
Approximating the Generalized Voronoi Diagram of Closely
Spaced Objects

John Edwards†,1, Eric Daniel2, Valerio Pascucci1, and Chandrajit Bajaj3

1Scientific Computing and Imaging Institute, University of Utah

2Google, Inc.

3The University of Texas

Abstract

We present an algorithm to compute an approximation of the generalized Voronoi diagram (GVD)

on arbitrary collections of 2D or 3D geometric objects. In particular, we focus on datasets with

closely spaced objects; GVD approximation is expensive and sometimes intractable on these

datasets using previous algorithms. With our approach, the GVD can be computed using

commodity hardware even on datasets with many, extremely tightly packed objects. Our approach

is to subdivide the space with an octree that is represented with an adjacency structure. We then

use a novel adaptive distance transform to compute the distance function on octree vertices. The

computed distance field is sampled more densely in areas of close object spacing, enabling robust

and parallelizable GVD surface generation. We demonstrate our method on a variety of data and

show example applications of the GVD in 2D and 3D.

1. Introduction

The generalized Voronoi diagram (GVD) is an important structure that divides space into a

complex of generalized Voronoi cells (GVCs) around objects. Similar to the ordinary

Voronoi diagram, each GVC contains exactly one object, or site, and every point in the GVC

is closer to its contained object than to any other object. The generalized Voronoi diagram is

the boundary of the cell complex, and thus every point on the GVD is equidistant from two

or more closest objects. Applications of the GVD range from motion path planning to GIS

analysis to mosaicking.

Ordinary Voronoi diagrams have been studied extensively and efficient algorithms exist to

compute them, but the GVD is difficult to compute analytically in general [BWY06,

HIKL*99] and so the majority of approaches compute an approximation. Whereas most

algorithms are efficient and robust on certain datasets, all algorithms to our knowledge

require inordinate amounts of memory on datasets where objects are very closely spaced

relative to the size of the domain. The failures occur because the space is uniformly gridded.

† jedwards@sci.utah.edu.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry and Object
Modeling—Boundary representations Computer Graphics [I.3.6]: Methodology and Techniques—Graphics data structures and data
types

HHS Public Access
Author manuscript
Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

Published in final edited form as:
Comput Graph Forum. 2015 May ; 34(2): 299–309. doi:10.1111/cgf.12561.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In such approaches, voxel size must be small enough to resolve object spacings, and if two

objects are very close to each other the number of voxels can become prohibitively large.

We present an algorithm to compute a GVD approximation on arbitrary datasets, including

those with closely spaced objects. The approach applies a distance transform over an octree

representation of the objects. Our octree, its associated data structure, and our distance

transform are novel and optimized to GVD approximation. For the remainder of the paper,

“GVD” will refer to the approximated Generalized Voronoi Diagram.

This paper demonstrates GVD computation on data beyond the computational abilities of

previous algorithms, unlocking interesting and important applications. Our approach allows

GVD-based proximity queries and other applications using a larger class of meaningful

datasets.

Main contributions

The three primary technical contributions described in the paper are as follows.

1. Most octree decompositions of objects resolve for object feature retention,

but ours resolves only for object-object separation, which makes our

subdivision computation largely independent of object complexity.

Further, our octree data structure optimizes for octree vertex neighbor

finding by storing cell vertices in an adjacency list rather than storing cells

hierarchically.

2. Our distance transform is computed after the octree is built and uses a

scheme that requires O(N logN +M) distance computations where N is the

number of octree leaf cells and M is a measure of object complexity (e.g.,

number of polyhedron facets). Distances are computed on octree vertices

with a conjectured error bound.

3. We trace out the GVD over the octree distance field using an efficient and

parallelizable O(N) algorithm. The GVD is guaranteed to separate each

object into its own generalized Voronoi cell, i.e., any path from a point p
on object Si to a point q on object Sj must intersect the GVD, a guarantee

that is not usually made by uniformly gridded methods.

We demonstrate various applications of the GVD in two and three dimensions, including

motion path planning, proximity queries, and exploded diagrams.

Our GVD algorithm has four main steps: 1) build the octree over the set of objects; 2)

compute distances on octree vertices using a wavefront expansion; 3) resolve ambiguous

cells through further subdivision; and 4) compute the GVD surface by finding octree edges

with differing end labels. After a discussion of related work, we discuss each step in detail

and present applications.

Edwards et al. Page 2

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. Related work

Related work falls into two categories: algorithms that compute the GVD and algorithms

that compute distance fields, many of which are adaptive.

Generalized Voronoi diagrams

A theoretical framework for generalized Voronoi diagrams can be found in Boissonnat et al.

[BWY06]. Ordinary Voronoi diagrams are well studied and efficient algorithms exist that

compute them exactly [DBCVK08], but exact algorithms for the generalized Voronoi

diagram are limited to a small set of special cases [Lee82, Kar04]. In an early work,

Lavender et al. [LBD*92] define and compute GVDs over a set of solid models using an

octree. Etzion and Rappoport [ER02] represent the GVD bisector symbolically for lazy

evaluation, but are limited to sites that are polyhedra. Boada et al. [BCS02, BCMAS08] use

an adaptive approach to GVD computation, but their algorithm is restricted to GVDs with

connected regions and is inefficient for polyhedral objects with many facets. Two other

works are adaptive [TT97,VO98] but are computationally expensive and are restricted to

convex sites.

In recent years Voronoi diagram algorithms that take advantage of fast graphics hardware

have become more common [CTMT10, FG06, HT05,RT07,SGGM06,SGG*06, HIKL*99,

WLXZ08]. These algorithms are efficient and generalize well to the GVD, but most are

limited to a subset of site types. More importantly, all of them use uniform grids and require

an extraordinary number of voxels to resolve closely spaced objects (for example, Figs. 1c

and 13 would require 236 and 248 voxels, respectively). To our knowledge, ours is the first

fully adaptive algorithm that computes the generalized Voronoi diagram for arbitrary

datasets.

Distance fields and octrees

The GVD is a subset of the locus of distance field critical points, a property that we take

advantage of. In that light, the GVD could be a post-processing step to any method that

computes a distance field. Distance transforms compute a distance field, but most are

uniformly gridded [JBS06] and are thus no more suitable than GVD algorithms that use the

GPU.

Two seminal works adaptively compute the Adaptive Distance Field (ADF) on octree

vertices. Strain [Str99] fully resolves the octree everywhere on the object surface, and

Frisken et al. [FPRJ00] resolve the octree fully only in areas of small local feature size. Both

approaches are designed to retain features of a single object rather than resolving between

multiple objects, as is required for GVD computation. Qu et al. [QZS*04] implement an

energy-minimizing distance field algorithm that preserves features at the expense of

efficiency. Many recent works on fast octree construction using the GPU are limited to point

sites [BGPZ12, Kar12, ZGHG11]. Most octree approaches that support surfaces [BLD13,

CNLE09, LK11, LH07] are designed for efficient rendering, and actual construction of the

octree is implemented on the CPU.

Edwards et al. Page 3

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Two works [BC08, PLKK10] implement the ADF using GPU parallelism to compute the

distance value at sample points, but building the octree itself is done sequentially. Yin et al.

[YLW11] compute the distance field entirely on the GPU using a bottom-up approach by

initially subdividing into a complete octree, resulting in memory usage that is no better than

using a uniform grid. A method by Kim and Liu [KL14] computes the octree and a BVH

entirely on the GPU. However, octree construction is performed on barycenters of triangles,

and so a leaf octree cell can have an arbitrary number of triangle intersections as long as it

contains no more than one triangle’s barycenter. We have found no GPU octree construction

method that can resolve between objects.

3. Build octree

Our algorithm works in both 2D and 3D. Lacking a dimension-independent term, we use

“octree” as a general term to refer to both quadtrees and octrees.

We construct the octree over a set of objects S = {Si} as a pre-processing step to computing

a distance field. Whereas other methods construct the octree and distance field at the same

time [FPRJ00,Str99], our decoupling allows us to optimize our octree construction

implementation by temporarily converting polyhedra to integer-based representations, and

using entirely integer arithmetic during octree construction.

Our octree data structure stores octree vertex adjacencies rather than an explicit cell

hierarchy. (In this paper, “vertex” will always refer to an octree vertex.) Each vertex

structure contains an object label, a closest point on an object, and references to its

neighbors. We initialize the system with a single octree cell, represented by 2D vertices,

where D is the number of dimensions. We use our subdivision predicate

SHOULD_SUBDIVIDE(c), explained below, to determine whether to subdivide c. To subdivide

cell c, we first create 3D – 2D new vertices (in 3D, one vertex for each of the 12 edges, one

for each of the 6 faces, and one for the center). We then assign vertex neighbors

appropriately (see Figures 2a and 2b). After intersecting new subcells with objects that

intersect c, we call SHOULD_SUBDIVIDE on each subcell and recursively subdivide if necessary.

Our adjacency structure is amenable to our most important operations, which are to find an

edge neighbor for the SHOULD_SUBDIVIDE predicate, and finding visible vertices for the

wavefront propagation. Finding an edge neighbor is O(1) with our octree representation.

Gargantini’s [Gar82] data structure has logarithmic neighbor finding, and Frisken and

Perry’s [FP02], which has fast neighbor finding like ours, requires significant extra storage.

Computational complexity of finding visible vertices is asymptotically equal to the number

of visible vertices and is discussed in Section 4. Our nonhierarchical representation is not

suitable for general purposes, however, because the point location operation is O(N). If the

need for point location arises, then our data structure can be converted to a traditional

hierarchical representation in O(N logN) time.

Previous algorithms ensure that object features are resolved well by subdividing all

nonempty cells up to a maximum level. More sophisticated feature resolution predicates

have also been used (e.g., the bilinear interpolation test of Frisken et al. [FPRJ00]). Our

Edwards et al. Page 4

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

subdivision predicate is different in that we are primarily interested in resolving between

objects. Define a face-neighbor of cell c to be a cell that shared a face with c. The predicate

SHOULD_SUBDIVIDE(c) works as follows. Given a cell c, subdivide if (1) the cell intersects more

than one object, or (2) an face-neighbor of c intersects with a different object. Test (1)

ensures that every leaf cell after construction will intersect at most one object, and test (2)

ensures that objects will be separated from each other by at least one empty buffer cell. One

advantage of SHOULD_SUBDIVIDE(c) is that octree complexity becomes independent of object

complexity. As shown in Figure 3a, even object self-intersections or nonmanifold points

have no effect on octree depth, whereas the octree would be fully subdivided in those areas

if using a conventional subdivision predicate.

4. Distance transform

Our distance transform is inspired by that of Breen et al. [BMW98], with the fundamental

difference being that we compute using an octree rather than a uniform grid. Each octree

vertex has two properties – a label and a closest point. An octree vertex is empty if all

incident cells are empty. Define the euclidean distance between two points dist(a, b) to be

infinity if either a or b is null and let {Si} be the set of objects intersecting octree cells

incident to a vertex v. The two main steps of distance computation are initialization of

nonempty vertices and wavefront expansion. Algorithm COMPUTE_DISTANCES comprises both

steps.

Algorithm COMPUTE_DISTANCES initializes the point assignments of nonempty vertices

(Figures 4b and 4d). All closest points point[v] (ties are broken arbitrarily) are stored as an

array and each vertex maintains an index into the array, taking advantage of the fact that

roughly half of computed closest points are shared among multiple vertices. The closest

points are computed exactly: if α(v) is the distance from v to its closest neighbor, then only

surface points in cells within of the vertex need be searched, making the loop an

O(N + M) operation where N is the number of octree leaf cells and M is a measure of object

complexity (e.g., number of triangles). All octree cells are then added to the priority queue,

an O(N) or O(N logN) operation, depending on the type of heap used for the queue. It then

iterates over vertex priority queue V in multiple expanding wavefronts, which are similar in

behavior to Dijkstra shortest-cost path wavefronts in that the priority queue is sorted on

distance to the nearest object. The vertex v at the front of the queue is the closest vertex to

an object among all vertices in the queue, modulo an error term discussed below. The

assigned closest point p is pushed to all vertices that are visible from v. A vertex w is visible

from v if w is a neighbor of v or if the intersection of the line segment with the edges of

the octree is empty (Figure 2c). Visible vertices are found efficiently using our vertex

adjacency data structure. In 2D, a simple walk around the cell is sufficient. For example, in

Figure 2c, a walk is done beginning from vertex v in the positive x direction. At each vertex,

the walk turns left if possible, otherwise it continues forward. Once the walk returns to v, the

visible vertices in the upper-right cell are found, and walks are performed for the other three

cells. The complexity of the walk is O(m), where m is the number of visible vertices.

Edwards et al. Page 5

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The number of vertices that are visible from v is dependent on gradation. Let c1 and c2 be

adjacent cells, and let L(c) be the octree level of cell c. Without loss of generality, let L(c1) >

L(c2). Gradation between adjacent cells c1 and c2 is defined to be L(c1) – L(c2). Let g be the

maximum gradation of any two adjacent cells. Then the number of visible vertices is

O(2g(D−1)). To see this, consider the 2D vertex in Figure 2c. Let the upper-right cell in the

figure be cell c. v has two “opposite” edges through cell c, where an opposite edge is one

that is not incident to v. v has four incident cells, for a total of eight opposite edges. Let each

incident cell be maximally graded, such that each opposite edge is incident to 2g cells. Then

there are (8)(2g(D−1)) = O(2g) visible vertices. Derivation in the 3D case is similar. If the

number of visible vertices becomes a significant factor in practice, then the octree can be

constructed with bounded gradation (similar to the approach of Strain [Str99]), thereby

bounding the number of visible vertices with a constant.

Our algorithm approximates distances on empty vertices, and our empirical tests suggest an

error bound of , where e(v) is the error at a vertex v and δ(v) is the distance from v

to the nearest point on S, implying that the distance transform is a -approximation. The

error occurs because only closest points assigned in the wavefront initialization are

propagated in the wavefront expansion. Distance transform time complexity is O(N + M) for

the initialization step, ≤ O(N logN) for the priority queue initialization, and O(2g(D−1)N
logN) for the wavefront expansion, where the reordering of a in V provides the logN factor.

Thus, total time complexity of the transform is O(2g(D−1)N logN + M), or O(N logN + M) if

gradation is bounded by a constant.

Edwards et al. Page 6

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Although not designed specifically to do so, our distance-assigned octree vertices can be

used to compute distance values of arbitrary points in the domain. Given a point p and its

containing leaf octree cell c, choose the closest point among the closest points of vertices on

c. That is, point[p] = arg minpoint[vϵc] dist(p, point[v]). The assigned distance is |point[p] −

p|. See Figure 3c for a distance field example.

5. Resolve ambiguities

Our distance function is built over a discretized space that can potentially yield ambiguities

in the topology of the GVD. We call an octree cell ambiguous if the topology of the GVD in

the cell is ambiguous. We test for cell ambiguity as follows. Let G be an embedded graph

with vertices and edges corresponding to octree vertices and edges, respectively. Let Gc be

the intersection of G with octree cell c. See Figure 5. Collapse all edges in Gc that have

endpoints with identical labels. Call the new graph . Cell c is unambiguous if is a (≤

D)-dimensional simplex.

Proof Let M = {Mi} be the set of generalized Voronoi cells (GVCs) that intersect with c.

Because every vertex in a simplex shares an edge with every other vertex, the topology of

the GVD in c is given by Mi ∩Mj ∩c ≠ ∅.

Ambiguous cells are subdivided recursively until the ambiguity is resolved or a threshold

subdivision level is reached (Figure 6). If the threshold is reached then the topology is

decided as described in Section 6.

6. Compute GVD surface

With the distance function in place we compute the generalized Voronoi diagram, or the set

of all points that have at least two closest points with differing labels, using an algorithm

inspired by marching cubes [LC87]. We store the GVD as sets of simplices (i.e. line

segments in 2D; triangles in 3D), one set per object, representing the boundary of the

generalized Voronoi cell (GVC) for that object. Each simplex is stored twice, once for each

GVC it borders, oriented toward the inside of the GVC.

We first compute which edges of the octree intersect the GVD by considering each octree

edge e with endpoint vertices (e0, e1). Let ℒ(v) be the label of octree vertex v. If ℒ(e0) ≠

ℒ(e1), then e intersects the GVD. Let a = point[e0] and b = point[e1]. Assume without loss

of generality that e is aligned with the x-axis. Cases of alignment with y and z are similar.

We seek point p = (x, y, z) ϵ e such that dist (a, p) = dist (b, p) (see Figure 7). In our

euclidean setting this reduces to

(1)

Once all edge bisectors for a cell are calculated, we fit simplices (Figure 8). Suppose

bisector pi lies on edge ei. We connect bisector points on a 2D face f by creating line

segments between each bisector pi ϵ f and the centroid of all face bisectors rf = Σ pi/|{pi}|. If

Edwards et al. Page 7

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the 2D cell is unambiguous there will be at most three bisectors. In the case that the cell is

subdivided to the threshold level without resolving ambiguity then the centroid rf becomes

an interface to four or more generalized Voronoi cells. Other approaches to ambiguity

resolution include [Nat94,NH91,SB07]. We label each line segment by the labels of the

vertices adjacent to pi, that is, ℒ(pi) = αβ where and . If we’re

computing a 2D GVD then we’re done.

In 3D, given a cell c, we first find the line segment complex of each 2D face c using the 2D

algorithm and union all segments into a set Cc. We then form triangles from each segment in

Cc to the 3D centroid rc of the bisectors (Figure 8b). Triangle ti has vertices (pi, rf, rc). We

maintain a set Tα of triangles assigned to the GVC of the object with label α. To determine

the orientation we use the normal nti and the vertex adjacent to pi with label α. If

, then we invert ti before adding it to Tα, and similarly with Tβ. The

resulting GVD is water tight and each GVC is orientable.

The GVD surfacing algorithm is parallelizable, as the simplices in each octree cell are

computed independently of all other octree cells.

7. Results and applications

Our implementation of the algorithm supports polygons and triangulated objects, and our

wavefront initialization step is implemented on the GPU using OpenCL. All tests were run

on a MacBook Pro laptop with a dual-core 2.9 GHz processor, 8 GB memory, and Intel HD

4000 graphics card. Figure 10 shows our implementation of the GVD computation pipeline,

and Figure 11 shows the computed GVD on a more challenging dataset. We compare our

method with other work and then show examples in three application settings: path planning,

proximity queries, and exploded diagrams.

7.1. Comparison to other methods

Our GVD computations use commodity hardware, even on the most challenging datasets.

Uniformly gridded approaches [CTMT10,FG06,HT05,RT07,SGGM06,SGG*06,HIKL*99,

WLXZ08, YLW11] require 2Dn voxels, where D is the dimension and n is the number of

octree levels needed to resolve objects. Table 1 shows our results on datasets that would

require prohibitive numbers of voxels using uniformly gridded methods.

In addition to datasets with closely spaced objects, our algorithm works on intersecting and

embedded objects, non-manifold objects, and objects with multiple connected components

(see Figures 3a, 3b, and 12), which are not supported by Boada et al. [BCMAS08].

We ran timing comparisons of our method with Laine’s algorithm [LK11], which is a sparse

voxel octree (SVO) method [BLD13, BC08, CNLE09, LH07, Str99]. Laine’s algorithm (and

other SVO methods) subdivide octree cells in areas of object complexity, whereas our

algorithm subdivides in areas of inter-object proximity. In other words, previous methods

model the objects, while our approach models the space between objects. Because the two

methods compute different octrees, a direct timing comparison is not meaningful, so we

Edwards et al. Page 8

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

compared the number of seconds required for each megabyte of octree. From Figure 9 we

see that the execution time of our algorithm is comparable to the state of the art SVO

construction.

7.2. Path planning

Motion planning is an important application in robotics and other fields [CD88, Thr98,

HICK*00, VMS11]. Roadmap methods of path finding [MS07, RP12] retract the set of

feasible movements to a lower-dimensional space, often using the Generalized Voronoi

Diagram as the retraction. Once the GVD is available, a variety of methods can be used for

computation of the final path, from simple graph searches [HICK*00, MS07] to fast

marching [GMAM06]. As noted by Foskey et al [FGLM01], a shortcoming of this approach

is the difficulty of computing the GVD.

We have augmented our GVD algorithm with a simple path finding implementation that uses

Dijkstra’s graph search algorithm in order to show that path planning is possible on difficult

datasets. On simple datasets, our method is not competitive with uniform grid approaches

[HICK*00,FGLM01,GMAM06], but our algorithm is robust on datasets with closely spaced

objects, which would cause uniform grid approaches to fail. One such dataset is shown in

Figure 13, where we computed the GVD for 470 2D objects with object spacings that vary

widely. Computation took 2.0 seconds with the quadtree reaching level 24 and 140,680 cells

(a uniform grid would require 248 pixels to resolve the closest object spacings). Our GVD

algorithm could be coupled with a more sophisticated path search algorithm, such as Garrido

et al [GMAM06], for improved paths.

7.3. Proximity queries

Proximity queries are used in collision detection, object overlap, and object separation

distance queries [LM03], and a wealth of algorithms are available in the literature. One class

of proximity query uses distance fields or the GVD [HIZLM01, GRLM03, TKH*05]. As in

path planning, these approaches rely primarily on uniform grids, making distance field

computation expensive or impossible on difficult datasets. Our algorithm may enable these

types of distance queries on difficult datasets.

We have implemented a form of topological proximity query suitable for our application of

neuronal modeling, where a frequent query is to identify neuron pairs that have high

probability of forming a synaptic connection [MHS*10]. In Figure 14 we show a neuron of

interest in red, which is difficult to see because of tight packing. Rather than using a typical

proximity query, that of finding neurons within a threshold distance of the neuron of interest,

we take a topological approach: find all neurons whose Generalized Voronoi Cells (GVCs)

share a boundary with the GVC of the red neuron. By taking the dual of the GVD we can

perform this query efficiently, giving us a fast and robust pre-filter to finding synaptic pairs.

Beyond our neuronal modeling application, Figure 14 shows that this type of query may also

find usefulness in visualization of occluded objects.

Edwards et al. Page 9

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

7.4. Exploded diagrams

An effective way of visualizing multiple objects in proximity is to “explode” the objects

away from each other in a meaningful way that retains some of the spatial coherence of the

collection. Exploded diagrams are typically used in CAD applications, but their usefulness

extends to other applications, such as molecular modeling. Virus molecules are composed of

hundreds or thousands of atoms, often in symmetric structure that can be meaningfully

segmented into constituent collections of atoms. Often many regions are occluded from

view. Furthermore, molecules are often layered radially from the center, forming shells. In

the case of radial layering, one need only translate objects radially away from the center to

create an exploded diagram, but this approach is not effective if we wish to explode objects

away from an anchor object that is not near the center. A naive approach to creating an

exploded diagram is to choose a primary object C and move all objects along a vector

derived from the object centroids. That is, given a object D, move D ← D+λ(𝓒(D) − 𝓒(C))

where 𝓒(C) is the centroid of C and λ is a speed constant. In many cases, the centroid of D
lies in a very different direction relative to 𝓒(C) than where D should intuitively travel

(Figure 15a).

Our approach is to utilize the GVD boundary complex to compute directions of travel for

each object (Figure 15b). Let C be the anchor object and let K be the dual graph of the GVD

as described in Section 7.3. Further, define TCD as the set of triangles adjacent to both

GVCC and GVCD with normals oriented toward GVCD. 𝓒C(i) is the set of objects in the i-
ring of C and ACD = ΣtϵTCD At is the summed areas of triangles in TCD. Using graph K, if D
ϵ 𝓒C(1) then D ← D + 𝓒1(D) where

Since the(i > 1)-ring neighbors of C have no direct interface to C, they are moved in an

average direction of the (i − 1)-ring neighbors that are adjacent to D. That is, D←D+𝓒i(D)

where

8. Conclusions

We have presented and demonstrated the effectiveness of a novel generalized Voronoi

diagram algorithm, which includes an octree subdivision algorithm, octree data structure,

distance transform, and GVD surfacing algorithm. We have also shown, in addition to the

popular motion path planning, important applications of the GVD. Our method opens the

door to investigation of other applications that might benefit from a GVD algorithm

specifically tailored to collections of objects that are closely spaced.

Edwards et al. Page 10

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Our algorithm is general; our implementation supports polygons and triangulated objects,

but the algorithm supports curved objects equally as well. Our approach is particularly suited

to objects for which a point-object distance computation is expensive since initialization of

the wavefront is the only step that requires the point-object distance operation.

With the proven usefulness of the ordinary Voronoi diagram and the growing uses of the

generalized Voronoi diagram, the algorithm presented in this paper fills a need for a practical

GVD algorithm that supports previously unmanageable datasets – those with tightly packed

objects. Interestingly, it is often applications using these very datasets that are in greatest

need of the GVD. For example, traditional path-planning is straightforward unless the

objects are tightly packed; finding regions of close tolerance is unnecessary unless close

tolerances, in fact, exist. These applications and others can now be more fully explored with

the availability of our adaptive GVD algorithm.

References

[BC08]. BASTOS, T.; CELES, W. Gpu-accelerated adaptively sampled distance fields; Shape
Modeling and Applications, 2008. SMI 2008. IEEE International Conference on; 2008. p.
171-178.IEEE3, 7

[BCMAS08]. BOADA I, COLL N, MADERN N, ANTONI SELLARES J. Approximations of 2d and
3d generalized voronoi diagrams. International Journal of Computer Mathematics. 2008; 85(7):
1003–1022. 2, 7.

[BCS02]. BOADA I, COLL N, SELLARES J. The voronoi-quadtree: construction and visualization.
Eurographics 2002 Short Presentation. 2002:349–355. 2.

[BGPZ12]. BÉDORF J, GABUROV E, PORTEGIES ZWART S. A sparse octree gravitationaln-body
code that runs entirely on the gpu processor. Journal of Computational Physics. 2012; 231(7):
2825–2839. 3.

[BLD13]. BAERT, J.; LAGAE, A.; DUTRÉ, P. Out-of-core construction of sparse voxel octrees;
Proceedings of the 5th High-Performance Graphics Conference; 2013. p. 27-32.ACM3, 7

[BMW98]. BREEN, DE.; MAUCH, S.; WHITAKER, RT. 3d scan conversion of csg models into
distance volumes; Volume Visualization, 1998. IEEE Symposium on; 1998. p. 7-14.IEEE4

[BWY06]. BOISSONNAT, J-D.; WORMSER, C.; YVINEC, M. Effective Computational Geometry
for Curves and Surfaces. Springer; 2006. Curved voronoi diagrams; p. 67-116.2

[CD88]. CANNY J, DONALD B. Simplified voronoi diagrams. Discrete & Computational Geometry.
1988; 3(1):219–236. 7.

[CNLE09]. CRASSIN, C.; NEYRET, F.; LEFEBVRE, S.; EISEMANN, E. Gigavoxels: Ray-guided
streaming for efficient and detailed voxel rendering; Proceedings of the 2009 symposium on
Interactive 3D graphics and games; 2009. p. 15-22.ACM3, 7

[CTMT10]. CAO, T-T.; TANG, K.; MOHAMED, A.; TAN, T-S. Parallel banding algorithm to
compute exact distance transform with the gpu; Proceedings of the 2010 ACM SIGGRAPH
symposium on Interactive 3D Graphics and Games; 2010. p. 83-90.ACM2, 6

[DBCVK08]. DE BERG, M.; CHEONG, O.; VAN KREVELD, M. Computational geometry:
algorithms and applications. Springer; 2008. 2

[ER02]. ETZION M, RAPPOPORT A. Computing voronoi skeletons of a 3-d polyhedron by space
subdivision. Computational Geometry. 2002; 21(3):87–120. 2.

[FG06]. FISCHER I, GOTSMAN C. Fast approximation of high-order voronoi diagrams and distance
transforms on the gpu. Journal of Graphics, GPU, and Game Tools. 2006; 11(4):39–60. 2, 6.

[FGLM01]. FOSKEY, M.; GARBER, M.; LIN, MC.; MANOCHA, D. A voronoi-based hybrid motion
planner; Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International
Conference on; 2001. p. 55-60.IEEE7

Edwards et al. Page 11

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[FP02]. FRISKEN SF, PERRY RN. Simple and efficient traversal methods for quadtrees and octrees.
Journal of Graphics Tools. 2002; 7(3):1–11. 3.

[FPRJ00]. FRISKEN, SF.; PERRY, RN.; ROCKWOOD, AP.; JONES, TR. Adaptively sampled
distance fields: a general representation of shape for computer graphics; Proceedings of the 27th
annual conference on Computer graphics and interactive techniques; ACM Press/Addison-
Wesley Publishing Co.; 2000. p. 249-254.3

[Gar82]. GARGANTINI I. An effective way to represent quadtrees. Communications of the ACM.
1982; 25(12):905–910. 3.

[GMAM06]. GARRIDO, S.; MORENO, L.; ABDERRAHIM, M.; MARTIN, F. Path planning for
mobile robot navigation using voronoi diagram and fast marching; Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on; 2006. p. 2376-2381.IEEE7, 8

[GRLM03]. GOVINDARAJU, NK.; REDON, S.; LIN, MC.; MANOCHA, D. Cullide: Interactive
collision detection between complex models in large environments using graphics hardware;
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware;
2003. p. 25-32.Eurographics Association8

[HICK*00]. HOFF, K., III; CULVER, T.; KEYSER, J.; LIN, MC.; MANOCHA, D. Interactive motion
planning using hardware-accelerated computation of generalized voronoi diagrams; Robotics and
Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on; 2000. p.
2931-2937.IEEE7

[HIKL*99]. HOFF, KE., III; KEYSER, J.; LIN, M.; MANOCHA, D.; CULVER, T. Fast computation
of generalized voronoi diagrams using graphics hardware; Proceedings of the 26th annual
conference on Computer graphics and interactive techniques; ACM Press/Addison-Wesley
Publishing Co.; 1999. p. 277-286.2, 6

[HIZLM01]. HOFF, KE., III; ZAFERAKIS, A.; LIN, M.; MANOCHA, D. Fast and simple 2d
geometric proximity queries using graphics hardware; Proceedings of the 2001 symposium on
Interactive 3D graphics; 2001. p. 145-148.ACM8

[HT05]. HSIEH H-H, TAI W-K. A simple gpu-based approach for 3d voronoi diagram construction
and visualization. Simulation modelling practice and theory. 2005; 13(8):681–692. 2, 6.

[JBS06]. JONES, MW.; BAERENTZEN, JA.; SRAMEK, M. 3d distance fields: A survey of
techniques and applications; Visualization and Computer Graphics, IEEE Transactions on; 2006.
p. 581-599.3

[Kar04]. KARAVELAS, MI. A robust and efficient implementation for the segment voronoi diagram;
International symposium on Voronoi diagrams in science and engineering; 2004. p.
51-62.Citeseer2

[Kar12]. KARRAS, T. Maximizing parallelism in the construction of bvhs, octrees, and k-d trees;
Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on High-Performance
Graphics; 2012. p. 33-37.Eurographics Association3

[KL14]. KIM YJ, LIU F. Exact and adaptive signed distance fieldscomputation for rigid and
deformablemodels on gpus. IEEE Transactions on Visualization and Computer Graphics. 2014;
20(5):714–725. 3. [PubMed: 26357294]

[LBD*92]. LAVENDER D, BOWYER A, DAVENPORT J, WALLIS A, WOODWARK J. Voronoi
diagrams of set-theoretic solid models. Computer Graphics and Applications, IEEE. 1992; 12(5):
69–77. 2.

[LC87]. LORENSEN WE, CLINE HE. Marching cubes: A high resolution 3d surface construction
algorithm. ACM Siggraph Computer Graphics. 1987; 21(4):163–169. 5.

[Lee82]. LEE D-T. Medial axis transformation of a planar shape. Pattern Analysis and Machine
Intelligence, IEEE Transactions on. 1982:363–369. 2.

[LH07]. LEFEBVRE, S.; HOPPE, H. Compressed random-access trees for spatially coherent data;
Proceedings of the 18th Eurographics conference on Rendering Techniques; 2007. p.
339-349.Eurographics Association3, 7

[LK11]. LAINE S, KARRAS T. Efficient sparse voxel octrees. Visualization and Computer Graphics,
IEEE Transactions on. 2011; 17(8):1048–1059. 3, 7.

Edwards et al. Page 12

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[LM03]. LIN, MC.; MANOCHA, D. Collision and proximity queries. In: Goodman, J.; O’Rourke, J.,
editors. Handbook of Discrete and Computational Geometry. Chapman and Hall/CRC; London:
2003. 8

[MHS*10]. MISHCHENKO Y, HU T, SPACEK J, MENDEN-HALL J, HARRIS K, CHKLOVSKII D.
Ultrastructural analysis of hippocampal neuropil from the connectomics perspective. Neuron.
2010; 67(6):1009–1020. 8. [PubMed: 20869597]

[MS07]. MASEHIAN E, SEDIGHIZADEH D. Classic and heuristic approaches in robot motion
planning-a chronological review. World Academy of Science, Engineering and Technology.
2007; 29(1):101–106. 7.

[Nat94]. NATARAJAN BK. On generating topologically consistent isosurfaces from uniform samples.
The Visual Computer. 1994; 11(1):52–62. 6.

[NH91]. NIELSON, GM.; HAMANN, B. The asymptotic decider: resolving the ambiguity in
marching cubes; Proceedings of the 2nd conference on Visualization’91; IEEE Computer Society
Press; 1991. p. 83-91.6

[PLKK10]. PARK, T.; LEE, S-H.; KIM, J-H.; KIM, C-H. Cuda-based signed distance field calculation
for adaptive grids; Computer and Information Technology (CIT), 2010 IEEE 10th International
Conference on; 2010. p. 1202-1206.IEEE3

[QZS*04]. QU, H.; ZHANG, N.; SHAO, R.; KAUFMAN, A.; MUELLER, K. Feature preserving
distance fields; Volume Visualization and Graphics, 2004 IEEE Symposium on; 2004. p.
39-46.IEEE3

[RP12]. RAJA P, PUGAZHENTHI S. Optimal path planning of mobile robots: A review. International
Journal of Physical Sciences. 2012; 7(9):1314–1320. 7.

[RT07]. RONG, G.; TAN, T-S. Variants of jump flooding algorithm for computing discrete voronoi
diagrams; Voronoi Diagrams in Science and Engineering, 2007. ISVD’07. 4th International
Symposium on; 2007. p. 176-181.IEEE2, 6

[SB07]. SOHN, B-S.; BAJAJ, C. Computational Science–ICCS 2007. Springer; 2007. Topology
preserving tetrahedral decomposition of trilinear cell; p. 350-357.6

[SGG*06]. SUD A, GOVINDARAJU N, GAYLE R, KABUL I, MANOCHA D. Fast proximity
computation among deformable models using discrete voronoi diagrams. ACM Transactions on
Graphics (TOG). 2006; 25(3):1144–1153. 2, 6.

[SGGM06]. SUD, A.; GOVINDARAJU, N.; GAYLE, R.; MANOCHA, D. Interactive 3d distance field
computation using linear factorization; Proceedings of the 2006 symposium on Interactive 3D
graphics and games; 2006. p. 117-124.ACM2, 6

[Str99]. STRAIN J. Fast tree-based redistancing for level set computations. Journal of Computational
Physics. 1999; 152(2):664–686. 3, 5, 7.

[Thr98]. THRUN S. Learning metric-topological maps for indoor mobile robot navigation. Artificial
Intelligence. 1998; 99(1):21–71. 7.

[TKH*05]. TESCHNER, M.; KIMMERLE, S.; HEIDELBERGER, B.; ZACHMANN, G.;
RAGHUPATHI, L.; FUHRMANN, A.; CANI, M-P.; FAURE, F.; MAGNENAT-THALMANN,
N.; STRASSER, W., et al. Computer Graphics Forum. Vol. 24. Wiley Online Library; 2005.
Collision detection for deformable objects; p. 61-81.8

[TT97]. TEICHMANN M, TELLER S. Polygonal approximation of voronoi diagrams of a set of
triangles in three dimensions. Tech Rep 766, Lab of Comp. Sci., MIT. 1997 2.

[VMS11]. VACHHANI L, MAHINDRAKAR AD, SRIDHARAN K. Mobile robot navigation through
a hardware-efficient implementation for control-law-based construction of generalized voronoi
diagram. Mechatronics, IEEE/ASME Transactions on. 2011; 16(6):1083–1095. 7.

[VO98]. VLEUGELS J, OVERMARS M. Approximating voronoi diagrams of convex sites in any
dimension. International Journal of Computational Geometry & Applications. 1998; 8(02):201–
221. 2.

[WLXZ08]. WU, X.; LIANG, X.; XU, Q.; ZHAO, Q. Gpu-based feature-preserving distance field
computation; Cyberworlds, 2008 International Conference on; 2008. p. 203-208.IEEE2, 6

[YLW11]. YIN K, LIU Y, WU E. Fast computing adaptively sampled distance field on gpu. Pacific
Graphics Short Papers. 2011:25–30. The Eurographics Association. 3, 6.

Edwards et al. Page 13

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[ZGHG11]. ZHOU K, GONG M, HUANG X, GUO B. Data-parallel octrees for surface
reconstruction. Visualization and Computer Graphics, IEEE Transactions on. 2011; 17(5):669–
681. 3.

Edwards et al. Page 14

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Two example applications of the approximated generalized Voronoi diagram (GVD)

computed by our novel, adaptive algorithm. Previous GVD methods require a gridded space

of 224 (gears dataset) and 236 (knives dataset) voxels to resolve the closely spaced objects.

(a) Two gears with regions of very tight spacing. (b) The GVD of the gears model. The

surface is colored red in areas of very close tolerance. (c) Three butter knives in a wood

block. To animate removal of the knives without intersecting the block requires extreme care

because of close mesh spacing. (d) Intersection-free motion is guaranteed by computing

motion vectors based on the GVD and allowing motion only within a Voronoi cell.

Edwards et al. Page 15

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Quadtree/octree representation. (a) In two dimensions, a quadtree cell is defined by four

vertices. Each vertex maintains references to its neighbors with the nbrs array. Two

intersecting objects are shown in red and yellow. (b) When a quadtree/octree cell is

subdivided, vertices are added and each vertex’s neighbor references are updated. (c) v is

shaded and vertices that are visible from v are circled. A vertex w is visible from v if w is a

neighbor of v or if the line segment has no intersections with any octree cell boundaries.

Edwards et al. Page 16

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Quadtree, GVD, and distance field of intersecting, embedded, and nonmanifold 2D objects.

(a) The quadtree is subdivided only far enough so that there is a one cell buffer between

objects and so that ambiguous cells are resolved. Object self-intersections and nonmanifold

points have no effect on quadtreetree depth (solid arrow), but intersections between objects

are subdivided to the maximum level (dotted arrow). (b) Computed GVD. (c) The distance

field computed from the quadtree vertices.

Edwards et al. Page 17

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Wavefront expansion. (a) Portions of the surfaces of two objects. Assign every nonempty

vertex an exact closest point and add the vertex to the wavefront priority queue. (b) Pop the

top priority vertex (dotted circle) and push its closest point to its neighbors (circle). (c) Next

iteration. (d) Initialized wavefront (as in (b)). (e) Expanded wavefront. Green lines connect

quadtree vertices to computed closest points. (f) The GVD is shown in red.

Edwards et al. Page 18

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Ambiguous cells are detected by collapsing edges with identically labeled vertices. (a) Cell

x is ambiguous because is not a simplex. (b)-(c) Two possible GVD topologies in cell x

are shown. (d) Cell y is unambigous. (e) Simplex induces a unique GVD topology.

Edwards et al. Page 19

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
The effect of ambiguous cells and how they are removed. (a) The cells indicated by the

arrows are ambiguous, causing the GVD to be topologically incorrect. (b) The ambiguities

are resolved by recursive subdivision.

Edwards et al. Page 20

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Computing the intersection of the GVD with quadtree edge e. a and b are closest points on

objects, and p is the intersection of edge e with the GVD.

Edwards et al. Page 21

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8.
GVD surface generation. (a) The 2D algorithm creates GVD edges from bisectors {pi} to the

centroid. Each new GVD edge is given the two labels of the incident octree edge. (b) After

finding the 2D GVD on its faces, the 3D cell fits triangles from 2D edges to the centroid.

Edwards et al. Page 22

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.
Comparison of our octree building to the sparse voxel octree method of Laine and Karras

[LK11]. We used four datasets, each at three octree levels and compared seconds per Mb of

octree memory used. Laine’s algorithm was run on a Windows 7 desktop with 3.5 GHz

processor, 16 GB memory, and NVIDIA GeForce GTX 660 graphics card.

Edwards et al. Page 23

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10.
The method pipeline in 3D. (a) Four bunnies placed in proximity. (b) The octree with

appropriately-labeled vertices. (c) The constructed GVD.

Edwards et al. Page 24

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 11.
A pipes dataset with 392 objects and 207K object triangles. The octree was subdivided to

level 10 for a total of 1.8m octree cells. The GVD separates even the nuts from the bolts

(upper right).

Edwards et al. Page 25

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 12.
Heart defibrillation dataset showing support for multiple connected components. (a) The

blue and purple objects have multiple components. (b) The GVD naturally handles multiple

components of an object. Portions of the GVD are clipped away for visualization.

Edwards et al. Page 26

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 13.
Path planning in 2D. We built a quadtree over hundreds of objects ranging in size and

spacing over orders of magnitude. The quadtree reached level 24 before the closest spacings

were resolved. The shortest-cost path between two points is shown in blue. The rightmost

figure shows the quadtree in gray and GVD boundary complex in red at 80,000x

magnification.

Edwards et al. Page 27

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 14.
GVD-based proximity queries on neuron data give a way to discover which neurons

potentially synapse with another neuron. (a) In a dense collection of 450 neurons, the neuron

of interest is colored red. (b) Neurons in the 1-ring of the GVD dual graph are colored

brown.

Edwards et al. Page 28

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 15.
Explosion diagrams of the rice dwarf virus. (a) The vectors that objects travel along are

computed using object centroids. Objects travel in nonintuitive directions. (b) Travel vectors

are computed using triangles of the GVD boundary complex. The directions of travel are

intuitive and separate the objects in a meaningful way.

Edwards et al. Page 29

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Edwards et al. Page 30

Table 1

Table of octree/GVD computation statistics and timings on datasets that are unmanageable using other

methods.

dataset objects object
Δs

(×103)

octree
depth

octree
cells

(×103)

octree
memory

(Mb)

GVD
(sec)

GVD
Δs

(×103)

Fig. 1b 3 7 8 54 3 0.9 83

Fig. 1c 4 15 12 146 9 3.9 232

Fig. 13 470 5 24 158 8 2.0 151

Fig. 14 448 4015 8 2716 151 195 8100

Fig. 15 35 1500 8 496 70 19 2700

Columns are: objects - the number of objects in the dataset; object Δs - the number of line segments (2D) or triangles (3D) of all objects in the
dataset; octree depth - required octree depth in order to resolve objects; octree cells - total number of leaf octree cells; octree memory - amount of
memory used by the octree; GVD (sec) - seconds to perform all steps of GVD computation; GVD Δs - number of line segments or triangles in the
GVD.

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

	Abstract
	1. Introduction
	Main contributions

	2. Related work
	Generalized Voronoi diagrams
	Distance fields and octrees

	3. Build octree
	4. Distance transform
	5. Resolve ambiguities
	6. Compute GVD surface
	7. Results and applications
	7.1. Comparison to other methods
	7.2. Path planning
	7.3. Proximity queries
	7.4. Exploded diagrams

	8. Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Table 1

