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ABSTRACT

Although verification and validation have been studied for modeling and simulation for many decades,
we do not yet have a quantitative measure of the level of validation performed on a simulation model.
Validation is especially important as it determines whether or not the results from the simulation model
can be trusted and used to make statements about the studied system. We propose a validation coverage
metric to quantify the validation performed on a simulation model based on the possible validation that
could be performed on it. This metric takes into account the aspects of the simulation model that should
be validated. To show how such a metric could be utilized, we propose a version of the metric specific to
agent-based models, and analyze three example models. We find that the coverage metric can be used to
quantify validation on a variety of simulation models.

1 INTRODUCTION

Creating a model and simulation is a well-established and effective approach to analyze or propose changes
to a system. Complex systems are widely studied using the tools of Modeling and Simulation (M&S),
including natural systems such as population mobility or cancer cell growth (Abbott 2002); systems that are
yet to be built such as missile defense or nuclear reactors (Ender et al. 2010); or systems for which making
changes in the real-life/runtime environment to study their impact is very expensive or dangerous, such as
the process of patient care in a hospital emergency department (Raunak et al. 2009) or automotive control
(Ray, Cleaveland, and Shelton 2009). The techniques proposed in the field of modeling and simulation are
no longer solely used by computer scientists and engineers, but are now utilized by scientists, researchers,
and professionals in many other domains. Since modeling is becoming ubiquitous, a common mechanism
to clearly assess the level of validation is necessary.

A crucial step of any simulation-based study, whether the System Under Simulation (SUS) is mechan-
ical/electrical, natural, or theoretical, is to ensure that the simulation model (a) is internally consistent with
no known errors (verification) and (b) mimics the SUS’s behavior to a level of confidence necessary for
making the model useful for its intended application (validation). Without proper verification and valida-
tion, predictions cannot be made about the SUS based on the simulation results. Simulation verification
and validation (V&V) have been studied for decades, primarily to determine their process and principles
(Sargent 2011; Balci 2010; Kleijnen 1995) as well as to develop different V&V techniques (Sargent 2010;
Balci 2010). Since the computerized simulation model is a software system, it benefits from many years
of software verification research (Bertolino 2007).

There is currently a gap between the validation recommendations of researchers and the actions of the
rapidly growing population of simulation practitioners. Although there are simulations that are adequately
validated, this is not true for all. Without a metric to capture and communicate the level of validation
performed on a simulation model in comparison with the amount that could be performed, it is difficult
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to ascertain an appropriate level of confidence in decisions made about the original system based on the
findings of a simulation model.

This paper represents the first known attempt to quantify the level of validation performed on a
simulation model. Our goal is to develop a metric measuring the extent to which validation activities have
been performed on a simulation model, as well as guidelines for applying such a metric. We call this
metric validation coverage. Validation coverage measures how well validation aspect elements have been
validated in the system. A validation aspect element is an element of the model that should be validated
against the SUS; for agent-based models, an example could be the rate of birth or death of an agent. This
set includes both emergent behaviors and input data.

We first define guidelines to enable the creation of these aspect elements for any simulation model.
They are developed as a set of aspects that each contain aspect element categories defining the types of
elements that belong in each aspect. Using this categorization, a simulation practitioner will develop their
set of aspect elements, and determine which validation techniques can be used on each. The validation
coverage will define how well a simulation’s aspects are validated with these techniques, where each aspect
is weighted by its importance in the system. These aspect elements could be developed by a domain expert
instead of the model or simulation creator.

In this paper we propose a generic coverage criterion that can be applied to all simulation model types,
such as discrete, continuous, monte carlo, system dynamics, gaming-based, agent based modeling, and
AI(Knowledge)-based (Balci 2012). We also define aspects and aspect element categories for categorizing
elements of agent-based models. We evaluate our proposed coverage criterion with case studies of three
different agent-based simulation models. We argue that our coverage metric will motivate researchers and
practitioners to validate their simulation models more thoroughly by providing a better way to quantify
their validation work, and compare the validation of related models. Thus, this research is providing a first
framework for quantifying the answer to the question: how much can one trust the result of a simulation
model as indicative of the SUS behavior?

2 RELATED WORK

It is generally well accepted that it is difficult to validate large-scale simulation models sufficiently to trust
their results (Sargent et al. 2000). In many cases, the cost of trying to achieve complete validation is
neither practical nor worthwhile (Shannon 1975). Sargent suggests solving this problem by focusing on
smaller simulations in combination to represent the larger simulation (Sargent et al. 2000). However, not
all systems can be broken into smaller simulations, so we must have some way to determine how well
validation has been achieved.

More than 75 verification, validation, and testing (VV&T) techniques have been presented in the
Handbook of Simulation (Banks 1998). These techniques have been categorized into four different groups:
informal, static, dynamic, and formal (Balci 1998). Informal techniques such as review, inspection,
visualization, and face validation are some of the most commonly used approaches for validating simulation
models. Static techniques are primarily based upon software static verification, and some are useful for
analyzing operational validity of the simulation model. Dynamic validation techniques are extensions
of more general software verification activities. Thus the dynamic techniques are primarily useful for
verification (checking accuracy between the conceptual and simulation model) of simulation code and are
usually not directly applicable for model validation. Dynamic techniques that are specifically used for
validation purposes, e.g. statistical techniques, rely heavily on the data available from the SUS (Sokolowski
and Banks 2010; Sargent 2010). Formal VV&T techniques are based on mathematical proof of correctness
(e.g., logical inference, inductive assertions, etc.) and have limited applicability in operational or behavioral
validation.

Balci draws a well defined parallel between a software development process life cycle (Pressman 2010)
and simulation development process (Balci 2010; Balci 2012). He proposed that Verification and Validation
(V&V) as well as Quality Assurance (QA) activities are an integral part of each of the development
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phases of a simulation system (Balci 2012). However, there is no mechanism presented to measure the
level of validation performed on a model. Depending on the time of application, the VV&T techniques
applied to a simulation system are classified into four groups: validation of the conceptual model to ensure
that acceptable assumptions have been made (Conceptual Model Validation); verifying that the simulation
software is correct (Computerized Model Verification); validating that the software’s behavior matches what
would be expected in the SUS (Operational Validation); and ensuring that the necessary data is available and
correct (Data Validation) (Sargent 2010). The work presented in this paper focuses on operational validation
and data validation. We have considered some of the well established operational validation techniques
identified by Sargent including: animation, result validation through comparison to other models, degenerate
tests, event validity, extreme condition test, historical data validation, historical methods, internal validity,
multistage validation, operational graphics, parameter variability (sensitivity analysis), predictive validation,
and trace-based validation (Sargent 2010). We have also considered the most commonly used data validation
technique: statistical matching through some goodness-of-fit test (Banks 1998). Our research presents a
framework describing how these techniques can be applied systematically on elements of a simulation
model and how their application or lack thereof can lead to measuring the level of validation performed
on a simulation system.

Simulation researchers have studied additional validation approaches for different types of simulation
models. Birta proposed a creation of a validation knowledge base (VKB), captured as a set of relationships
between input and output variables of a simulation model (Birta and Özmizrak 1996). Kleijnen presents
different statistical techniques to be used for simulation model validation based on the available data
(Kleijnen 1999). Reynolds developed a framework based on morphological analysis for effectively using
expert analysis of complex systems simulation (Reynolds 2010). Murphy showed the applicability of
metamorphic testing in verifying simulation systems with potential for using this technique in model
validation (Murphy et al. 2011).

We are unaware of any research on the measurement or quantification of the validation effort, neither
for general use, nor for specific types of simulation modeling. That is the focus of this paper. We propose
a validation coverage criterion to help researchers and practitioners quantify their validation effort for a
simulation model. The concept of coverage criteria is related to the software engineering principle of
covering different coding related elements, such as statement coverage, branch coverage, or path coverage
(Miller and Maloney 1963). The coverage metric will help us define how much validation is necessary
and actually achieved on a particular simulation model.

We note that the act of validating a simulation model cannot be divorced from the available data because
the choice of techniques must be based on the available real-life data (Sargent et al. 2000). Data are needed
not just for validating the model, but also during the creation of the conceptual model, and for running
experiments. However, the data for running experiments is usually not considered during data validation
(Sargent 2010). The validation coverage metric discussed in this paper considers data validation as part of
the overall validation activity.

3 APPROACH

3.1 Validation Process

A simulation model is an abstraction of the real world system, which we have termed SUS. The purpose
of simulation validation is to ensure that the modeled system represents the behavior of the SUS closely
enough for the intended purpose of using the simulation. Our primary goal is to develop a metric measuring
the extent to which validation activities have been performed on a simulation model, as well as the process
for applying such a metric. We call this metric validation coverage. Validation coverage is measured based
on how well validation aspects have been validated in the system. A validation aspect defines a primary
dimension of the simulation. Each aspect contains a set of aspect elements, i.e. the elements of the model
that must be validated. For agent-based models, an example of aspect elements could be life cycle events
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such as birth rate and death rate of an agent. While running a simulation model, all values and simulation
behavior that are provided and observed can be divided into three primary categories:

• the values that are used to create the conceptual model
• the values used to run the simulation
• the values that emerge as a result of simulation operation and are observable or measurable

The first two are examples of input data (id), which must be validated. Input validation is an important
step in validating any simulation system, where the modelers need to ensure that the data used in the
simulation are indeed representatives of the SUS, as discussed in section 2.

The last category of values is what we term as Observable Emergent Information (oei), which is
information that emerges as part of the simulation model execution. Other than input validation, what we
traditionally term as simulation validation activities are generally focused on ensuring that the oei values
match the SUS. An id or an oei is an element of some validation aspect of the simulation model. Thus, as
part of measuring the level of validation activities performed on a simulation model, we propose identifying
all input data (id) and observable emergent information (oei) of a simulation system and then measuring
how well each of these aspect elements has been validated.

Each aspect is thus defined as a set of aspect elements (aes), i.e. observable emergent information
(oeis) and input data (id) that represent specific details of a simulation, and must be shown to match the
real world (Figure 1). We do not assume that every potential aspect is relevant for a given simulation, nor
that every aspect category is relevant, but provide the means to determine how well a simulation has been
validated based on which aspects and aspect elements are relevant.

The aspect elements are validated using accepted validation techniques, and the entire process is
illustrated in Figure 2. We propose that depending on the simulation approach, one can identify a set of
aspects related to the modeling approach, including a classification of the relevant oeis and ids. Different
validation techniques can be applied to validate these aes. The measurement metric will provide a mechanism
for quantifying the level of validation that has been applied on a simulation model. Section 3.2 discusses
these ideas more formally to develop and specify the concept of a validation coverage criterion.

3.2 Validation Coverage

As already discussed, our proposed validation coverage concept is aimed at establishing a standard way
to measure and communicate how well validation activities were performed on a simulation model. To
accomplish this goal, we start by recognizing that there are a number of different approaches one can take
to develop a simulation model. Thus we first define a set of simulation modeling approaches:

SMA = {sma1,sma2, ...,sman} (1)

Aspect 1

oei 1 oei 2 oei 3

Aspect 2

oei 1 id 1 oei 2 oei 3

Figure 1: An overview of the relationship between aspects, oeis, and ids. Both oeis and ids are instances
of aes. The dotted line represents the desired level of validation coverage for each.
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Figure 2: The validation coverage process. This process must be performed for each simulation model for
which validation coverage is applied. However, we propose guidelines for each step and a framework for
agent-based models that can be adapted for additional simulation modeling approaches.

where smai represent a specific modeling approach (e.g., agent-based, monte-carlo, etc). For each of the
smai we will determine what validation techniques can be utilized. Let us define V T as the set of all
potential validation techniques:

V T = {vt1,vt2, ...,vtn} (2)

where vti is a particular simulation validation technique or data validation technique. The simulation
validation techniques include the validation techniques listed in section 2.

We need to determine the aspects of the simulation model that must be validated, and the applicable
validation techniques for that aspect based on the relation between aspect elements and validation techniques.
We define VA as the set of all possible validation aspects for all simulation modeling approaches:

VA = {va1,va2,va3, ...,van} (3)

For any particular simulation approach, certain aspects are relevant. Thus we define VA(smak)⊆VA
to be the set of validation aspects that are potentially meaningful for a simulation modeling approach smak.
Each individual simulation model within smak will be based upon a subset of these VA(smak).

As a reminder, when validating a simulation model, it is the aes that are being validated against the
SUS. Our approach recognizes that each ae (oei or id) can potentially be validated and can be grouped
categorically by aspects of different SMAs. Thus, a particular aspect vak is actually a set:

vak = {oei1vak
,oei2vak

, ...,oeinvak
, id1

vak
, ..., idm

vak
} (4)

Let us denote the set of validation techniques that can be used to validate a particular oei j
vak as V T (oei j

vak),
and the techniques that can validate a particular id j

vak as V T (id j
vak). We can now define VAL(oei j

vak) as the
validation level for a particular oei j

vak and VAL(id j
vak) as the validation level for a particular id j

vak . VAL is
the percent of V T (oei j

vak) or V T (id j
vak) that have been used to validate that ae.

Using the above definitions we now quantify validation activities performed on a simulation model by
aspect and then for the entire model. As we described in section 3.1, this process involves first determining
the aes by aspect, and then determining the validation techniques that are relevant for each ae in a specific
aspect and taking into account what fraction of those techniques have been utilized for validation for each
ae, as already defined. Next we must define the validation percentage for a particular aspect vak as

V Pvak =
∑

n
j=0VAL(oei j

vak)+∑
m
j=0VAL(id j

vak)

|vak|
(5)

where |vak| = m+ n, and 0 ≤ V Pvak ≤ 1. Finally, we define Validation Coverage VC for a particular
simulation model of type smak based on the validation percentage achieved for each of its aspects:

VC =
∑

z
i=0 wi ∗V Pvai

∑
z
i=0 wi

(6)
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Non-Agent Entities (va1)

Resource availability
Non-agent entity change

Agent Spatial 
Environment (va2)

Mobility direction
Mobility rate
World scale

Environmental structure

Agent Lifecycle 
Events (va3)

Birth/creation rate
Death/termination rate

Maturation rate

Agent State (va4)

Rate of state change 
Cause of state change

Agent Interactions (va5)

Agent - Agent
Agent - Resource

Figure 3: The potential aspects and aspect element categories in agent-based simulations.

where w ∈ [0,1] is an importance weighting for each vai ∈VA(smak), and z = |VA(smak)|.

4 APPLICATION OF VALIDATION COVERAGE

To evaluate the applicability of our approach, we have applied the proposed validation coverage framework
to the simulation modeling approach (SMA) known as Agent Based Modeling (ABM). For agent based
models we have identified five aspects (Figure 3) that can accommodate all oeis and ids related to ABM:

1. Non-agent entities: Agent based models often include entities that are non-agents. Some of these
non-agents can be considered resources (entities that are contended-for and used by agents) in the
model. The validation of the creation, destruction, and availability of such resource entities will
fall under this aspect.

2. Agent spatial environment: Many agent-based models have some form of space, although it may
not be the traditional 2D or 3D grid. Elements of the model that deal directly with the spatial
representation belong in this aspect. Where the agents are also mobile, elements regarding their
mobility direction, mobility rate, and the model environment’s scale in relation to the SUS also
belong here.

3. Agent life-cycle events: This aspect will validate such events as construction (birth), destruction
(death), and maturation (change from one phase to another) of agents.

4. Agent state changes: Agents usually also have non life-cycle related states. Those states and their
changes belong to this aspect.

5. Agent Interactions: Agents may interact either with other agents or with non-agent entities in the
model. Both types of interactions fall under this aspect. Any resulting state change or resource
change would be placed in the appropriate aspect (Agent state and Non-agent entities, for instance).

The aspect element categories shown in Figure 3 denote the types of aes that fit within each aspect.
These aspect element categories serve as a guideline for determining a model’s oeis and ids, as well as
further defining each aspect. There may be multiple oeis or ids for each aspect element category for a
particular simulation model, and not all aspect element categories or even aspects may be relevant for a
model.

These aspects and aspect element categories are broad enough to capture many different dimensions
of agent-based models. To demonstrate its usage, we analyze three different simulation models with
these aspects for validating ABMs: a model simulating interaction behavior of Tasmanian devils, a model
simulating gossip propagation in a social network, and a model of tumor growth. Each of our case studies
represent a different use of agent-based modeling and a different type of real world problem, has varying
levels of available data for validation, and needs to utilize different subsets of the aspects described above.
For each case study we will briefly discuss the simulation model, followed by the relevant aspects and aspect
element categories, and then the application of validation coverage. These case studies will demonstrate
that the proposed aspects and aspect element categories can represent most ABMs.
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4.1 Case Study: Tasmanian Devils

4.1.1 Model Description

For our first case study we examine an agent-based predator-prey model of Tasmanian devils, a carnivorous
marsupial found only in the Tasmanian island of Australia. In this simulation, devils move in a two-
dimensional grid either randomly or toward prey if the prey’s scent is within their neighborhood. As devils
are primarily scavengers, prey appear in random locations at a fixed rate to mimic roadkill and carcasses.
Preys emit a scent gradient that decays over time, which devils follow when hungry. Devil hunger decreases
as they eat, and is of a fixed level each day.

The purpose of this simulation is to study the rate of interactions between devils, as in the wild they
suffer from a deadly cancer known as Devil Facial Tumor Disease. It is transmittable from devil to devil
whenever they bite each other, which primarily occurs during eating. The simulation therefore logs how
frequently devils meet while eating, to help determine the overall rate of disease transmission through
biting (Fay et al. 2011).

4.1.2 Validation Coverage

This simulation model fits easily within our framework for validation coverage. Figure 4 shows the relevant
aspects and aes. This simulation does not model any of the agents’ life cycle events. Devils neither
procreate, nor die, nor evolve in the simulated period, as the model focuses on a six-month period of time
not during mating season. Thus none of the aes related to agent life cycle aspect is relevant for this model.
However, the other four aspects are relevant and sufficient to represent all elements of the simulation that
should be validated.

To determine validation coverage, we first analyze how well each oei and id is validated. To do that we
will need to identify the set of validation techniques applicable for a particular ae. We propose that oei1va4
rate of hunger change from the Agent State aspect can be validated using historical data validation and
sensitivity analysis. Let us assume it was validated using both of these validation techniques. Since there
are two methods in V T (oei1va4

), and both have been applied, we compute the validation level VAL(oei1va4
)

to be 1, giving maximum coverage for oei1va4
. As this was the only ae in this aspect, we compute the

coverage of the va4 as 1 or 100%.
The next aspect we validate is agent spatial environment, va2. We again propose that both oie1

va2

and oie2
va2

should be validated using historical data when such data is available, as well as animation.
Let us suppose that devil movement (oie2

va2
) is validated using historical data validation and animation,

giving 100% coverage. The validation of world size (id1
va2

) is related, as the two are dependent; it is
validated to match the SUS in scale, giving it 100% coverage. During our validation of following scent
(oie1

va2
), however, we only used the validation technique of animation. Since there is one relevant validation

technique that has been unused, we calculate VAL(oei1va2
) to only have 50% coverage. Therefore, the agent

spatial environment aspect validation V Pva2 is 83.3% (Equation 7).

Non-Agent Entities (va1)

Scent diffusion
Prey decay
Prey size

Rate of prey appearance

Agent Spatial 
Environment (va2)

Following scent
Devil movement

World size

Agent State (va4)

Rate of hunger 
change

oei1
id1
id2
id3

oei1
oei2
id1

oei1

Agent Interactions (va5)

Prey decrease by 
devil eating id1

Figure 4: Relevant aspects and aes for the Tasmanian devils simulation model.
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V Pva2 =
0.50+1+1

3
= 0.833 (7)

Finally, the non-agent entities aspect, va1, must be analyzed. All aes of va1 except scent diffusion are
validated as ids. In some simulation models, these input data (ids) are often traces from the SUS.

Let us suppose all ids (id1
va1

, id2
va1

, id3
va1

) have been validated using the ‘statistical match’ validation with
real life data from SUS. Let us also suppose that the oei1va1

of scent diffusion is validated using animation,
which was the only relevant validation technique. Thus, V Pva1 is 100% as all of its elements have been
validated with all relevant validation techniques.

The final aspect agent interactions (va5) only has one id which is also validated by statistical match,
giving V Pva5 = 1.

The above calculations will now allow us to compute the validation coverage for the devil simulation.
For the sake of simplicity of description, we use equal weight for all aspects, giving a coverage percentage
of 95.8% (Equation 8).

VC(devil) =
1+0.833+1+1

4
= 0.958 (8)

4.2 Case Study: Gossip Propagation

4.2.1 Model Description

Our second case study is an agent-based model of gossip propagation in a social network, which is naturally
modeled as a graph. Each node in the graph represents a person capable of spreading gossip about some
target node. Some nodes are liars, which mutates the bit string that is passed as gossip. The gossip
propagates from node to node based on the strength of connection between those nodes and how long the
gossip has been propagated so far. Gossip that has been propagating for some time has a weaker strength
than fresh gossip, which will cause nodes to no longer wish to spread the information. Each node must
determine what to believe about a particular piece of gossip, and the simulation compares the overall belief
of the network based on various decision strategies. After a piece of gossip is no longer spreading through
the network, nodes acquire a fitness score which denotes how close their beliefs were to the truth. The
purpose of this simulation is to study human gossip decision rules and gossip propagation (Laidre et al.
2013).

4.2.2 Validation Coverage

As shown in Figure 5, we posit that only four aspects are relevant for this model. The spatial environment
in this model is defined as the connections between agents that form a network, and thus the environmental
structure ae is the agent network, including liar location. The world size is defined by the number of agents
and liars. The gossip being shared and modified is a non-agent entity in the system, and thus its fidelity
decrease is a non-agent entity change . The primary agent state of note is the agent’s current state of belief,
which is potentially modified each time it makes a decision about received gossip. The agent memory
determines how much previous gossip agent can recall. Finally, agents interact with each other through
gossip in two ways: modifying the gossip before sharing it, and choosing who to share the gossip with.
Based on our analysis, we find that the proposed aspects adequately cover all elements of this simulation
model that require validation.

Following the general process we proposed in section 3.1 to compute validation coverage, we will
analyze coverage for each aspect by taking into account its oeis and ids one by one. Let us first consider va1,
the non-agent entities aspect. Let us say that V T (oei1va1

) (validation techniques for gossip fidelity decrease)
has four elements: 1) animation, 2) degenerate tests, 3) extreme condition test, and 4) sensitivity analysis
through parameter variability. Let us assume that we validated oei1va1

using the first two of these techniques
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Agent Spatial Environment 
(va2)

Agent network
Liar location

Number of agents
Number of liars

Non-Agent Entities (va1)

Gossip fidelity decrease

Agent State (va4)

Agent belief change
Agent memory

oei1
oei1
oei2
id1
id2

oei1
id1

Agent Interactions (va5)

Gossip modification by liars
Decision to share gossip

oei1
oei2

Figure 5: Relevant aspects and aes for the gossip propagation model. Although the same four aspects are
relevant as in the devils model, the aes are different.

(‘animation’ and ‘degenerate tests’). Thus, VAL(oei1va1
) = 2/4 = 0.5, that is the coverage achieved for

oei1va1
is 50%. We can now compute V P(va1) simply as 0.5/1 = 0.5.

Next we examine the agent spatial environment aspect. Let’s say that the environmental structure oei
oei1va2

can be validated with animation and face validity, and that we have applied them both. Thus we
achieve a VAL(oei1va2

) of 1, or 100% coverage. Let us also suppose that oei2va2
was not validated at all.

There are also two ids, the number of agents and the number of liars. Let us assume that both are validated
to match the SUS. Thus the overall coverage for validation aspect, va2 is seen in Equation 9.

V Pva2 =
1+0+1+1

4
= 0.75 (9)

Next, we must validate the agent state aspect va4. Let us suppose that we validated oei1va4
with all

validation techniques in the set V T (oei1va4
), but we were not able to validate id1

va4
, resulting in V Pva4

being 0.5. Finally, for agent interactions aspect va5 we assume that V T (oei1va5
) includes historic data

validation and sensitivity analysis, and we have validated oei1va5
gossip modification by liars using both

these techniques. Let us suppose we validated oei2va5
, decision to share gossip, using historical data, out

of four validation techniques in V T (oei2va5
): 1) historic data, 2) degenerate test, 3) extreme condition test,

and 4) sensitivity analysis. With only one of four techniques used, VAL(oei2va5
) = 0.25, and therefore

V Pva5 = 0.625.
With the values we have computed so far, we can now compute the total validation coverage for the

gossip model. From the discussion of the domain experts, it was deemed that va5 has more weight than
the other aspects, which is reflected in the computation in Equation 10 that results in coverage of 59.6%.

VC(gossip) =
(.8)(.5)+(.8)(0.75)+(.8)(0.5)+(1)(0.625)

3.4
= 0.596 (10)

4.3 Case Study: Multi-scale Cancer Model

Our third case study is the most complicated model of the three: an agent-based multi-scale model of cancer
growth at the molecular, cellular, and tissue level (Olsen and Siegelmann 2013). This model represents
tissue cells, including both normal cells and cancer cells. Due to the interactions between normal cells,
cancer cells, and the environment, there are many aspects within this simulation that must be validated
for the results to be trustworthy. We show these aspects in Figure 6. As the main difference between this
simulation and the prior two case studies is the number of oeis and ids, we will not discuss the coverage but
instead focus on showing that this model fits within our proposed agent-based aspects and aspect element
categories.

The cells in this simulation have the potential to create new cells (proliferate), die (apoptosis), mutate,
and repair mutations. Cancer cells have decided advantages over normal cells, with higher proliferation,
lower apoptosis, and the ability to squeeze more cells into a given space. Additionally, the simulation
examines angiogenesis, which is the creation of new blood vessels. All cells need enough nutrient to
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Non-Agent Entities (va1)

Oxygen depletion
Oxygen diffusion
VEGF diffusion

Vessel size
Spatial chemical diffusion

Agent Spatial Environment (va2)

Normal cell mobility direction
Normal cell mobility rate
Cancer cell movement

Cellular space requirements
Tumor growth pattern

Vessel system structure
Vessel sprout growth rate

Vessel sprout growth direction

Lifecycle Events (va3)

Normal proliferation rate
Normal apoptosis rate

Cancer proliferation rate
Cancer apoptosis rate

Agent State (va4)

Genetic mutations
Genetic repair

Hypoxic/Necrotic/Normal

oei1
oei2
oei3
oei4
oei5

oei1
id1

oei2
id2

oei3
oei4
oei5
oei6

id1
id2
id3
id4

oei1
id1

oei2

Agent Interactions (va5)

Oxygen uptake
VEGF excretion

oei1
oei2

Figure 6: Relevant agent-based modeling aspects for the cancer growth model. All five aspects are relevant.

survive, otherwise they become hypoxic and cannot proliferate. Hypoxic cancer cells are given the ability
to diffuse VEGF, a chemical, which will stimulate new blood vessel growth when it reaches a blood vessel.
These new blood vessels growth along the gradient of VEGF, and if they form a loop with another sprout
can become a viable blood vessel and begin diffusing nutrients. Usually this change increases the ability
of cancer cells to grow in an environment that could not otherwise support their numbers.

For applying the agent aspects to this simulation model, we see that the agents are the cells, and the
environmental structure includes all chemicals diffused as well as the blood vessels. Additionally, the agent
state is primarily related to the genes that control overall behavior, and whether or not the cell has enough
oxygen to function properly. This model has lifecycle events, as both normal and cancerous cells are able
to proliferate under certain conditions. Thus, despite the complexity of the simulation model, the agent
aspects can describe the emergent behaviors and input data that should be validated.

5 DISCUSSION

This work demonstrates the usefulness of a simple framework to capture the level of validation performed
on a simulation model. We have proposed a basis for creating a standard validation coverage metric, have
proposed a set of aspects specific to agent-based models, and have shown its applicability in measuring the
level of validation performed on three agent-based simulation models. The metric determines the validation
percentage for each aspect, as defined by how well its observable emergent behaviors and input data have
been validated. Each aspect is not assumed to be of equal importance, but are instead weighted in the final
coverage metric calculation.

The aspects proposed for agent-based models are intended to be general purpose and applicable to all
agent-based models. To demonstrate applicability and their use in coverage, we examined three simulation
models as case studies. The case studies demonstrated how the oeis and ids are determined for an aspect
based on the aspect element categories, and then how the validation performed on them determines the
validation coverage. For the Tasmanian devils simulation we demonstrated how a simple agent-based model
may acquire high validation coverage. We then used a networked model of gossip propagation to show
how a different type of agent-based modeling may fit within the proposed agent-based modeling aspects,
and how coverage may be calculated for such a model. Finally, we used a substantially more complex
agent-based model of cancer growth to show how a large and complex model can also utilize the proposed
agent-based aspects and aspect element categories for coverage.
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Note that a desired level of coverage may also be determined for a simulation model. It seems likely
that only a range may be proposed in a general framework to define the acceptable level of validation,
and this range is likely to be different for different simulation approaches. Although we have assumed a
coverage goal of 100% while showing the applicability and usefulness of our framework, it is unlikely that
every simulation will have the required data available to attain complete coverage.

There are a few potential weaknesses of this approach. The simulation practitioner may be able to take
advantage of the system by misrepresenting either the aspect weights, what validation has been performed,
or the desired coverage level. However, we feel that this issue is already at hand without a framework for
quantifying validation. Therefore, our system enables this issue to become more apparent and more easily
caught than with current qualitative analyses of validation level. Additionally, our aspect categorization
enables a clearer description of what must be validated, and may simplify the process of ensuring all
elements that should be validated have been considered. With our framework, the conversation can be
started in a quantitative manner about how well a simulation is validated versus how well it could be
validated in an ideal world.

Another weakness may be pointed out that we currently have a loose recommendation on how to identify
different aspect elements to be validated using the guidelines provided by aspect element categories, which
in turn are used to quantify validation coverage. We believe that this categorization is loose enough to
enable all models to fit within it, but tight enough to guide the creation of sufficient elements. As a first
step in a problem that is not currently being addressed in the community, our framework provides a new
approach to determining how well the many different dimensions of a SUS are represented in a simulation
model. We have provided aspects and aspect element categories for agent based models. We strongly
encourage the community to try this approach to quantify their agent-based model validation effort.

This framework is an important step toward formalizing a more general framework for establishing
a comprehensive validation coverage metric. Thus there are multiple directions in which this work will
continue to grow. One is to add structure to the recommendations about how to identify oeis and ids.
Another is to define which validation techniques are applicable for each aspect element category, as not
all validation techniques would be applicable for a particular simulation modeling approach or an aspect
element. Moreover, there may be prioritization of validation techniques for each aspect element categories
or aspect elements, as future work may show that some are more important than others. Another future
direction involves creation of aspects and aspect element categories for other simulation modeling approaches
such as discrete event simulations. Over time the creation of these sets will develop a framework that can
be readily applied to any simulation model as long as the practitioner understands the aspects of the SUS.
Our proposed framework has the potential to revolutionize the analysis of validation for simulation models
across all fields, and enable a robust discussion of validation coverage.
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