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Abstract—Copy detection patterns (CDP) are recent technolo-
gies for protecting products from counterfeiting. However, in
contrast to traditional copy fakes, deep learning-based fakes
have shown to be hardly distinguishable from originals by
traditional authentication systems. Systems based on classical
supervised learning and digital templates assume knowledge of
fake CDP at training time and cannot generalize to unseen types
of fakes. Authentication based on printed copies of originals is
an alternative that yields better results even for unseen fakes
and simple authentication metrics but comes at the impractical
cost of acquisition and storage of printed copies. In this work, to
overcome these shortcomings, we design a machine learning (ML)
based authentication system that only requires digital templates
and printed original CDP for training, whereas authentication is
based solely on digital templates, which are used to estimate
original printed codes. The obtained results show that the
proposed system can efficiently authenticate original and detect
fake CDP by accurately locating the anomalies in the fake CDP.
The empirical evaluation of the authentication system under
investigation is performed on the original and ML-based fakes
CDP printed on two industrial printers

Index Terms—copy detection patterns, anomaly localization,
anomaly detection, unsupervised deep learning.

I. INTRODUCTION

Counterfeiting hits many segments of industry. The market
is nowadays affected, among others, by counterfeits of phar-
maceutical medicines, luxury products, and food, as well as
banknotes and even identification documents. Copy detection
patterns (CDP) [1], [2] are a popular technique for protecting
products against counterfeiting, which is a major threat to
modern economy. They consist of two-dimensional digital
binary codes which are printed using some industrial printers
to obtain the respective printed codes, which are distributed in
public domain with the associated products. When authenticat-
ing a product, the associated printed CDP is compared either
with the digital template or with a printed template held by
the product owner, hereinafter referred to as defender. The
verification stage can be carried out with smartphones so that
customers can verify the authenticity of a product directly.

Traditionally, the counterfeiting pipeline includes an enroll-
ment of the publicly available printed original codes by the
attacker by using high-resolution scanners or special cameras
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followed by some hand-crafted (HC) post-processing and
reprinting of the estimated codes on counterfeited products.
Depending on the symbols’ size and printing resolution used
by the defender, CDP cannot be cloned perfectly because
of the phenomenon known as dot gain. Detection of these
traditional fakes is relatively trivial.

At the same time, recent works [3|]-[5] have shown that
machine learning (ML) based attacks can produce high-quality
copies of CDP (fakes). These attacks use the original printed
templates to obtain an estimate of the respective digital tem-
plates, which are then used to print fake copies of the printed
templates even using the same printer used for originals.
Follow-up work [6] has shown that classical supervised-
learning authentication is susceptible to the phenomenon of
distribution shift, meaning that supervised systems perform
poorly in face of unseen fakes, which is often the case in
real-world scenarios. Therefore, there is a high need for CDP
authentication systems to be capable of reliably distinguishing
the original CDP from ML-based fakes of different types
without knowing these fakes in advance at the training stage.

In |section III, we show that the authentication based on
printed templates performs better than authentication based
on digital templates. However, holding such printed templates
is impractical from the standpoint of the defender for the
following reasons:

« the acquisition of printed templates is time-consuming

and expensive;

« a mismatch between enrollments taken by the defender
using high-resolution cameras and those taken by the
verifier’s mobile phones might be significant;

« the storage of printed templates of all original printed
codes requires expensive IT infrastructures;

o the online authentication is prevented, as a central de-
fender system that uses original printed templates would
be needed to avoid leakage of sensitive information.

Furthermore, it might be interesting to know the regions in
CDP contributing the most to the authentication. In general,
the anomaly localization in CDP represents an interesting tool
for fake analysis.

In this respect, in this work, we propose a ML-based
anomaly localization method that is based on digital templates
only. The idea is to use the digital templates to estimate,
through ML, the printed template that the defender would
have obtained after printing. This allows us to base our
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authentication on digital templates only while retaining better
performances with respect to a direct comparison. The system
only requires digital templates and original printed templates
at training stage. At the same time, no knowledge of fakes is
required. That is why we refer to it as unsupervised.

Our contributions are the following:

« we propose an unsupervised anomaly localization system
that performs authentication based on digital templates
only and with no knowledge about fakes at the training
stage;

o we perform the empirical evaluation of the proposed
approach on the dataset of CDP designed to mimic real-
life circumstances.

Notations We use the following notations: D and A are
the sets of printing processes available to the defender and
attackers respectively; t; € {0,1}7*" denotes the i-th
original digital template; x¢ € [0, 1]#*W corresponds to the
i-th original printed template printed using d € D, while
£/ € [0,1]7*W is used to denote the respective printed fake
code which template was estimated based on x? and printed
using process a € A; y; € [0,1]7*W stands for a probe which
might be either original or fake.

II. PROBLEM FORMULATION

A defender, to protect its products from counterfeiting,
generates a set of digital templates t; € {0,1}7>" and
prints them obtaining the respective original printed codes
x¢ € [0, 1]#*W  where d identifies the used defender’s printer
and d € D, where D is the set of all printing processes
available to the defender and ¢ denotes the identifier of the
object. The printed original CDP are distributed in the public
domain jointly with the objects being protected.

An attacker having an access to these publicly available
codes scans them and estimates the digital templates t; as t;.
The obtained estimations are then printed obtaining thus fake
printed copies f;" / d, where a € A indicates the printer used by
the attacker and d € D the printer used for printing the copied
original CDP x¢ by the defender. The fake CDP fabricated by
the attacker are also put into the public domain.

At inference time, which represents the authentication stage,
given a probe y; which could either be an original x¢ or fake
£ / d, the authentication system has to determine whether y; is
an original, i.e., y; € {x{|d € D}, or fake, i.e., y; € {fia/d\d €
D A a € A}. Notice that while referring to x?, Yi» ff /d we
assume images acquired from the physical objects based on
specified imaging devices.

In our work, the defender determines the nature of y;
through an anomaly map @map(ti,y:) € [0,1]7*W which
highlights anomalous locations on y;.

III. AUTHENTICATION BASED ON DIGITAL TEMPLATES
AND PRINTED TEMPLATES

In our study, we focus on the CDP authentication facing the
ML attacks [4]] that are shown to be a real challenge for the
authentication system based on the digital templates. Simple
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Fig. 1: Histograms of MSE for original and fake codes with

respect to digital templates (Figure lal and |Figure 1b) and
printed templates (Figure 1¢| and [Figure 1d).

similarity metrics such as Pearson correlation coefficient [1]]
or mean squared error (MSE) can not reliably differentiate the
originals from the ML fakes based on a test dg;m (yi,t:) < 7,
where dg;, () denotes a similarity metric and + stands for
the threshold. At the same time, as mentioned in
the supervised deep classifiers are subject to distribution shift
when facing unseen fakes [6]. To demonstrate the inability of
the above test to deal with the ML fakes, we have used the
Indigo 1x1 base dataset of originals and fakes printed on two
industrial printers HP Indigo 5500 DS (denoted as 55) and
HP Indigo 7600 DS (denoted as 76) from [4]. In
and we plot the MSE between the digital templates
and fakes and highlighting (in green) the MSE between digital
templates and originals 55 and 76, respectively.

We confirm that the authentication based on digital tem-
plates is less accurate than authentication based on printed
templates when considering the simple MSE metric. Such
printed templates are images acquired at the enrollment stage
from the physical objects. [Figure Ic| and [Figure 1d| show the
corresponding statistics. The histograms of scores for original
CDP and fakes are much more distinctive. The area under the
curve (AUC) score also confirms the superior performance of
printed template-based authentication for both printers.

This result is due to the fact that authentication based
only on digital templates heavily relies on the ability of the
printer to accurately reproduce the digital template structure
of the CDP. We are aware that printer 55, which is an
industrial printer just like 76, produces more distortions and
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Fig. 2: Proposed anomaly localization method: probe y;, which could be an original or fake code, is compared with an estimate
X; of original code x; based on the digital template t;. This comparison is weighted by a confidence map C;, which captures
the uncertainty on the outcome of the defender’s print process. The result is an anomaly map where brightest pixels highlight

differences with respect to the estimate X; that are anomalous.

this is reflected in the fact that authentication based on digital
templates performs much worse for such printed originals
than those printed with printer 76 (Figure Tb).

However, the authentication based on the printed templates
is not influenced by the gap between the digital template and
the printed codes. Therefore, the distance between the probe
represented by the authentic CDP and the printed template
is minimized to the acquisition distortion and the impact of
the printing distortions is not so relevant for the defender. In
contrast, the printing distortions play an important role for
the attacker on the way toward an accurate estimation of the
digital template from the acquired CDP.

In our work, we propose a system that performs the authen-
tication similarly to how it is done for physical templates while
only requiring digital templates, thus solving the impractical
difficulties introduced in

IV. PROPOSED FRAMEWORK

Motivated by our findings in we create a ML
model which is capable, given a digital template, to estimate

the respective printed template and use this estimation to local-
ize anomalies. This approach makes sure that authentication is
based on digital templates only, but tries to achieve better per-
formances similar to those obtained when authenticating based
on printed templates. We present our method schematically in
Figure 2

Given a paired dataset of digital templates t; and respective
printed original CDP x¢, we learn a model my, parametrized
by learnable parameters , which imitates the specific printing
process d such that mg(t;) = x; ~ x¢ Vi. This model can, in
principle, be any image-to-image model.

The authentication of a probe y; is performed based on its
anomaly map defined as:

Amap(tis yi) = Ci © (mg(t;) — yi)?, (D

where © represents the element-wise product and C; repre-
sents a measure of the confidence held by the defender on the
value of each pixel in x¢ with respect to its digital template:

Ci = o1 — [t; —my(t:)]), (2)

where 1 is a matrix of ones and ¢(-) is any element-
wise increasing function s.t. ¢(0) = 0 and ¢(1) = 1 (e.g,
exponential, masking by a threshold, etc.). Intuitively, function
¢(-) serves as a weighting function and ensures that when
the difference |t; — my(t;)| is relatively high with respect to
all pixels for all codes in the training set, the confidence is
diminished accordingly. Note that amqp(t,y) € [0, 1]7*W.

Also, note that we assume the knowledge of the associated
digital template t; given a probe y; since it is straightforward
to recover the most similar template given a printed code.

The anomaly map G4, (t;,y;) can then be used to exactly
locate anomalies as well as to assign an anomaly score
Ascore(ti,y;) to the printed code through some aggregation
function s(-):

Ascore (tzv yz) - S(Qmap (tla yl))7 (3)

which could be for example ¢;-norm, f5-norm, etc. The
anomaly score is used for anomaly detection: the defender can
set a threshold v such that the probe y; is labeled as anomalous
if ascore(yi) > -y and as non-anomalous otherwise.

We define the proposed method as unsupervised as it does
not rely on fake codes, but can be trained from a paired set of
digital templates and original printed CDP. Furthermore, the
proposed system does not require printed templates for the
authentication of y;. Finally, such a system can also be used
in the case where the defender disposes of multiple printing
processes and a model my is learned for each of such printing
processes.
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Fig. 3: Histograms showing weight 1 — |mg(t;) — t;| at each pixel location for models trained for both printers using a subset
of 100 codes. Red dashed lines denote the imposed threshold.

Supervised trained on x5°, £55/55 IEI
Supervised trained on x55, £76/55 IEI
Supervised trained on x76, £55/76 IEI
76 £76/76 @
MSE(t,y)
ascore(t,y) without C;
ascore(t,y) with C;
MSE(x,y)

Supervised trained on x

x55 x76

f55/55 f55/76 f76/55 f76/76 f55/55 f55/76 f76/55 f76/76
1.00 - 1.00 - - - - -
0.70 - 1.00 - - - - -

- - - - - 1.00 - 0.26

- - - - - 0.25 - 1.00

0.73 0.41 0.72 0.28 0.99 0.94 0.99 0.92
0.98 0.98 1.00 1.00 0.98 0.98 0.99 0.99
0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99
0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99

TABLE I: AUC scores using the supervised systems [IEI], the MSE metrics and our proposed system. The mean AUC score
over 10 runs with different randomizing seeds are shown.
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Fig. 4: Histograms of anomaly scores with original and fake CDP for one run.

V. EXPERIMENTS

A. Experimental setup

run our experiments on the Indigo 1x1 base dataset presented
in [4] and publicly available at [7|], which is composed of
a set of digital templates, two sets of printed originals, and

To evaluate the proposed system, we study its anomaly de-  four sets of printed fake CDP. Each set contains 720 CDP
tection capabilities based on the extracted anomaly maps. We



of size 684 x 684 pixels. The two sets of original codes
were obtained by printing the set of digital templates onto
two distinct industrial printers, namely HP Indigo 5500 DS
(85) and HP Indigo 7600 DS (76). Each of the four sets of
fake CDP was obtained in the following manner: given a set
of printed original CDP, a ML model is used to predict the
corresponding digital templates and the obtained estimations
are then printed on either the same printer or a different one.

The four sets of fake CDP vary on the original printed CDP
used to estimate the digital templates and on the used printer.
We denote the printers used for original and fake CDP with
the superscripts 55 and 76, respectively.

We train a print-imaging model my for each set of original
CDP at our disposal, thus resulting in two separate authenti-
cation systems.

For our experiments, we set the aggregation function s(-)
to be the summation of all values in @,qp(t;,y;), Whereas for
¢(-) we use a function that simply sets to zero all values below
a given threshold. Threshold values for originals 55 and 76
differ. Finally, we adopt a shallow U-Net-like architecture [§]]
for my, which we train using a 60/10/30% training-validation-
test split, the MSE loss function, and the Adam optimizer with
a learning rate of 1072

B. Stochasticity of printing

By training models myg for printers 55 and 76 and varying
the architecture, we found that a ML model is incapable of
perfectly imitating the printing process. In[Figure 3] we display
the distribution of weight 1 — |mg(t;) — t;| for both printers
using a corresponding subset of 100 digital templates. The
plots highlight how despite most of the pixels being correctly
predicted by the trained model (values close to 1), a good part
of them remains poorly approximated due to the stochastic
nature of the printing processes. While the performances
obtained with stochastic models would need investigation, we
only train deterministic models mg because of the lack of a
multitude of printed originals given the same digital template
in our dataset.

C. Role of the confidence map

Given that printing is a stochastic process, our intuition
is that we should not look for anomalies at pixel locations
where the pre-trained model my is incapable of predicting
the outcome of the print process. Instead, we should only
consider pixel locations where the measure 1 — |mg(t;) —t;| is
above a certain threshold while using as many reliable pixels
as possible for the authentication.

By studying we empirically find that threshold
values of 0.87 for my trained on originals 55 and of 0.92 for
my trained on originals 76 seem good trade-offs between the
ratio of the number of pixels used versus confidence in their
values. Setting ¢(-) to be functions which threshold on the
aforementioned values allow us to use 41% and 43% of the
pixels for originals 55 and 76 in the sample, respectively. This
empirical choice has a small impact on the overall performance
of the system, but we find that weighting the MSE between

(b) System trained on x76

Fig. 5: 30x30 crop of templates t;, synthetic print estimations
mg(t;) = X;, confidence map C;, test probes y; and anomaly
maps Qmap(ti,y;) for system trained on originals 55 (a)
and 76 (b). Brighter spots on confidence and anomaly maps
represent higher confidence and anomaly, respectively.

%X; and y; by the obtained confidence C; enhances the overall
performances slightly in the considered setup and available
dataset.



D. Results

We validate the performances of the proposed systems
against all types of fake CDP. In we report the mean of
the AUC-score that the systems achieved over 10 distinct runs
with different randomizing seeds. We compare our method-
ology against authentications presented in namely
the simple MSE metric using digital templates and different
printed templates. We also include the results obtained in [6]]
for supervised systems trained on one type of original and fake
CDP.

We clearly see in[Table 1| that a supervised system, generally,
performs very poorly on fakes that have not been used for
training and is not robust to a distribution shift. As anticipated
in MSE between printed templates and test probes
allows better separability of originals and fakes than using the
same measure with digital templates. Due to lower printing
precision, results in authentication based on digital templates
for printed 55 are worse than for printer 76. Our method,
which benefits from the advantages of both digital and printed
template based authentications, achieves results that are very
close to the authentication based on printed templates.

In we show the histogram of anomaly scores for
original and fake CDP for the trained systems for both printers.

We find our method to be capable, similarly to authen-
tication based on printed templates, to distinguish originals
from fakes with high accuracy for all possible combinations
of original and fake CDP over different runs. Furthermore,
since nearly perfect separability is achieved, the defender can
set the threshold ~ as:

Y= m?X ascore(tiv Xi) )

and be certain to not miss any original while rejecting almost
entirely fake CDP.

Finally, we show examples of the obtained results in
For both sub-figures, the first three columns are static
and show the digital template t;, the expected printed code
mg(t;) = X; and the confidence C,. The fourth and fifth
column of both sub-figures show the test probe y; and the
obtained anomaly map amqp(ti,y;), respectively. The first
row shows the case when the test probe is the original CDP,
whereas the remaining four rows show the cases when the test
probe is one of the aforementioned types of fake CDP. The
figure clearly shows that the anomaly maps for original codes
are much less active (lack white spots) than those obtained
with fake CDP, where anomalies are detected. Moreover, the
anomaly map clearly show the regions of largest anomalies,
thus demonstrating the anomaly localization capacity of the
proposed system.

VI. CONCLUSION

In this work, we proposed an authentication system for
CDP which can localize anomalies based on digital templates
only, while only requiring original digital and printed CDP
for training. We trained a deterministic ML model to imitate
the print-imaging process of the defender and used it for
comparison against test probes. This comparison is weighted
by a measure of confidence, which reduces the importance
of detected differences based on the stochasticity of the print
process at such locations.

We evaluated our system on the task of anomaly detection,
where the anomaly maps were reduced to anomaly scores used
to compute the AUC score. This resulted in nearly perfect
separability between original and fake CDPs.

For future work, we aim at investigating the performance of
the proposed system with respect to CDP acquired with mobile
phones under enrollment settings close to real-life conditions.
In addition, we aim at investigating the performance of a
model that mimics the stochasticity of the printing process
and thus produces small print deviations for the same digital
template.
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