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Abstract

We present an algorithm to compute an approximation of the generalized Voronoi diagram (GVD) 

on arbitrary collections of 2D or 3D geometric objects. In particular, we focus on datasets with 

closely spaced objects; GVD approximation is expensive and sometimes intractable on these 

datasets using previous algorithms. With our approach, the GVD can be computed using 

commodity hardware even on datasets with many, extremely tightly packed objects. Our approach 

is to subdivide the space with an octree that is represented with an adjacency structure. We then 

use a novel adaptive distance transform to compute the distance function on octree vertices. The 

computed distance field is sampled more densely in areas of close object spacing, enabling robust 

and parallelizable GVD surface generation. We demonstrate our method on a variety of data and 

show example applications of the GVD in 2D and 3D.

1. Introduction

The generalized Voronoi diagram (GVD) is an important structure that divides space into a 

complex of generalized Voronoi cells (GVCs) around objects. Similar to the ordinary 

Voronoi diagram, each GVC contains exactly one object, or site, and every point in the GVC 

is closer to its contained object than to any other object. The generalized Voronoi diagram is 

the boundary of the cell complex, and thus every point on the GVD is equidistant from two 

or more closest objects. Applications of the GVD range from motion path planning to GIS 

analysis to mosaicking.

Ordinary Voronoi diagrams have been studied extensively and efficient algorithms exist to 

compute them, but the GVD is difficult to compute analytically in general [BWY06, 

HIKL*99] and so the majority of approaches compute an approximation. Whereas most 

algorithms are efficient and robust on certain datasets, all algorithms to our knowledge 

require inordinate amounts of memory on datasets where objects are very closely spaced 

relative to the size of the domain. The failures occur because the space is uniformly gridded. 
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In such approaches, voxel size must be small enough to resolve object spacings, and if two 

objects are very close to each other the number of voxels can become prohibitively large.

We present an algorithm to compute a GVD approximation on arbitrary datasets, including 

those with closely spaced objects. The approach applies a distance transform over an octree 

representation of the objects. Our octree, its associated data structure, and our distance 

transform are novel and optimized to GVD approximation. For the remainder of the paper, 

“GVD” will refer to the approximated Generalized Voronoi Diagram.

This paper demonstrates GVD computation on data beyond the computational abilities of 

previous algorithms, unlocking interesting and important applications. Our approach allows 

GVD-based proximity queries and other applications using a larger class of meaningful 

datasets.

Main contributions

The three primary technical contributions described in the paper are as follows.

1. Most octree decompositions of objects resolve for object feature retention, 

but ours resolves only for object-object separation, which makes our 

subdivision computation largely independent of object complexity. 

Further, our octree data structure optimizes for octree vertex neighbor 

finding by storing cell vertices in an adjacency list rather than storing cells 

hierarchically.

2. Our distance transform is computed after the octree is built and uses a 

scheme that requires O(N logN +M) distance computations where N is the 

number of octree leaf cells and M is a measure of object complexity (e.g., 

number of polyhedron facets). Distances are computed on octree vertices 

with a conjectured error bound.

3. We trace out the GVD over the octree distance field using an efficient and 

parallelizable O(N) algorithm. The GVD is guaranteed to separate each 

object into its own generalized Voronoi cell, i.e., any path from a point p 
on object Si to a point q on object Sj must intersect the GVD, a guarantee 

that is not usually made by uniformly gridded methods.

We demonstrate various applications of the GVD in two and three dimensions, including 

motion path planning, proximity queries, and exploded diagrams.

Our GVD algorithm has four main steps: 1) build the octree over the set of objects; 2) 

compute distances on octree vertices using a wavefront expansion; 3) resolve ambiguous 

cells through further subdivision; and 4) compute the GVD surface by finding octree edges 

with differing end labels. After a discussion of related work, we discuss each step in detail 

and present applications.
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2. Related work

Related work falls into two categories: algorithms that compute the GVD and algorithms 

that compute distance fields, many of which are adaptive.

Generalized Voronoi diagrams

A theoretical framework for generalized Voronoi diagrams can be found in Boissonnat et al. 

[BWY06]. Ordinary Voronoi diagrams are well studied and efficient algorithms exist that 

compute them exactly [DBCVK08], but exact algorithms for the generalized Voronoi 

diagram are limited to a small set of special cases [Lee82, Kar04]. In an early work, 

Lavender et al. [LBD*92] define and compute GVDs over a set of solid models using an 

octree. Etzion and Rappoport [ER02] represent the GVD bisector symbolically for lazy 

evaluation, but are limited to sites that are polyhedra. Boada et al. [BCS02, BCMAS08] use 

an adaptive approach to GVD computation, but their algorithm is restricted to GVDs with 

connected regions and is inefficient for polyhedral objects with many facets. Two other 

works are adaptive [TT97,VO98] but are computationally expensive and are restricted to 

convex sites.

In recent years Voronoi diagram algorithms that take advantage of fast graphics hardware 

have become more common [CTMT10, FG06, HT05,RT07,SGGM06,SGG*06, HIKL*99, 

WLXZ08]. These algorithms are efficient and generalize well to the GVD, but most are 

limited to a subset of site types. More importantly, all of them use uniform grids and require 

an extraordinary number of voxels to resolve closely spaced objects (for example, Figs. 1c 

and 13 would require 236 and 248 voxels, respectively). To our knowledge, ours is the first 

fully adaptive algorithm that computes the generalized Voronoi diagram for arbitrary 

datasets.

Distance fields and octrees

The GVD is a subset of the locus of distance field critical points, a property that we take 

advantage of. In that light, the GVD could be a post-processing step to any method that 

computes a distance field. Distance transforms compute a distance field, but most are 

uniformly gridded [JBS06] and are thus no more suitable than GVD algorithms that use the 

GPU.

Two seminal works adaptively compute the Adaptive Distance Field (ADF) on octree 

vertices. Strain [Str99] fully resolves the octree everywhere on the object surface, and 

Frisken et al. [FPRJ00] resolve the octree fully only in areas of small local feature size. Both 

approaches are designed to retain features of a single object rather than resolving between 

multiple objects, as is required for GVD computation. Qu et al. [QZS*04] implement an 

energy-minimizing distance field algorithm that preserves features at the expense of 

efficiency. Many recent works on fast octree construction using the GPU are limited to point 

sites [BGPZ12, Kar12, ZGHG11]. Most octree approaches that support surfaces [BLD13, 

CNLE09, LK11, LH07] are designed for efficient rendering, and actual construction of the 

octree is implemented on the CPU.
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Two works [BC08, PLKK10] implement the ADF using GPU parallelism to compute the 

distance value at sample points, but building the octree itself is done sequentially. Yin et al. 

[YLW11] compute the distance field entirely on the GPU using a bottom-up approach by 

initially subdividing into a complete octree, resulting in memory usage that is no better than 

using a uniform grid. A method by Kim and Liu [KL14] computes the octree and a BVH 

entirely on the GPU. However, octree construction is performed on barycenters of triangles, 

and so a leaf octree cell can have an arbitrary number of triangle intersections as long as it 

contains no more than one triangle’s barycenter. We have found no GPU octree construction 

method that can resolve between objects.

3. Build octree

Our algorithm works in both 2D and 3D. Lacking a dimension-independent term, we use 

“octree” as a general term to refer to both quadtrees and octrees.

We construct the octree over a set of objects S = {Si} as a pre-processing step to computing 

a distance field. Whereas other methods construct the octree and distance field at the same 

time [FPRJ00,Str99], our decoupling allows us to optimize our octree construction 

implementation by temporarily converting polyhedra to integer-based representations, and 

using entirely integer arithmetic during octree construction.

Our octree data structure stores octree vertex adjacencies rather than an explicit cell 

hierarchy. (In this paper, “vertex” will always refer to an octree vertex.) Each vertex 

structure contains an object label, a closest point on an object, and references to its 

neighbors. We initialize the system with a single octree cell, represented by 2D vertices, 

where D is the number of dimensions. We use our subdivision predicate 

SHOULD_SUBDIVIDE(c), explained below, to determine whether to subdivide c. To subdivide 

cell c, we first create 3D – 2D new vertices (in 3D, one vertex for each of the 12 edges, one 

for each of the 6 faces, and one for the center). We then assign vertex neighbors 

appropriately (see Figures 2a and 2b). After intersecting new subcells with objects that 

intersect c, we call SHOULD_SUBDIVIDE on each subcell and recursively subdivide if necessary.

Our adjacency structure is amenable to our most important operations, which are to find an 

edge neighbor for the SHOULD_SUBDIVIDE predicate, and finding visible vertices for the 

wavefront propagation. Finding an edge neighbor is O(1) with our octree representation. 

Gargantini’s [Gar82] data structure has logarithmic neighbor finding, and Frisken and 

Perry’s [FP02], which has fast neighbor finding like ours, requires significant extra storage. 

Computational complexity of finding visible vertices is asymptotically equal to the number 

of visible vertices and is discussed in Section 4. Our nonhierarchical representation is not 

suitable for general purposes, however, because the point location operation is O(N). If the 

need for point location arises, then our data structure can be converted to a traditional 

hierarchical representation in O(N logN) time.

Previous algorithms ensure that object features are resolved well by subdividing all 

nonempty cells up to a maximum level. More sophisticated feature resolution predicates 

have also been used (e.g., the bilinear interpolation test of Frisken et al. [FPRJ00]). Our 
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subdivision predicate is different in that we are primarily interested in resolving between 

objects. Define a face-neighbor of cell c to be a cell that shared a face with c. The predicate 

SHOULD_SUBDIVIDE(c) works as follows. Given a cell c, subdivide if (1) the cell intersects more 

than one object, or (2) an face-neighbor of c intersects with a different object. Test (1) 

ensures that every leaf cell after construction will intersect at most one object, and test (2) 

ensures that objects will be separated from each other by at least one empty buffer cell. One 

advantage of SHOULD_SUBDIVIDE(c) is that octree complexity becomes independent of object 

complexity. As shown in Figure 3a, even object self-intersections or nonmanifold points 

have no effect on octree depth, whereas the octree would be fully subdivided in those areas 

if using a conventional subdivision predicate.

4. Distance transform

Our distance transform is inspired by that of Breen et al. [BMW98], with the fundamental 

difference being that we compute using an octree rather than a uniform grid. Each octree 

vertex has two properties – a label and a closest point. An octree vertex is empty if all 

incident cells are empty. Define the euclidean distance between two points dist(a, b) to be 

infinity if either a or b is null and let {Si} be the set of objects intersecting octree cells 

incident to a vertex v. The two main steps of distance computation are initialization of 

nonempty vertices and wavefront expansion. Algorithm COMPUTE_DISTANCES comprises both 

steps.

Algorithm COMPUTE_DISTANCES initializes the point assignments of nonempty vertices 

(Figures 4b and 4d). All closest points point[v] (ties are broken arbitrarily) are stored as an 

array and each vertex maintains an index into the array, taking advantage of the fact that 

roughly half of computed closest points are shared among multiple vertices. The closest 

points are computed exactly: if α(v) is the distance from v to its closest neighbor, then only 

surface points in cells within  of the vertex need be searched, making the loop an 

O(N + M) operation where N is the number of octree leaf cells and M is a measure of object 

complexity (e.g., number of triangles). All octree cells are then added to the priority queue, 

an O(N) or O(N logN) operation, depending on the type of heap used for the queue. It then 

iterates over vertex priority queue V in multiple expanding wavefronts, which are similar in 

behavior to Dijkstra shortest-cost path wavefronts in that the priority queue is sorted on 

distance to the nearest object. The vertex v at the front of the queue is the closest vertex to 

an object among all vertices in the queue, modulo an error term discussed below. The 

assigned closest point p is pushed to all vertices that are visible from v. A vertex w is visible 

from v if w is a neighbor of v or if the intersection of the line segment  with the edges of 

the octree is empty (Figure 2c). Visible vertices are found efficiently using our vertex 

adjacency data structure. In 2D, a simple walk around the cell is sufficient. For example, in 

Figure 2c, a walk is done beginning from vertex v in the positive x direction. At each vertex, 

the walk turns left if possible, otherwise it continues forward. Once the walk returns to v, the 

visible vertices in the upper-right cell are found, and walks are performed for the other three 

cells. The complexity of the walk is O(m), where m is the number of visible vertices.
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The number of vertices that are visible from v is dependent on gradation. Let c1 and c2 be 

adjacent cells, and let L(c) be the octree level of cell c. Without loss of generality, let L(c1) > 

L(c2). Gradation between adjacent cells c1 and c2 is defined to be L(c1) – L(c2). Let g be the 

maximum gradation of any two adjacent cells. Then the number of visible vertices is 

O(2g(D−1)). To see this, consider the 2D vertex in Figure 2c. Let the upper-right cell in the 

figure be cell c. v has two “opposite” edges through cell c, where an opposite edge is one 

that is not incident to v. v has four incident cells, for a total of eight opposite edges. Let each 

incident cell be maximally graded, such that each opposite edge is incident to 2g cells. Then 

there are (8)(2g(D−1)) = O(2g) visible vertices. Derivation in the 3D case is similar. If the 

number of visible vertices becomes a significant factor in practice, then the octree can be 

constructed with bounded gradation (similar to the approach of Strain [Str99]), thereby 

bounding the number of visible vertices with a constant.

Our algorithm approximates distances on empty vertices, and our empirical tests suggest an 

error bound of , where e(v) is the error at a vertex v and δ(v) is the distance from v 

to the nearest point on S, implying that the distance transform is a -approximation. The 

error occurs because only closest points assigned in the wavefront initialization are 

propagated in the wavefront expansion. Distance transform time complexity is O(N + M) for 

the initialization step, ≤ O(N logN) for the priority queue initialization, and O(2g(D−1)N 
logN) for the wavefront expansion, where the reordering of a in V provides the logN factor. 

Thus, total time complexity of the transform is O(2g(D−1)N logN + M), or O(N logN + M) if 

gradation is bounded by a constant.
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Although not designed specifically to do so, our distance-assigned octree vertices can be 

used to compute distance values of arbitrary points in the domain. Given a point p and its 

containing leaf octree cell c, choose the closest point among the closest points of vertices on 

c. That is, point[p] = arg minpoint[vϵc] dist(p, point[v]). The assigned distance is |point[p] − 

p|. See Figure 3c for a distance field example.

5. Resolve ambiguities

Our distance function is built over a discretized space that can potentially yield ambiguities 

in the topology of the GVD. We call an octree cell ambiguous if the topology of the GVD in 

the cell is ambiguous. We test for cell ambiguity as follows. Let G be an embedded graph 

with vertices and edges corresponding to octree vertices and edges, respectively. Let Gc be 

the intersection of G with octree cell c. See Figure 5. Collapse all edges in Gc that have 

endpoints with identical labels. Call the new graph . Cell c is unambiguous if  is a (≤ 

D)-dimensional simplex.

Proof Let M = {Mi} be the set of generalized Voronoi cells (GVCs) that intersect with c. 

Because every vertex in a simplex shares an edge with every other vertex, the topology of 

the GVD in c is given by Mi ∩Mj ∩c ≠ ∅.

Ambiguous cells are subdivided recursively until the ambiguity is resolved or a threshold 

subdivision level is reached (Figure 6). If the threshold is reached then the topology is 

decided as described in Section 6.

6. Compute GVD surface

With the distance function in place we compute the generalized Voronoi diagram, or the set 

of all points that have at least two closest points with differing labels, using an algorithm 

inspired by marching cubes [LC87]. We store the GVD as sets of simplices (i.e. line 

segments in 2D; triangles in 3D), one set per object, representing the boundary of the 

generalized Voronoi cell (GVC) for that object. Each simplex is stored twice, once for each 

GVC it borders, oriented toward the inside of the GVC.

We first compute which edges of the octree intersect the GVD by considering each octree 

edge e with endpoint vertices (e0, e1). Let ℒ(v) be the label of octree vertex v. If ℒ(e0) ≠ 

ℒ(e1), then e intersects the GVD. Let a = point[e0] and b = point[e1]. Assume without loss 

of generality that e is aligned with the x-axis. Cases of alignment with y and z are similar. 

We seek point p = (x, y, z) ϵ e such that dist (a, p) = dist (b, p) (see Figure 7). In our 

euclidean setting this reduces to

(1)

Once all edge bisectors for a cell are calculated, we fit simplices (Figure 8). Suppose 

bisector pi lies on edge ei. We connect bisector points on a 2D face f by creating line 

segments between each bisector pi ϵ f and the centroid of all face bisectors rf = Σ pi/|{pi}|. If 
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the 2D cell is unambiguous there will be at most three bisectors. In the case that the cell is 

subdivided to the threshold level without resolving ambiguity then the centroid rf becomes 

an interface to four or more generalized Voronoi cells. Other approaches to ambiguity 

resolution include [Nat94,NH91,SB07]. We label each line segment by the labels of the 

vertices adjacent to pi, that is, ℒ(pi) = αβ where  and . If we’re 

computing a 2D GVD then we’re done.

In 3D, given a cell c, we first find the line segment complex of each 2D face c using the 2D 

algorithm and union all segments into a set Cc. We then form triangles from each segment in 

Cc to the 3D centroid rc of the bisectors (Figure 8b). Triangle ti has vertices (pi, rf, rc). We 

maintain a set Tα of triangles assigned to the GVC of the object with label α. To determine 

the orientation we use the normal nti and the vertex  adjacent to pi with label α. If 

, then we invert ti before adding it to Tα, and similarly with Tβ. The 

resulting GVD is water tight and each GVC is orientable.

The GVD surfacing algorithm is parallelizable, as the simplices in each octree cell are 

computed independently of all other octree cells.

7. Results and applications

Our implementation of the algorithm supports polygons and triangulated objects, and our 

wavefront initialization step is implemented on the GPU using OpenCL. All tests were run 

on a MacBook Pro laptop with a dual-core 2.9 GHz processor, 8 GB memory, and Intel HD 

4000 graphics card. Figure 10 shows our implementation of the GVD computation pipeline, 

and Figure 11 shows the computed GVD on a more challenging dataset. We compare our 

method with other work and then show examples in three application settings: path planning, 

proximity queries, and exploded diagrams.

7.1. Comparison to other methods

Our GVD computations use commodity hardware, even on the most challenging datasets. 

Uniformly gridded approaches [CTMT10,FG06,HT05,RT07,SGGM06,SGG*06,HIKL*99, 

WLXZ08, YLW11] require 2Dn voxels, where D is the dimension and n is the number of 

octree levels needed to resolve objects. Table 1 shows our results on datasets that would 

require prohibitive numbers of voxels using uniformly gridded methods.

In addition to datasets with closely spaced objects, our algorithm works on intersecting and 

embedded objects, non-manifold objects, and objects with multiple connected components 

(see Figures 3a, 3b, and 12), which are not supported by Boada et al. [BCMAS08].

We ran timing comparisons of our method with Laine’s algorithm [LK11], which is a sparse 

voxel octree (SVO) method [BLD13, BC08, CNLE09, LH07, Str99]. Laine’s algorithm (and 

other SVO methods) subdivide octree cells in areas of object complexity, whereas our 

algorithm subdivides in areas of inter-object proximity. In other words, previous methods 

model the objects, while our approach models the space between objects. Because the two 

methods compute different octrees, a direct timing comparison is not meaningful, so we 
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compared the number of seconds required for each megabyte of octree. From Figure 9 we 

see that the execution time of our algorithm is comparable to the state of the art SVO 

construction.

7.2. Path planning

Motion planning is an important application in robotics and other fields [CD88, Thr98, 

HICK*00, VMS11]. Roadmap methods of path finding [MS07, RP12] retract the set of 

feasible movements to a lower-dimensional space, often using the Generalized Voronoi 

Diagram as the retraction. Once the GVD is available, a variety of methods can be used for 

computation of the final path, from simple graph searches [HICK*00, MS07] to fast 

marching [GMAM06]. As noted by Foskey et al [FGLM01], a shortcoming of this approach 

is the difficulty of computing the GVD.

We have augmented our GVD algorithm with a simple path finding implementation that uses 

Dijkstra’s graph search algorithm in order to show that path planning is possible on difficult 

datasets. On simple datasets, our method is not competitive with uniform grid approaches 

[HICK*00,FGLM01,GMAM06], but our algorithm is robust on datasets with closely spaced 

objects, which would cause uniform grid approaches to fail. One such dataset is shown in 

Figure 13, where we computed the GVD for 470 2D objects with object spacings that vary 

widely. Computation took 2.0 seconds with the quadtree reaching level 24 and 140,680 cells 

(a uniform grid would require 248 pixels to resolve the closest object spacings). Our GVD 

algorithm could be coupled with a more sophisticated path search algorithm, such as Garrido 

et al [GMAM06], for improved paths.

7.3. Proximity queries

Proximity queries are used in collision detection, object overlap, and object separation 

distance queries [LM03], and a wealth of algorithms are available in the literature. One class 

of proximity query uses distance fields or the GVD [HIZLM01, GRLM03, TKH*05]. As in 

path planning, these approaches rely primarily on uniform grids, making distance field 

computation expensive or impossible on difficult datasets. Our algorithm may enable these 

types of distance queries on difficult datasets.

We have implemented a form of topological proximity query suitable for our application of 

neuronal modeling, where a frequent query is to identify neuron pairs that have high 

probability of forming a synaptic connection [MHS*10]. In Figure 14 we show a neuron of 

interest in red, which is difficult to see because of tight packing. Rather than using a typical 

proximity query, that of finding neurons within a threshold distance of the neuron of interest, 

we take a topological approach: find all neurons whose Generalized Voronoi Cells (GVCs) 

share a boundary with the GVC of the red neuron. By taking the dual of the GVD we can 

perform this query efficiently, giving us a fast and robust pre-filter to finding synaptic pairs. 

Beyond our neuronal modeling application, Figure 14 shows that this type of query may also 

find usefulness in visualization of occluded objects.
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7.4. Exploded diagrams

An effective way of visualizing multiple objects in proximity is to “explode” the objects 

away from each other in a meaningful way that retains some of the spatial coherence of the 

collection. Exploded diagrams are typically used in CAD applications, but their usefulness 

extends to other applications, such as molecular modeling. Virus molecules are composed of 

hundreds or thousands of atoms, often in symmetric structure that can be meaningfully 

segmented into constituent collections of atoms. Often many regions are occluded from 

view. Furthermore, molecules are often layered radially from the center, forming shells. In 

the case of radial layering, one need only translate objects radially away from the center to 

create an exploded diagram, but this approach is not effective if we wish to explode objects 

away from an anchor object that is not near the center. A naive approach to creating an 

exploded diagram is to choose a primary object C and move all objects along a vector 

derived from the object centroids. That is, given a object D, move D ← D+λ(𝓒(D) − 𝓒(C)) 

where 𝓒(C) is the centroid of C and λ is a speed constant. In many cases, the centroid of D 
lies in a very different direction relative to 𝓒(C) than where D should intuitively travel 

(Figure 15a).

Our approach is to utilize the GVD boundary complex to compute directions of travel for 

each object (Figure 15b). Let C be the anchor object and let K be the dual graph of the GVD 

as described in Section 7.3. Further, define TCD as the set of triangles adjacent to both 

GVCC and GVCD with normals oriented toward GVCD. 𝓒C(i) is the set of objects in the i-
ring of C and ACD = ΣtϵTCD At is the summed areas of triangles in TCD. Using graph K, if D 
ϵ 𝓒C(1) then D ← D + 𝓒1(D) where

Since the(i > 1)-ring neighbors of C have no direct interface to C, they are moved in an 

average direction of the (i − 1)-ring neighbors that are adjacent to D. That is, D←D+𝓒i(D) 

where

8. Conclusions

We have presented and demonstrated the effectiveness of a novel generalized Voronoi 

diagram algorithm, which includes an octree subdivision algorithm, octree data structure, 

distance transform, and GVD surfacing algorithm. We have also shown, in addition to the 

popular motion path planning, important applications of the GVD. Our method opens the 

door to investigation of other applications that might benefit from a GVD algorithm 

specifically tailored to collections of objects that are closely spaced.
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Our algorithm is general; our implementation supports polygons and triangulated objects, 

but the algorithm supports curved objects equally as well. Our approach is particularly suited 

to objects for which a point-object distance computation is expensive since initialization of 

the wavefront is the only step that requires the point-object distance operation.

With the proven usefulness of the ordinary Voronoi diagram and the growing uses of the 

generalized Voronoi diagram, the algorithm presented in this paper fills a need for a practical 

GVD algorithm that supports previously unmanageable datasets – those with tightly packed 

objects. Interestingly, it is often applications using these very datasets that are in greatest 

need of the GVD. For example, traditional path-planning is straightforward unless the 

objects are tightly packed; finding regions of close tolerance is unnecessary unless close 

tolerances, in fact, exist. These applications and others can now be more fully explored with 

the availability of our adaptive GVD algorithm.
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Figure 1. 
Two example applications of the approximated generalized Voronoi diagram (GVD) 

computed by our novel, adaptive algorithm. Previous GVD methods require a gridded space 

of 224 (gears dataset) and 236 (knives dataset) voxels to resolve the closely spaced objects. 

(a) Two gears with regions of very tight spacing. (b) The GVD of the gears model. The 

surface is colored red in areas of very close tolerance. (c) Three butter knives in a wood 

block. To animate removal of the knives without intersecting the block requires extreme care 

because of close mesh spacing. (d) Intersection-free motion is guaranteed by computing 

motion vectors based on the GVD and allowing motion only within a Voronoi cell.
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Figure 2. 
Quadtree/octree representation. (a) In two dimensions, a quadtree cell is defined by four 

vertices. Each vertex maintains references to its neighbors with the nbrs array. Two 

intersecting objects are shown in red and yellow. (b) When a quadtree/octree cell is 

subdivided, vertices are added and each vertex’s neighbor references are updated. (c) v is 

shaded and vertices that are visible from v are circled. A vertex w is visible from v if w is a 

neighbor of v or if the line segment  has no intersections with any octree cell boundaries.

Edwards et al. Page 16

Comput Graph Forum. Author manuscript; available in PMC 2016 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Quadtree, GVD, and distance field of intersecting, embedded, and nonmanifold 2D objects. 

(a) The quadtree is subdivided only far enough so that there is a one cell buffer between 

objects and so that ambiguous cells are resolved. Object self-intersections and nonmanifold 

points have no effect on quadtreetree depth (solid arrow), but intersections between objects 

are subdivided to the maximum level (dotted arrow). (b) Computed GVD. (c) The distance 

field computed from the quadtree vertices.
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Figure 4. 
Wavefront expansion. (a) Portions of the surfaces of two objects. Assign every nonempty 

vertex an exact closest point and add the vertex to the wavefront priority queue. (b) Pop the 

top priority vertex (dotted circle) and push its closest point to its neighbors (circle). (c) Next 

iteration. (d) Initialized wavefront (as in (b)). (e) Expanded wavefront. Green lines connect 

quadtree vertices to computed closest points. (f) The GVD is shown in red.
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Figure 5. 
Ambiguous cells are detected by collapsing edges with identically labeled vertices. (a) Cell 

x is ambiguous because  is not a simplex. (b)-(c) Two possible GVD topologies in cell x 

are shown. (d) Cell y is unambigous. (e) Simplex  induces a unique GVD topology.
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Figure 6. 
The effect of ambiguous cells and how they are removed. (a) The cells indicated by the 

arrows are ambiguous, causing the GVD to be topologically incorrect. (b) The ambiguities 

are resolved by recursive subdivision.
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Figure 7. 
Computing the intersection of the GVD with quadtree edge e. a and b are closest points on 

objects, and p is the intersection of edge e with the GVD.
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Figure 8. 
GVD surface generation. (a) The 2D algorithm creates GVD edges from bisectors {pi} to the 

centroid. Each new GVD edge is given the two labels of the incident octree edge. (b) After 

finding the 2D GVD on its faces, the 3D cell fits triangles from 2D edges to the centroid.
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Figure 9. 
Comparison of our octree building to the sparse voxel octree method of Laine and Karras 

[LK11]. We used four datasets, each at three octree levels and compared seconds per Mb of 

octree memory used. Laine’s algorithm was run on a Windows 7 desktop with 3.5 GHz 

processor, 16 GB memory, and NVIDIA GeForce GTX 660 graphics card.
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Figure 10. 
The method pipeline in 3D. (a) Four bunnies placed in proximity. (b) The octree with 

appropriately-labeled vertices. (c) The constructed GVD.
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Figure 11. 
A pipes dataset with 392 objects and 207K object triangles. The octree was subdivided to 

level 10 for a total of 1.8m octree cells. The GVD separates even the nuts from the bolts 

(upper right).
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Figure 12. 
Heart defibrillation dataset showing support for multiple connected components. (a) The 

blue and purple objects have multiple components. (b) The GVD naturally handles multiple 

components of an object. Portions of the GVD are clipped away for visualization.
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Figure 13. 
Path planning in 2D. We built a quadtree over hundreds of objects ranging in size and 

spacing over orders of magnitude. The quadtree reached level 24 before the closest spacings 

were resolved. The shortest-cost path between two points is shown in blue. The rightmost 

figure shows the quadtree in gray and GVD boundary complex in red at 80,000x 

magnification.
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Figure 14. 
GVD-based proximity queries on neuron data give a way to discover which neurons 

potentially synapse with another neuron. (a) In a dense collection of 450 neurons, the neuron 

of interest is colored red. (b) Neurons in the 1-ring of the GVD dual graph are colored 

brown.
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Figure 15. 
Explosion diagrams of the rice dwarf virus. (a) The vectors that objects travel along are 

computed using object centroids. Objects travel in nonintuitive directions. (b) Travel vectors 

are computed using triangles of the GVD boundary complex. The directions of travel are 

intuitive and separate the objects in a meaningful way.
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Table 1

Table of octree/GVD computation statistics and timings on datasets that are unmanageable using other 

methods.

dataset objects object
Δs

(×103)

octree
depth

octree
cells

(×103)

octree
memory

(Mb)

GVD
(sec)

GVD
Δs

(×103)

Fig. 1b 3 7 8 54 3 0.9 83

Fig. 1c 4 15 12 146 9 3.9 232

Fig. 13 470 5 24 158 8 2.0 151

Fig. 14 448 4015 8 2716 151 195 8100

Fig. 15 35 1500 8 496 70 19 2700

Columns are: objects - the number of objects in the dataset; object Δs - the number of line segments (2D) or triangles (3D) of all objects in the 
dataset; octree depth - required octree depth in order to resolve objects; octree cells - total number of leaf octree cells; octree memory - amount of 
memory used by the octree; GVD (sec) - seconds to perform all steps of GVD computation; GVD Δs - number of line segments or triangles in the 
GVD.
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