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ABSTRACT 

In this paper, we develop an optimal computing budget allocation (OCBA) algorithm for selecting a sub-
set of designs under the restriction of an extremely small computing budget.  Such an algorithm is useful 
in population based Evolutionary Algorithms (EA) and other applications that seek an elite subset of de-
signs. 

1 INTRODUCTION 

This paper addresses the problem of selecting the best m out of a finite number of k potential solutions, 
referred to in this paper as designs.  Additionally, the performance measure for each design is stochastic 
and the simulation budget is extremely small.  In the context of a simulation, the objective of the proce-
dure that follows is to determine the best allocation of an extremely small number of simulation replica-
tions in order to identify as many of the set of elite designs as possible.  By allocating the simulation 
budget, we resample these designs using multiple evaluations to gain more confidence in the estimated 
performance measures.  This type of ranking and selection (R&S) problem has been considered previous-
ly in (Chen, He, and Fu 2008) and (Koenig and Law 1985) except these papers were concerned with se-
lecting all of the top m solutions, and assumed a larger number of simulation replications available. 
 Our primary motivation for this procedure is to use it in conjunction with population based evolution 
algorithms (EA).  An evolution strategy (ES) is a population based direct search algorithm which produc-
es λ offspring (designs) based on mutations of some start point for each generation, evaluates these off-
spring according to some fitness function (performance measure), selects the µ best of these offspring 
based on the fitness values to be the parental population of the next generation, and uses the centroid of 
the parental population to be the starting point of the next generation.  The distance travelled toward the 
optimum in solution space by the population’s centroid from one generation to the next is known as the 
progress rate.  For more details, see Beyer and Schwefel (2002).  Another potential use of this procedure 
is screening a set of designs for an elite subset when the number of simulation replications is limited due 
to time or budget constraints.   There are numerous applications of this situation as many simulations 
have a very high computational effort and decision makers often want more than one design to consider 
when the number of inputs into the simulation model are high. 
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 For an ES, efficiency is defined as the progress rate per function evaluation.  Arnold and Beyer 
(2000) analytically show that an ES with an offspring population size of λ with κ function evaluations 
(simulation replications) each cannot outperform the efficiency of an evolution strategy with population 
size λκ on simple noisy fitness functions.  This means that a strategy which resamples each offspring  κ 
>1 times is inefficient compared to a traditional ES.  For this reason, the procedure in this paper is built in 
order to develop a methodology which is able to resample in an ES environment where the efficiency 
concerns limit the number of simulation replications available.   Therefore, we consider each generation 
of an ES as a ranking and selection problem with an extremely small computing budget which, depending 
on the amount of noise in the problem, may not detect all of the members of the elite population.  An as-
sumption made now and tested in the experimental section of this paper is the correlation between in-
creasing the number of correctly identified members of an ES’s elite population and an increase in its 
progress toward the optimum.  Therefore, the ES problem on a generational basis becomes identical to the 
ranking and selection problem of identifying as many of the elite population as possible with a small 
computing budget. 
 Optimal Computing Budget Allocation (OCBA) is a R&S procedure used to distribute a simulation 
computing budget to resample a fixed number of alternatives in order to find the best design.  OCBA has 
been shown to be very efficient, controllable and robust when compared to other ranking and selection al-
gorithms (Branke, Chick, and Schmidt 2007).   OCBA-m is an extension of OCBA which seeks to select 
the best m out of k designs.  It has been shown by Chen, He, and Fu (2008) that OCBA-m significantly 
enhances the computational efficiency of a population based incremental learning (PBIL) algorithm and a 
neighborhood random search (NRS) algorithm both of which require the selection of an elite subset of the 
original population for each iteration.  OCBA-m+ is an enhancement of OCBA-m which removes the 
need to choose a constant to separate the elite subset from the non-elite subset and has been shown in 
(Zhang, Lee, and Chew 2012) to perform better than OCBA-m in a large computing budget environment.   
Our paper is different than these approaches since we are operating in a small computing budget envi-
ronment and are interested in finding as many of the elite population as possible. 
 OCBA-m and OCBA-m+ are asymptotic solutions for maximizing the approximate probability of 
correct selection for m best (APCSm) by using a Bayesian framework relying on the posterior probability 
distributions of each design.  The APCSm objective is an approximation of the probability of correct se-
lection (PCS) which is the probability that all m top designs are found.  In a small computing budget envi-
ronment where the estimates for the mean and variance are not very reliable, many designs are likely to 
be misclassified and the PCS measure is likely to be small.  Instead of maximizing the APCSm, the pro-
cedure in this paper distributes the computing budget sequentially in order to gain information about the 
design which has the greatest probability of changing its classification (PCC).  We use the OCBA-m and 
OCBA-m+ procedures as the current state of the art comparing both the PCS and number of elite designs 
identified.     
 Since the asymptotic solution is not of use under these conditions, we take a Knowledge Gradient 
(KG) approach of “choosing the measurement that would be optimal if it were our last chance to learn.”  
The KG approach to choosing the best member of a population of alternatives was introduced by  Gupta, 
S.S. and Miescke, K.J. (1996), and then refined in Frazier, Powell, and Dayanik (2008) and Chick, 
Branke, and Schmidt (2010).  The dominant theme in this process is to maximize the single-period ex-
pected increase (in a maximization problem) of the performance measure.  Ryzhov and Powell (2009) 
formulated a decision rule for subset selection based on KG where the objective was to maximize the total 
reward of the subset, measurements are taken for a subset (rather than individual designs as in our case), 
and designs in a subset can interact in unknown ways. 
 The paper is organized as follows.  In section 2, we formulate the problem, state the assumptions and 
determine the budget allocation for the next simulation replication.  Implementation issues of OCBAsb 
are discussed in section 3.  Section 4 provides experimental evidence that the procedure described here 
outperforms the current state of the art in the environment described.  Section 5 concludes with a sum-
mary and considerations for future work. 
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2 FORMULATION  

The formulation presented here is based on finding a subset of designs which have the minimum expected 
simulated performance measure. 

2.1 Notation 

   : the current perceived set of elite designs which are classified as elite 
   : the true set of elite designs  
   : number of simulation replications allocated to design i  

   : the total number of simulation replications to be performed 
     : initial number of simulation replications per design 

   : the iteration of the procedure, there are a total of  iterations  
   : the total number of simulation replications performed after iteration n,    
   : the jth simulated performance measure from design i 

   : average performance measure for all samples of all designs,  

   : average simulated performance measure for design i,   
   : the index for the rth ordered performance measure sample mean 

   : the index for the rth best design 

2.2 Problem Statement 

A design is a p dimensional vector which contains a set of decision variables used as input into a simula-
tion.  We consider a finite set of designs  which have stochastic performance measures.  The 
objective of the following procedure is to determine an allocation method which finds as many of the top 
m of k designs with the lowest expected performance measure as possible with the following conditions 

 
� there is an extremely small computing budget (T),  
� the simulated performance of each design i is stochastic and has a  distribution,  
� the rank order within each subset is not important.    

 
If we let  be the jth simulated performance and  be the number of simulation replications for the ith 
design, then the sample mean of the performance measure,  

 

      , 
 
is used to estimate the true expected value.  By ordering these average performance measures such that 
the rth best sample mean is  and , then the set of m designs which have the smallest 
perceived expected value is the set  

 
     . 
 

These designs have the top m performance sample means after  simulations have been per-
formed and are classified as elite.  The complement of  is the set which contains the designs which are 
classified as non-elite.  These are the designs whose sample means are not in the top m and are noted as  

 
      .  
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 If we let  be the mean of rth best design such that , then the true set of 
elite designs, referred to as the elite population, is  
The OCBAsb problem is to classify as many of the elite population as possible as elite using a limited 
simulation budget.  It is shown as  
 
                   (1) 
   s.t. . 
 
Note that a system which has a cardinality of m in (1) has classified all of its members correctly.   

In this small computing budget problem, we take an approach where the allocation procedure is ini-
tialized with as few replications as possible ( )  and the computing budget is distributed one simula-
tion at a time.  With few simulation replications per design, it is likely that many designs are classified in-
correctly.  The budget allocation procedure which makes the most intuitive sense with these conditions is 
to allocate the next replication to the design which has the highest probability of changing its classifica-
tion after the next simulation.  If the next replication has little chance of changing the classification of a 
design, then there is little reason to simulate that design.  To put it another way, the design which is cho-
sen to be simulated each step should be the one which has the greatest probability of moving from one 
group to the other.   A design changes its classification if it moves from  to  or  to .  The pro-
cedure  developed in the next section is designed to decrease the probability that a design will change 
from one group to another by systematically resampling the designs that have the greatest probability of 
changing classifications each step.   

2.3 Single Step Budget Allocation  

 Let’s first examine the designs in .  Since the design sample means are used to classify the design, 
then a current member of the elite population must change its mean such that it is larger than the mean of 
the “best” member of the non-elite population.  Let  represent the next sample taken of a design 
currently in  and  define the mean for the current iteration, , and the next iteration of the algorithm, 

, to be  

 

If a member of  changes its classification after the next sample, this means that    

        , and . 

By definition,  so 

        , and 

        . 

Also by definition,  so 

        . 

Since both means refer to the same iteration, we remove the superscript n to get 
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For designs in , the same argument can be made to show a change in classification occurs if 

 

Next, we assess the probability that this occurs given the results of the simulation replications which have 
occurred up to iteration n and the assumption that the performance measure of each design is sampled 
from a  distribution 
 
       

       

      . 

 

using  to estimate  and  to estimate , we get the approximate probability that a design will change 
its classification from elite to non-elite after the next simulation 

 

   . 

Similarly, designs from  have an approximate probability of changing classifications of 

     . 

Depending on the current classification of each design, we calculate the approximate probability that a 
design will change its classification (APCC) and assign the next simulation replication to the design with 
the largest of these probabilities according to 

 

           (2) 

    s.t.   
 
where estimating the standard deviation, , is discussed in the next section.   

This policy makes intuitive sense as the purpose of the budget allocation in this environment should 
be to identify the designs which have the least confidence of being classified correctly and verifying their 
membership or discovering that they were indeed misclassified.  If the confidence level of all designs is 
high, then there is no need to continue the replication of any design, thus signaling a stopping point.  In 
this paper, we do not experiment with stopping criteria and instead use the entire computing budget. 
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3 IMPLEMENTATION 

3.1 Estimating the Mean and Variance 

There are two ways that we calculate the variance in this algorithm.  The first involves finding a common 
variance for a set of designs when there is only one replication available per design.  The second method 
involves using as much of the available information as possible to estimate a common variance for a set 
of designs.  When  for all designs, the variance is calculated using all of the simulations   
 

           , 
 
where  is the overall mean of the initial set of simulated values.  After this initial case when at least one 
design has more than 1 simulation, the variance is calculated by pooling the variances of the designs that 
have more than one replication 
 

          , 

 
where  is the estimated variance of a design that has more than one simulation replication.  Here, the 
decision is made to use the overall estimate of the variance for each design in the allocation procedure ra-
ther than using the individual variance estimates.  This decision is based on the fact that the pooled vari-
ance estimate is more accurate than the individual estimates if the assumption of equal variances is true. 

3.2 OCBAsb Procedure 

This new procedure called OCBAsb (OCBA for small budgets) is implemented using a cycle of simulat-
ing the appropriate design(s), estimating the mean and variance associated with the designs, and allocat-
ing the next simulation replication according to (2) until the number of simulations performed is equal to 

.  We measure the performance of each procedure by calculating the number of correctly identified elite 
designs, and by calculating the probability of correct selection (PCS).  The OCBAsb procedure is present-
ed in the following table.  

 
Algorithm  OCBAsb Procedure 
INTIALIZE      Let n equal to 0; Set  and                 
                            ; Perform   replications for all designs. 
WHILE    DO 

    UPDATE      Calculate sample means and sample variance of each design.  

    ALLOCATE   Set  for all i=1…k.   

                             Find  according to (2).  Set   

    SIMULATE   Perform replication of design . Set  and  

END (WHILE) 

OUTPUT         Select the designs after  simulations in the set,  
 
 OCBAsb is tested in three environments.  The first is a ranking and selection environment where we 
are tasked to find a subset of the best designs given a pre-determined number of candidate solutions.  The 
second environment is that of an evolution strategy (ES) where it is well known that equal resampling on 
a noisy sphere objective function is inefficient.  In this well controlled environment, we find the most ef-
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ficient parameter settings on the noisy sphere using equations from (Arnold and Beyer 2002).  We com-
pare an OCBAsb and OCBA-m allocation scheme to determine which method is able to increase the pro-
gress rate and discover that it is possible to gain a slight increase in the efficiency over a standard ES.  
The last environment is that of a simulation optimization where the noise is not fitness proportionate.   

4 RESULTS 

4.1 Ranking and Selection 

 We compare OCBAsb in a ranking and selection problem against OCBA-m, OCBA-m+, and equal 
allocations to see how it performs.  Remember that this allocation method is strong when there is less in-
formation known about the individual designs (  is small) and when the simulation budget (T) is small.  
The first test is taken out of Chen and Lee (2011) and is a simple generic example.  In this experiment, we 
assume that there are ten design alternatives with normal  distributions.  We use 
OCBA-m+, OCBA-m, OCBAsb, and equal allocations to find the top m=3 designs.  For a total computing 
budget of T = 70 and T = 80, we search for the method which gives the largest probability of correct se-
lection understanding that there are different options for our initial number of computations.  If too many 
computations are used during the initialization of the algorithm (n0 is big), then there are fewer simulation 
replications to allocate in the second stage.  If too few computations are used during the initialization (n0 
is small), then it is more likely that many designs are misclassified which also leads to error.  Since 
OCBA-m and OCBA-m+ rely on a good initial approximation for the parameters in the problem, it is on-
ly fair to look for possible strategies that favor these algorithms. 

 

Table 1: Probability of correct selection and standard error for 5000 replications for finding the top m=3 
out of k=10 designs.  Five different initializations for a computing budget of 70 are compared.  The high-
lighted cells indicate a statistically significant result at a significance level of better than 0.05 compared to 
the second highest result. 

 
 

Table 2: Continuation of Table 1 for a computing budget of 80. 

 
 

Table 1 and Table 2 show that for a small computing budget, OCBAsb is a good choice for finding the 
top-m designs out of k alternatives.  The table also brings up the possibility that OCBAsb may be a good 

n0 OCBAm+ OCBAm OCBAsb Equal n0 OCBAm+ OCBAm OCBAsb Equal
1 0.3094 0.3024 0.4102 0.2956 1 0.0065 0.0065 0.0070 0.0065
2 0.3652 0.3528 0.4040 0.3002 2 0.0068 0.0068 0.0069 0.0065
3 0.3902 0.3686 0.3982 0.2948 3 0.0069 0.0068 0.0069 0.0064
4 0.3812 0.3862 0.4090 0.2994 4 0.0069 0.0069 0.0070 0.0065
5 0.3782 0.3802 0.3918 0.3004 5 0.0069 0.0069 0.0069 0.0065

T=70, P{CS} T=70, Std Error

n0 OCBAm+ OCBAm OCBAsb Equal n0 OCBAm+ OCBAm OCBAsb Equal
1 0.3308 0.3180 0.4526 0.3246 1 0.0067 0.0066 0.0070 0.0066
2 0.3894 0.3858 0.4548 0.3334 2 0.0069 0.0069 0.0070 0.0067
3 0.4192 0.4022 0.4458 0.3210 3 0.0070 0.0069 0.0070 0.0066
4 0.4140 0.4200 0.4588 0.3234 4 0.0070 0.0070 0.0070 0.0066
5 0.4180 0.4242 0.4416 0.3288 5 0.0070 0.0070 0.0070 0.0066

T=80, P{CS} T=80, Std Error
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choice to initialize OCBA-m or OCBA-m+ instead of using the current procedure of setting n0 equal to 
some arbitrary number prior to gaining any knowledge on the system of designs.  Obviously, we need 
more research to confirm this idea. 

 Experiment 2 is a continuation of experiment 1 with m=3, k=10, and the distribution of each de-
sign .  Here, we compare the PCS and the number of correctly identified elite de-
signs in an increased variance setting.  Figure 2 summarizes the results after 10,000 iterations.  Notice that 
after ~40 budget allocations, OCBAsb separates from the other procedures and performs better in both 
measures for the rest of the experiment’s computing budget.  

 

 
Figure 1: For m=3 and k=10, P{CS} and the number correctly identified elite are shown for all four tech-
niques. 

 
 Experiment 3 is a larger scale version of experiment 2.  We increase the number of alternatives to 50 
and use the larger variance in order to find the best m=10 out of k=50 where the designs have normal 

 distributions.  Due to the size of this problem, the initial probability of correct se-
lection is small.  The propensity of each procedure to grow quickly after only a few replications leads to  
near linear growth for OCBA-m, OCBA-m+, and equal allocations.  The growth potential of the OCBAsb 
procedure is even greater and is seen as convex in the early budget allocation stage.  As noted in experi-
ment 1, we expect OCBAsb to gain an advantage when  so it is not surprising that it outperforms 
the other procedures in this setting.   

 
 

 
Figure 2: OCBAsb comparison in a larger scaled experiment 
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4.2 Traditional Evolution Strategy Environment 

 The purpose of the experiment in this section is to verify the assumption that identifying more of the 
elite population actually translates to moving closer to the optimum and to determine if it is possible to 
empirically observe an increase in efficiency of a resampled ES over a traditional ES.  Due to the results 
of Arnold and Beyer (2002) previously mentioned in the introduction, the number of function evaluations, 
or computing budget, is extremely limited for each generation.  Therefore, we compare the budget alloca-
tion procedures OCBA-m and OCBAsb in the framework of an ES where the noise in the system is fit-
ness proportionate and equal, the number of designs each generation is λ offspring, the objective each 
generation is to chose the best µ of λ offspring which have the “best” fitness values, and the comparison 
measure is the progress rate of the ES. 
 Parameters which effect the progress rate of an ES include its mutation strength, noise strength, off-
spring population size and parental population size.  In order to select a good evolution strategy, we use 
the progress rate equations on a noisy sphere from Arnold and Beyer (2002) which rely on normalization 
of the progress rate, noise strength, and mutation strength. The normalizations are used to make the values 
independent of the optimization’s location and solution space dimensionality.  Due to the large number of 
parameter combinations for evolution strategies, these equations are used to find an ES with which to 
compare our resample strategy.   
 We choose  to be the normalized noise in the system and the search space dimensionality to 
be N = 40.  Using these values, we subsequently choose the following parameters based off (Arnold and 
Beyer 2002): λ = 76 from figure 6 and µ = 20 based on the optimal truncation ratio of 0.27.  Using the 
progress rate equation and Mathematica, we find that the optimal mutation strength with the parameters 
described above to be .  The ES strategy is a (20/20,76) – ES on the noisy sphere fitness 
function with normalized noise level of 16 and a normalized mutation strength of 12.2419.  
 Figure 3 compares the state of the art OCBA-m procedure with the proposed method on a (20/20,76) 
– ES for 5000 iterations.  For this small computing budget and low initial confidence situation, the 
OCBAsb method does a better job of correctly identifying the top offspring which in turn leads to higher 
progress rates.   
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Figure 3: (20/20,76)-ES progress rate and the number of correctly identified offspring for each procedure 

 Efficiency is measured as the progress rate per function evaluation.  Figure 4 shows the difficulty of 
achieving an efficient resampled evolution strategy compared with the traditional non-resampled ap-
proach in this environment. This shows that an increase in progress rate alone is not enough to warrant 
additional replications of the offspring and that OCBAsb has a slight increase in efficiency for a higher 
computing budget than OCBA-m.   

 

 
Figure 4: Efficiency comparison after 5000 iterations of resampled ES vs. traditional ES 

4.3 Simulation Optimization Evolution Strategy 

 Noting the difficulty of improving the efficiency of an evolution strategy in an ES environment, we 
use an ES to direct a simulation optimization in order to efficiently find the optimum for a simulated sys-
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tem.  The residual location error is defined in Arnold and Beyer (2002) as the steady state distance from 
the optimum of an evolution strategy in a problem with constant noise.  In the simulation environment 
which follows, we expect an ES to converge to some steady state location for the given noise surface.  
The idea is to utilize the power of the ES to quickly get close to this steady state location, and then use 
resampling and the simulation budget to get as close as possible to the optimal solution given a limited 
number of model evaluations (simulations).  For this test, we use the experimental model from Buchholz 
and Thummler (2005) where they define the fitness function as a maximization in two dimensional search 
space of 

           .  

A simulation is defined as a combination of this fitness function and a noise surface to be 

         , 

where N(0,1) stands for a standard normal random variate and the noise associated with each simulation 
is the function  which varies depending on the offspring’s location as 

         . 

where .  We use their experimental model, but choose a (13/13,50) – ES with 1 initial replication 
instead of a (5+5)-ES with 10 initial replications.  We adapt the ES mutation strength using a cumulative 
mutation strength adaption (CMSA) with an initial mutation strength of 1 – see (Arnold 2002) for more 
details on CMSA.  Table 3 shows the distance to the optimal response after 10,000 simulation replica-
tions.  Since the number of simulations is fixed, the number of ES generations depends on the generation-
al computing budget and is equal to 10,000/T.  Each generation distributes T model evaluations according 
to its strategy.  In the table, equal allocations uses a (13/13,50) - ES and evaluates each offspring T/50 
times equally.  OCBAsb uses a (13/13,50)-ES, initially evaluating its offspring once and utilizing the al-
gorithm from section 3 to allocate its remaining computing budget (T-50).  The (13/13,T)-ES uses T off-
spring and normal ES procedures to move from generation to generation which traditionally does not in-
clude any resampling of its offspring. 

Table 3: Distance to the optimal response and standard error for three allocation procedures after 10,000 
model evaluations of an ES replicated 100 times.  T represents the number of simulation replications used 
each ES generation. 

 
 

Table 4: Statistical significance calculation for a computing budget of T=500 from Table 3. 

 
 

Equal Alloc OCBAsb (13/13,T )-ES Equal Alloc OCBAsb (13/13,T )-ES
50 0.027173 0.027173 0.027173 0.000211 0.000211 0.000211
100 0.011932 0.011132 0.025980 0.000095 0.000076 0.000118
200 0.007647 0.006719 0.029985 0.000677 0.000534 0.000973
300 0.005821 0.005398 0.033563 0.000427 0.000414 0.001019
500 0.004082 0.003173 0.020733 0.000360 0.000358 0.001186

T
Optimal Response Difference Standard Error

Procedure Avg Diff Var t - Statistic p-value
OCBAsb 0.003173 6.520E-06
Equal 0.004082 1.299E-05

1.78920416 0.03780667

2 Sample t-Test for T=500
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From the Table 3, we see that OCBAsb gets consistently (although only slightly) closer to the optimal 

than equal allocations.  The detrimental effects of increasing the number of offspring in the ES is proba-
bly due to a sub-optimally tuned initial mutation strength or parental population size, but that is not the 
focus of this paper.  We simply show that combining ES with OCBAsb can be much better than increas-
ing the size of the offspring population if the optimal mutation strength or population size are not known. 
In Table 4, we see the results of a two sample t-test comparing the equal allocation and OCBAsb optimal 
response difference for the generational computing budget T=500. 

5 CONCLUSION 

Ideally, we would like to use the computing budget to maximize the approximate probability of correct 
selection.  When the computing budget is small, we are not able to accurately estimate the mean or stand-
ard deviation of the designs leading to poor estimates of the APCS.  In this environment, it makes sense to 
allocate the computing budget in a single step look ahead policy similar to KG.  By using the limited 
computing budget to gain confidence on the designs which have the most uncertainty, we are able to iden-
tify as many members of the true elite class as possible subject to the constraints of the computing budget.  
In this paper, we have shown the ability of OCBAsb to use the computing budget to increase the number 
of correctly identified members of the elite population as well as increasing the PCS in the process for sit-
uations where there is a small computing budget.  We have furthermore demonstrated that OCBAsb can 
be (slightly) beneficial in combination with an optimally tuned Evolution Strategy on a noisy sphere, a 
scenario for which it had been theoretically shown that resampling with equal allocation cannot be bene-
ficial. Finally, we have tested OCBAsb in combination with an Evolution Strategy on a more realistic set-
ting where optimal ES parameters are not known. In this setting, ES with OCBAsb came by an order of 
magnitude closer to the optimal response than ES alone. 
 Future work includes changing the assumptions of equal variances for all designs, investigating the 
possibility of using this process for initializing other OCBA procedures instead of equal allocations, and 
utilizing a linear loss function which puts more weight on the designs further from the classification 
boundary.  We also intend to investigate the robustness of the OCBAsb with respect to its assumptions. 
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