
Robust Design of Spectrum-Sharing Networks
Qingkai Liang∗, Hyang-Won Lee†, Eytan Modiano‡

∗‡Laboratory for Information and Decision Systems, MIT, Cambridge, MA
†Department of Internet and Multimedia Engineering, Konkuk University, Seoul, Korea

Technical Report

Abstract—In spectrum-sharing networks, primary users have
the right to preempt secondary users, which significantly de-
grades the performance of underlying secondary users. In this
paper, we use backup channels to provide reliability guarantees
for secondary users. In particular, we study the optimal white
channel assignment that minimizes the amount of recovery
capacity (i.e., bandwidth of backup channels) needed to meet a
given reliability guarantee. This problem is shown to be coupled
by two NP-hard objectives. We characterize the structure of
the optimal assignment and develop bi-criteria approximation
algorithms. Moreover, we investigate the scaling of the recovery
capacity as the network size becomes large. It is shown that the
recovery capacity is negligible as compared to the total traffic
demands in a large-scale network.

I. INTRODUCTION

In spectrum-sharing networks1, secondary users can access
spectrum holes (referred to as white channels) that are not used
by primary users. While spectrum sharing enables efficient
utilization of spectrum resources, secondary networks built
upon white channels can suffer from severe performance
degradation since secondary users must stop using a white
channel whenever it is reclaimed by a primary user (this event
is called channel preemption). Thus, it is necessary to provide
protection for secondary users to guarantee their reliability
against channel preemptions.

There have been numerous efforts towards achieving reli-
able communications for secondary users. One of the impor-
tant issues in this context is how the secondary network should
recover from channel preemptions. A straightforward approach
is to let disrupted links switch to another idle white channel
on the fly [3] [4]. This approach can, however, experience
unpredictable delay until idle white channels become available.
In contrast to the on-the-fly reconfiguration method, Yue et al.
[5] propose to assign an extra white channel to each link in
advance, in order to recover from any single channel preemp-
tion. In multi-hop networks, rerouting can be used to find a
detour around interrupted links [6] [7]. Some recent works
[8] [9] combine channel switching and rerouting to recover
secondary users’ traffic. Another line of research focuses on
“risk mitigation”, which seeks to reduce the negative effects of
channel preemptions on secondary networks. Zhao et al. [10]
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1The spectrum-sharing feature may be enabled via cognitive radios [1],
geographic databases [2], etc.

and Kuo et al. [11] exploit channel statistics to predict channel
availability and design reliable MAC protocols to reduce the
probability of being preempted. Cao et al. [12] and Mihnea et
al. [13] study reliable channel assignments that maintain the
network connectivity after any single channel preemption.

Although the above schemes enhance the reliability of
secondary networks, most of them only provide “best-effort
reliability”. There is no guarantee on, for example, the number
of channel preemptions the secondary network can recover
from, or the ability to fulfill a certain reliability requirement.
In this paper, we allow secondary users to specify a reliability
requirement and investigate how to adhere to such a require-
ment at the minimum cost.

Our approach uses backup channels to recover from preemp-
tions. These backup channels can be licensed channels leased
temporarily at a cost [14], or currently unused white channels.
Note that these backup channels do not necessarily stay idle
when they are not used for recovery; the only requirement
is that they should be available when needed for recovery
(possibly at a cost).

Due to the scarcity and relative high costs of backup
channels, it is necessary to minimize the amount of recovery
capacity (i.e., bandwidth of backup channels) that should be
provisioned. Although many factors can affect the amount
of required recovery capacity, we focus on the influence of
white channel assignment. Specifically, we study the optimal
white channel assignment that minimizes the recovery capacity
required to meet a certain reliability requirement such that the
network is able to recover secondary users’ traffic from a given
number of white channel preemptions.

Unfortunately, this problem is shown to be intractable and
coupled by two NP-hard objectives. As a result, we conduct
bi-criteria analysis and propose bi-criteria approximation algo-
rithms for white channel assignment. Our simulations validate
the performance of the proposed algorithms.

Another important contribution of this paper is the char-
acterization of the scaling of the recovery capacity. It turns
out that the required recovery capacity becomes negligible as
compared to the total network traffic as the network becomes
large. Our simulations show that under the proposed channel
assignment schemes the required recovery capacity is usually
less than 1% of the total traffic. Thus, it is possible to provision
guaranteed reliability in a large-scale secondary network at
minimum cost.

The remainder of this paper is organized as follows. We
introduce the network model and describe the problem in Sec-
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tion II. Next, we study the optimal white channel assignment
under a given reliability requirement in Section III. Finally,
simulation results are presented in Section IV and conclusions
are given in Section V.

II. MODEL AND PROBLEM DESCRIPTION

A. Network Model

We consider a spectrum-sharing network where primary
users own a set of licensed channels referred to as white
channels. Any idle white channel can be accessed by sec-
ondary users, but it should be vacated if a primary user appears
in that channel (referred to as channel preemption). When
channel preemptions happen, secondary users switch to backup
channels in order to resume communications. The recovery
capacity refers to the bandwidth of backup channels we need
to provision in order to meet a certain reliability requirement
which will be specified in Section III.

The secondary network is represented by an undirected
graph G = (V,E), where V is the set of secondary nodes
and E is the set of links. There is a link between two
secondary nodes if they can directly communicate with each
other. We consider the one-hop interference model where
adjacent links cannot be active in the same channel at the
same time. Although such an interference model is restrictive,
it serves as the foundation for understanding more complex
interference models (e.g., see [15] [16]). Moreover, the one-
hop interference model is an appropriate model for many
practical wireless systems such as spread-spectrum systems,
millimeter-wave networks [17], etc. Each link e is associated
with a traffic demand re which is determined by some higher-
layer policies (e.g., routing and flow control). We denote by W
the set of white channels. Each white channel w can sustain
a data rate up to Rw,e over link e.

Now we describe the set of feasibility conditions on white
channel assignment in order to sustain the given traffic de-
mands. Let y be an |E| × |W | binary matrix whose element
ywe = 1 if white channel w is assigned to link e. Note that
if white channel w is assigned to link e, this link should
be scheduled for at least re

Rw,e
fraction of time in order to

meet the traffic demand re. Under the one-hop interference
model, the set of links that can be activated simultaneously in
the same channel form a matching, and interfering matchings
can access the same white channel in a time-sharing manner.
As a result, the sustainable rate region in each channel can
be described by the convex hull of all matchings, i.e., the
matching polytope. Denote by Rw the rate region that can
be sustained in white channel w. Note that under channel
assignment y, the rate vector that channel w should support is
(ywe re)e∈E , which must belong to the rate region Rw if y is
a feasible assignment. Therefore, the feasibility condition can
be interpreted as (ywe re)e∈E ∈ Rw for all white channel w.
Based on Edmond’s matching polytope description [24], we
can further writeRw in a closed form and obtain the following
feasibility conditions:
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(a) Channel Assignment I
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(b) Channel Assignment II

Fig. 1. Two different assignments of white channels.

∑
e∈δ(v)

re
Rw,e

ywe ≤ 1, ∀v ∈ V,w ∈W (1)

∑
e∈E(U)

re
Rw,e

ywe ≤
|U | − 1

2
,∀U ∈ V, w ∈W (2)

∑
w∈W

ywe = 1, ∀e ∈ E (3)

ywe ∈ {0, 1}, ∀e ∈ E,w ∈W.

In (1), we denote by δ(v) the set of links incident on node
v. In (2), we define V = {U ⊆ V : |U | odd ≥ 3} to be
a collection of node sets with odd cardinality, and E(U) is
the set of links whose both ends are in U . For each white
channel w, the corresponding constraints in (1) and (2) are
Edmond’s matching polytope description over the set of links
using that channel. Specifically, the constraints in (1) require
the total schedule length of channel w not to exceed one; the
constraints in (2) are called “odd-set constraints” and we refer
readers to [18] or [24] for a detailed explanation. Overall, the
constraints in (1) and (2) force all of the traffic demands to be
schedulable under one-hop interference by using the given set
of white channels. Hajek et al. [18] use a similar formulation
to characterize schedulability in a single-channel case. Finally,
the constraints in (3) force each link to be assigned exactly
one white channel.

A channel assignment y is said to be feasible if it satisfies
all of the above constraints.

B. Problem Description

Due to the scarcity and relatively high costs of backup
channels, it is necessary to minimize the amount of recov-
ery capacity (i.e., bandwidth of backup channels) needed to
comply with a certain reliability requirement. In this paper,
the secondary network is required to survive a given number
of channel preemptions even in the worst case.

Given a recovery requirement, the amount of recovery
capacity we need to provision depends on how much traffic is
lost due to channel preemptions, which is largely determined
by the assignment of white channels. For example, Fig. 1
illustrates two different channel assignments with 3 white
channels. Each link has one-unit traffic demand, and we
assume white channels have sufficiently large capacity such
that any channel assignment is feasible (as long as each link
is assigned exactly one white channel). Suppose we want to
survive any single white channel preemption. In Fig. 1(a), the
preemption of channel 1 will cause the failures of two adjacent



links, which requires two units of recovery capacity under one-
hop interference. In contrast, the channel assignment in Fig.
1(b) only requires one unit of recovery capacity, since any
links that can fail at the same time (i.e., due to the failure
of a single white channel) can be activated simultaneously.
Our goal is to find a feasible white channel assignment
that requires the minimum recovery capacity subject to a
certain recovery requirement.

III. ROBUST WHITE CHANNEL ASSIGNMENT

In this section, we develop robust white channel assignment
schemes that fulfill a given recovery requirement at minimum
cost. Specifically, the network is required to survive any k
white channel preemptions, i.e., the backup channels should
be able to support the traffic demands on the links disrupted
by any k white channel preemptions. Hence, the goal is
to find a feasible white channel assignment requiring the
minimum recovery capacity to protect against any k channel
preemptions. This problem is referred to as WhiteRec:

min
C,y feasible

C

s.t.
∑
w∈S

∑
e∈δ(v)

re
C
ywe ≤ 1,∀v ∈ V, ∀S ∈ W(k) (4)

∑
w∈S

∑
e∈E(U)

re
C
ywe ≤

|U | − 1

2
, ∀U ∈ V, S ∈ W(k), (5)

where the meanings of δ(v), E(U) and V are the same
as in (1)-(2), and W(k) = {S ⊆ W : |S| = k} is a
collection of channel sets with cardinality k. Similar to (1)
and (2), the constraints in (4) and (5) correspond to Edmond’s
matching polytope description, requiring that after any k
channel preemptions the traffic demands on the disrupted links
be schedulable by using a backup channel with capacity C.

A. Complexity Analysis

In this section, we investigate the complexity of WhiteRec.
In fact, solving this problem involves finding a white channel
assignment that is both feasible (in order to support the
traffic demands as described in (1)-(3)) and optimal (in order
to minimize the recovery capacity as defined in (4)-(5)).
Unfortunately, both of these problems are NP-hard.

Theorem 1. Finding a feasible white channel assignment that
sustains the given traffic demands is NP-hard.

Proof. Our proof is based on the reduction from the Bin
Packing Problem which is known to be NP-hard.
• Problem: Bin Packing Problem
• Input: a set of n items with volume v1, v2, ..., vn ∈ (0, 1]

and a set of m bins with unit capacity
• Decision: whether we can pack the n items into the m

bins
To show the reduction, consider a star network with n links
incident on a common node. The traffic demands on these
links are v1, v2, · · · , vn. Suppose we have m homogeneous
white channels, each with unit capacity. We would like to
find a mapping from the n links to the m white channels

such that the traffic demands are sustainable. Obviously, this
is equivalent to determining the feasibility of packing the n
items into the m bins. As a result, it is NP-hard to find a
feasible assignment to support the given demands, even in a
star network and when channels are homogeneous.

Theorem 2. Finding a white channel assignment that requires
the minimum recovery capacity is NP-hard. Moreover, even if
any channel assignment is feasible (i.e., the capacity of each
white channel is sufficiently large such that the traffic demands
are always sustainable under any channel assignment), the
problem remains NP-hard.

Proof. Our proof is based on the reduction from the Partition
Problem which is known to be NP-hard [19, p. 223].

• Problem: Partition Problem
• Input: A set A of positive integers given by A =
{r1, ..., rn}

• Output: A subset S ⊂ A s.t. max{sum(S), sum(A \
S)} is minimized, where sum(T ) is the sum of all the
elements in T

To show a mapping from the Partition Problem to our problem,
consider a star network with n links, where link i has a
traffic demand ri. Suppose that we have two white channels
w1, w2, and both channels have sufficiently large capacity
such that any channel assignment is feasible. The goal is
to find a white channel assignment requiring the minimum
recovery channel capacity to recover from any single channel
preemption. Hence, it is desirable to balance the loads on each
white channel.

More formally, let E(w) be the set of links using white
channel w. It is easy to see that the recovery channel capacity
in the formulation of WhiteRec can be expressed as

C = max
{∑

e∈E(w1) re,
∑
e∈E(w2) re

}
.

In this setting, finding a white channel assignment minimizing
C is equivalent to finding a subset S in the Partition Problem.
This completes the proof.

The two theorems imply that WhiteRec is a complicated
problem coupled by two NP-hard objectives: finding a fea-
sible assignment to support the traffic demand and finding
an optimal assignment that requires the minimum recovery
capacity. To address this difficulty, we introduce a technique
called bi-criteria approximation [20] which allows the feasi-
bility constraints to be violated by a bounded amount while
ensuring some approximation ratio with respect to the recovery
capacity. The formal definition is as follows.

Definition 1 (Bi-Criteria Approximation). An algorithm
achieves (ρ, φ)-approximation to WhiteRec if the following
two conditions are satisfied simultaneously.
- It requires at most ρ times of the minimum recovery capacity.
- It guarantees that at least φ-fraction of the traffic demand
is sustained over each link.



In the following sections, we first analyze the bi-criteria
structure of WhiteRec. Based on the analysis, several ap-
proximation algorithms are developed and their bi-criteria
approximation ratios are studied.

B. Bi-Criteria Analysis

In this section, we investigate the bi-criteria structure of
the optimal feasible solution to WhiteRec. Specifically, we
are interested in the structure that requires the minimum
recovery capacity (i.e., optimality analysis, Sec. III-B1) and
that sustains the given traffic demands (i.e., feasibility analysis,
Sec. III-B2). Finally, the relationship between optimality and
feasibility is discussed.

1) Optimality Analysis: We first study the structure of
the optimal assignment that requires the minimum recovery
capacity. The particular form of WhiteRec allows us to express
the required recovery capacity C in a closed form. It is easy
to see that constraints in (4) are equivalent to

C ≥M1(y, k), (6)

where M1(y, k) = max
v∈V,S∈W(k)

∑
w∈S

∑
e∈δ(v)

rey
w
e .

Similarly, constraints in (5) are equivalent to

C ≥M2(y, k), (7)

where M2(y, k) = max
U∈V,S∈W(k)

2

|U | − 1

∑
w∈S

∑
e∈E(U)

rey
w
e .

Combining (6) and (7), we can rewrite constraints (4) and (5)
in WhiteRec as

C ≥ max{M1(y, k),M2(y, k)} , C(y, k). (8)

In other words, given a white channel assignment y, the
value of C(y, k) is the minimum recovery capacity required
to recover from any k channel preemptions. As a result,
WhiteRec can be rewritten as

min
y

C(y, k)

s.t. y is feasible.

Note that M2(y, k) corresponds to the “odd-set constraints”
in (5) which are difficult to handle in general. Hence, it
is natural to consider the relaxation of WhiteRec by ne-
glecting M2(y, k). The relaxed problem is referred to as
WhiteRecApprox, i.e.,

min
y

M1(y, k)

s.t. y is feasible.

The following lemma shows that the relaxation of M2(y, k)
only leads to a small loss in optimality.

Lemma 1. For any channel assignment y, we have

M1(y, k) ≤ C(y, k) ≤ 1.5M1(y, k). (9)

Proof. The lower bound follows from the definition of
C(y, k). To show the upper bound, we notice that

M2(y, k) = max
U∈V,S∈W(k)

2

|U | − 1

∑
w∈S

∑
e∈E(U)

rey
w
e

=
1

2
max

U∈V,S∈W(k)

2

|U | − 1

∑
w∈S

∑
v∈U

∑
e∈δ(v)∩E(U)

rey
w
e

≤ 1

2
max

U∈V,S∈W(k)

2

|U | − 1

∑
v∈U

∑
w∈S

∑
e∈δ(v)

rey
w
e

≤ 1

2
max

U∈V,S∈W(k)

2

|U | − 1

∑
v∈U

M1(y, k)

=
1

2
M1(y, k)max

U∈V

2|U |
|U | − 1

=
3

2
M1(y, k).

The second inequality is due to the definition of M1(y, k), and
the last equality holds because |U | ≥ 3.

Lemma 1 shows that the optimal solution to WhiteRecApprox
attains 1.5-approximation to the original problem WhiteRec
with respect to the required recovery capacity C(y, k). In
fact, in bipartite graphs, there is even no approximation gap
between WhiteRecApprox and WhiteRec.
Special Case: Bipartite Graphs. The notion of bipartite
graphs can characterize any graph without odd-length cycles
such as trees. Using the particular structures of bipartite
graphs, we can show Lemma 2.

Lemma 2. In a bipartite network, M1(y, k) ≥ M2(y, k) for
any channel assignment y and any positive integer k.

Proof. See Appendix A.

This lemma implies that C(y, k) = M1(y, k) in a bipartite
graph, and thus we can safely ignore M2(y, k) without sac-
rificing any optimality. In other words, the optimal solution
to the relaxed problem WhiteRecApprox is also the optimal
solution to the original problem WhiteRec if the secondary
network is bipartite.

2) Feasibility Analysis: Next, we study the feasibility con-
ditions (1)-(3) and investigate the structure of channel assign-
ments that are able to sustain the largest amount of traffic. In
particular, we investigate the relationship between feasibility
and optimality, which is important for our subsequent bi-
criteria approximation analysis.

It is clear that deciding feasibility is equivalent to the fol-
lowing optimization problem FEASI which finds the maximum
fraction of traffic that can be sustained over each link.

FEASI : max
y,β

β

s.t.
∑
e∈δ(v)

βre
Rw,e

ywe ≤ 1, ∀v ∈ V,w ∈W (10)

∑
e∈E(U)

βre
Rw,e

ywe ≤
|U | − 1

2
, ∀U ∈ V, w ∈W (11)

∑
w∈W

ywe = 1, ∀e ∈ E (12)

ywe ∈ {0, 1},∀e ∈ E,w ∈W.

Clearly, the original problem WhiteRec is feasible if and only
if the optimal value β∗ in FEASI is greater or equal to 1.



Now let β(y) be the maximum value of β in FEASI under an
assignment y. The following lemma relates β(y) to C(y, 1).

Lemma 3.
Rmin

C(y, 1)
≤ β(y) ≤ Rmax

C(y, 1)
,

where Rmin and Rmax are the minimum and the maximum
white channel capacity, respectively.

Proof. From constraints (10)-(11), it follows that

β(y) = min{Z1(y), Z2(y)},

where
Z1(y) = min

v∈V,w∈W

1∑
e∈δ(v) rey

w
e /Rw,e

,

Z2(y) = min
U∈V,w∈W

1
2
∑

e∈E(U) rey
w
e /Rw,e

|U |−1

.

Under the above notations, FEASI becomes

max
y

min{Z1(y), Z2(y)}

s.t.
∑
w∈W

ywe = 1, ∀e ∈ E

ywe ∈ {0, 1}, ∀e ∈ E,w ∈W.

It is clear that

Z1(y) ≥
Rmin

maxv∈V,w∈W
∑
e∈δ(v) rey

w
e

=
Rmin

M1(y, 1)
,

and similarly we have Z2(y) ≥ Rmin

M2(y,1) . Then we obtain that

β(y) ≥ min{ Rmin

M1(y, 1)
,

Rmin

M2(y, 1)
}

=
Rmin

max{M1(y, 1),M2(y, 1)}
=

Rmin

C(y, 1)
.

Similarly, we can show β(y) ≤ Rmax

C(y,1) .

This lemma shows that if an assignment y yields a smaller
C(y, 1), it tends to sustain more traffic. In particular, if
white channels are homogeneous with capacity R, the lemma
implies β(y) = R

C(y,1) . In this case, minimizing the recovery
capacity required to survive a single preemption is equivalent
to maximizing the amount of sustainable traffic. Therefore, this
lemma bridges feasibility and optimality, which is important
for our subsequent bi-criteria approximation analysis.

C. Algorithm 1: Greedy Algorithm

In this section, we propose a simple greedy algorithm to
solve WhiteRec and analyze its bi-criteria approximation ratio.

Without loss of generality, let the links in the secondary
network be indexed by e1, · · · , en, where n = |E|. The
greedy algorithm assigns a white channel to each of these links
sequentially. Suppose we are deciding the channel assignment
for link ei = (u, v), and define δ(u, v) = δ(u)∪ δ(v), i.e., the
set of links incident on node u or node v. The greedy rule
is to pick the white channel that currently sustains the least
traffic over the links in δ(u, v). The detailed procedures are
presented in Algorithm 1, where Ew corresponds to the set of
links that are assigned channel w.

Algorithm 1 Greedy White Channel Assignment
1: Initialize Ew = ∅, ∀w ∈W ;
2: for ei = e1, · · · , en do
3: Assign white channel w∗ to link ei = (u, v), where

w∗ = arg minw∈W
∑
e∈δ(u,v)∩Ew

re;
4: Ew∗ ← Ew∗ ∪ {ei};
5: end for

The bi-criteria approximation ratio of this greedy algorithm
is given in Theorem 3, where we define Rmin and Rmax to
be the minimum and the maximum white channel capacity,
respectively.

Theorem 3. Suppose there exists a feasible solution to
WhiteRec. Then the greedy algorithm achieves (ρ, 1

ρ
Rmin

Rmax
)-

approximation to WhiteRec, where ρ = 3
2 (3− 2

|W | ).

Proof. See Appendix B.

For instance, if there are 2 homogeneous white channels, the
greedy algorithm is guaranteed to sustain at least 1

3 traffic
demands while requiring less than 3 times of the minimum
recovery capacity in WhiteRec.

The advantage of the greedy algorithm is in its simplicity. In
fact, it does not require any global information when assigning
channels for each individual link; thus, this greedy algorithm
can even be implemented in a distributed manner, where more
fresh local information can be used to improve the overall
performance. Moreover, it is applicable to arbitrary networks.
Although the theoretical approximation ratio of this algorithm
is relatively loose, its practical performance turns out to be
much better than the theoretical guarantee2 (see Section IV).
Moreover, it is possible to improve the approximation ratio in
a wide range of graphs. For example, with Lemma 2, it can
be shown that the approximation ratio can be improved by a
factor of 1.5 in bipartite graphs.

D. Algorithm 2: Interference-Free Assignment

The above greedy algorithm is simple and has provable
performance in any scenario but suffers from the relatively
loose approximation ratio. In this section, we discuss an
alternative channel assignment scheme, called Interference-
Free Assignment (IFA), which is less general than the greedy
algorithm but achieves much better performance.

Definition 2 (Interference-Free Assignment). An assignment
y is said to be interference-free if any two interfering links
are assigned distinct white channels.

For example, the channel assignment in Fig. 1(b) is
interference-free while the one in Fig. 1(a) is not. Conceiv-
ably, IFA requires less recovery capacity since links that fail
together due to any single channel preemption do not interfere
with each other and can be activated simultaneously. Through

2Similar greedy algorithms have been shown to perform extremely well for
frequency assignment in WDM-based optical networks [25].



the rest of this section, we study the properties of IFA. In
particular, we will show IFA has nearly-optimal performance.

We first investigate the conditions for the existence of IFA.
Note that IFA requires that adjacent links be assigned different
channels; this is similar to edge coloring where each white
channel corresponds to a color. From Vizing’s Theorem [23]
for edge coloring, we have the following observation:

Observation 1. There exists an interference-free channel
assignment if the number of white channels is greater than
the maximum node degree, i.e., |W | > dmax.

The above observation shows that IFA does not always exist
and is thus less general than the greedy algorithm. However,
the condition shown in the above observation is very mild in
practice since the number of white channels is usually much
larger than the number of neighbors a node has [8].

Now we develop an algorithm for constructing an
interference-free assignment (Algorithm 2). This algorithm
gives an interference-free assignment whenever |W | > dmax.
Note that this algorithm is still valid if |W | ≤ dmax but it
does not have a provable performance in this case. Note also
that this algorithm colors edges with white channels and there
are several polynomial-time algorithms that can perform edge-
coloring with dmax + 1 colors in a simple graph (e.g., [22]),
therefore Algorithm 2 can be run in polynomial time.

Algorithm 2 Interference-Free Channel Assignment
1: Color the graph with dmax +1 colors, which partitions the

edges into dmax + 1 matchings;
// These matchings are denoted by I1, · · · , Idmax+1.

2: for i = 1 : dmax + 1 do
3: Assign edges in matching Ii to white channel wi, where

wi = i mod |W |;
4: end for

Next, we investigate the properties of IFA. The most im-
portant one is given in Lemma 4 which shows that any
interference-free channel assignment minimizes M1(y, k).

Lemma 4. Consider any two interference-free channel assign-
ments ȳ, ỹ and any non-interference-free assignment ŷ. Then
the following relationship holds: M1(ȳ, k) = M1(ỹ, k) ≤
M1(ŷ, k) for all k ∈ Z+.

Proof. For any interference-free assignment ȳ, let S̄ ∈ W(k)
and v̄ ∈ V be such that

M1(ȳ, k) =
∑
w∈S̄

∑
e∈δ(v̄)

reȳ
w
e . (13)

Since ȳ is interference-free, all the links incident on a node
are assigned different white channels. This is also true for
another interference-free assignment ỹ. Thus, there exists a
set S̃ ∈ W(k) such that

{e ∈ δ(v̄) :
∑
w∈S̃

ỹwe = 1} = {e ∈ δ(v̄) :
∑
w∈S̄

ȳwe = 1}.

Therefore, we have∑
w∈S̄

∑
e∈δ(v̄)

reȳ
w
e =

∑
w∈S̃

∑
e∈δ(v̄)

reỹ
w
e ,

which implies M1(ȳ, k) ≤ M1(ỹ, k) by the definition of
M1(y, k). Similarly, we can prove M1(ȳ, k) ≥ M1(ỹ, k).
As a result, it follows that M1(ȳ, k) = M1(ỹ, k) for any
interference-free channel assignments ȳ and ỹ.

To prove the second part, consider a non-interference-free
channel assignment ŷ. Obviously, under the asignment ŷ, the
preemption of k white channels can possibly lead to the
preemption of more than k links incident on a node. Hence,
there exists a set Ŝ ∈ W(k) such that

{e ∈ δ(v̄) :
∑
w∈Ŝ

ŷwe = 1} ⊇ {e ∈ δ(v̄) :
∑
w∈S̄

ȳwe = 1}.

Therefore, we can conclude that M1(ȳ, k) ≤M1(ŷ, k).

Lemma 4 together with Lemma 1 immediately implies that
IFA achieves no more than 1.5 times of the minimum recovery
capacity. In fact, we can further tighten this bound, as shown
in the following theorem.

Theorem 4. Suppose there is a feasible solution to
WhiteRec and an interference-free assignment exists. Then
any interference-free assignment achieves ( 5

4 ,
Rmin

Rmax
) approxi-

mation to WhiteRec.

Proof. We first prove that any IFA achieves no more than 5
4

times the minimum recovery capacity. We start by introducing
a lemma whose proof is similar to Lemma 1 and thus omitted.

Lemma 5. Let V ′ = {U ⊆ V : |U | ≥ 5, |U | odd}. Then for
any assignment y and integer k ≥ 1:

max
U∈V′,S∈W(k)

2

|U | − 1

∑
w∈S

∑
e∈E(U)

rey
w
e ≤

5

4
M1(y, k).

Now we get down to proving that any IFA achieves no more
than 5

4 times of the minimum recovery capacity. Denote V3

the collection of node sets with cardinality 3. For any channel
assignment y and any integer k ≥ 1, we rewrite C(y, k) as:

C(y, k) = max{M1(y, k),M2(y, k)}

= max
{
M1(y, k), max

U∈V3,S∈W(k)

2

|U | − 1

∑
w∈S

∑
e∈E(U)

rey
w
e ,

max
U∈V′,S∈W(k)

2

|U | − 1

∑
w∈S

∑
e∈E(U)

rey
w
e

}
∆
= max{M1(y, k), A(y, k), B(y, k)}.

Let y′ be an arbitrary IFA and y∗ be the optimal solution to
WhiteRec. We observe three key facts:
(1) A(y′, k) ≤ A(y∗, k). This is due to the fact that in any

induced graph of 3 nodes the interference-free assignment
y′ allocates different channels to different edges, which
is optimal in that induced graph.

(2) B(y′, k) ≤ 5
4M1(y′, k) ≤ 5

4M1(y∗, k). This is due to
Lemma 5 and the fact that any IFA minimizes M1(y, k).



(3) M2(y′, k) ≥ M1(y′, k) otherwise C(y′, k) =
M1(y′, k) ≤ M1(y∗, k) ≤ C(y∗, k), which implies that
y′ is optimal. This fact further shows that C(y′, k) =
max{A(y′, k), B(y′, k)}.

Then we have

C(y′, k)

C(y∗, k)
=

max{A(y′, k), B(y′, k)}
max{M1(y∗, k), A(y∗, k), B(y∗, k)}

≤ max
{A(y′, k)
A(y∗, k)

,
B(y′, k)

M1(y∗, k)

}
≤ 5

4
.

Next, we prove that any IFA y′ can sustain Rmin

Rmax
-fraction

of traffic over each link. Note that C(y′, 1) = M1(y′, 1) under
the IFA y′. By Lemma 4, the IFA y′ minimizes M1(y, 1), so
we have C(y′, 1) = M1(y′, 1) ≤ M1(y, 1) ≤ C(y, 1) for any
assignment y. Let ŷ be a feasible solution to WhiteRec, i.e.,
β(ŷ) ≥ 1. Then it follows that for any IFA y′

β(y′) ≥ Rmin

C(y′, 1)
≥ Rmin

Rmax

Rmax

C(ŷ, 1)
≥ Rmin

Rmax
β(ŷ) ≥ Rmin

Rmax
,

where the first and third inequalities are due to Lemma 3, the
second inequality is due to our claim that C(y′, 1) ≤ C(ŷ, 1)
and the last inequality holds because of our assumption that
β(ŷ) ≥ 1. This completes our proof.

Note that IFA has a much better approximation ratio than
the greedy algorithm with respect to both the recovery capacity
and the sustainable traffic. In particular, if channels are homo-
geneous, then any interference-free assignment is guaranteed
to sustain 100% traffic demands while requiring less than 1.25
times of the minimum recovery capacity. The caveat is that
such a good approximation ratio only holds true when IFA
exists (i.e., when |W | > dmax). In fact, IFA is even optimal
with respect to the recovery capacity in many scenarios, as is
shown in Corollary 1.

Corollary 1. Suppose there is a feasible solution to
WhiteRec and an interference-free assignment exists.
Then any interference-free assignment achieves (1, Rmin

Rmax
)

approximation to WhiteRec in any of the following scenarios:
(i) k = 1, i.e., we need to survive any single preemption;
(ii) re = r ∀e ∈ E and k ≤ dmax, i.e., traffic is uniform and
no more than dmax preemptions are to be survived;
(iii) the secondary network is bipartite;

Proof. See Appendix C.

The common feature of the above scenarios is that C(y, k) =
M1(y, k) holds for any interference-free assignment y; as a
result, Lemma 4 implies that any interference-free assignment
minimizes C(y, k) in these cases. Note that if white chan-
nels are homogeneous, then any interference-free assignment
requires the minimum recovery capacity and 100% traffic
demands can be sustained in any of the above scenarios. In
other words, IFA is both feasible and optimal in these cases.

E. Scaling of Recovery Capacity

In this section, we investigate the scaling of the required
recovery capacity under the proposed algorithms. Specifically,
we show that the required recovery capacity becomes negli-
gible as compared to the total traffic if the network size is
relatively large.

To facilitate our analysis, we make a simplified assumption
that traffic is uniform across the entire secondary network, i.e.,
re = r for any e ∈ E. Also assume that white channels are
homogeneous, i.e., Rw,e = R for any w ∈ W and e ∈ E.
Denote by C∗(k) the recovery capacity required to protect
against any k channel preemptions under Algorithm 2. Note
that Algorithm 2 is still valid when |W | ≤ dmax, although
the resulted assignment may not be interference-free (yet our
subsequent analysis on recovery capacity scaling does not
require that the assignment be interference-free). Also let Ltot
be the total traffic demands in the secondary network, i.e.,
Ltot =

∑
e∈E re = r|E|. The following theorem shows the

scaling of the relative recovery capacity ratio C∗(k)/Ltot with
the network size |V |.

Theorem 5. Suppose there is a feasible solution to WhiteRec.
Then C∗(k)

Ltot
= O( 1

|V | ) as |V | → ∞ for any k ∈ Z+.

Proof. Consider the channel assignment scheme shown in
Algorithm 2. Clearly, each white channel is assigned to at most⌈
dmax+1
|W |

⌉
matchings; thus, at most

⌈
dmax+1
|W |

⌉
links incident on

the same node are assigned the same channel. Denote y the
above white channel assignment. It follows that∑

e∈δ(v)

rey
w
e ≤ r

⌈
dmax + 1

|W |

⌉
,∀w, v (14)

Note that the matching sets derived in Algorithm 2 is also a
matching set partition of E(U) for each U ∈ V . Hence, each
white channel is assigned to at most

⌈
dmax+1
|W |

⌉
matchings in

the matching set partition of E(U). Since each matching of
E(U) has at most |U |−1

2 edges, it follows that for each w ∈W
and U ∈ V ∑

e∈E(U)

rey
w
e ≤ r

|U | − 1

2

⌈
dmax + 1

|W |

⌉
. (15)

By (14) and (15), we can see that M1(y, k) and M2(y, k) are
upper bounded by

rk

⌈
dmax + 1

|W |

⌉
. (16)

It follows that

C∗(k) ≤ max{M1(y, k),M2(y, k)}

≤ rk
⌈
dmax + 1

|W |

⌉
.

If WhiteRec is feasible, then we have for any v ∈ V∑
e∈δ(v)

∑
w∈W

rey
w
e = r

∑
e∈δ(v)

∑
w∈W

ywe = rdv ≤ |W |R,



where dv is the degree of node v. Then it follows that dmax ≤
|W |R
r , which implies that

C∗(k) ≤ rk
⌈
R

r
+

1

|W |

⌉
. (17)

At the same time, it is easy to see that

Ltot = r|E| ≥ r dmin|V |
2

≥ r|V |
2
. (18)

Dividing (17) by (18) yields the desired result. Note that R,
r, k and |W | are regarded as asymptotically constant factors
when compared to |V |.

Remark. The proof to Theorem 5 is specific to Algorithm
2. However, since the gap between Algorithm 1 and 2 (in
terms of the ratio between their required recovery capacities)
is a constant, we can conclude that the scaling of recovery
capacity under Algorithm 1 is also O( 1

|V | ) as |V | → ∞.
Theorem 5 demonstrates that as the network size grows, the

recovery capacity needed to protect against k white channel
preemptions becomes negligible as compared to the total
traffic. Our simulation results (see Section IV-B) show that
the recovery capacity required to survive 2 preemptions is
less than 1% of the total traffic in a 200-node network, even
with very few white channels. This is mainly due to the effect
of spatial reuse. That is, although the total traffic increases
linearly with the network size, more links can be activated
simultaneously; thus, the required recovery capacity does not
scale up with the network size.

IV. PERFORMANCE EVALUATION

In this section, we numerically study our schemes. Specifi-
cally, we seek to answer the following questions:
• How does the recovery capacity scale with the network size?
• What is the bi-criteria approximation quality of the greedy
algorithm and IFA?

A. Simulation Setup

We use Erdős-Renyi Random Graph to simulate the network
topology, where links are established with probability 0.6
and the maximum node degree is bounded by 8. The traffic
demand over each link is uniformly distributed in the range
[1,100]Mbps. The capacity of each white channel is uniformly
distributed in the range [75,200]Mbps. In our simulation, 5000
random graph instances are tested.

B. Scaling of Recovery Capacity

We first investigate how the relative recovery capacity ratio
(see Section III-E for the definition) scales with the network
size. As is observed in Fig. 2, the recovery capacity ratio goes
down with the growth of the network size. Specifically, the
required recovery capacity is only around 1% of the total traffic
demands in a 200-node network, even with very few white
channels (e.g., |W | = 3). Therefore, we expect the recovery
capacity to become negligible as compared to the total traffic
demands as the network size continues to grow. In addition,

curve fitting shows that the recovery capacity ratio scales as
Θ( 1
|V |a ) where a ranges in 1.02-1.09, which roughly matches

the theoretical bound we obtain in Theorem 5.
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Fig. 2. Scaling of the relative recovery capacity ratio with the network size
|V | (where k = 2 channel preemptions are to be survived).

C. Approximation Quality

Since we consider the bi-criteria approximation framework,
two metrics should be evaluated: the recovery capacity and
the fraction of traffic sustained over each link. Through the
rest of this section, we study the two aspects by comparing
the following schemes.
• Greedy Algorithm (Algorithm 1).
• Interference-Free Assignment (IFA). Note that an

interference-free assignment is guaranteed to exist only
if |W | > dmax (in our simulation, dmax = 8).

• Random Assignment (RndAssign) that assigns each link
a random white channel.

• Optimal result to WhiteRec, computed with Gurobi, a
large-scale mathematical programming solver.

Recovery Capacity. Fig. 3 illustrates the comparison of
these schemes with respect to the recovery capacity; Table
I lists the detailed approximation gap3. We first focus on the
approximation quality of IFA. When k = 1, IFA yields the
same amount of recovery capacity as the optimal solution and
the approximation gap is zero. In fact, it can be analytically
shown that IFA is optimal when k = 1. When k = 2, IFA
is only slightly worse than the optimum (less than 2%, as is
shown in Table I), much better than the 1.25-approximation
bound. The only caveat is that IFA is guaranteed to exist only
if |W | > dmax.

Next, we investigate the approximation quality of the greedy
algorithm. Despite its relatively loose approximation ratio, the
greedy algorithm performs very well in practice. The worst
approximation gap is 26% when k = 1 and 14% when k =
2. It also outperforms the random assignment by almost an
order of magnitude in terms of the approximation gap. When

3The approximation gap is defined by ALG−OPT
OPT

, where ALG is the amount
of required recovery capacity by using the approximation algorithm and OPT
is the minimum recovery capacity.



compared with IFA, the greedy algorithm is slightly worse but
it has the advantage of being applicable in any scenario.
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Fig. 3. The comparison among different algorithms with respect to the
required recovery capacity (|V | = 20).

TABLE I
APPROXIMATION GAP OF DIFFERENT SCHEMES

Survive k = 1 failures Survive k = 2 failures
|W | Rnd Greedy IFA Rnd Greedy IFA

2 50% 12% N/A 0% 0% N/A
3 84% 22% N/A 32% 9% N/A
5 120% 24% N/A 68% 14% N/A
7 151% 26% N/A 90% 11% N/A
8 148% 18% N/A 87% 7% N/A
9 140% 7% 0% 83% 3% 2%

10 134% 3% 0% 79% 1% 0%
11 127% 1% 0% 75% 0% 0%
12 122% 0% 0% 72% 0% 0%

Sustainable Traffic. In Fig. 4, we illustrate the comparison
among different assignment schemes in terms of the fraction
of traffic sustained over each link. Note that the maximum
sustainable traffic level is obtained by solving FEASI (see
Section III-B2) in Gurobi. We first notice that if there is only
a small number of white channels, the maximum sustainable
traffic level can be less than 100%. With more white channels,
we have more spectrum resources and 100% traffic demands
are sustainable. By comparison, the fraction of traffic sustained
by the greedy algorithm is reasonably good as compared to the
maximum sustainable level (at least 60% of the maximum),
and the greedy algorithm significantly outperforms the random
assignment. In particular, given a sufficient number of white
channels (say |W | ≥ 9), the greedy algorithm yields a similar
performance to IFA and sustains over 90% traffic demands.

V. CONCLUSIONS

In this paper, we use backup channels to provide reliability
guarantees for secondary users. In particular, we investigate the
optimal white channel assignment that minimizes the recovery
capacity required to survive a given number of white channel
preemptions. This problem is shown to be coupled by two
NP-hard objectives, and two bi-criteria approximation schemes
are developed. Moreover, we show that the required recovery
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Fig. 4. Comparison among different algorithms with respect to the fraction
of traffic sustained over each link (|V | = 20).

capacity is negligible as compared to the total network traffic
in a large-scale network, which demonstrates the scalability of
this framework.
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APPENDIX

A. Proof to Lemma 2
Let

(U∗, S∗) = max
U∈V,S∈W(k)

1

α(U)

∑
w∈S

∑
e∈E(U)

rey
w
e .

The induced graph on U∗ is denoted by G∗ = (U∗, E(U∗)),
which is still a bipartite graph. Let C be the minimum vertex
cover of G∗. Then we have

M2(y, k) =
1

α(U∗)

∑
e∈E(U∗)

∑
w∈S∗

rey
w
e

≤ 1

α(U∗)

∑
v∈C

∑
e∈δ(v)∩E(U∗)

∑
w∈S∗

rey
w
e

≤ 1

α(U∗)

∑
v∈C

∑
e∈δ(v)

∑
w∈S∗

rey
w
e

≤ 1

α(U∗)

∑
v∈C

M1(y, k)

=
1

α(U∗)
|C|M1(y, k),

where the first inequality holds because every edge in E(U∗)
is incident on at least one node in C. By König’s Theorem [26,
pp. 203–207], the size of the minimum vertex cover equals to
the size of the maximum matching in a bipartite graph. Thus,
|C| is upper-bounded by b |U

∗|
2 c = |U∗|−1

2 (note that |U∗| is
odd). Therefore, we can finally conclude that

M2(y, k) ≤ 1

α(U∗)
|C|M1(y, k) = M1(y, k).

B. Proof to Theorem 3

Before the detailed proof, we first introduce a relaxed
problem called WhiteRecInf, which is the same as WhiteRec
but assumes infinite channel capacity such that any channel
assignment can support the given traffic demands. In other
words, feasibility conditions (1) and (2) are relaxed.

WhiteRecInf : min
y

C(y, k)

s.t.
∑
w∈W

ywe = 1,∀e ∈ E

ywe ∈ {0, 1},∀e ∈ E,w ∈W.

We first show that the greedy algorithm yields no more than
ρ times of the minimum recovery capacity in WhiteRec. The
following notations are necessary.
• yOPT is the optimal solution to WhiteRec.
• y∗ is the optimal solution to WhiteRecInf.
• ŷ is the solution given by the greedy algorithm. Also denote
Êw the set of links that are assigned channel w under ŷ.

It is clear that C(y∗, k) ≤ C(yOPT, k) since WhiteRecInf is
the relaxed problem of WhiteRec. Hence, it suffices to prove
C(ŷ, k) ≤ ρC(y∗, k). To facilitate our proof, we introduce a
lemma.

Lemma 6. C(y∗, k) ≥ k
|W | maxv∈V

∑
e∈δ(v) re.

Proof. Let v1 be the node with the maximum traffic de-
mands, i.e., v1 = arg maxv∈V

∑
e∈δ(v) re. Also denote L∗w

the total traffic supported by white channel w at node v1

under assignment y∗. Without loss of generality, we assume
L∗1 ≥ L∗2 ≥ ... ≥ L∗|W |. Then it follows that

M1(y∗, k) =
∑

1≤w≤k

L∗w.

If M1(y∗, k) < k
W

∑
e∈δ(v1) re, we would obtain∑

1≤w≤k L
∗
w

k
<

1

W

∑
e∈δ(v1)

re,

i.e., the average traffic (at node v1) in the first k white channels
are smaller than the average traffic (at node v1) in all the white
channels. This is an obvious contradiction since the first k
channels support more loads at node v1 than the remaining
|W | − k channels. Hence we can conclude that

C(y∗, k) ≥M1(y∗, k) ≥ k

W

∑
e∈δ(v1)

re =
k

W
max
v∈V

∑
e∈δ(v)

re.

This completes the proof to the lemma.

Now we get back to proving C(ŷ, k) ≤ ρC(y∗, k). Define

v∗ = arg max
v∈V,S∈W(k)

∑
w∈S

∑
e∈δ(v)∩Êw

re,

and without loss of generality, we suppose∑
e∈δ(v∗)∩Ê1

re ≥
∑

e∈δ(v∗)∩Ê2

re ≥ · · ·
∑

e∈δ(v∗)∩Ê|W |

re.



Note that under the above definitions, we have

M1(ŷ, k) =
∑

1≤w≤k

∑
e∈δ(v∗)∩Êw

re.

Suppose ew = (v∗, u∗w) is the last edge added to Êw that is
incident on v∗, and denote Dw the set of edges that have been
assigned a white channel before edge ew. Then it follows that
for any white channel w ∈W∑
e∈δ(v∗)∩Êw

re =
∑

e∈δ(v∗)∩Êw∩Dw

re + rew (19)

≤
∑

e∈δ(v∗,u∗w)∩Êw∩Dw

re + rew (20)

≤ 1

|W |
∑

e∈δ(v∗,u∗w)∩Dw

re + rew (21)

≤ 1

|W |

( ∑
e∈δ(v∗)

re +
∑

e∈δ(u∗w)

re

)
+
|W | − 2

|W |
rew

(22)

≤ 2

|W |
max
v∈V

∑
e∈δ(v)

re +
|W | − 2

|W |
rew . (23)

Here, (19) holds because edge ew is the last one added to
Êw that is incident on v∗; (21) is due to the fact edge ew
is assigned channel w only if channel w has the minimum
aggregate loads at node v∗ and u∗w among all white channels
(see step 3 in the greedy algorithm); (22) holds because ew is
incident on both v∗ and u∗w while Dw excludes ew. Then we
have

M1(ŷ, k) ≤ 2k

W
max
v∈V

∑
e∈δ(v)

re +
|W | − 2

|W |
∑

1≤w≤k

rew .

By Lemma 6, we know

k

|W |
max
v∈V

∑
e∈δ(v)

re ≤ C(y∗, k).

At the same time, notice that e1, e2, ..., e|W | are distinct edges
incident on v∗. Then it is easy to see that∑

1≤w≤k

rew ≤ C(y∗, k).

Therefore, we can conclude that

M1(ŷ, k) ≤ (3− 2

|W |
)C(y∗, k) =

2

3
ρC(y∗, k).

By Theorem 1, we finally have

C(ŷ, k) ≤ 3

2
M1(ŷ, k) ≤ ρC(y∗, k).

We now show that at least 1
ρ
Rmin

Rmax
-fraction of traffic can

be sustained by the greedy assignment. Let ŷ be the solution
obtained by the greedy algorithm, and denote by ỹ the optimal
solution to FEASI. Then it follows from Lemma 3 that

β(ŷ)

β(ỹ)
≥ C(ỹ, 1)

C(ŷ, 1)

Rmin

Rmax
. (24)

Denote OPT1 the minimum recovery capacity required to
survive one preemption in WhiteRec. Note that ŷ is intended
for surviving any k preemptions. However, the greedy algo-
rithm is invariant to the number of preemptions we need to
survive so ŷ is also the greedy assignment for surviving one
preemption. Thus, we have C(ŷ, 1) ≤ ρOPT1 according to
the first approximation ratio. Also note that C(ỹ, 1) ≥ OPT1.
Then

C(ỹ, 1)

C(ŷ, 1)
≥ OPT1

ρOPT1
=

1

ρ
. (25)

Taking (25) into (24), we have

β(ŷ)

β(ỹ)
≥ 1

ρ

Rmin

Rmax
.

Since WhiteRec has a feasible solution, then β(ỹ) ≥ 1 and
β(ŷ) ≥ 1

ρ
Rmin

Rmax
. This completes our proof.

C. Proof to Corollary 1

We only prove that any IFA yields the minimum recovery
capacity in above three scenarios while the ratio for the
sustainable traffic follows the same argument as in the proof
to Theorem 4.
Part (i). Since y is interference-free and k = 1, we have

M1(y, k) = max
v∈V,w∈W

∑
e∈δ(v)

rey
w
e = rmax,

M2(y, k) ≤ rmax max
U∈V,w∈W

2

|U | − 1

∑
e∈E(U)

ywe

≤ rmax max
U∈V,w∈W

2

|U | − 1

⌊
|U |
2

⌋
(26)

= rmax,

where (26) is due to the fact that y is interference-free and
consequently, the number of links in U ⊆ V using the same
channel is upper-bounded by the size of maximum matching
in E(U), which is

⌊
|U |
2

⌋
. The above two bounds show that

C(y, 1) = rmax. Since C(ỹ, 1) ≥ rmax for any assignment ỹ,
we can conclude that y yields the minimum recovery capacity.
Part (ii). Consider an arbitrary interference-free channel as-
signment y. Since y is interference-free, all the links incident
to a node are assigned different channels. Furthermore, we
have k ≤ dmax. Consequently, there exists a node v and
S ∈ W(k) such that

∑
w∈S

∑
e∈δ(v) y

w
e = k. Using this

observation, the value M1(y, k) can be rewritten as

M1(y, k) =r max
v∈V,S∈W(k)

∑
w∈S

∑
e∈δ(v)

ywe = rk

On the other hand, using the similar trick to Part (i), we can
bound M2(y, k) by M2(y, k) = rk. Hence, we have C(y, k) =
M1(y, k) = rk. Clearly, C(ỹ, k) ≥ rk any assignment ỹ; thus,
y yields the minimum recovery capacity.
Part (iii). This part directly follows from Lemma 2 and
Lemma 4.
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