
HAL Id: hal-01873526
https://inria.hal.science/hal-01873526v1

Submitted on 13 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reducing Global Schedulers’ Complexity Through
Runtime System Decoupling

Alexandre Santana, Vinicius Freitas, Marcio Castro, Laércio Lima Pilla,
Jean-François Méhaut

To cite this version:
Alexandre Santana, Vinicius Freitas, Marcio Castro, Laércio Lima Pilla, Jean-François Méhaut. Re-
ducing Global Schedulers’ Complexity Through Runtime System Decoupling. WSCAD 2018 - XIX
Simpósio de Sistemas Computacionais de Alto Desempenho, Oct 2018, São Paulo, Brazil. pp.1-12.
�hal-01873526�

https://inria.hal.science/hal-01873526v1
https://hal.archives-ouvertes.fr


Reducing Global Schedulers’ Complexity Through Runtime
System Decoupling

Alexandre de Limas Santana∗, Vinicius de Freitas∗,
Márcio Castro∗, Laércio Lima Pilla†, Jean-François Méhaut†

Abstract

Global schedulers are components used in par-
allel solutions, specially in dynamic applications,
to optimize resource usage. Nonetheless, their
development is a cumbersome process due to nec-
essary adaptations to cope with the programming
interfaces and abstractions of runtime systems.
This paper proposes a model to dissociate sched-
ulers from runtime systems to lower software com-
plexity. Our model is based on the scheduler
breakdown into modular and reusable concepts
that better express the scheduler requirements.
Through the use of meta-programming and design
patterns, we were able to achieve fully reusable
workload-aware scheduling strategies with up to
63% fewer lines of code with negligible run time
overhead.

1 Introduction

The efforts to provide advances in parallel
components, programming models and architec-
tural design by the high performance computing
community has led to solutions able to reach

∗Federal University of Santa Catarina (UFSC), INE,
PPGCC, Florianópolis, Brazil
†Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP,

LIG. Grenoble, France

unprecedented computational landmarks. Un-
avoidably, future parallel components will be re-
quired to seamlessly benefit from improvements
in multiple scientific fronts, preferably with low
re-implementation efforts. Of special interest,
within the context of dynamic applications, are
global schedulers. They are specialized resource
management components required to guarantee
an adequate allocation of resources in a paral-
lel solution. For that, they must be aware of
parallelism intricacies in order to distribute the
application workload among available processing
elements (PEs).

Scheduling strategies may consider
different information, like topology
data [Hoefler et al. 2014], power consump-
tion [Langer et al. 2015], or communication
affinity [Jeannot et al. 2014, Cruz et al. 2015] to
achieve their goals. As applications and schedul-
ing strategies became more complex, runtime sys-
tems (RTS) such as Charm++ [Kale et al. 2007],
OpenMP [Chapman et al. 2008] and Open-
ACC [Wienke et al. 2012], have been applied
as containers and frameworks to simplify the
development of applications’ parallel behavior
and their relationship with global schedulers.
As a result, these systems provide reusability
to their components and provide a beneficial
disconnection of application and scheduler code.

1



A RTS depends on software hooks to assemble
components into a parallel solution and common
approaches are strict APIs and code annotations.
As consequence, RTS components are required to
be adapted into the system’s workflow and paral-
lelism abstractions (e.g., threads, tasks, chares).
However, scheduler components are composed by
algorithms that each have their own functional
requirements but does not depend on parallelism
nor data abstractions. As such, by enforcing such
traits through strict software hooks, global sched-
ulers’ software become bloated with adaptations,
becoming more complex and less resilient to sys-
tem modifications.
As novel parallel platforms are proposed,

larger portions of RTSs are dedicated to
exploit their particularities to maximize ap-
plications’ performance. The exploitation of
individual traits in parallel solutions leads
to an increase in software complexity and
component specialization, ultimately limit-
ing their reusability [Dongarra et al. 2005].
Classic techniques such as aspect-oriented
programming [Kiczales et al. 1997] and
component-based software engineer-
ing [Heineman and Councill 2001] have been
used to compose very large systems1 based on
reusable components. However, due to possible
resource competition among parallel segments
of code, these techniques can not be directly
applied [Grossman et al. 2017]. We believe that
the lack of studies in how to properly compose
global schedulers with other components and
RTSs will eventually result in bloated systems
that are too complex to manage and challenging
to port into future parallel programming models
and tools.

To counteract this problem, we propose to ex-

1Systems featuring millions of source lines of code.

ploit the sequential execution flow within RTSs
to extract the scheduler component into a self-
contained module. Isolated from its context, we
are able to create a system-independent global
scheduler model based on reusable and specialized
concepts. As a result, this model can be used
to implement scheduling policies that are less
complex due to their isolation from specific tech-
nologies, RTSs and external scheduling-unrelated
libraries. To achieve this results without high
overheads, our proposal is based solely on mod-
ern language meta-programming facets and the
Adapter Design Pattern [Vlissides et al. 1994] to
link smaller segments of code into a global sched-
uler.

We evaluated our proposed model by compar-
ing two re-implemented versions of scheduling
policies from Charm++ and OpenMP against
the original versions native to these systems. Our
global scheduler implementations are independent
of RTS which requires them to be packed in ex-
ternal containers. Therefore, a global scheduler
library called Meta-programmed-Oriented Global
Scheduler Library (MOGSLib) was developed to
portray a collection of reusable scheduling con-
cepts that can be assembled to form system-
specific global schedulers. The main focus of our
experimental analysis is the comparison between
identical scheduling strategies to evaluate discrep-
ancies in performance, complexity and reusability.
The proposed model was able to achieve the orig-
inal behavior of the strategies in regards to appli-
cation execution and strategy decision times, and
schedule quality, while also lowering the number
of lines of code (LoC) needed to express sched-
ulers.
The remainder of this paper is structured as

follows: Section 2 presents our global scheduler
model. Section 3 describes our experiments. Sec-
tion 4 discusses our results and analysis. Sec-

2



tion 5 presents related work. Finally, Section 6
concludes this paper.

2 System-Independent
Scheduler Model

The implementation of a global scheduling al-
gorithm depends on a multitude of factors and de-
sign choices aside from the scheduling policy such
as: (i) data structure selection, (ii) third-party
library usage, (iii) memory placement (e.g., Data-
or Object-Oriented Design) and (iv) target RTS.
These decisions are important as they provide
optimizations for a scheduler in regards to its tar-
get environment. However, each design decision
further specializes the global scheduler implemen-
tation and limit its reusability as a whole.
Regardless of the different designs an imple-

mentation can portray, each runtime system
and library also offer its own set of capabilities
for schedulers (e.g., load balancing database in
Charm++ [Kale et al. 2007]). The divergent in-
terfaces among tools results in different imple-
mentations even when accessing a common func-
tionality in distinct systems. As a consequence,
modifications in scheduling policies are required
when experimenting with different designs choices
(RTS, data structures, libraries, etc.).

The contemporary relationship between run-
time system and global schedulers is depicted in
Figure 1. This figure expresses the dependen-
cies (directed arrows) from software abstractions
(inner boxes) to components within their con-
text (outer boxes). As such, the problematic
relationships are characterized by dependencies
that spans out of the component’s source context.
Those relationships require unrelated code to be
injected into a component, further binding its
implementation and increasing its complexity as

its code increases.

Parallelism
Annotations

Communication
Annotations

Application
API

Scheduling
API

Platform
Data

Parallel Application

Runtime System

Scheduler
Input

Scheduling
Policy

Global Scheduler

Application
Data

Figure 1: Simplification of parallel components’
dependencies.

As a practical example of the aforementioned
problem, we propose a scenario where a developer
would implement a workload-aware scheduling
policy. In this scenario, the scheduler requires
the application data regarding its tasks’ workload.
An implementation of this policy in the OpenMP
loop-scheduling interface would rely on user pro-
vided data as OpenMP has neither a method in its
scheduling API to query the application workload,
nor a method to inform it on the application API.
On the other hand, Charm++ presents data struc-
tures on its scheduling API that contain these
and other data dynamically collected by the sys-
tem. Regardless of RTS, the scheduling policy
must query its required data from some source.
As frameworks for developing global schedulers
on these systems must be as flexible as possible,
the same scheduling API and data structures are
displayed for all policies to obtain their own set
of data. This design forces scheduling policies
to contain scheduling-unrelated code responsible
for manipulating RTS structures to fulfill their
functional requirements. Nonetheless, we envi-
sion that the exposure of a global scheduler’s
requirements through scheduling concepts is a
solution that not only simplifies the development
of schedulers but isolates the policy code from
external functionalities.

3



2.1 Scheduling Concepts

Scheduling concepts are code segments which
provide scheduling-unrelated functionalities that
may be specialized for different RTSs or contexts.
Different specializations of concepts must express
its functionalities through functions with equal
names/syntax. However, specializations must
be sensible to its target environment in order
to call the correct procedures needed to fulfill
its functionality in the target RTS, platform or
library.

The adapter design pattern is a software model-
ing technique that fits the aforementioned charac-
teristics of scheduling concepts. As an example, a
Unified Modeling Language class diagram (UML)
is displayed in Figure 2 depicting classes repre-
senting both an abstract concept and the special-
ized concepts for the functionality of querying
the application’s workload. Both Static Workload
and Dynamic Workload represents specialized con-
cepts for accessing the application workload with
different semantics, the former gathers static data
and the latter dynamic workload through RTS
data structures. Finally, both classes are imple-
mentations of the Application Workload interface,
which defines a layer of functions for accessing
the specialization’s methods.

Scheduler Application
Workload

Dynamic
Workload

Static
Workload

Figure 2: Adapter pattern example.

Although there is the possibility of imple-
menting scheduling concepts solely through the
adapter pattern, its usage incurs overheads as it
relies on runtime type checks and virtual func-

tions. We propose that scheduling policies can
be better declared as partially defined template
structures that depend on auxiliary data-types
to implement functions that are sensitive to a
given context. As template structures, scheduling
concepts must be attached to a data-type that
contains all the methods the concept requires
during compilation. This way, both the schedul-
ing concept and the specialized structure that
provides its functionality are loosely linked until
compilation, when data-types must be resolved.
After the compilation, a direct association links
both structures to construct a concrete scheduling
concept that can provide its functionality without
virtual calls nor dynamic type checks, avoiding
their overhead.
To exemplify the proposed approach, we

present a snippet in Figure 3, which showcases
a concept that exposes the workload of an ap-
plication. In the snippet, lines 1-6 portray the
declaration of a concept that depends on a Con-
crete data-type (line 1) to properly provide its
functionality through the workloads method (line
5). In lines 8-20, two classes that contain all
the required methods to be a Concrete type for
the WorkloadConcept are presented. The first
class (lines 10-19) represents a class that pack-
ages the semantics to obtain the application’s
workload from the Charm++ RTS. The Work-
loadCharm is capable of querying the load balanc-
ing database contained in Charm++ (lines 13-15)
and obtain the workload data from its parallelism
abstractions, represented by structures named
chares. On the other hand, the second class (lines
21-30) portrays an auxiliary data structure to
the OpenMP RTS that registers the application’s
workload data informed by the user (lines 17-19).
With those definitions, a scheduling policy can
make use of two complete WorkloadConcept, one
for the Charm++ system and other for OpenMP

4



depending of the Concrete template parameter.
The advantage of this approach is that the con-
cept is entirely responsible for gathering, storing,
and manipulating the data structures for exposing
its functionality. Ultimately, this design allows
for a less complex scheduling strategy that re-
quires no changes if the semantics of acquiring
the application workload is changed.

1 template <typename Concrete >
2 class WorkloadConcept {
3 public:
4 Concrete data;
5 Load* workloads (){
6 return data.workloads ();
7 }
8 };
9

10 class WorkloadCharm {
11 public:
12 LDBD *charm_data;
13 inline Load* workloads (){
14 return charm_data ->chares.loads ();
15 }
16 inline void set_data(LBDB *data) {
17 charm_data = data;
18 }
19 };
20
21 class WorkloadOmp {
22 public:
23 Load *_loads;
24 inline Load* workloads (){
25 return _loads;
26 }
27 inline void set_workloads(Load *loads ){
28 _loads = loads;
29 }
30 };

Figure 3: Meta-programmed scheduling concept.

Our approach of using modular and smaller
scheduling concepts that compose a larger com-
ponent displays advantages beyond alleviating
the software complexity. Through the addition
of dummy classes (like the one in the example)
containing testing workloads to schedulers, it is

1 template <typename ... Concepts >
2 class Scheduler {
3 public:
4 TaskMap work(Tuple <Concepts > concepts );
5 };
6
7 template <typename Loads , typename PEs >
8 class Greedy :
9 public Scheduler <Loads , PEs > {

10 public:
11 TaskMap work(Tuple <Loads , PEs > concepts );
12 };

Figure 4: Global scheduler model abstraction.

possible to validate the scheduling policy inde-
pendently from applications or RTSs. That way,
we can find flaws in the implementation code on
early stages of prototyping more precisely.

2.2 Global Scheduler Model

Similar to the process of declaring a schedul-
ing concept, a global scheduler can be declared
as a template structure that depends on one or
multiple scheduling concepts. A C++ example of
this approach is depicted in Figure 4. Lines 1-6
serve as a declaration of the scheduler template
model. The first line states that the Scheduler
template will require an arbitrary number of pa-
rameters. The collection of parameters forms the
Concepts type which is used in line 4 to construct
the work() function signature. Moreover, as seen
in lines 7-12, every scheduler policy has a special-
ized work() function signature that depends on
its requirements rather than being defined by an
external API.

2.3 The Role of MOGSLib

As concepts are defined as incomplete template
structures, there must be concrete classes capable
of providing the necessary functionalities for the

5



concepts. These structures must be sensitive to
the parallel solution’s contexts (the target RTS,
chosen libraries and execution environment) but
they should remain decoupled from those. Our
proposal is to encapsulate this software stack into
a library that exposes a configuration interface
that can be easily composed into different con-
texts. Our implementation of such library is the
Meta-programming-Oriented Global Scheduler Li-
brary (MOGSLib), an extensible and open-source
library developed in C++14 2.

A global scheduler in MOGSLib is represented
by a tuple (P, F, S) where P is the scheduling
policy, F is a set of concrete scheduling concepts
and S is a target context. Through this repre-
sentation, it is possible for a given scheduling
policy Pi to generate different global schedulers
by utilizing different concrete concepts or being
targeted to a different context. As reusability is
encouraged, previously developed functionalities
can be used to compose new global schedulers,
reducing the effort to develop them (coding, test-
ing, etc.) and providing better reproducibility in
scientific experiments.

A careful explanation of how the library oper-
ates is out of the scope of this work and inter-
ested readers are encouraged to check its public
repository. Nonetheless, an overview of MOGSLib
components and their interactions with external
technologies is provided in Figure 5 where the
components are denoted by labeled boxes and
their dependencies by directed arrows. Objec-
tively, MOGSLib is attached to the RTS and uses
pre-compilation scripts to prompt the user for
compilation and template parameters, ultimately
generating a global scheduler that can interoper-
ate with external RTSs and libraries (e.g., Load

2Available at: https://github.com/ECLScheduling/
lb-framework

Global 
Scheduler

MOGSLib

Execution System

System
Adapter

Functionality
Concept

Functionality
Providers

System
API

External Libraries

Figure 5: MOGSLib’s components overview.

balancers for Charm++ and loop schedulers for
OpenMP).

3 Experiments

In order to obtain precise information about
overhead, we chose to implement centralized and
greedy scheduling policies due to their predictable
quasi-linear execution time. This class of sched-
ulers is capable of making fast and precise deci-
sions in smaller scenarios while displaying little
variations in policy execution time when receiving
the same input data. As such, greedy schedulers
are ideal to observe small overhead variations
between different global scheduler models.

In this work, we have chosen two greedy policies
to implement in our model to compare against
the native versions found in runtime systems. In
this work, we selected two policies implemented
within runtime systems to re-implement in our
model Those policies are: (i) Charm++’s native
greedy scheduler (GreedyLB), and (ii) a workload-
aware loop scheduler implemented in libGOMP
(BinLPT ) [Penna et al. 2016]. The GreedyLB
strategy iteratively pulls tasks from a task load
max-heap and assigns to the top element of a PE
load min-heap until there are no more unassigned
tasks. The loop scheduler BinLPT groups adja-

6



cent iterations of a loop in up to k task packs (de-
fined by the user) and iteratively assign the heav-
iest group to the least overloaded PE. Although
different, these strategies share the same schedul-
ing concepts requirements, which also serve as
an example of code reuse. The required schedul-
ing concepts are: (i) application workload data
retrieval and (ii) PE workload data retrieval.

3.1 Evaluated Metrics

Given the intent of analyzing a development
model rather than a novel scheduling policy, our
metrics have the intent of spotting differences
between implementations and are enumerated as
follows: (i) strategy decision time, (ii) applica-
tion makespan, (iii) global scheduler lines of code
(LoC) and (iv) number of reusable LoC. The time
related metrics have the objective of measuring
the overhead incurred by our model both in ap-
plication makespan and in strategy decision time.
The LoC metric serves as an indicator of the code
complexity as fewer lines point to less complex
segments of code [Nguyen et al. 2007].

3.2 Software and Hardware

In order to compare our model against native
implementations, our evaluation contemplates the
Charm++ v6.7 and OpenMP v4.0 runtime sys-
tems. The MOGSLib library, Charm++ run-
time and benchmarks were compiled with g++
v5.4.0 with the following compilation flags: -O3
-std=c++14. Finally, the libGOMP library was
compiled with its own makefile found in its afore-
mentioned repository with the gcc compiler with-
out additional flags.
To test the greedy strategy in Charm++, we

chose the synthetic benchmark contained within
the default Charm++ package, LB Test, an itera-

tive application that issues busy wait operations
to simulate the workload. The benchmark was
executed with different configurations in order
to discover a parameter set that displays enough
load imbalance to benefit from a global scheduler.
To create this scenario, the following LB Test
configurations were applied: (i) Iterations: 150,
(ii) Load balancing calls: every 40 iterations,
(iii) Minimal task load: 10 microseconds, (iv)
Maximum task load: 3000 microseconds. To
analyze the schedulers’ scalability under different
numbers of tasks, we ran this experiment with
300, 600, 900 and 1,200 tasks.

The tests using the OpenMP runtime system
were executed over a modified version of lib-
GOMP, the library responsible for providing the
OpenMP directives implementations for open-
source compilers. The modified version of lib-
GOMP contains the required hooks for both
MOGSLib and BinLPT and can be found in
GitHub3.
We test the BinLPT scheduler with the Sim-

Sched4 synthetic benchmark. This application
simulates CPU intensive kernels utilizing statis-
tical distributions to generate random classes of
workload that are later assigned to loop itera-
tions. The parameters for the SimSched bench-
mark used in this paper were selected in con-
formity to the BinLPT paper. Their objective
is to create a use case that better fits the use
case of this global scheduler and are configured
as follows: (i) Distribution: exponential, (ii)
Number of workload classes: 12, (iii) Kernel
complexity: quadratic. The necessary modifica-
tions to support the BinLPT in OpenMP system,
SimSched benchmark details and the parame-

3Available at: https://github.com/ECLScheduling/
MOGSLib-libgomp-benchmark

4Available at: https://github.com/lapesd/
libgomp-benchmarks

7



0

1

2

3

4

5

300 600 900 1200
Chares Count

A
pp

 E
xe

cu
tio

n 
T

im
e 

(s
)

GreedyLB
MOGSLib

(a) Charm++.

0

10

20

30

40

16 32 64
Loop Iterations

A
pp

 E
xe

cu
tio

n 
T

im
e 

(s
)

BinLPT
MOGSLib

(b) OpenMP .

Figure 6: Average application execution time.

0

200

400

600

800

300 600 900 1200
Chares Count

S
tr

at
eg

y 
D

ec
is

io
n 

T
im

e 
(u

s)

GreedyLB
MOGSLib

(a) Charm++.

0

10

20

30

16 32 64
Loop Iterations

S
tr

at
eg

y 
de

ci
si

on
 T

im
e 

(u
s)

BinLPT
MOGSLib

(b) OpenMP .

Figure 7: Average schedule decision time.

ters to test workload-aware in it are explained
in [Penna et al. 2016].

Our experiments were executed on the Genepi5

cluster within the Grid’5000 distributed environ-
ment. Furthermore, our Charm++ tests were
executed over 4 nodes whereas the OpenMP tests
used only one.

4 Results

The results of our experiments in regards to
total application execution time are provided in
Figure 6(a) for the Charm++ system and Fig-
ure 6(b) for OpenMP . Each bar in those figures

5Genepi complete system specification at: https:
//www.grid5000.fr/mediawiki/index.php/Grenoble:
Hardware#genepi

represents the arithmetic mean of 50 application
runs. In order to further analyze the application
execution time, we executed two-tailed t-student
tests to check if both scheduler versions (native
and MOGSLib) were originated from a distribu-
tion with the same parameters. The confidence
interval was set to 5% and p-values are displayed
in Table 1.

Table 1: Application execution time parametric
tests results.

Charm++ environment
Task Count p-value

300 0.96
600 0.55
900 0.18
1200 0.43

OpenMP environment
Loop Iterations p-value

16 0.45
32 0.30
64 0.38

As the experiments generated p-values that sur-
pass the confidence interval of 0.05, we cannot
reject the null hypothesis that both distributions
are equal. This conclusion implies that both na-
tive and the MOGSLib schedulers are able to
perform equally on the different tested applica-
tions, runtime systems and application size.

4.1 Schedule Decision Time Analysis

In order to analyze both implementations in
detail, we analyzed the time taken in order to
decide the task mapping on each of the aforemen-
tioned scenarios through Figures 7(a) and 7(b).
The bars depicted in these figures represent the
arithmetic mean of the time each strategy took
to decide a schedule. Therefore, in Charm++
experiments, each bar represents 150 data points
(3 schedules computed for each of the 50 runs).
Moreover, in OpenMP experiments, each bar is
composed by 50 data points, as the scheduler is
called before the loop and there is only one loop
per application kernel.

8



The scheduler decision time data depicted in
Figures 7(a) and 7(b) presented standard devia-
tions smaller than 1%. Furthermore, our model
portrayed decision times that were 45% and 18%
faster on Charm++ and OpenMP systems, re-
spectively. However, for these tests, the impact of
the scheduler decision time is negligible due to its
scale (microseconds) in comparison to the applica-
tion makespan (in seconds). This overhead would
be more important in scenarios with more tasks
or higher rescheduling frequency. With a small
time scale, differences between implementations
were bound to happen and their origin is related
to different parameters between schedulers. In
Charm++, generic data structures were used in
our model in contrast to the ones used by the
Charm++ scheduler. Moreover, the only differ-
ence between the schedulers in OpenMP was the
compiler used to generate the MOGSLib global
scheduler. While libGOMP is compiled through
gcc, MOGSLib used g++ to compile and link its
scheduler into OpenMP .

4.2 Complexity Analysis

To better analyze our model in contrast to na-
tive implementations, we break our approach in
different components that form the global sched-
uler. Each component’s lines of code count is
displayed in Table 2, with the last column des-
ignated to portray where the component can be
reused within other parallel solutions.

Table 2: MOGSLib components’ LoC.
Component BinLPT GreedyLB Reusable on

Scheduling Policy 37 30 Runtime Systems
Runtime System Adapter 60 22 Scheduling Policies
Concepts 30 40 Scheduling Policies

The native versions of BinLPT and GreedyLB
are composed, respectively, by 84 and 81 LoC.

Our version of those same schedulers are com-
posed by 127 and 97 LoC respectively when ac-
counting for the sum of components that assemble
the scheduler. However, every component can be
reused in at least one scenario as stated in the last
column in Table 2. In the scenario where a new
scheduler is proposed and the concepts and RTS
adapter have been previously developed, the only
required implementation is the scheduling policy.
This scenario is not uncommon as the concepts
can be reused and novel policies are encouraged
to use existing system adapters and scheduling
concepts. As such, when analyzing solely the size
of the scheduling policy code, our model attained
up to 63% size reduction in comparison to the
native versions.
The segmentation into concepts is advanta-

geous as each concept portrays a single role within
the scheduler in contrast to current implementa-
tions found in RTSs. Despite resulting in a larger
sum of LoC, this approach enables the composi-
tion of functionalities implemented by developers
of different expertise. That way, developers can
rely on reusing concrete concepts rather than re-
implementation, leaving the burden of assembling
the functionalities to be taken care by libraries
such as MOGSLib.

5 Related Work

Schedulers are a relevant topic in real-time
systems due to application diversity which, ul-
timately, demands specialized policies. Classi-
cally, schedulers are kernel components and, as
such, developed policies are tied to a specific
patch and OS. Furthermore, to enable higher
customization and enhance the range of schedul-
ing policies, Asberg [Åsberg et al. 2012] and Mol-
lison [Mollison and Anderson 2013] moved the

9



policies implementations from kernel space to the
user space. Through the use of an abstraction
layer inside the kernel space, their work showcased
policies developed over higher level abstractions
with acceptable overhead in hard real-time sys-
tems. Ultimately, both proposals used different
techniques to decouple the schedulers from the
kernel primitives. However, in concordance with
our proposal, they also proposed the extraction
of the scheduler component into its own module.
In respect to providing modularity to sched-

uler components, HPC runtime systems like
Charm++, OpenMP and OpenACC provide a
simple way for decoupling application and sched-
uler code. Either through annotations, abstrac-
tions or language modifications, these systems
allow resource management hooks in the appli-
cations life-cycle, thus enabling reuse and porta-
bility of scheduling policies among applications
within the same system. Nonetheless, scheduler
implementations are yet limited to a specific ab-
straction set, contain system-specific code and
their algorithms are often scattered through dif-
ferent segments in the RTS. Ultimately, our ap-
proach intends to benefit from these RTSs while
alleviating the scheduling implementation prob-
lems associated with their usage.
Grossman et al. [Grossman et al. 2017] pro-

posed that, through a better description of a
component’s connections, the composability of
parallel libraries can be achieved through mod-
ern language facets such as lambda functions and
asynchronous calls. Their work is oriented to-
wards the development of a novel runtime sys-
tem that showcases component connections using
lambda functions. Nonetheless, our work shares
the use of modern language traits and better de-
scription of components’ connections. However,
we apply meta-programming and ultimately tar-
get system-independence rather than proposing

a novel system architecture.
Bigot [Bigot et al. 2012] defined parallel solu-

tions as an assembly of components that can be
interconnected and swapped to provide perfor-
mance portability. The work is based on perfor-
mance portability through modularity and ap-
plies driver components to resolve the intricacies
of specific systems and technologies. Despite the
similarities, our work diverges in the technique
applied and context within the parallel solution.
Ultimately, their approach presents a component-
based model for applications that utilizes a small
runtime to link components together, whereas
our work presents an attachable scheduler model
that can be linked to runtime systems through a
library in compilation time.

6 Conclusions

In order to ease the development of global
schedulers and enable simpler scheduling pol-
icy implementations, this paper contributes to
the topic by exposing a global scheduler model
capable of describing its requirements through
meta-programmed scheduler concepts. We dis-
cuss the impacts of reusability, modularity and
software complexity on parallel components while
we present a novel library, MOGSLib, as a tech-
nical contribution for global scheduler develop-
ers. The evaluation of the proposed model is
made through synthetic benchmarks executed
on Charm++ and OpenMP systems analyzing
two distinct workload-aware scheduling policies,
GreedyLB and BinLPT .

Our results (presented in Section 4) displayed
that the model incurs in negligible variations in
scheduler quality and application makespan. Ad-
ditionally, at the best case scenario, our approach
can reduce the number of LoC needed to develop

10



a new global scheduler by up to 63% when reusing
previously implemented scheduling concepts. The
possibility of component reusability is beneficial
as it enables code replayability without develop-
ment efforts and less complex software segments.
Even in the worst case scenario, where concepts
must be implemented from scratch, this approach
allows for a better prototyping phase that can
adhere to test-oriented development due to each
module being responsible for a single role in the
system.

In regards to future works, we intend to fur-
ther study the proposed model, experimenting
its adoption into different scheduling policies. Of
special interest are strategies that take into ac-
count informations about the platform topology,
task affinity and memory hierarchy. As more
functionalities are required for different policies,
we aim to enhance MOGSLib with more concrete
scheduling concepts and system adapters to pro-
vide developers with more tools and options to
compose simple and reusable global schedulers.

ACKNOWLEDGMENT

This work was partially supported by the
Brazilian Federal Agency for the Support and
Evaluation of Graduate Education (CAPES) and
by the Brazilian Council of Technological and
Scientific Development (CNPq), project grant
401266/2016-8.

Experiments presented in this paper were car-
ried out using the Grid’5000 testbed, supported
by a scientific interest group hosted by INRIA
and including CNRS, RENATER and several
Universities as well as other organizations (see
https://www.grid5000. fr).

References

[Åsberg et al. 2012] Åsberg, M., Nolte, T., Kato,
S., and Rajkumar, R. (2012). Exsched: An ex-
ternal CPU scheduler framework for real-time
systems. In Embedded and Real-Time Comput-
ing Systems and Applications (RTCSA), 2012
IEEE 18th International Conference on, pages
240–249. IEEE.

[Bigot et al. 2012] Bigot, J., Hou, Z., Pérez, C.,
and Pichon, V. (2012). A low level component
model enabling performance portability of HPC
applications. In High Performance Computing,
Networking, Storage and Analysis (SCC), 2012
SC Companion:, pages 701–710. IEEE.

[Chapman et al. 2008] Chapman, B., Jost, G.,
and Van Der Pas, R. (2008). Using OpenMP:
portable shared memory parallel programming,
volume 10. MIT press.

[Cruz et al. 2015] Cruz, E. H., Diener, M., Pilla,
L. L., and Navaux, P. O. (2015). An efficient
algorithm for communication-based task map-
ping. In 23rd Euromicro International Con-
ference on Parallel, Distributed, and Network-
Based Processing, pages 207–214.

[Dongarra et al. 2005] Dongarra, J., Sterling, T.,
Simon, H., and Strohmaier, E. (2005). High-
Performance Computing: Clusters, Constella-
tions, MPPs, and Future Directions. Comput-
ing in Science and Engineering, 7:51–59.

[Grossman et al. 2017] Grossman, M., Kumar,
V., Vrvilo, N., Budimlic, Z., and Sarkar, V.
(2017). A pluggable framework for compos-
able HPC scheduling libraries. In Parallel and
Distributed Processing Symposium Workshops
(IPDPSW), 2017 IEEE International, pages
723–732. IEEE.

11



[Heineman and Councill 2001] Heineman, G. T.
and Councill, W. T. (2001). Component-based
software engineering. Putting the pieces to-
gether, addison-westley, page 5.

[Hoefler et al. 2014] Hoefler, T., Jeannot, E., and
Mercier, G. (2014). An Overview of Topology
Mapping Algorithms and Techniques in High-
Performance Computing, pages 73–94. John
Wiley & Sons, Inc.

[Jeannot et al. 2014] Jeannot, E., Mercier, G.,
and Tessier, F. (2014). Process placement in
multicore clusters: Algorithmic issues and prac-
tical techniques. IEEE Transactions on Paral-
lel and Distributed Systems, 25(4):993–1002.

[Kale et al. 2007] Kale, L. V., Bohm, E., Mendes,
C. L., Wilmarth, T., and Zheng, G. (2007).
Programming petascale applications with
Charm++ and AMPI. Petascale Computing:
Algorithms and Applications, 1:421–441.

[Kiczales et al. 1997] Kiczales, G., Lamping, J.,
Mendhekar, A., Maeda, C., Lopes, C., Lo-
ingtier, J.-M., and Irwin, J. (1997). Aspect-
oriented programming. In European conference
on object-oriented programming, pages 220–242.
Springer.

[Langer et al. 2015] Langer, A., Totoni, E.,
Palekar, U. S., and Kalé, L. V. (2015). Energy-
efficient computing for HPC workloads on het-
erogeneous manycore chips. In Proceedings of
Programming Models and Applications on Mul-
ticores and Manycores. ACM.

[Mollison and Anderson 2013] Mollison, M. S.
and Anderson, J. H. (2013). Bringing theory
into practice: A userspace library for multi-
core real-time scheduling. In Real-Time and

Embedded Technology and Applications Sympo-
sium (RTAS), 2013 IEEE 19th, pages 283–292.
IEEE.

[Nguyen et al. 2007] Nguyen, V., Deeds-Rubin,
S., Tan, T., and Boehm, B. (2007). A SLOC
counting standard. In Cocomo ii forum, volume
2007, pages 1–16. Citeseer.

[Penna et al. 2016] Penna, P. H., Castro, M., Fre-
itas, H. C., Broquedis, F., and Méhaut, J.-F.
(2016). Design methodology for workload-aware
loop scheduling strategies based on genetic algo-
rithm and simulation. Concurrency and Com-
putation: Practice and Experience.

[Vlissides et al. 1994] Vlissides, J., Helm, R.,
Johnson, R., and Gamma, E. (1994). Design
patterns: elements of reusable object-oriented
software.

[Wienke et al. 2012] Wienke, S., Springer, P.,
Terboven, C., and an Mey, D. (2012). Open-
ACC—first experiences with real-world appli-
cations. In European Conference on Parallel
Processing, pages 859–870. Springer.

12


