

Edinburgh Research Explorer

Few-shot Learning of Homogeneous Human Locomotion Styles

Citation for published version:
Mason, I, Starke, W, Zhang, H, Bilen, H & Komura, T 2018, 'Few-shot Learning of Homogeneous Human
Locomotion Styles', Computer Graphics Forum, vol. 37, no. 7, pp. 143-153.
https://doi.org/10.1111/cgf.13555

Digital Object Identifier (DOI):
10.1111/cgf.13555

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Computer Graphics Forum

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Nov. 2024

https://doi.org/10.1111/cgf.13555
https://doi.org/10.1111/cgf.13555
https://www.research.ed.ac.uk/en/publications/c2e6a673-7bc6-445e-87c2-ea2265add09a

Few-shot Learning of Homogeneous Human Locomotion Styles

I. Mason, S. Starke, H. Zhang, H. Bilen and T. Komura

University of Edinburgh

Abstract
Using neural networks for learning motion controllers from motion capture data is becoming popular due to the natural and
smooth motions they can produce, the wide range of movements they can learn and their compactness once they are trained.
Despite these advantages, these systems require large amounts of motion capture data for each new character or style of
motion to be generated, and systems have to undergo lengthy retraining, and often reengineering, to get acceptable results.
This can make the use of these systems impractical for animators and designers and solving this issue is an open and rather
unexplored problem in computer graphics. In this paper we propose a transfer learning approach for adapting a learned
neural network to characters that move in different styles from those on which the original neural network is trained. Given
a pretrained character controller in the form of a Phase-Functioned Neural Network for locomotion, our system can quickly
adapt the locomotion to novel styles using only a short motion clip as an example. We introduce a canonical polyadic tensor
decomposition to reduce the amount of parameters required for learning from each new style, which both reduces the memory
burden at runtime and facilitates learning from smaller quantities of data. We show that our system is suitable for learning
stylized motions with few clips of motion data and synthesizing smooth motions in real-time.

CCS Concepts
•Computing methodologies → Animation; Neural networks; Motion capture;

1. Introduction

Training neural networks from motion capture data is attracting
researchers and engineers in computer graphics, computer anima-
tion and robotics due to their significant merits and proven ability
to generate high quality animations from a high level user input
such as a keyboard or gamepad. Such smooth and natural motions,
that follow user instructions while also adapting to the terrain ge-
ometry, could be useful not only for character animation but also
for robotics purposes. Additionally, these systems do not require
complex data preprocessing such as motion segmentation, align-
ment and classification, or usage of complex data structures such
as KD-trees. Furthermore, given a large amount of motion capture
data, a wide range of movements can be learned while maintain-
ing high runtime performance, with some systems being able to
produce a wide variation of movements with super-real-time fram-
erates. These advantages make such systems attractive especially
for applications in computer games and virtual reality systems.

However, one of the main obstacles in the adoption and use of
the systems is the requirement to collect a large amount of mo-
tion capture with extensive coverage of the desired motions to be
produced. This process is both expensive and time consuming as a
large motion capture database must be designed, collected and pro-
cessed for each new character, new type of motion or new style of
motion we wish to create.

In this paper we consider learning new styles of motion from
limited data as a few-shot learning task and propose a new ap-
proach to reduce the required quantity of data by leveraging al-
ready trained models and transferring the learned information to
new styles of motion for real-time character controllers. Our strat-
egy is to first train a Phase-Functioned Neural Network (PFNN)
using a small number of styles for which we have a large amount
of motion capture data. From these few styles we aim to learn a set
of style agnostic parameters that capture general locomotion fea-
tures and a set of style specific parameters that can stylise the out-
put motion. For this purpose, inspired by Rebuffi et al. [RBV17],
we introduce an architecture that can learn different styles of char-
acter locomotion utilising residual adapters, whose complexity can
be adjusted according to the amount of data that is available for
a new style. By performing a tensor decomposition to learn phase
specific and phase independent parameters we are able to keep the
number of style specific parameters small making it easier to learn
new styles for which only limited data is available. We additionally
use the style agnostic parameters to generalise this limited data to
new movement speeds and turning directions. We focus primarily
on homogeneous style modelling, that is given a very short clip of
stylised walking to generalise this walking animation to new speeds
and directions. We discuss some of the challenges in heterogeneous

c© 2018 The Author(s)

Mason et al. / Few-shot Learning of Homogeneous Human Locomotion Styles

Figure 1: Modelling multiple styles from limited data. From left to right the styles shown are: joy, on toes crouched, roadrunner, wild arms
& zombie.

modelling, that is transferring the style of the limited data to unseen
locomotion types, such as learning to run from a given walking clip.

We show that our system can learn to adapt the neural con-
troller to a wide range of styles from the CMU motion capture
database [GS01] using only very short motion clips as training data.
We examine different architectures and show that our approach is
better than classic transfer learning methods such as fine tuning.
We evaluate the system against another neural network based mo-
tion stylization approach and discuss the merits and shortcomings
of our method. The contributions of this paper can be summarized
as follows:

• Provide a method for transfer learning of human locomotion that,
after initial training, significantly reduces the quantity of data
needed to train generative models in this domain for similar types
of locomotion.
• The method is lifelong, meaning new styles can be learned

quickly and easily, with only small additional memory con-
straints due to a tensor decomposition specific to the PFNN.
• A factorisation scheme where the number of parameters for styli-

sation are adjustable according to the amount of data available.
• Demonstrate the effectiveness of residual adapter domain adap-

tation in a new domain.

2. Related work

2.1. Modelling human locomotion

Generating human motion is a well studied problem in graph-
ics and vision and many different techniques have been applied.
Whilst older methods made use of hand crafted blending of ra-
dial basis functions [RCB98] or interpolation using Gaussian Pro-
cesses [MK05], more recently success has been found using mod-
ern data driven methods. One of the first methods to show suc-
cess was the encoder-recurrent-decoder method of Fragkiadaki et
al. [FLFM15] who made use of LSTM cells to successfully pre-
dict future motions from given input frames. More recently Li et
al. [LZX∗18] showed an ability to generate much longer clips of
motion by adding in instances of their network’s predicted out-
put as well as the ground truth output during training. Bütepage et

al. [BBKK17] compare several architectures for human motion pre-
diction, whilst Holden et al. [HSK16] use a convolutional autoen-
coder to learn a valid manifold of human motion. There have also
been successes in using reinforcement learning in physics based
systems, [PBYVDP17], [MTS∗17].

Most relevant to this work is the Phase-Functioned Neural Net-
work of Holden et al. [HKS17], which reduces blurriness caused by
standard recurrent architectures by aligning the phase of a charac-
ter’s locomotion to generate realistic animations in real time from
user input.

2.2. Few-shot learning

Few-shot learning is a common problem in machine learning; most
modern systems require very large amounts of training data to work
as intended, however, in many real world applications such data is
not available. Few-shot and one-shot learning tackle the problem
of how these systems can be made to learn effectively with very
limited data. Much of the work in this area has focussed on im-
ages [VBL∗16], [BHV∗16], [Koc15], but the key idea in most few-
shot learning is to learn underlying relevant features for the task
at hand through some form of pretraining on a large dataset and
to construct different ways of leveraging these features to improve
performance when trained on a small amount of data without over-
fitting. These methods are often very similar to transfer learning
methods [Car95] which also rely on learning features from one task
and transferring the relevant shared information to improve perfor-
mance on a similar task, although there is no restriction on avail-
able data in this case. There has also been interesting work done on
some of the fundamental assumptions used for transfer learning in
vision [KSL18], [YCBL14].

2.3. Style transfer and domain adaptation

Style transfer is the task of transferring the style of one piece of data
onto the content of another, domain adaptation is concerned with
generalising models to work in new domains. In practice however,
domain adaptation has often been demonstrated using domains that

c© 2018 The Author(s)

Mason et al. / Few-shot Learning of Homogeneous Human Locomotion Styles

consist of items in different styles, e.g. paintings to photos. As the
difference between new domains and new styles is often very subtle
or non-existent these two areas overlap and are often closely linked.

Early work for style transfer in human motion relied on corre-
spondences between motion clips [HPP05] or made use of physics
based optimisations [LHP05]. More recently machine learning has
been a popular way to tackle this problem, one of the first works for
modelling human motion styles in this area is [TH09] where Tay-
lor et al. used factored conditional restricted Boltzmann machines,
conditioned on a style label, to model motion styles. This method
however, is a largely theoretical work not designed for graphics ap-
plications and lacks the high quality renderings of later works. On
the other hand, much of the recent work in style transfer for ani-
mation has focussed on transferring the style of one animation clip
(e.g. old, angry) onto the content of another (e.g. running, punch-
ing, specific directions of locomotion). Xia et al. [XWCH15] use
a KNN search of a database of motion to construct a mixture of
regression models for transferring style between motion clips and
Yumer et al. [YM16] show transfer between heterogeneous actions
by optimising in spectral space to match style and content parts
of Fourier transforms of reference motions. Holden et al. [HSK16]
create stylised motions by optimising the hidden units of a content
motion in latent space to match the Gram matrix of a given stylised
motion. Later Holden et al. [HHKK17] then increased the speed
of this process by learning a feed-forward network for the same
task; this method is based on image style transfer from Gatys et
al. [GEB15] and Johnson et al. [JAFF16].

For character controllers, such methods are not particularly well
suited as they require the entire content of a motion to be defined
before being stylised and, additionally, require a database of ref-
erence stylised motion clips at run time. Instead, in this work, we
view the problem of motion stylisation as a form of domain adap-
tation where each style is viewed as a separate domain and we at-
tempt to learn how to transfer knowledge about one domain to an-
other. This is much better suited to character controllers as there is
no need to define the content ahead of time but instead, when given
the same input, we learn to adapt it to different domains (styles) in
real time. Our aim is subtly different from the style transfer task
in that we do not try to explicitly map a certain style onto certain
content, but instead aim to learn parameters that allow us to model
style whilst simultaneously generating the animation.

Whilst ideas such as whitening and colouring [LZX∗18], and
transferring feature summary statistics [HB17] have been applied to
style transfer for images, the most popular methods learn mappings
between different image domains by making use of some form of
cycle consistency loss [ZPIE17] where an image from one domain
is translated to another and then back to its original domain so that
the final outputted image is close to, or from the same distribution
as, the original input. This type of loss has also been adapted by
Huang et al. [HLBK18] and Zhu et al. [ZZP∗17] to translate one in-
put image to many possible output images in the target domain and
Choi et al. [CCK∗18] investigate transferring between multiple do-
mains with a single model. Whilst cycle consistency has addition-
ally been used for motion retargeting by Villegas et al. [VYCL18],
generally these methods do not easily adapt to time series data.
Since the output of a time series model is one or more time steps

further on than the input, by the time an input has been mapped into
another domain and back to its original domain it is much harder
to compare it with the original input. Furthermore using GANs for
time series data is still very much an open problem.

Mor et al. [MWPT18] present an autoregressive model for trans-
fer between multiple styles of music. They create an autoencoder
model with a shared encoder and separate decoders for each of the
styles they work with. Our work is somewhat similar to this but as
we are interested in few-shot learning and adding a whole decoder
or layer for each style adds a large number of parameters, we do
not use an autoencoder model and attempt to model each style with
a significantly reduced number of parameters.

In image classification, by adding residual adapters (Section 3.2)
to convolutional image classifiers Rebuffi et al. [RBV17] demon-
strated domain transfer capabilities between 10 different classifica-
tion tasks. Rebuffi et al. [RBV17] also showed how, by adding only
a small number of new parameters, this method could be used for
lifelong learning, that is learning new domains sequentially without
decreasing performance on older domains. This method of domain
adaptation forms the core of our method for adapting to new motion
styles.

3. Background techniques

In this section we give an overview of two key components of our
system, first the Phase-Functioned Neural Network (PFNN) from
Holden et al. [HKS17] and then residual adapters from Rebuffi et
al. [RBV17], [RBV18].

3.1. Phase-Functioned Neural Network

The PFNN [HKS17] is a state of the art architecture for real-time
autoregressive modelling of human locomotion animations. It is
a simple 3 layer feed forward neural network, where the weights
(W0,W1,W2) of the layers are a function of the phase, p (defined in
Section 5), of the motion.

Figure 2: The Phase-Functioned Neural Network, a feedforward
network whose weights are a function of the phase of locomotion.

The function of the phase that determines the weights could in
theory be any function, but for this work we keep the original func-
tion used by Holden et al. [HKS17], that is, a cubic Catmull-Rom
Spline. This is defined according to four different settings of the
neural network weights, termed control points {α1,α2,α3,α4} =
β, which are then smoothly blended together dependent on the
phase:

c© 2018 The Author(s)

Mason et al. / Few-shot Learning of Homogeneous Human Locomotion Styles

(1a)
W (p;β) = αk1

+ d(
1
2

αk2
− 1

2
αk0

)

+ d2(αk0
− 5

2
αk1

+ 2αk2
− 1

2
αk3

)

+ d3(
3
2

αk1
− 3

2
αk2

+
1
2

αk3
− 1

2
αk0

)

(1b)d =
4p
2π

(mod 1)

(1c)kn =

⌊
4p
2π

⌋
+ n− 1 (mod 4),

where W (p) = {W0(p),W1(p),W2(p)} is the weights of the neural
network for phase p.

3.2. Residual adapters

Originally presented for multi-domain image classification and dia-
grammed in Fig. 3, a parallel residual adapter [RBV17], [RBV18],
which is essentially a skip connection with a weight matrix, is de-
fined as

(2)y = f ∗ x + h1×1 ∗ x,

where x is input to a convolutional neural network layer, f is the
main (arbitrarily sized) filters in this layer, ∗ is the convolution op-
erator and h1×1 is a set of 1×1 filters. Rebuffi et al. [RBV18] learn
f to be a set of domain agnostic parameters and h1×1 to be domain
specific parameters.

The usage of residual adapters has several beneficial properties:
by using a 1× 1 filter bank the additional number of parameters
required for each new domain is kept small; as f is shared across
all domains, new domains can easily be sequentially added to the
model by training new residual adapters without decreasing perfor-
mance on old domains and, the effect of the residual adapter can
be easily controlled with well known regularisation techniques as
heavy regularisation reduces the adaptation strength.

In this work we adapt this method to the feed forward PFNN
architecture and make some necessary changes to improve perfor-
mance for human locomotion. For example, Rebuffi et al. [RBV18]
make use of batch normalisation [IS15] to ensure that the output
of the residual adapters are compatible with the original ResNet
layers [HZRS16]. However, as the PFNN does not utilise batch
normalisation and is relatively shallow, we do not use batch nor-
malisation in our system.

4. System overview

The architecture of our system is shown in Fig. 4. The system is
composed of a main Phase-Functioned Neural Network that mod-
els the style-independent components of the motions, and a set of
residual adapters that model the style-dependent components. The
weights of the residual adapters are decomposed into three tensors
by a canonical polyadic (CP) decomposition, which reduces the
number of parameters to learn for each new style, making few-shot
learning easier.

Figure 3: A basic parallel residual adapter. In the convolutional
architecture of Rebuffi et al. [RBV18] the output of this module is
y = f ∗ x+h1×1 ∗ x

For training, we initially train the PFNN and the residual
adapters using a rich set of motion capture data containing eight
representative styles (Section 5.1). We use short motion clips from
the CMU motion capture database for the few-shot scenario (Sec-
tion 5.2), where we only train the residual adapter weights.

5. Data capture and preprocessing

Here we describe the capture and preprocessing steps for our data.
We first describe a larger dataset used for training the main PFNN
and associated residual adapters. We then discuss the processing of
short motion clips used for few-shot learning of new styles.

5.1. Capturing a large style locomotion dataset

To learn the style-independent parameters of our system, we need
to train a PFNN, which requires the capturing of a large amount
of motion capture data. To let the network learn common factors of
various styles, we capture eight representative styles of locomotion,
the same as those used by Xia et al. [XWCH15]: angry, childlike,
depressed, neutral, old, proud, sexy and strutting. This locomotion
is captured by a single actor at 120fps using the Vicon Nexus op-
tical motion capture system. We capture only planar walking and
running motions as such locomotions are the most common move-
ments for interactive applications. The data is augmented by mir-
roring all the captured motions which both doubles the amount of
training data and ensures a balance of turning directions. We end up
with a large dataset (around 1 hour) of unaligned stylised motions,
as there is no mapping between individual clips of different styles
the differences between styles must be learned from this unstruc-
tured data.

Once captured, the data is preprocessed and converted into the
same format as the training data for the original PFNN [HKS17].
First, the data is mapped to the same skeletal structure used in the
CMU dataset and by Holden et al. [HKS17]. The joint positions,
velocities and rotations are calculated for every frame of the mo-
tions, in a local co-ordinate system relative to the root (hips) at the
origin. Every frame is then given a phase label which is a num-
ber between 0 and 2π which is defined to be 0 when the right foot
contacts the ground, π when the left foot contacts the ground, and
all other frames found by interpolation. To acquire the phase la-
bel, a semi-automatic process is used which first extracts approxi-
mate foot contacts based on foot velocities which are then manually
cleaned. We refer to one full cycle of the phase label from 0 to 2π

c© 2018 The Author(s)

Mason et al. / Few-shot Learning of Homogeneous Human Locomotion Styles

Figure 4: An overview of our proposed system, we add a residual adapter to the PFNN, applying a CP decomposition to the residual adapter
where the central matrix is a function of the phase, but the outer matrices are not. The weights that depend on the phase of motion are shown
in blue, and those that do not in red. The main weight matrices, W0(p),W1(p),W2(p) are shared between all styles, with separate residual
adapter weights learned for each new style. Throughout we use the exponential linear unit for non-linearities [CUH15].

(that is, one right foot contact until the next right contact) as a lo-
comotion cycle. We additionally include the same information for
user control as Holden et al. [HKS17]; this takes the form of a tra-
jectory, found by projecting the root onto the ground, centered at
the current frame and sampling every ten frames, for 60 frames in
the past and 50 frames in the future giving a total of 12 points. At
each of these points the position and facing direction of the trajec-
tory is calculated. Finally each locomotion cycle is given a label to
represent its style, this is not used as input to the neural network
but simply so that we know the style of each input. To ensure a bal-
anced dataset during training, we keep the same number of frames
(23104) for each style.

Once preprocessed, the data takes the following form: the input
Xi ∈ R234 consists of: 2×12, x and z (planar) trajectory positions;
2× 12, x and z trajectory directions; 3× 31, x, y and z joint posi-
tions and 3× 31, x, y and z joint velocities, for the current frame.
The output, Yi ∈ R400 consists of: 2×6, x and z current and future
trajectory positions, and similarly 2×6, x and z directions; 3×31,
x, y and z joint positions; 3×31, x, y and z joint velocities; 3×31,
x, y and z joint rotation forward components; 3× 31, x, y and z
joint rotation upward components, for the next frame; 1 predicted
change in phase and 1× 3, x and z planar root translations with y
root rotation around the vertical axis. At runtime by blending the
predicted trajectory with a user inputted trajectory, we are able to
control a character using the keyboard.

Before training the neural network the data must be normalised.
Importantly we calculate one value for the mean and standard devi-
ation over all the styles, this is done because the mean and standard
deviation themselves capture a reasonable degree of information
about a style’s uniqueness, for example a faster motion will have
higher mean joint velocities. As we wish to model motion style
with the network’s parameters rather than the normalisation values
and normalising each style individually would remove this infor-
mation from the data, we normalise all styles together.

5.2. Processing the style data for few-shot learning

To experiment with few-shot learning we extract 50 styles of mo-
tion from the open source CMU motion capture database [GS01].
This database has many styles of locomotion but often very limited
data for any one style, for some styles only one locomotion cycle
can be extracted from which we attempt to generalise to new turn-
ing directions and speeds of locomotion. A full list of styles and the
frames available for each is at the end of the paper, Table 2.

This data is processed in the same manner as described above,
however, as some styles are asymmetrical, e.g. left hop, it does not
make sense to mirror these styles because the network would not
learn that only the left leg should hop. Furthermore, as we again
aim to model style with the parameters of the residual adapters, we
normalise the inputs using the mean and standard deviation of the
original large mocap dataset. If normalised separately, the summary
statistics are specific to the limited speeds and turning directions in
the data, meaning generalisation at test time is harder.

6. Motion stylisation network

In this section we describe the architecture we use for modelling
motion styles. Namely, we explain how we use the constituent parts
described in Section 3 to model different styles and how, in the pro-
cess, we train this network to learn a set of style agnostic parame-
ters.

First, we aim to create a style independent module to capture
common features for synthesising various motion styles. From the
large mocap dataset described in Section 5 we learn one set of style
agnostic parameters, β

ag
, and eight sets of style specific parameters,

{β(s)|s ∈ {1, . . .8}}, one for each style in the dataset.

To do this we add a separate residual adapter for each style, s,
whose weights are the function of the phase given in Eq. (1a), with
control points β

(s) = {α(s)
1 ,α

(s)
2 ,α

(s)
3 ,α

(s)
4 }. However, apart from

these weights, all the other weights in the neural network are shared

c© 2018 The Author(s)

Mason et al. / Few-shot Learning of Homogeneous Human Locomotion Styles

between styles, with control points β
ag
= {α1,α2,α3,α4}. This can

be seen in Fig. 5 where the shared, style agnostic, parameters are
shown in grey and the style specific parameters in other colours.
This process can be seen as analogous to the training of shared en-
coders with domain specific decoders from Mor et al. [MWPT18].

In order to encourage β
ag

to be style invariant and not to tend
towards one style over another we balance our large dataset so that
it contains exactly the same number of frames for each style of
locomotion. We similarly ensure an equal amount of mirrored and
non-mirrored motion so that the generated motions do not prefer
one turning direction over another.

For one input, X (s)
i , with corresponding phase values, P(s)

i , for

known style, s, we predict the corresponding output, Y (s)
i , by min-

imising:

(3)L(X (s)
i ,Y (s)

i ,P(s)
i ;s) = ||Y (s)

i −Φ(X (s)
i ,P(s)

i ;β
(s),β

ag
)||2

+ λag||βag
||1 + λs||β(s)||1,

where β
(s) is the style specific parameters for style s, learned in the

residual adapter, and β
ag

is all the remaining network parameters.
Φ is the neural network:

Φ(X (s)
i ,P(s)

i ;β
(s),β

ag
) = W2ELU(W1ELU(W0X (s)

i + b0) + b1

+W (s)
res ELU(W0X (s)

i + b0) + b(s)res) + b2

(4)

With each of the weight matrices and biases depending on
the phase, P(s)

i , according to Eq. (1a). For W0,W1,W2 the con-
trol points are β

ag
= {α1,α2,α3,α4} and for W s

res we use β
(s) =

{α(s)
1 ,α

(s)
2 ,α

(s)
3 ,α

(s)
4 }. We place a small L1 loss on the weights

which encourages sparsity and acts as a form of regularization, we
set λag and all λs to 0.01 in Eq. (3). Experiments on varying the reg-
ularisation parameters produced minimal qualitative differences.

The data is split into minibatches with each minibatch contain-
ing only one style, the minibatches are shuffled to ensure that we
cycle through the styles; as we have 8 styles this means every 8th

minibatch contains motion data from the same style.

As the dataset is balanced we have the same number of input
datapoints for each style, so the overall objective is:

(5)L(X,Y,P) =
N

∑
i=1

S

∑
s=1
L(X (s)

i ,Y (s)
i ,P(s)

i ;s),

where S is the number of styles in the large mocap dataset, in our
case S = 8, N is the number of input datapoints for each style (equal
to the number of frames) and X,Y,P are the full datasets of inputs,
outputs and phases respectively (so X =

⋃N
i=1

⋃S
s=1 X (s)

i etc.).

The network is trained for 25 epochs using Adam [KB14] which
takes approximately 6 hours on a single NVIDIA GTX 1080 Ti
GPU. This early stopping acts as additional regularisation on the

Figure 5: Training the model: shared weights are shown in grey
and style specific weights in other colours. We cycle through the S
styles evenly so our system does not bias towards any one style.

network as we find training for large numbers of epochs to produce
results that overfit for certain styles.

7. Few-shot learning of new styles

After training with the large database of stylised motions, we at-
tempt to learn new styles with limited data. Here we describe the
difficulties with, and our proposed solution for, tackling this.

If the training process successfully separates style agnostic and
style specific information, given new data it should be possible to
learn new styles by freezing the weights of the main network and
learning only a new residual adapter. Given enough data, the style
agnostic parameters should learn to model general locomotion fea-
tures common to all styles, meaning that for a new style we need
to only learn how to adapt these features rather than learning the
entire network from scratch. This along with the reduced number
of tunable parameters means we may be able to learn the new style
specific parameters with considerably less data required than if we
had also to learn the style agnostic parameters.

The major challenge for such few-shot learning is that the data
does not contain an extensive range of motions, frequently a style
may only have one very short clip (1-5s) of a walking motion in
a straight line, which makes learning to turn and run in a stylised
manner difficult. With such a small amount of data it is very easy
to overfit and hence only be able to mimic the training data. This is
shown in Fig. 6 where the character walks in the bent forward style
in a straight line but when turning becomes totally unrealistic. For
heterogeneous transfer this task becomes even harder as, for ex-
ample, given an animation of a character walking in a straight line
there is no deterministic mapping that tells us how this character
should run, and in some cases the style may change drastically.

Another challenge is that adding a new residual adapter, with
a full weight matrix for each style, rapidly increases the number
of parameters to store. In our case an increase of 44.7% over the
original network’s parameter count for each new style, see Table 1.

c© 2018 The Author(s)

Mason et al. / Few-shot Learning of Homogeneous Human Locomotion Styles

Figure 6: When training with only a small amount of data, the char-
acter can match trajectories similar to those seen during in training
but cannot generalise to new ones. Here a PFNN is trained on neu-
tral data and then finetuned with the limited bent forwards data.

7.1. CP decomposition

To tackle both of these issues we perform a CP decomposition
[KB09] on the residual adapters which reduces the number of pa-
rameters being learned for each style, helping prevent overfitting
and reducing memory costs. The CP decomposition is a decompo-
sition of a 3D tensor X ∈ RI×J×K where each matrix slice of the
tensor, Xk, can be written as

(6)Xk = AD(k)BT

with A ∈ RI×R, B ∈ RJ×R, D(k) ∈ RR×R and D(k) a diagonal ma-
trix for k = 1, . . . ,K, some positive integer R. This can be seen as a
generalisation of SVD to higher dimensions or as a Tucker decom-
position with diagonal core tensor.

In order to apply the CP decomposition, by considering the
phase as a third dimension, we can view the weights of a resid-
ual adapter as a 3D tensor. In the demo of Holden et al. [HKS17]
the phase is discretised at runtime in order to improve the speed
of the system. Specifically 50 weight matrices are calculated for
phases [0,2π/50, . . . ,2π) and the weight matrices associated with
the closest phase value to the current phase of motion are used to
predict the next frame. By stacking these matrices we can use the
discretised phase as a third dimension; therefore, thinking of the
residual adapter as a tensor of size 512× 512× 50 we can then
decompose each of the 50 slices of this tensor (when sliced over
the phase dimension) into 3 matrices of sizes 512× n, n× n and
n× 512 where n is some integer, n� 512. As in Eq. (6), the rect-
angular matrices are the same across all slices meaning that the
(diagonal) square matrix has weights as a function of the phase but
the weights of the two rectangular matrices do not. For the original
8 styles we set n = 30 which means adding only 1.5% more param-
eters per style during training and at run time, when we discretise
the phase, storing 50 matrices for each layer, only 0.03%.

The intuition behind performing this decomposition is that a cer-
tain amount of style information should be phase independent (such
as global changes in speed or posture) whereas other features of
a style may be phase dependent. Furthermore, this decomposition
method helps solve both of the issues raised in the previous section
as it significantly reduces the number of parameters being learned

for a new style which helps to prevent overfitting and reduces the
required memory. (A cursory experiment applying this decompo-
sition to every layer of the original PFNN on flat ground reduced
the parameter size from 136 MB to 1 MB and gave a 3-4X speedup
for the forwards pass of the network, albeit with slightly reduced
controllability.) As in Zhao et al. [ZHSS17] we perform the de-
composition before training, that is we learn the factors A,D and
B from Eq. (6) directly during training and then multiply them to-
gether. This allows the network to learn the best values for each of
the component tensors, reduces the number of parameters needed
during training and keeps the process fully differentiable. Finally,
note that performing this decomposition changes β

(s) from Sec-
tion 6, as now only the central matrix depends on control points
{α(s)

1 ,α
(s)
2 ,α

(s)
3 ,α

(s)
4 }.

7.2. Variable dropout

As discussed in Section 3.2, a major benefit of residual adapters
is that we can tune the regularisation to adapt the generalisation
strength for each new style, hence we vary the dropout rate used
during training the few-shot styles in order to achieve better results.
Here the regularisation can be seen as a trade off between the new
style specific parameters and the shared style agnostic parameters.
The ability of our system to generalise to a new style is determined
primarily by two factors, firstly the quantity of data available for
the given style and secondly how similar the style is to those in the
large dataset which the main network is trained on. Those motions
for which we have very little data, or that are very different from
motions already seen by the network, require heavier regularisa-
tion to avoid artifacts at run time. As similarity between motions is
hard to measure quantitavely we run a simple grid search over the
dropout rate and select the value which creates the best qualitative
results. For any given style it may be possible to improve results
with a more extensive search or an intelligent heuristic.

We could also opt for other regularisation methods, such as L1
regularisation or reducing the size of the central tensor in the CP
decomposition. We experimented with these forms of regularisa-
tion and found them to be roughly equally as effective. We utilise
dropout due to its simplicity to understand and implement.

8. Results and comparisons

Here we compare our system to other possible methods of learning
to model new styles as well as comparing against the Gram matrix
transfer method of Holden et al. [HSK16]. As animation generation
does not lend itself to quantitative evaluation, and in general the
quantitative evaluation of generated animations or images is still an
open problem, the majority of this section is a qualitative discus-
sion of the results best seen in the accompanying video along with
some details of training times and memory requirements. For all of
our experiments we use the discretised phase method in order to
achieve the best possible runtime performance. Some still frames
showing the modelling of different styles are shown in Fig. 1.

8.1. Evaluating our model

We first compare our system against other models that we train
in order to try and achieve the same goal of learning new styles

c© 2018 The Author(s)

Mason et al. / Few-shot Learning of Homogeneous Human Locomotion Styles

Table 1: Table of comparisons showing storage requirements for a
new residual adapter, mean training time per style, and the time for
a forwards pass for different configurations of the residual adapters.
The two values given in the memory requirement column represent
only the control points being stored at run time and the phase being
discretised for faster performance at run time respectively.

Method Memory (MB) Training (s) Runtime (s)
Full Adapter 4.01 / 50.1 99 0.0013
Diagonal Adapter 0.016 / 0.20 44 0.0010
CP Decomposition 0.126 / 0.131 50 0.0011

from limited data. Trying the most basic methods, namely training
the whole PFNN on only the few-shot data or finetuning a PFNN
trained on a large amount of neutral motion leads to extremely un-
realistic motions for even slight perturbations in the input trajectory
due to these methods heavily overfitting - see Fig. 6.

We also experiment with altering the decomposition of the resid-
ual adapters, the results of which are shown in Table 1 where we
show the memory usage, training time and runtime performance of
the different methods. If we use a full matrix of weights for the
adapters we can capture style relatively well and, with sufficient
regularisation, can often generalise this to unseen directions. How-
ever, this method has a tendency to overfit due to the large number
of parameters relative to the small amount of data, this can be seen
in the accompanying video where the elated style is unable to turn
left. Furthermore, the storage requirements for using full matrices
grows rapidly, albeit linearly, with the number of styles (Table 1,
top row). Adapting the work of Rebuffi et al. [RBV17], one way to
reduce the number of parameters is to force the residual adapter to
be diagonal (Table 1, middle row). However, we found this did not
allow enough variance in the model as the system could not learn
many styles, instead outputting average motions. Examples of these
issues are shown in Fig. 7.

Additionally, we evaluate the run time performance of each of
the methods from the previous paragraph, the last column of Ta-
ble 1 shows the time for a forwards pass of each of the neural net-
works. As expected the methods with the fewest parameters and
hence the fewest number of operations perform fastest. The run-
time experiments are run on a single Intel i7-6700HQ CPU and
include some overhead from the Unity Editor but do not include
the time for rendering the scene.

We note the importance of training on a dataset with multiple
locomotion styles, if we add residual adapters to a network trained
only on neutral motion, often we cannot reproduce new styles and
instead output motions that are quite close to neutral. This is likely
because, when only training on neutral data, there is no reason for
the first layer of the PFNN to learn to extract good features for style
transfer, whereas training on multiple styles encourages this.

To visualise the style agnostic parameters we can generate mo-
tion with the weights of the residual adapters set to 0; in some sense
this can be seen as the underlying ‘average motion’. The motion
that is learned is fairly close to a neutral walk and can be seen in the
accompanying video. Interestingly when turning quickly this mo-
tion has a slight snap in the animation, which is something that we

Figure 7: Under and overfitting depending on the number of pa-
rameters in the residual adapter. (a) dinosaur style, CP decomposed
residual adapter, reasonably capturing the style. (b) dinosaur style,
diagonal residual adapter, the style is captured poorly. (c) elated
style, full matrix of weights for the residual adapter, the style is
captured but the character struggles to turn left. (d) elated style,
CP decomposed residual adapter, the style is still captured but the
character can turn more easily.

then observe with the stylised animations having slightly odd mo-
tions for turning quickly. We tried several things to remove this ar-
tifact including pretraining on neutral motions and finetuning with
the large dataset while regularising the neutral adapter in order to
encourage the average motion to remain closer to a neutral motion,
but we were unable to remove this oddity. It may be that this is
a good underlying motion for our specific style dataset, but it is
unlikely to be totally universal, indicating that there may be im-
provements that can be made by gathering larger quantities of data.

Overall our system is capable of learning to model a new style
with only a few seconds of motion capture data and low training
time, see Tables 1 and 2. Most of the styles we train on can be
generalised to unseen turning motions and small, realistic, changes
in walking speeds. However, certain styles cause problems for this
architecture. They fall into two main categories: styles which are
very different from those in the large training set and styles which
are stochastic, aperiodic or have very unique root joint trajectories.
The latter of these categories is a limitation of the PFNN, in that it is
designed to model regular periodic motion and cannot easily model
strange trajectories with lots of stopping and starting like those seen
in the martial arts (e.g. gedanbarai) styles of the CMU dataset. In
the former case we can often learn the styles to some extent but
we see the motion is heavily smoothed, for example when trying
to learn left hop, although we learn something close to a hopping
motion the right foot barely lifts off the ground, similarly when
learning march the knees do not raise as high as they should.

c© 2018 The Author(s)

Mason et al. / Few-shot Learning of Homogeneous Human Locomotion Styles

8.2. Comparison with an alternative style transfer method

We now compare our method with the method of Holden et
al. [HSK16] which learns a motion manifold using an autoencoder
and then optimises in latent space to transfer the style of one clip
to the content of another. To compare how well the different meth-
ods can model different styles we first select a content clip from
our database of neutral motion and stylise it using the method of
Holden et al. [HSK16] with one of the clips we use for few-shot
learning. We then extract the trajectory of the stylised motion and
use this as input to our system at every time step so that both mo-
tions follow a similar path.

We show results in the accompanying video, in most cases our
method is qualitatively at least as good or better than Holden et
al. [HSK16] for creating realistic looking stylisations. However, for
certain styles, mostly those in the problem cases mentioned above,
our results are not as good. It is worth noting again here that the
task we are trying to do is slightly different from the style transfer
task; we do not train in order to receive an entire content trajectory
at test time but instead to predict the future motion given past inputs
and to simultaneously generate and stylise the motion.

9. Limitations

To end, we discuss the current limitations of our system which may
provide potential directions for future work. These limitations in-
clude the inability to perform heterogeneous transfer, the lack of
quantitative evaluation metrics, a loss of animation detail and an
inability to handle non-periodic movements.

9.1. Heterogeneous transfer

In this work we have demonstrated homogeneous transfer, that is
from a given short walking clip we can learn to generate new walk-
ing clips in that style with new trajectories. However, hand crafted
solutions such as those of Yumer et al. [YM16] have shown some
heterogeneous transfer ability, generating running or punching in a
specific style given a clip of walking in that style.

Being able to perform this type of style modelling in systems
that can generate animations such as the PFNN is very desirable.
We implemented a number of methods to attempt heterogeneous
transfer including adding layer normalisation [BKH16] specific to
each style, adding walk and run gait labels to the data and attempt-
ing to add a simple Fourier based loss function inspired by Yumer
et al. [YM16]. However, whilst we were able to learn running for a
handful of styles, none of these methods were able to create consis-
tent high quality heterogeneous transfer and, in general, most styles
tended to reduce to a neutral motion when running.

9.2. Quantitative evaluation

To the best of our knowledge, no appropriate metric for the quan-
titative evaluation of generated animations exists since those meth-
ods that do exist, such as in Xia et al. [XWCH15], require a ground
truth motion, which is unavailable in our case. The lack of a quan-
titative metric makes taking design choices that subtly alter results
very hard, this includes setting regularisation parameters (λag and
λs, Eq. (4)), type of regularisation, or number of training epochs.

The creation of some such metric would therefore be very useful
for further evaluation of this work. However, we believe this to be
a difficult task partly because, in the absence of ground truth, what
makes one animation better than another can often be subjective.
In vision, the quantitative evaluation of model generated images is
very much an open area of research [Bor18].

9.3. Loss of high frequency details

Many of the animations we generate look realistic and reasonable
but when compared with the training data are somewhat smoothed,
losing much of the subtlety that is possible with manual animation.
From our observations, this is a limitation of many works on neural
network generated animation in that high frequency movements are
often not perfectly reproduced. In our case this problem is exacer-
bated by the limited amount of data available; in order to generalise,
the model creates a blending between the agnostic motion and the
stylised data. Methods such as normalising each style individually
allow for more details to be captured but cannot generalise well.

We do however believe that with sufficient resources this sys-
tem could be engineered further to produce higher quality results.
There are many variables that could be altered such as the number
of training epochs for each style, the values of the variable dropout
rate and alternative ways of normalising the data that may improve
the results presented here. We hope this work acts as a proof of
concept that can be developed further as required.

9.4. Inability to handle non-periodic motion

Finally, creating systems that can generate non-periodic or stochas-
tic motions from user input is very much an open problem. Motions
which have a poorly defined phase or a phase that is very different
from standard locomotion, e.g. dancing, or stochastic motions, e.g.
random looks behind, are not currently producible with phase based
architecture and likely require new ideas and architectures.

10. Conclusion

We have presented a method for learning multiple styles of locomo-
tion, where extensive motion coverage is only required for a small
subset of styles from which we can learn to generalise for other
styles which may have only limited data available. Additionally,
our system requires no database of reference motions at runtime.
This method has potential applications in making the PFNN more
accessible for creative work where the time, equipment and re-
sources may not be available to capture the large amount of data re-
quired to learn the model from scratch and could likely be adapted
to model key frame animations.

As we require only small quantities of data, we have evaluated
our models using many more styles than most other works in this
area. This allows us to perform a thorough examination of our
model and pinpoint specific areas for improvement.

Acknowlegements

We thank the NVIDIA Corporation for the generous dontations of
the GPUs. This project was partly supported by the EPSRC DTA
programme and the Google VR Research Faculty Award.

c© 2018 The Author(s)

Mason et al. / Few-shot Learning of Homogeneous Human Locomotion Styles

References
[BBKK17] BÜTEPAGE J., BLACK M., KRAGIC D., KJELLSTRÖM H.:

Deep representation learning for human motion prediction and classifi-
cation. arXiv preprint arXiv:1702.07486 (2017). 2

[BHV∗16] BERTINETTO L., HENRIQUES J. F., VALMADRE J., TORR
P., VEDALDI A.: Learning feed-forward one-shot learners. In Advances
in Neural Information Processing Systems (2016), pp. 523–531. 2

[BKH16] BA J. L., KIROS J. R., HINTON G. E.: Layer normalization.
arXiv preprint arXiv:1607.06450 (2016). 9

[Bor18] BORJI A.: Pros and cons of gan evaluation measures. arXiv
preprint arXiv:1802.03446 (2018). 9

[Car95] CARUANA R.: Learning many related tasks at the same time with
backpropagation. In Advances in neural information processing systems
(1995), pp. 657–664. 2

[CCK∗18] CHOI Y., CHOI M., KIM M., HA J.-W., KIM S., CHOO
J.: Stargan: Unified generative adversarial networks for multi-domain
image-to-image translation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2018). 3

[CUH15] CLEVERT D.-A., UNTERTHINER T., HOCHREITER S.: Fast
and accurate deep network learning by exponential linear units (elus).
arXiv preprint arXiv:1511.07289 (2015). 5

[FLFM15] FRAGKIADAKI K., LEVINE S., FELSEN P., MALIK J.: Re-
current network models for human dynamics. In Proceedings of the
IEEE International Conference on Computer Vision (2015), pp. 4346–
4354. 2

[GEB15] GATYS L. A., ECKER A. S., BETHGE M.: A neural algorithm
of artistic style. arXiv preprint arXiv:1508.06576 (2015). 3

[GS01] GROSS R., SHI J.: The CMU Motion of Body (MoBo) Database.
Tech. rep., 2001. 2, 5

[HB17] HUANG X., BELONGIE S.: Arbitrary style transfer in real-time
with adaptive instance normalization. In Computer Vision (ICCV), 2017
IEEE International Conference on (2017). 3

[HHKK17] HOLDEN D., HABIBIE I., KUSAJIMA I., KOMURA T.: Fast
neural style transfer for motion data. IEEE computer graphics and ap-
plications 37, 4 (2017), 42–49. 3

[HKS17] HOLDEN D., KOMURA T., SAITO J.: Phase-functioned neural
networks for character control. ACM Transactions on Graphics (TOG)
36, 4 (2017), 42. 2, 3, 4, 5, 7

[HLBK18] HUANG X., LIU M.-Y., BELONGIE S., KAUTZ J.: Mul-
timodal unsupervised image-to-image translation. arXiv preprint
arXiv:1804.04732 (2018). 3

[HPP05] HSU E., PULLI K., POPOVIĆ J.: Style translation for human
motion. In ACM Transactions on Graphics (TOG) (2005), vol. 24, ACM,
pp. 1082–1089. 3

[HSK16] HOLDEN D., SAITO J., KOMURA T.: A deep learning frame-
work for character motion synthesis and editing. ACM Trans. Graph. 35,
4 (2016), 138:1–138:11. 2, 3, 7, 9

[HZRS16] HE K., ZHANG X., REN S., SUN J.: Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (2016), pp. 770–778. 4

[IS15] IOFFE S., SZEGEDY C.: Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In ICML (2015). 4

[JAFF16] JOHNSON J., ALAHI A., FEI-FEI L.: Perceptual losses for
real-time style transfer and super-resolution. In European Conference
on Computer Vision (2016), Springer, pp. 694–711. 3

[KB09] KOLDA T. G., BADER B. W.: Tensor decompositions and appli-
cations. SIAM review 51, 3 (2009), 455–500. 7

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014). 6

[Koc15] KOCH G.: Siamese neural networks for one-shot image recog-
nition. In ICML Deep Learning Workshop (2015). 2

[KSL18] KORNBLITH S., SHLENS J., LE Q. V.: Do better imagenet
models transfer better? arXiv preprint arXiv:1805.08974 (2018). 2

[LHP05] LIU C. K., HERTZMANN A., POPOVIĆ Z.: Learning physics-
based motion style with nonlinear inverse optimization. In ACM Trans-
actions on Graphics (TOG) (2005), vol. 24, ACM, pp. 1071–1081. 3

[LZX∗18] LI Z., ZHOU Y., XIAO S., HE C., LI H.: Auto-conditioned
lstm network for extended complex human motion synthesis. In ICLR
(2018). 2, 3

[MK05] MUKAI T., KURIYAMA S.: Geostatistical motion interpola-
tion. In ACM Transactions on Graphics (TOG) (2005), vol. 24, ACM,
pp. 1062–1070. 2

[MTS∗17] MEREL J., TASSA Y., SRINIVASAN S., LEMMON J., WANG
Z., WAYNE G., HEESS N.: Learning human behaviors from motion cap-
ture by adversarial imitation. arXiv preprint arXiv:1707.02201 (2017).
2

[MWPT18] MOR N., WOLF L., POLYAK A., TAIGMAN Y.: A universal
music translation network. arXiv preprint arXiv:1805.07848 (2018). 3,
6

[PBYVDP17] PENG X. B., BERSETH G., YIN K., VAN DE PANNE M.:
Deeploco: Dynamic locomotion skills using hierarchical deep reinforce-
ment learning. ACM Transactions on Graphics (TOG) 36, 4 (2017), 41.
2

[RBV17] REBUFFI S.-A., BILEN H., VEDALDI A.: Learning multiple
visual domains with residual adapters. In Advances in Neural Informa-
tion Processing Systems (2017), pp. 506–516. 1, 3, 4, 8

[RBV18] REBUFFI S.-A., BILEN H., VEDALDI A.: Efficient
parametrization of multi-domain deep neural networks. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2018). 3,
4

[RCB98] ROSE C., COHEN M. F., BODENHEIMER B.: Verbs and ad-
verbs: Multidimensional motion interpolation. IEEE Computer Graphics
and Applications 18, 5 (1998), 32–40. 2

[TH09] TAYLOR G. W., HINTON G. E.: Factored conditional restricted
boltzmann machines for modeling motion style. In Proceedings of the
26th annual international conference on machine learning (2009), ACM,
pp. 1025–1032. 3

[VBL∗16] VINYALS O., BLUNDELL C., LILLICRAP T., WIERSTRA D.,
ET AL.: Matching networks for one shot learning. In Advances in Neural
Information Processing Systems (2016), pp. 3630–3638. 2

[VYCL18] VILLEGAS R., YANG J., CEYLAN D., LEE H.: Neural kine-
matic networks for unsupervised motion retargetting. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2018). 3

[XWCH15] XIA S., WANG C., CHAI J., HODGINS J.: Realtime style
transfer for unlabeled heterogeneous human motion. ACM Trans. Graph.
34, 4 (2015), 119:1–119:10. 3, 4, 9

[YCBL14] YOSINSKI J., CLUNE J., BENGIO Y., LIPSON H.: How trans-
ferable are features in deep neural networks? In Advances in neural in-
formation processing systems (2014), pp. 3320–3328. 2

[YM16] YUMER M. E., MITRA N. J.: Spectral style transfer for human
motion between independent actions. ACM Transactions on Graphics
(TOG) 35, 4 (2016), 137. 3, 9

[ZHSS17] ZHAO C., HOSPEDALES T. M., STULP F., SIGAUD O.: Ten-
sor based knowledge transfer across skill categories for robot control. In
International Joint Conference in Artificial Intelligence (IJCAI) (2017),
vol. 10, pp. 1–4. 7

[ZPIE17] ZHU J.-Y., PARK T., ISOLA P., EFROS A. A.: Unpaired
image-to-image translation using cycle-consistent adversarial networks.
In Computer Vision (ICCV), 2017 IEEE International Conference on
(2017). 3

[ZZP∗17] ZHU J.-Y., ZHANG R., PATHAK D., DARRELL T., EFROS
A. A., WANG O., SHECHTMAN E.: Toward multimodal image-to-
image translation. In Advances in Neural Information Processing Sys-
tems (2017), pp. 465–476. 3

c© 2018 The Author(s)

Mason et al. / Few-shot Learning of Homogeneous Human Locomotion Styles

Table 2: The number of frames and locomotion cycles for unmirrored data of the styles used for few-shot learning.

Style Number of Frames Number of Locomotion Cycles Symmetric
Balance 1491 12 Yes
Bent Forward 464 6 Yes
Bent Knees 182 2 Yes
Bouncy 304 4 No
Cat 197 2 Yes
Chicken 56 1 Yes
Cool 244 3 Yes
Crossover 230 2 Yes
Crouched 310 4 Yes
Dance 680 9 No
Dinosaur 527 5 Yes
Drag Leg 412 5 No
Dragon 125 1 Yes
Drunk 431 7 Yes
Duck Foot 258 3 Yes
Elated 67 1 Yes
Empi 234 1 Yes
Frankenstein 293 2 Yes
Gangly 493 7 Yes
Gedanbarai 294 2 Yes
Ghost 124 2 Yes
Graceful 323 6 Yes
Heavyset 417 4 Yes
Heiansyodan 95 1 Yes
Hobble 143 2 No
Hurt Leg 455 4 No
Jaunty 78 1 Yes
Joy 138 2 Yes
Lean Right 302 4 No
Left Hop 455 8 No
Legs Apart 186 2 Yes
Mantis 212 5 Yes
March 213 2 Yes
Mawashigeri 342 1 Yes
Monkey 103 2 Yes
Oiduki 228 1 Yes
On Toes Bent Forward 390 5 Yes
On Toes Crouched 591 8 Yes
Painful Left Knee 411 5 No
Penguin 183 6 Yes
Pigeon Toed 249 3 Yes
Prarie Dog 123 3 Yes
Quail 55 2 Yes
Roadrunner 665 17 Yes
Rushed 78 2 Yes
Sneaky 314 2 Yes
Squirrel 129 9 Yes
Stern 958 19 Yes
Stuff 97 2 Yes
Stumble 66 1 Yes
Swing Shoulders 259 3 Yes
Syutouuke 182 1 Yes
Wild Arms 161 2 Yes
Wild Legs 211 2 Yes
Wounded Leg 986 25 No
Yokogeri 135 1 No
Zombie 2241 25 Yesc© 2018 The Author(s)

