Smartphone, using the EMFI approach.

REFERENCES

[1] D. Aboulkassimi, M. Agoyan, L. Freund, J. Fournier, B. Robisson, and
A. Tria, “ElectroMagnetic analysis (EMA) of software AES on Java
mobile phones,” in 2011 IEEE International Workshop on Information
Forensics and Security, 2011.

[2] A. Vasselle, H. Thiebeauld, Q. Maouhoub, A. Morisset, and
S. Ermeneux, “Laser-Induced Fault Injection on Smartphone Bypassing
the Secure Boot,” Fault Diagnosis and Tolerance in Cryptography,
FDTC, 2017.

[3] N. Timmers and C. Mune, “Escalating Privileges in Linux Using Voltage
Fault Injection,” Fault Diagnosis and Tolerance in Cryptography, FDTC,
2017.

[4] A. Dehbaoui, J.-M. Dutertre, B. Robisson, and A. Tria, “Electromagnetic
Transient Faults Injection on a Hardware and a Software Implementa-
tions of AES,” 2012.

[5] L. Zussa, J.-M. Dutertre, J. Clédière, B. Robisson, and A. Tria, “Inves-
tigation of timing constraints violation as a fault injection means,” 27th
Conference on Design of Circuits and Integrated Systems (DCIS), 2012.

[6] P. Schaumont, M. Ghodrati, B. Yuce, S. Gujar, C. Deshpande, and
L. Nazhandali, “Inducing local timing fault through EM injection,” DAC,
2018.

[7] F. Majéric, “Etude d’attaques matérielles et combinées sur les ’System-
on-Chip’,” Ph.D. dissertation, 2018.

[8] F. Majéric, E. Bourbao, and L. Bossuet, “Electromagnetic security tests
for SoC,” IEEE International Conference on Electronics, Circuits and
Systems, ICECS 2016, 2016.

[9] J. Proy, K. Heydemann, A. Berzati, F. Majéric, and A. Cohen, “Studying
EM Pulse Effects on Superscalar Microarchitectures at ISA Level,” ACM
International Conference Proceeding Series, 2019.

[10] T. Trouchkine, S. K. Bukasa, M. Escouteloup, R. Lashermes, and
G. Bouffard, “Electromagnetic fault injection against a System-on-Chip,
toward new micro-architectural fault models,” 2019.

[11] N. Ait el Mehdi, “Analyzing the Resilience of Modern Smartphones
Against Fault Injection Attacks,” Ph.D. dissertation, DEFL, 2019.

[12] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: Exposing the
perils of security-oblivious energy management,” USENIX, 2017.

[13] A. Menu, S. Bhasin, J. M. Dutertre, J. B. Rigaud, and J. L. Danger, “Pre-
cise spatio-temporal electromagnetic fault injections on data transfers,”
Fault Diagnosis and Tolerance in Cryptography, FDTC, 2019.

