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Abstract—Nowadays, copy detection patterns (CDP) appear
as a very promising anti-counterfeiting technology for physical
object protection. However, the advent of deep learning as a
powerful attacking tool has shown that the general authentication
schemes are unable to compete and fail against such attacks. In
this paper, we propose a new mathematical model of printing-
imaging channel for the authentication of CDP together with a
new detection scheme based on it. The results show that even
deep learning created copy fakes unknown at the training stage
can be reliably authenticated based on the proposed approach
and using only digital references of CDP during authentication.

Index Terms—copy detection patterns, authentication, predic-
tor channel, one-class classification, deep learning fakes.

I. INTRODUCTION

Nowadays, counterfeiting and piracy are among the main
challenges for modern economy. Existing methods of anti-
counterfeiting are very diverse, ranging from watermarking
techniques, special inking, holograms, electronic IDs, etc.
The drawbacks of these technologies are that they can be
expensive, often proprietary, and usually, authentication is
performed in a non-digital way.

A newly promising emerged field in digital anti-
counterfeiting technologies is the usage of Printing Unclon-
able Features (PUF) which are based on intrinsic forensic
uncloneable features of physical objects, such as randomness
of ink blots or paper micro-structures [1]–[3]. Another tech-
nology is the Copy Detection Patterns (CDP) [4] which are
random binary patterns of high entropy that are difficult to
clone, such as very small sized QR codes. The advantages
of CDP, in comparison to other technologies, are that they
are cheap, easily integrable with a product into a structure
of QR-code and digitally readable [5]. They are also easy
to integrate in a track-and-trace distribution framework. The
main challenge of this technology today is that, although being
mainly robust to common copy attacks when simple decision
rules are used based on the similarity to the reference template
blueprint, it faces significant difficulties with the advanced
machine-learning (ML) copy attacks. The possibility to use
powerful deep classifiers in two-class classification allows one
to reliably distinguish original CDPs from fakes, if the fakes
used at testing time match the statistics of those used during
training. However, in the case of mismatches, the method fails
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Fig. 1: Illustration of the PI channel seen as a 3-player game.
The Defender (in green) generates and prints template tn on
an object package on and sends it to the public domain. The
Attacker (in red) can use on to create a counterfeited version
cn of it. Finally, the Verifier (in blue) scans the object package
and authentifies the probe yn to decide whether it is an original
package or a counterfeit. The novelty of our model is adding
a predictor channel (in yellow) based on a codebook C which
is trained by the Defender and used by the Verifier to enhance
the classification results at the authentication stage.

to distinguish original and fakes [6]. In practice, the situation
is further complicated by several factors:
• the high deviations in printing and imaging leading to

large intra-class variabilities;
• ML attacks that are able to produce blueprint estimations

with an accuracy score as high as 94% [7];
• the natural lack of exact prior knowledge for the authen-

ticator about the fakes in field. Fakes can be produced in
multiple ways and it is unknown which fake will be used
at the attacking time;

• the absence of a reliable model of printing-imaging chan-
nel that complicates the design of optimal authentication
rules.

Therefore, there is a critical need in a one-class (OC) au-
thentication scheme able to operate in the generalized setup of
the above printing-imaging channel without prior knowledge
of the fakes. In this paper we adress these problems by:
• providing a new stochastic model describing the defender

Printing-Imaging (PI) channel;
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• proposing a new method of authentication based on the PI
model able to perform authentication in the OC-classifier
setup, i.e., under complete ignorance about the actual
fakes;

• validating the proposed approach on a real dataset of
CDPs of originals and ML-based fakes based on codes
designed with 1× 1 symbol and produced on two indus-
trial printers;

• comparing the proposed method with traditional authen-
tication techniques.

The paper is organized as follows. Section II introduces
the problem formulation and presents a stochastic model of
PI channel for the defender that forms the basis of the OC-
classification framework. Section III presents the algorithm
of OC-classification for CDPs in two variations. Section IV
presents the results of performance and comparison with stan-
dard metrics on the same dataset. Finally, Section V concludes
the paper and discusses possible extensions and perspectives.
All mathematical notations used in the paper can be found in
Table I.

II. PROBLEM FORMULATION

A. The printing-authentication scheme

The production of an anti-counterfeit technology using CDP
is best described as a 3-player game with a Defender, an
Attacker and a Verifier as shown in Fig. 1.

The Defender protects his brand by using a family of digital
CDP blueprints {tn}Nn=1 stored in the form of a binary matrix
tn, which is then printed on the object package on and sent
to the public domain. The Attacker has access to the printed
version of the CDP and may use it to create a counterfeit cn,
through the process of scanning, post-processing and reprint-
ing (see [7]–[10] for investigations of attacking techniques). At
the authentication stage, the Verifier receives an unindentified
package (either on or cn) from which a digital image yn is
acquired, using any device such as a scanner or a mobile
phone. We denote xn the code acquired from on and fn the
code acquired from cn. An authentication is then performed
based on the probe yn, which might be either xn or fn, and
on the reference template tn.

B. Authentication techniques

The algorithms used for authentication evolved a lot in the
last few years. At first, CDP were designed with an idea to be
resistant to simple scanning & reprinting attacks [4]. Due to
the dot gain effect of printers, a portion of the information
stored in the template blueprint t is lost in the probe y
through the process of printing and scanning. Various ways
to measure the information loss have been proposed which
can be formalized with different types of metrics:

1) `1- or `2-distance between the probe y and the template
t;

2) Pearson correlation between t and y;
3) Hamming distance between the template t and an esti-

mation t̃ of the template, based on the probe y. A very
common way to perform the estimation t̃ is to use Otsu’s

TABLE I: Mathematical notations used in the paper.

Mathematical notation Meaning

t binary digital template
x digital original printed from t

CDPs f digital fake version of t
y probe representing either x or f
t̃ digital template estimated from y

T binary random matrix for t
X random matrix for x
T̃ binary random matrix for t̃

PI Model p ∈ [0, 1] probability of black symbol in T

ω ∈ Ω set of all neighbourhoods
P (ω) positive probability at ω
Pb(ω) probability of bit-flipping at ω
C codebook of probabilities

n = 1, ...., N index within the dataset
(i, j) or (r, s) coordinates of pixels in t

Numbers L× L size of t
h = 1, 3, 5, ... integer defining the size of ω
k = 1, 2, 3, ... magnification factor from t to x

binarization algorithm and then a majority voting for each
symbol. Fig. 2 on the next page illustrates this technique.

Nowadays, new techniques emerge with the use of machine
learning, allowing one to train deep classifiers [6], [11] and
deep binarization techniques [7]–[10]. Although showing very
promising results, these new algorithms act as black boxes and
thus lack interpretability, which is paramount when working
on reliability questions and security-critical applications such
as the protection of pharmaceutical products.

C. Stochastic model of Printing-Imaging channel

The PI channel can be described mathematically as a
Markov Chain T→ X→ T̃, where:
• T is a random binary matrix of size L×L sampled from

i.i.d. Bernoulli distribution: Tij ∼ Bern(p), p ∈ [0, 1] is
the probability of black symbol;

• X is a random matrix of size kL× kL, Xij ∈ [0, 1] for
some magnification factor1 k = 1, 2, 3, ...;

• T̃ is a random binary matrix of size L× L.
In reality, when we pass a template t through the PI

channel, some distorsions occur in x due to the dot-gain
effect and printing-related natural randomness. Thus, when
we try to estimate t̃ from x, we end up with some errors,
dependant on the printer, type of paper, acquisition device
and chosen estimator. In this paper, we are mostly interested
in understanding the probability distribution P(T̃|T), which
we believe to be highly correlated with the particular choices
of print-acquire-estimate system and is central when trying to
estimate information loss.

1The magnification factor is related to the resolution of enrollment equip-
ment. Nowadays, with modern scanners and mobile phones, k ≥ 1.



In [12], the authors model this probability distribution as a
Binary Symmetric Channel (BSC). This model assumes that
each symbol Tij in T has a certain probability Pb of bit-
flipping, independently of its location (i, j). We conjecture
that the BSC model is too simple to capture the random
behaviour of printing, as it does not take into account the
local dependency of neighbouring sites and rather learns an
average probability of bit-error across the whole template.
Another related model with multilevel symbols has been
studied in [13]. Inspired by the BSC model, we introduce a
new stochastic model with three key assumptions:

1) Markovianity: the posterior probability at a particular
symbol location (i, j) only depends on the local neigh-
bourhood ωij surrounding it:

P(T̃ij |T) = P(T̃ij |ωij), (1)

where ωij is a small neighbourhood surrounding symbol
Tij , typically a square matrix centered around (i, j):

ωij = {Ti±a,j±b|0 ≤ a, b < h/2},

where h = 1, 3, 5, ... is fixed by the model and defines
the size of the neighbourhood.

2) Stationarity: the posterior probability does not depend on
the location inside the image. Similar patterns in T lead
to similar probability values2:

P(T̃ij |ωij) = P(T̃rs|ωrs), if ωij = ωrs. (2)

3) Posterior independance: the joint posterior probability
factorizes as:

P(T̃|T) =
∏
i,j

P(T̃ij |T). (3)

With assumptions (1) and (2), one can easily prove the
expectation formula for the posterior distribution:

P(T̃ij |ωij) = Er,s:ωrs=ωij
[P(T̃rs|ωrs)]. (4)

This formula is a key to the proposed authentication scheme as
it can be estimated directly using Monte-Carlo method from
a training dataset. For each type of neighbourhood ω ∈ Ω
(there can be at most 2h

2

), we learn the probability distribution
which is highly correlated with the PI channel on which it
was trained. Two measures associated with this distribution are
the posterior probability of bit-flipping Pb(ω) and the positive
posterior probability P (ω), which we define as:

Pb(ωij) := P(T̃ij 6= Tij |ωij), (5)

P (ωij) := P(T̃ij = 1|ωij). (6)

We can thus create a codebook in which we store all these
different probability values for each type of neighbourhood
and use them as references in the authentication scheme.

2The printing and scanning process introduces a lot of variability. The goal
of the model is not to learn the fingerprint of a particular realization but rather
measure the average variability for each neighbourhood and to take advantage
of this knowledge. (2) should be read as an equality in distribution, allowing
every realisation of T̃i,j to be different while still following a common law,
independent of the location (i, j).

after Otsu

Fig. 2: Otsu’s binarization technique followed by majority
voting. The first column shows different neighbourhoods ω,
the second column the printed originals x, the third column x
after Otsu’s binarization and the fourth column, the estimated
template t̃ after majority voting. Red lines highlight the 3× 3
patches in x corresponding to one symbol in t. Different types
of distorsions are illustrated leading to estimation errors in t̃.

D. Metric in the PI channel

The introduced PI channel gives us a theoretical tool to
better understanding the process of printing and acquisition of
CDP. In this subsection, we show that this model comes with
a very natural metric that can be easily implemented and used
for authentication.

Lemma II.1. In the PI channel model, the posterior log-
likelihood can be computed as:

logP(T̃ = t̃|T) =
∑
i,j

log(1− |t̃ij − P (ωij)|). (7)

Proof. The proof relies on two steps. The first one is to use
conditional independence of the symbols in T̃ given T and
Markovianity:

logP(T̃ = t̃|T) =
∑
i,j

logP(T̃ij = t̃ij |T)

=
∑
i,j

logP(T̃ij = t̃ij |ωij).

The second step is then a simple case study for t̃ij ∈ {0, 1}:

P(T̃ij = t̃ij |ωij) = 1− |t̃ij − P (ωij)|.

�

III. ONE-CLASS CDP CLASSIFICATION ALGORITHMS

The core idea of building an authentication system based
on the PI channel model is to introduce the predictor channel,
which is trained using both digital templates t and acquired
originals x and to learn a codebook C of probabilities for each
neighbourhood ω ∈ Ω.



To train the predictor, we create two dictionaries D and
Db whose keys are the different types of neighbourhoods. For
each ωij ∈ Ω, D[ωij ] lists the corresponding values of symbol
t̃ij and Db[ωij ] lists the boolean values (t̃ij 6= tij). Finally,
we compute the codebook C, which is a database storing the
statistics P (ω) and Pb(ω) for each type of neighbourhood ω.
A pseudo-code is given in Algorithm 1.

A. The likelihood score model
The first authentication scheme is a direct implementation

of (7). It starts by learning the codebook C, running Algo-
rithm 1 on the training set. For the authentication of a probe
y, we perform the following steps:

1) estimate t̃ from the probe y;
2) with the reference template t, search the probability

P (ωij) in C, for each neighbourhood ωij in t;
3) compute the likelihood score of t̃ applying (7);
4) compare the score with a chosen threshold fixed on the

validation set to decide whether y is original or fake.
It should be pointed out here that symbols tij located too

close to the border of the template do not have a well-defined
neighbourhood ωij . We propose two solutions to address this
problem:
• the first solution is simply to ignore these symbols and

run the model only on the symbols located in the inside
of t;

• another solution is to consider a white padding surround-
ing template t as this is the natural padding for x when
printing CDP on white paper.

B. The attention model
The attention model is similar in essence to the preceding

model but differs in several ways. The idea here is to use
the probability bit-error map Pb(ωij) as a mask, only keeping
symbols that have a low probability of bit-error on the training
set. In this way, we remove all regions in y that are known
to produce high error for original samples x. Training is
done similarly to the likelihood score model above. For the
authentication, we do:

1) for each neighbourhood ωij in t, search the probability
of bit-flipping Pb(ωij) in the codebook;

2) define an attention mask mij := (Pb(ωij) < µ) for some
fixed threshold µ ∈ [0, 1];

3) choose any standard metric that is computed pixel-wise
such as mean squared error, Hamming distance or Pear-
son correlation. Note that some upsampling of t might
be necessary for computation;

4) weight the chosen metric d(t,y) by using the binary
mask, upsampling it if needed:

dm(t,y) =
∑
i,j

mij · d(tij , yij).

IV. RESULTS

A. Dataset choice
For our experiments, we use the Indigo 1× 1 base dataset,

presented in [7]. It is constituted of 720 different templates t

Algorithm 1 Algorithm for predictor training

Input: training set {(tn,xn)}Nn=1

Output: learned codebook C = (ω, P (ω), Pb(ω))ω∈Ω

Initialisation:
1: create two dictionaries D and Db with the set Ω as keys

and empty lists as values.
2: for n = 1 to N do
3: estimate t̃n from xn

4: for symbol tnij in tn do
5: extract neighourhood ωn

ij in tn

6: extract symbol t̃nij in t̃n

7: append value t̃nij in dictionary D at key ωn
ij

8: append boolean value (t̃nij 6= tnij) in dictionary Db at
key ωn

ij

9: end for
10: end for
11: for ω in Ω do
12: compute mean value: P (ω) = mean(D[ω])
13: compute mean value: Pb(ω) = mean(Db[ω])
14: store the triple (ω, P (ω), Pb(ω))
15: end for
16: return codebook C = (ω, P (ω), Pb(ω))ω∈Ω

printed with two different printers: HP Indigo 5500 DS
(HPI55) and HP Indigo 7600 DS (HPI76) at 812.8 dpi, which
we refer to as x55 and x76. It also includes ML-based fakes of
four different types: f55/55, f76/55, f55/76 and f76/76 where
fake fmm/nn is obtained from xnn by the process of deepnet-
based binarization, printed using HPImm and rescanned.

In this work, we only concentrate on the templates with
50% density of black symbols. The templates t have a size of
228 × 228 symbols while x and f have a size of 684 × 684,
that is a magnification by a factor k = 3. We fix the training
set size to 50 samples, validation set to 100 samples and test
set to 500 samples.

B. Predictor algorithm parameters

In order to train the predictor, we fix a certain number of
parameters. The first one is the estimator x→ t̃. As we saw in
Section II, there are many different approaches to it. We decide
to use Otsu’s algorithm for binarization followed by majority
voting on each 3× 3 patch corresponding to one symbol in t.
We fix the size of neighbourhoods ω in t to be of size 3× 3
for the following reasons:
• This brings the total number of possible neighbourhoods

down to |Ω| = 29 = 512 which is small enough in
comparison to the total number of neighbourhoods in a
single template: 2262 = 51′076. We can thus expect to
see every neighbourhood appear roughly 100 times in
each template.

• The printing process can produce some random deviations
as we discussed in Section II, but these deviations are
local in the sense that they only affect neighbouring
symbols in most cases. Thus, 3 × 3 neighbourhoods are
sufficient to capture them. See Fig. 2 for an illustration.



TABLE II: Results in percent of the Area Under Curve (AUC) for each type of originals and fakes and various metrics. Best
results for each type of fakes are highlighted. Average results are shown per printer and in total.

HPI55 originals x55 HPI76 originals x76

f55/55 f55/76 f76/55 f76/76 Average f55/55 f55/76 f76/55 f76/76 Average Total

metrics

LLS 99.88 99.89 100 100 99.94 87.24 85.69 99.97 99.98 93.22 96.58

MSE 59.60 59.05 35.85 27.77 45.57 97.47 99.03 85.85 82.12 91.12 68.34

PCOR 87.11 88.41 94.75 92.36 90.66 88.97 90.49 95.79 93.88 92.28 91.47

HAMM 63.39 63.82 69.46 61.12 64.45 85.36 86.45 89.35 83.14 86.08 75.26

masked

M-LLS 99.98 99.96 100 100 99.99 99.29 98.97 99.94 99.84 99.51 99.75

M-MSE 99.97 99.95 100 100 99.98 97.04 94.76 99.94 99.85 97.9 98.94

M-PCOR 96.30 92.46 99.35 98.58 96.67 97.11 95.45 98.42 97.72 97.17 96.92

M-HAMM 99.98 99.97 100 100 99.99 99.22 98.89 99.94 99.85 99.48 99.73
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Fig. 3: Visualisation of ROC curves for original x76 and all four types of fakes. First column is the LLS metric, second column
the masked LLS, third column the Hamming distance and fourth column the masked Hamming distance. The second row
shows the same plots with logarithmic scale on both axes.

C. Discussion

To compare all different approaches in a unified way, we
test both originals x55 and x76 separately against all four kind
of ML fakes f55/55, f55/76, f76/55 and f76/76. The metrics that
we use are:
• the log-likelihood score (LLS) described in Section III-A;
• the mean-squared-error (MSE) between y and t;
• the Pearson correlation (PCOR) between y and t;
• the Hamming distance (HAMM) between t and t̃;
• the same four metrics mentioned above with a mask as

described in Section III-B.

For each metric, we compute the associated ROC curves
and report the AUC score. The AUC score is averaged over
ten runs with randomization of training/testing set. All results
are summarized in Table II.

A first observation at the results in Table II shows that
discriminating between originals and fakes is more accurate
for x76 than for x55. In general, the results show that the
metric LLS outperforms the other metrics. On average, M-
LLS, its masked version, appears as the best metric with a
very reliable AUC score on all types of fakes.

The masked metrics show a great improvement in AUC



score over all their non-masked counterparts. This is further
illustrated in Fig. 3, where we compare side-by-side masked
and non-masked metrics for LLS and Hamming metrics.

Surprisingly, MSE proves to be the best metric for discrimi-
nating x76 and f55/76. This result should however be mitigated
by the following observations:

• metric M-LLS performs very close to MSE and even
outperformed it on certain runs;

• the high variability in performance of MSE on different
types of fakes makes it highly unreliable for authentica-
tion, as shown by its average score.

D. Model stability

Another question that we investigated is the stability of
Algorithm 1 with respect to the size of the training set.
We already discussed, in Section IV-B, the fact that every
neighbourhood appears 100 times on average in each template.
Thus, it makes sense to run the algorithm on very small train-
ing sets. In order to measure the performance of a codebook
C learned on a training set {(tn,xn)}, we compare it with
a reference codebook Cref learned on the whole dataset of
720 pairs {(tn,xn)}. We then simply compute an average `1-
distance between the predictions:

d1(C, Cref ) =
1

|Ω|
∑
ω∈Ω

|P (ω)− P ref (ω)|. (8)

Fig. 4 shows the results of this study for different training
sets size with a number of samples going from 1 to 100. What
we can see is that when using 50 samples, the probabilities in
the codebook C differ with the reference by less than 1% on
average and the variability is very small. This explains why
we decided to use 50 training samples in our experiments.

V. CONCLUSION

In this paper, we introduced a new mathematical model for
the description of the Printing-Imaging channel based on local
statistics.

We proposed two novel OC-authentication schemes based
on this model which outperform the standard metrics used
nowadays, while still maintaining full interpretability of the
results. We showed that even ML-based attacks cannot fool
our new authentication system. In constrast with modern deep
learning approaches, our model requires very few training data
and does not require much time to be run in practice, while
still offering great performances against powerful ML attacks.

For future work, we aim at continuing to explore this
model as the information-theoretic aspects can be deeper
investigated. We also plan to replace the simple estimator with
more sophisticated techniques based on neural networks and
perform the comparison of the proposed approach with deep
classifiers. Finally, we plan to extend the results on a new
dataset acquired by several types of mobile phones which will
bring more variability and new challenges for the PI channel
model.
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Fig. 4: Variability of codebook C with respect to the size of
the training set.
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