
Introducing Collaborative Filtering into an Agent-Based Travel Support
System

Mateusz Kruszyk
Cognifide, Poznań, Poland

Maria Ganzha, Maciej Gawinecki, Marcin Paprzycki
System Research Institute, Polish Academy of Sciences, Poland

Abstract

Our recent work is devoted to the development of
an agent-based travel support system in which person-
alized information is delivered to the user. Thus far we
have focused our attention on personalization based on
behavior of a given user. In this note we conceptualize
how collaborative content filtering can be introduced
into our system.

1. Introduction

The Travel Support System(TSS) is an academic
project aiming at developing an agent-based system to
provide travelers with personalized information (see,
[3]). This work was inspired by the following scenario.
Hungry foreign tourist arrives to an unknown city and
seeks a nice restaurant serving cuisine that she likes.
Internet, searched for advice about restaurants in the
neighborhood, “recommends” mainly establishments
serving steaks, not “knowing” that the tourist is a fa-
natic vegetarian.This scenario determines the follow-
ing functionalities of the system (this list is not exhaus-
tive, but points to features that are pertinent to this note):

• Content delivery. Content should be delivered in a
browser-processable form, i.e. HTML, WML etc.
and match the query. No other assumptions about
content delivery methods should be made [5].

• Content personalization. Delivered content should
be personalized according to theuser-profile to
avoid situations like the one presented above.

• Adaptation of personalization. User habits can
change, therefore her profile should be adapted on
the basis of her activities recorded by the system.

In fact, these functionalities are realized only by a
part of theTSSdepicted in Figure 1, called theContent
Delivery Subsystemand are considered here, while the
remaining parts of theTSS, responsible for data collec-
tion and management, have been described in [3]. This
latter work (and references collected there) should be
consulted for the remaining details concerning theTSS.

In the proposed system we use RDF to seman-
tically demarcate content, (to meet the requirements
of Semantic Web applications [19, 20]), while the
Jena framework [10] is utilized to persist ontologically
demarcated data. When conceptualizing the system,
the Model-View-Controller design pattern [18] was
applied for clear separation between pure data (model)
and its visual representation (view). Let us illustrate
the work of the system through a simple scenario.

The user is looking for a Vietnamese restaurant
in Poznán. To find it she fills-out a web-form and
sends it as a request to the system. TheProxy Agent
(PrA), acting as a gateway between the non-agent user
environment and the agent-based system (see [6] for
details), receives the HTTP request and forwards it to
the system, precisely, to theSession Handling Agent
(SHA). The latter plays the role of the Controller in the
MVC and thus delegates the userPersonal Agent(PA)
to realize the incoming request. ThePA prepares an
answer (here called accordingly model of data) by: (1)
asking theRestaurant Service Agentabout restaurants
matching the template given by the user in her request,
and (2) filtering returned restaurants according to her
profile. Feature-based filtering technique is used at this
stage. As a result, thePA returns sorted list of recom-
mendations to theSHA, which requests that theView
Transforming Agent(VTA) provides a view of a given
model in a form of a document (HTML/WML /TXT),
that can be rendered by the user device. Generated
view is returned to theSHAand then forwarded back to



Figure 1. Travel Support System general architecture.

the user through thePrA. Let us also note that besides
realization of current user request theSHA logs: (a)
user request, (b) system response, and (c) user reaction
to this response (both the implicit feedback and, if
provided, the explicit feedback) and forwards logged
information to theProfile Managing Agent(PMA).
The latter is responsible for initializing and learning/
adapting user profile on the basis of this data. It also
provides the user profile for thePA.

2. Content personalization

In our earlier work [7, 8] we have considered con-
tent personalization based on user profile represented as
an overlay “on top” of the travel ontology. Specifically,
we have extended classical results presented in [2] to
data stored in an ontologically demarcated format. Fur-
thermore, we have adapted techniques based on feature-
based filtering for the data model used in our system.
Specifically, only objects (here, restaurants), whose
features cover features of objects that user has seen,
clicked and looked for, are recommended. To achieve
this user feedback (both implicit—formulated queries,
clicked recommendations etc., and explicit—rated
object) is stored in theHistory modeland processed
to learn and adapt user profiles. Each user profile
in normalized against the population behavior. For
example, if the user often clicks on Chinese restaurants,
while the whole population she belongs to behaves
similarly, than Chinese restaurant will not be rated as
significant. Finally, to solve the cold start problem we
have created six culinary-behavior stereotypes to be
used when no initial data about the user is available [8].

2.1. Collaborative filtering

Let us now discuss how collaborative filtering can
be introduced into our system. Collaborative filtering
should be understood as any situation in which recom-
mendation depends not only on the profile of a given
user, but involves also “advice” from other entities.
Some well-known reasons for considering collaborative
recommendation techniques are: (1) can be used to
solve the cold start problem [14], (2) often is better
in providing user with the correct recommendation
(especially when a limited number of individual data
points are available) [14], and (3) in this way we are
completing the pyramid of recommendations, where we
can represent interests of individuals, groups at various
levels, and the population as a whole [17]. There are
multiple ways in which “suggestions from others” can
be utilized (observe, for instance, how Amazon.com
suggests CD’s on the basis buyer behavior clustering).
In this work we utilize collaborative filtering based
on the metaphor: I consider valuable what is recom-
mended to me by people whom I trust. This technique
is often namedtrust-based recommendationsand to
instantiate it we utilize results presented in [13].

Obviously, the idea of collaborative filtering is
very well suited for agent systems. Let us envision a
simple scenario, where a given agent, confronted with
a request from its user is asking other agents about their
recommendations. Furthermore, over time it develops
a list of agents that it considers “trusted” (see, for
instance, [15]). In this way trust becomes the relation
that “selects” individuals that are collaborated with to
provide user with recommendations. However, this
approach will not work directly in our system (and it is



our system that we would like to introduce collaborative
filtering into; and thus have to take its design and func-
tioning into account). As it has been discussed in [12],
due to architectural considerations,Personal Agentsdo
not “live” on user devices, but are part of the system
infrastructure itself. As a result they are “alive” only
when user is logged into the system. At the same time,
in other agent systems [16], it is assumed that personal
agents are available to be communicated with in a semi-
permanent fashion. In other words, there in a typical
scenario it is assumed that agents are mostly available
and unavailable only sporadically, while in our system
the situation is exactly the opposite: agent are mostly
unavailable, while being available only periodically.

Therefore we had to design a different approach to
collaborative content filtering. First, let us observe that
since all PAs are instantiated within the system each
one of them “knows” which other agents that currently
co-exist with it (in a JADE-based system [9] this service
is provided by theRMA agent). Therefore, as long as
at least one otherPA is instantiated, it is possible to ask
it for a recommendation. However, notice a potential
problem whenk agents start asking for recommendation
from all (k−1) other agents. Each such question results
in 2(k− 1) messages (containing recommendations).
Furthermore, each response may consist of a consider-
able number of suggestions, and thus become a large
message. Overall, asking for recommendations from
all available agents could be detrimental to the perfor-
mance of the whole system. Therefore, we have decided
that a request for a recommendation can be send only
to a specific maximum number of agents (kmax). This
number has to be established experimentally (similarly
to the experiments reported in [1]), on the one hand
maximizing it, on the other keeping system responsive
by limiting the total number of messages.

Second, in a trust-based recommender, recommen-
dations are weighted according to the “trust” in their
providers. Observe that in the standard scenario the
“advisory panel” is assumed to be mostly available.
It is thus enough to collaborate with a small number
of trusted peers and store information about them and
their recommendations. In our system it may be often
the case that no “known/trusted peer” is available.
Obviously, we could assume that when needed such
peers could be instantiated by the system (recall that
they are all entities within the system) to respond to the
query (and then disposed off), but this solution seems
to be a serious waste of resources. Envision that for
each user query about 20-30 agents are instantiated and
then immediately killed. It would be also possible to
provide the requester with user profiles of its trusted
peers, but this suggestion is highly questionable due

to the necessary privacy of user information (note that
some users may not want to be a part of collaborative
advising). Another possible approach would be to store
information about all agents that were ever interacted
with and thus increase potential of finding in the
system active agents that we know at least something
“positive” (or “negative,” if we were to extend our
filtering model to include “counter-advisers”) about.
However, if we assume that for each agent we store
only the trust value. Then forn agents, each agent
would store theirn− 1 ID’s and n− 1 trust values;
overall, O(n2) values. While not a problem for a few
hundred agents, this soon grows to a very large number.
Therefore, we decided to limit the size of the “advisory
panel” (again, to be established experimentally).

Finally, to support needs of collaborative filtering,
we have decided to introduce theCollaborative Filter-
ing (CF) agent and place it between theSHAand the
PA. Its role is to know (a)PAs available in the system,
(b) how many agents can be queried, (c) who are the ad-
visory agents; as well as (d) manage trust information,
(e) query agents, and (f) collate their responses.

As a result the following scenario materializes.
When a givenPA wants to ask other agents about their
recommendation, it sends a request to theCF agent,
which checks if any member of the advisory panel is
available (e.g. 5 of them) and contacts them. Then
the remaining available quota of agents (e.g. 25, for
kmax = 30;) is selected randomly from the pool of
agents available in the system (e.g. 70). Finally, the
PA is also contacted back and its recommendations
taken into account. All responses are then collated
and sent back to thePA which follows the above
described scenario to present them to the user (see
Figure 1). Let us recall from [4], that the suitability of
a given object (itstemperature) is represented as a real
number from the interval [0, x] (wherex is a constant;
typically x = 1). Therefore, each agent presents a list
of recommendations and their temperatures. Then,
recommendations of trusted agents are combined as
follows (see [13]); for each objecti appearing in the set
of all responses from all trusted advisers:

RECT
i =

mi∑

j=1
tempi, j ∗T j

mi∑

j=1
T j

, (1)

whereT j is the trust value assigned to a given (j-th)
agent, whiletempi, j specifies the temperature that agent
j associates with objecti. The procedure for the remain-
ing agents is different because we have no trust value
associated with them. Modifying the above approach



Figure 2. Trust-based filtering.

slightly we combine their recommendations as follows:

RECNT
i =

mi∑

j=1
tempi, j

mi
(2)

In this way we obtain separate weighted average of the
strength of recommendations put forward by trusted
and other agents. Furthermore, these responses have to
be combined with that obtained from thePA (RECPA

i ).
Note that we have to try to prevent a group of agents
from colluding to promote a given object (e.g. a restau-
rant). Therefore we suggest that the recommendation
about objecti be calculated as follows:

RECi = α ∗RECPA
i +β ∗RECT

i +γ ∗RECNT
i , (3)

whereα, β and γ are scaling constants that establish
strength of each of the three components, while
α + β + γ = 1. For instance, to assure that colluding
agents cannot influence the “vote” it is enough to
specifyα = 0.6, β = 0.3 andγ = 0.1. Note that if a
group of not-trusted agents colludes with trusted agents
they can achieve their goal. However, if the user is then

“unhappy” and expresses negative opinion about their
recommendation, then the trust value of trusted agents
that made such a recommendation decreases (possibly
even considerably) and subsequent collusions will
remove it/them from the pool of advisers. The resulting
set of recommendations is then sorted and presented to
the user starting from the most highly recommended.
Note that in the case when no trusted agents are
logged into the system and cannot be asked for their
opinion, or in the case of only trusted agents being
asked about their opinion, one of the recommendations:
T_Recommendationi or NT_Recommendationi, will be
0 for all i. This does not change the way that our system
works and using the proposed formula we can still
present user with a ranked set of recommended objects.

At this stage the user provides the system with an
explicit or implicit feedback (or both) about the recom-
mended objects (e.g. restaurants). This feedback will
be used to adjust user profile (as described in [4]) and to
adjust trust values of known peers. The new trust value
is calculated on the basis of the following function [13]:

Tn+1(x) = φTn(x)+ (1−φ)rreal (4)



whereTn+1(x) andTn(x) are the new and the old values
of trust of a given agent in agentx; φ is a parameter
of the system that manages the evolution dynamics of
trust (proposed by Jonker and Treuf in [11]); andrreal

is a real interest of user in the object (evaluated on the
basis of feedback [13]).

Observe that in the proposed system, we utilize a
specific limited number of trusted peers; consisting of
agents with currently highest values of trust. Let us
now note that function (4) can be used to evaluate trust
not only of agents-advisers, but also of unknown agents
(their initial trust value isTn(x) = 0). As a result, if the
best scoring unknown agent (Y) scored higher than the
lowest scoring member of the panel (Z), thenY will re-
placeZ in the panel. In this way, by introducing new
agents to the group of advisers, we can naturally adapt
its composition to users’ changing profile. However, to
avoid drastic changes that may not be warranted, each
time only a single replacement is made.

3. Concluding remarks

In this note we have briefly (due to the lack of
space) outlined how collaborative filtering proposed by
Montaner in [13], can be adjusted to our agent-based
travel support system to fit its design characteristics.
Currently we are improving the presented method, so
the each PA does not ask the RSA the same query about
recommended objects (see Figure 2), but rather the RSA
answers this query once, and then each PA uses this an-
swer to filter out its own recommendation. Furthermore,
we consider utilization of the threshold trust value to
manage the composition of the advisoy panel.

References

[1] K. Chmiel, D. Tomiak, M. Gawinecki, P. Karczmarek,
M. Szymczak, and M. Paprzycki. Testing the efficiency
of jade agent platform. InISPDC ’04: Proceedings
of the Third International Symposium on Parallel and
Distributed Computing/Third International Workshop on
Algorithms, Models and Tools for Parallel Comput-
ing on Heterogeneous Networks (ISPDC/HeteroPar’04),
pages 49–56, Washington, DC, USA, 2004. IEEE CS.

[2] J. Fink and A. Kobsa. User modeling for personalized
city tours.Artif. Intell. Rev., 18(1):33–74, 2002.

[3] M. Ganzha, M. Gawinecki, M. Paprzycki,
R. Gąsiorowski, S. Pisarek, and W. Hyska.Semantic
Web Technologies and eBusiness: Virtual Organization
and Business Process Automation, chapter Utilizing
Semantic Web and Software Agents in a Travel Support
System. Idea Publishing Group, 2006.

[4] M. Gawinecki. User modelling on a base of interac-
tion with WWW system. Master’s thesis, Deparment of

Mathematics and Computer Science, Adam Mickiewicz
University, Poznán, 2005.

[5] M. Gawinecki, M. Gordon, P. Kaczmarek, and M. Pa-
przycki. The problem of agent-client communication on
the internet.Scalable Computing: Practice and Experi-
ence, (6(1)):111–123, 2003.

[6] M. Gawinecki, M. Gordon, P. Kaczmarek, and M. Pa-
przycki. The problem of agent-client communication on
the internet.Parallel and Distributed Computing Prac-
tices, 6(1):111–123, 2003.

[7] M. Gawinecki, M. Gordon, M. Paprzycki, and Z. Vetu-
lani. Representing users in a travel support system. In
H. K. et. al., editor,Proceedings of the ISDA 2005 Con-
ference, pages 393–398, Los Alamitos, CA, USA, 2005.

[8] M. Gawinecki, M. Kruszyk, and M. Paprzycki.
Ontology-based stereotyping in a travel support system.
In Proc. of the XXI Fall Meeting of Polish Information
Processing Society, pages 73–85. PTI Press, 2006.

[9] JADE—Java Agent DEvelopment Framework.http:
//jade.tilab.com/, 2005. an Open Source platform
for peer-to-peer agent based applications.

[10] Jena—A Semantic Web Framework for Java.http://
jena.sourceforge.net/, 2005.

[11] C. M. Jonker and J. Treur. Formal analysis of models
for the dynamics of trust based on experiences. InMAA-
MAW ’99: Proc. of the 9th European Workshop on Mod-
elling Autonomous Agents in a Multi-Agent World, pages
221–231, London, UK, 1999. Springer-Verlag.

[12] M. Kruszyk, M. Paprzycki, and M. Ganzha. Pitfalls of
agent system development on the basis of a travel sup-
port system. In W. Abramowicz, editor,Proceedings of
the BIS 2007 Conference, 2007.

[13] M. Montaner, B. López, and J. L. de la Rosa. Devel-
oping trust in recommender agents. InAAMAS ’02:
Proceedings of the first international joint conference on
Autonomous agents and multiagent systems, pages 304–
305, New York, NY, USA, 2002. ACM Press.

[14] M. Montaner, B. López, and J. L. de la Rosa. A taxon-
omy of recommender agents on the internet.Artif. Intell.
Rev., 19(4):285–330, 2003.

[15] M. Montaner, B. Lopez, E. del Acebo, S. Aciar, and
I. Cuevas. AgentCities Agent Technology Competition,
chapter IRES: On the Integration of Restaurant Services,
pages 6–8. February 2003.

[16] S. Nesbitt. Collaborative Filtering on the Web: An
agent-based Approach (Literature Review), 1997.

[17] C. E. Nistor, R. Oprea, M. Paprzycki, and G. Parakh.
The role of a psychologist in e-commerce personaliza-
tion. In Proceedings of the 3rd European E-COMM-
LINE 2002 Conference, pages 227–231, 2002.

[18] V. Ramachandran. Design Patterns for Build-
ing Flexible and Maintainable J2EE Applica-
tions. http://java.sun.com/developer/

technicalArticles/J2EE/despat/, styczén 2002.
[19] Resource Description Framework (RDF).http://

www.w3.org/RDF/, 2005.
[20] Semantic Web Activity Statement.http://www.w3.

org/2001/sw/Activity, 2001.


