Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2021 Jul 11;25(5):2191–2239. doi: 10.1111/tgis.12792

A review of GIS methodologies to analyze the dynamics of COVID‐19 in the second half of 2020

Ivan Franch‐Pardo 1,, Michael R Desjardins 2, Isabel Barea‐Navarro 3, Artemi Cerdà 3
PMCID: PMC8420105  PMID: 34512103

Abstract

COVID‐19 has infected over 163 million people and has resulted in over 3.9 million deaths. Regarding the tools and strategies to research the ongoing pandemic, spatial analysis has been increasingly utilized to study the impacts of COVID‐19. This article provides a review of 221 scientific articles that used spatial science to study the pandemic published from June 2020 to December 2020. The main objectives are: to identify the tools and techniques used by the authors; to review the subjects addressed and their disciplines; and to classify the studies based on their applications. This contribution will facilitate comparisons with the body of work published during the first half of 2020, revealing the evolution of the COVID‐19 phenomenon through the lens of spatial analysis. Our results show that there was an increase in the use of both spatial statistical tools (e.g., geographically weighted regression, Bayesian models, spatial regression) applied to socioeconomic variables and analysis at finer spatial and temporal scales. We found an increase in remote sensing approaches, which are now widely applied in studies around the world. Lockdowns and associated changes in human mobility have been extensively examined using spatiotemporal techniques. Another dominant topic studied has been the relationship between pollution and COVID‐19 dynamics, which enhance the impact of human activities on the pandemic's evolution. This represents a shift from the first half of 2020, when the research focused on climatic and weather factors. Overall, we have seen a vast increase in spatial tools and techniques to study COVID‐19 transmission and the associated risk factors.

1. INTRODUCTION

Since early 2020, the COVID‐19 pandemic has been a substantial threat to public health worldwide. COVID‐19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2; Shi, Chen, Fan, & Chen, 2020). The pandemic is believed to have started at a seafood market in Wuhan, Hubei Province, China. The virus quickly spread to other countries in eastern Asia, Europe, and the remainder of the world (Spagnuolo, De Vito, Rengo, & Tatullo, 2020). The spread of the pandemic has been widely studied, and the strategies and tools applied to research the spatial and temporal changes in COVID‐19 transmission have been diverse and evolved quickly to adapt to the data available and knowledge of the disease. Since the start of the pandemic, over 163 million individuals have been infected and over 3.3 million have died. The duration of the pandemic, along with the huge impacts on societies, economies, politics, and public health, has greatly influenced spatial analysis' role in understanding COVID‐19.

The spatial tools and techniques used to understand COVID‐19 have been diverse, and a review of the current knowledge can help researchers to develop and refine methodologies adopted to influence decision‐making, public health guidelines, and the allocation of resources such as vaccines and tests (Bernasconi & Grandi, 2021; Cordes & Castro, 2020; Melin, Monica, Sanchez, & Castillo, 2020; Vaz, 2021). A review of the methodologies used can contribute to improve COVID and post‐COVID management and plan for future pandemics.

In the first half of 2020, we had far less information about COVID‐19, due to logistics, the novelty of the disease, and lack of research and data. As the year progressed, we saw a very substantial increase in the number of studies related to the pandemic, especially those that utilize spatial analysis. In this regard, based on what was published in the first half of 2020 (January–May 2020), Franch‐Pardo, Napoletano, Rosete‐Verges, and Billa (2020) identified 63 works that applied geographic information systems (GIS) and spatial science to analyze COVID‐19, grouping the studies into five main topics: spatiotemporal analysis, health and social geography, environmental variables, data mining, and web‐based mapping. Inspired by previous work (Ahasan, Alam, Chakraborty, & Hossain, 2020; Boulos & Geraghty, 2020; Koller, Wohlrab, Sedlmeir, & Augustin, 2020; Sarfo & Karuppannan, 2020; Smith & Mennis, 2020; Yang et al., 2020; Zhou et al., 2020), we now provide an updated systematic review of studies published in the second half of 2020.

This will tell us about the thematic evolution of GIS and spatial analysis used in COVID‐19 studies compared with the first half of 2020. As we mentioned, during the first months of the pandemic, remarkable reviews or reflections on the usefulness of these technologies and approaches for pandemic research were published (Casti, 2020; Collectif, 2020; Dangermond, De Vito, & Pesaresi, 2020; Devasia, Lakshminarayanan, & Kar, 2020; Klapka, Ellegård, & Frantál, 2020; Méndez, 2020; Radojević, Lazić, & Cimbaljević, 2020; Rosenkrantz, Schuurman, Bell, & Amram, 2020; Wolf, 2020; Zúñiga, Pueyo, & Postigo, 2020). Our goal is to provide another valuable resource for researchers applying GIS and spatial analysis to study COVID‐19.

2. MATERIAL AND METHODS

This research is based on the systematic review conducted by Franch‐Pardo et al. (2020) and goes further with the analysis of new research findings. Based on the spatial analysis methodologies and tools identified in the GIS reviews of the first half of 2020 (Ahasan et al., 2020; Boulos & Geraghty, 2020; Franch‐Pardo et al., 2020; Koller et al., 2020; Sarfo & Karuppannan, 2020; Smith & Mennis, 2020; Yang et al., 2020; Zhou et al., 2020), our query included the following terms: spatial regressions, hotspots, multi‐criteria, remote sensing, GPS, VGI; with the words “COVID‐19” and “GIS” or “spatial” in Web of Sciences, Scopus, Mendeley, Collabovid, and Google Scholar. The selected papers in this review are the ones that were published between June 2020 and December 2020. Under our heuristic approach to the subject‐matter, we have identified 221 articles that met our criteria.

Next, we were able to identify and group the studies into key topics as follows: (a) socioeconomic (demographic characteristics, gross domestic product, behavioral habits, inequality, and poverty indicators); (b) air, land, and hydrosphere pollution; (c) climate; (d) population mobility; (e) infrastructure and health services; and (f) COVID‐19 data (confirmed cases, surveys, testing, crowdsourced data).

Regarding the objectives and utilities of these studies, we further categorized the studies into the following sub‐topics: (a) spatiotemporal analysis of lockdowns; (b) spatial correlation and autocorrelation; (c) maps of risks and social vulnerability; (d) city planning and urban context; (e) regional and territorial analysis; (f) impacts of political decisions regarding preventative measures adopted in each country or study area; and (g) knowledge dissemination.

Within the 221 selected publications the following tools and techniques applied were identified: (a) spatial statistics, including spatial regressions (spatial lag model, spatial error model, combined autoregressive model, geographically weighted regression, multiscale geographically weighted regression, geographically weighted principal component analysis, Clifford correlation), hotspots and clustering (Getis–Ord Gi, kernel density, Moran's I, local Geary, geographic monitoring for early disease detection (GeoMEDD), self‐organizing maps (SOMs) or Kohonen networks, scan statistics, K‐medoid), geostatistics and interpolations (inverse distance weighting (IDW), Voronoi, kriging, cokriging, splines), other models (Markov, geodetector, birthday paradox, two‐step floating catchment area, topological weighted centroid, self‐organizing maps), and aspatial models in GIS (Poisson regression, Cox, Pearson, Spearman and Kendall, K‐means, susceptible–infected–removed (SIR) models); (b) multicriteria analysis, including analytic hierarchy process, GIS multi‐criteria decision analysis; (c) remote detection and unmanned aerial vehicles (UAVs); (d) data mining and networks; (e) web maps; and (f) volunteered geographic information (VGI) and public participatory GIS (PPGIS).

We have summarized the tools, thematic variables and objectives that we have identified in Figure 1.

FIGURE 1.

FIGURE 1

Graphical summary of the GIS tools, thematic variables used, and objectives categorized in this review

3. RESULTS

3.1. Spatial statistics and COVID‐19

Spatial statistics have mainly been used to analyze the socioeconomic and demographic risk factors of COVID‐19 (Iyanda et al., 2020; Sannigrahi, Pilla, Basu, Basu, & Molter, 2020; Sun, Matthews, Yang, & Hu, 2020; Urban & Nakada, 2021). Air quality (Maiti et al., 2020; Zulkarnain & Ramadani, 2020), health infrastructure (Mollalo, Vahedi, & Rivera, 2020), and mobility (Nian et al., 2020) have also been examined and linked to COVID‐19 risk and transmission. We have seen an influx of both spatial and spatiotemporal statistical methods applied to COVID‐19, with many studies utilizing the results to produce risk and social vulnerability maps.

3.1.1. Spatial regressions

In spatial modeling studies, it is common to start with ordinary least squares (OLS) regression to identify significant relationships between the dependent and independent variables. If the residuals of an OLS model are spatially autocorrelated, then it is appropriate to use spatial regression‐based methods (Delmelle, Hagenlocher, Kienberger, & Cases, 2016). For example, a spatial lag model (SLM) can be used to examine how events at a location influence similar events in surrounding locations (i.e., spatial interaction); and a spatial error model (SEM) can be applied to account for autocorrelation of the residuals (Iyanda et al., 2020; Maiti et al., 2020; Mollalo, Vahedi, et al., 2020; Nian et al., 2020; Sannigrahi et al., 2020; Sun, Di, Sprigg, Tong, & Casal, 2020; Urban & Nakada, 2021); see Table 1. For COVID‐19, spatially combined autoregressive models (SAC) have also been used as a combination of the previous models to simultaneously consider spatial lag and spatial error parameters (Sun, Di, et al., 2020; Zulkarnain & Ramadani, 2020).

TABLE 1.

Spatial statistics

Spatial statistics
Tools Study Region or country of study Variables used Specific topics and analysis
Demographic and socioeconomic Contamination Weather Mobility Health services COVID‐19 data Spatiotemporal analysis Correlations Risk maps Urban context Political measures in research Geographic specifications
Spatial regressions SLMs, SEMs Iyanda et al. (2020) World × Confirmed cases × × ×
Sannigrahi et al. (2020) Europe × Confirmed cases
Maiti et al. (2020) USA × × Confirmed cases ×
Mollalo, Vahedi, et al. (2020) USA × × × × Confirmed cases ×
Sun, Di, et al. (2020) USA Confirmed cases × × ×
Urban and Nakada (2021) Brazil × Confirmed cases × × São Paulo
Nian et al. (2020) China × × × × Chongqing × Economic repercussions
SAC Sun, Di, et al. (2020) USA Confirmed cases × ×
Zulkarnain and Ramadani (2020) Indonesia × Confirmed cases × × ×
GWR Wu et al. (2020) China × × × Confirmed cases × ×
Iyanda et al. (2020) World × Confirmed cases × × ×
Karaye and Horney (2020) USA × × × Confirmed cases × ×
Maiti et al. (2020) USA × × Confirmed cases ×
Murgante et al. (2020) China, Italy × × Confirmed cases × × Wuhan, Milan
Mansour et al. (2020) Oman × × Confirmed cases ×
Fan et al. (2020) China × × × Confirmed cases × × ×
Shariati, Jahangiri‐rad, et al. (2020) Iran × × × Confirmed cases × ×
Liu, He, and Zhou (2020) China × × Confirmed cases ×
Liu, Wang, et al. (2020) China × × × Confirmed cases × Predictive modeling
Urban and Nakada (2021) Brazil × Confirmed cases × × São Paulo
Cheng et al. (2020) China × Confirmed cases Lockdown ×
Alkhaldy (2020) Saudi Arabia × × Confirmed cases ×
Liang, Wang, Sun, Liang, and Li (2020) China × × Confirmed cases × ×
He et al. (2020) China × × Confirmed cases ×
Li, Zhou, et al. (2020) China × Confirmed cases × × Wuhan
Bag, Ghosh, Biswas, and Chatterjee (2020) India × Confirmed cases × × Territorial planning
MGWR Iyanda et al. (2020) World × Confirmed cases × × ×
Sannigrahi et al. (2020) Europe × Confirmed cases ×
Maiti et al. (2020) USA × × Confirmed cases ×
Mollalo, Vahedi, et al. (2020) USA × × × × Confirmed cases ×
Fan et al. (2020) China × × × Confirmed cases × × ×
Liu, He, et al. (2020) China × × Confirmed cases ×
Urban and Nakada (2021) Brazil × Confirmed cases × × São Paulo
GWPCA Das et al. (2021) India × × Confirmed cases Kolkata ×
Clifford Nomura et al. (2020) Japan × Confirmed cases × × Fukuoka × Urban planning
Hotspots and clustering Getis–Ord Gi Sugg et al. (2020) USA × × Confirmed cases
Barboza et al. (2020) USA × Confirmed cases × × Los Angeles
Baum and Henry (2020) USA × Confirmed cases ×
Fang et al. (2020) China × × Xiamen Urban planning
Mollalo, Vahedi, Bhattarai, et al. (2020) USA × × × Confirmed cases × ×
Shariati, Jahangiri‐rad, et al. (2020) Iran × × × Confirmed cases × ×
Al‐Kindi et al. (2020) Oman × Polls and confirmed cases ×
Mollalo, Rivera, and Vahedi (2020) USA × Confirmed cases × ×
Maroko et al. (2020) USA × × Confirmed cases × × New York, Chicago
Islam et al. (2021) South Asia × Confirmed cases × × ×
Shariati, Mesgari, et al. (2020) World × Confirmed cases × ×
Rahman, Islam, et al. (2020) Bangladesh × Confirmed cases × × Regional geography
Bag et al. (2020) India × Confirmed cases × × Territorial planning
Kernel density Geng et al. (2020) USA Confirmed cases × × ×
Cos, Castillo, and Cantarer. (2020) Spain × × Confirmed cases × × × Territorial planning
Rex et al. (2020) Brazil × Confirmed cases × × ×
Nian et al. (2020) China × × × × Chongqing × Economic repercussions
Moran's I Harris (2020) UK × × Confirmed cases × × London
Wu et al. (2020) China × × × Confirmed cases × ×
Iyanda et al. (2020) World × Confirmed cases × × ×
Murgante et al. (2020) China, Italy × × Confirmed cases × Wuhan, Milan
Baum and Henry (2020) USA × Confirmed cases ×
Mollalo, Vahedi, Bhattarai, et al. (2020) USA × × × Confirmed cases × ×
Huang and Brown (2021) Germany × × × Confirmed cases × ×
Kang, Choi, et al. (2020) China × × Confirmed cases ×
Santana Juárez et al. (2020) Mexico Confirmed cases ×
Sun, Di, et al. (2020) USA Confirmed cases × × ×
Xie et al. (2020) China × Confirmed cases × ×
Yao, Pan, et al. (2020) China × × × Confirmed cases × × ×
Shariati, Jahangiri‐rad, et al. (2020) Iran × × × Confirmed cases × ×
Liu, He, et al. (2020) China × × Confirmed cases ×
Fan et al. (2020) China × × × Confirmed cases × × ×
Kim and Castro (2020) South Korea × × Confirmed cases × × ×
Gomes et al. (2020) Brazil Confirmed cases × ×
Andrades‐Grassi et al. (2020) Europe and Maghreb × × × Confirmed cases ×
Liu, Fang, et al. (2020) China × × × Internet and confirmed cases × × ×
Al‐Kindi et al. (2020) Oman × Polls and confirmed cases ×
Maroko et al. (2020) USA × × Confirmed cases × × New York, Chicago
Alcântara et al. (2020) Brazil × Confirmed cases ×
Shariati, Mesgari, et al. (2020) World × Confirmed cases × ×
Bag et al. (2020) India × Confirmed cases × × Territorial planning
Nian et al. (2020) China × × × × Chongqing × Economic repercussions
Geary's C Alcântara et al. (2020) Brazil × Confirmed cases ×
GeoMEDD Curtis et al. (2020) USA × × × Confirmed cases × × Regional geography
SOMs Melin et al. (2020) World Confirmed cases × Regional geography
Scan statistics Andersen et al. (2020) USA × × Confirmed cases × ×
Wang, Liu, Struthers, and Lian (2020) USA × × Confirmed cases × ×
K‐medoid Pászto and Vondráková (2020) Europe × × Confirmed cases ×
Not specified Pollán et al. (2020) Spain × Serological surveys
Gianquintieri et al. (2020) Italy × × Confirmed cases × Territorial planning
Sahraoui et al. (2020) Algeria × × Thermal camera sensors Annaba
Oster et al. (2020) USA × Confirmed cases × ×
Kanga et al. (2020) India × × × Jaipur Urban planning
Zhang and Schwartz (2020) USA × Confirmed cases ×
Ghosh and Mollah (2020) Bangladesh × × × Confirmed cases × ×
Adler at al. (2020) USA × Confirmed cases × × ×
Ash’aari et al. (2020) Malaysia × × Confirmed cases × ×
Hu, Yue, et al. (2020) USA × × Testing sites and confirmed cases ×
Interpolation and geostatistics IDW Prunet et al. (2020) France, Italy, Spain, Greece × Lock‐down Paris, Milan, Madrid, Athens ×
Saha et al. (2020) India × Lock‐down ×
Layati, Ouigmane, de Carvalho Alves, Murugesan, and El Ghachi (2020) Morocco × Confirmed cases ×
Bag et al. (2020) India × Confirmed cases × × Territorial planning
Voronoi Bherwani et al. (2020) India Confirmed cases ×
Spline Sui et al. (2020) China × × Polls × × Qingdao Urban planning, environmental repercussions
Gupta, Banerjee, and Das (2020) India × × Confirmed cases × Regional geography
Dickson, Espa, Giuliani, Santi, and Savadori (2020) Italy Confirmed cases Lock‐down ×
Kriging Yao, Pan, et al. (2020) China × × × Confirmed cases × × ×
Ran et al. (2020) China × × Confirmed cases × ×
Yao, Zuo, et al. (2020) China × × Confirmed cases × × Land use, environmental repercussions
Wei et al. (2020) China × × Confirmed cases ×
Sarfo and Karuppannan (2020) Ghana Confirmed cases × ×
Huang and Brown (2021) Germany × × × Confirmed cases × × ×
Saha and Chouhan (2021) India × Lock‐down × ×
Jain and Sharma (2020) India × × × × Lock‐down × Delhi, Mumbai, Chennai, Kolkata, Bangalore ×
Ash'aari et al. (2020) Malaysia × × Confirmed cases × ×
Kerimray et al. (2020) Kazakhstan × × × Lock‐down × Almaty ×
Dehghan Shabani and Shahnazi (2020)
Other models Markov Krisztin et al. (2020) Asia × Confirmed cases × × Predictive modeling
Wu et al. (2020) World × Confirmed cases ×
Geodetector Xie et al. (2020) China × × × Remote sensing and confirmed cases × ×
Zhang, Li, Yang, Zheng, and Chen (2020) China × Confirmed cases × ×
Hu, Qiu, et al. (2020) China × × × Confirmed cases × Wuhan × Urban planning
Gharakhanlou & Hooshangi, 2020 China × Confirmed cases ×
Spatial ABM Prudhomme et al. (2020) Iran × × Confirmed cases × Urmia × Urban planning
Tao et al. (2020) France × × Confirmed cases Dijon × Urban planning
2SFCA Sun, Di, et al. (2020) USA × × × Testing sites and confirmed cases Territorial planning
Birthday paradox Buscema et al. (2020) USA Confirmed cases × ×
TWC Paez, Lopez, Menezes, Cavalcanti, and Pitta (2020) Italy Confirmed cases ×
SUR Michalak et al. (2020) Spain × × Confirmed cases × ×
Spatiotemporal refined risk model Huang, Kwan, et al. (2020) Poland × Confirmed cases ×
Aspatial models Poisson Yip et al. (2020) China × Confirmed cases × × Hong Kong Land use
Harris (2020) China × × × × × Hong Kong × Urban planning
Andersen et al. (2020) UK × × Confirmed cases × × London
Desjardins, Hohl, and Delmelle (2020) USA × × Confirmed cases ×
Hohl et al. (2020) USA Confirmed cases × Territorial planning
Das et al. (2021) USA Confirmed cases × ×
Sugg et al. (2020) India × × Confirmed cases × Kolkata ×
Kim and Castro (2020) USA × × Confirmed cases ×
Gomes et al. (2020) South Korea × × Confirmed cases × × ×
Gayawan et al. (2020) Brazil Confirmed cases × ×
DiMaggio et al. (2020) Africa × × Confirmed cases × ×
Ballesteros et al. (2021) USA × Confirmed cases × × New York
Lieberman‐Cribbin, Tuminello, Flores, and Taioli (2020) Ecuador Confirmed cases × ×
Samuels‐Kalow et al. (2020) USA × × Confirmed cases × New York
Andrades‐Grassi et al. (2020) USA Confirmed cases × Boston
Nguyen et al. (2020) Europe and Maghreb × × × Confirmed cases ×
Krisztin et al. (2020) USA × Confirmed cases × Urban planning
Saez et al. (2020) World × Confirmed cases ×
Dickson et al. (2020) Spain × × Confirmed cases × ×
Fortaleza et al. (2020) Italy Confirmed cases Lock‐down ×
Cox regression Hutter et al. (2020) Brazil × Confirmed cases × × Regional geography
Wu et al. (2020) Austria × × Confirmed cases Vienna
Pearson Mollalo, Vahedi, Bhattarai, et al. (2020) China × × × Confirmed cases × ×
Chatterjee et al. (2020) USA × × × Confirmed cases × ×
Bherwani et al. (2020) India × × × Confirmed cases × × ×
Tao et al. (2020) India Confirmed cases ×
Marquès et al. (2020) USA × × × Testing sites and confirmed cases Territorial planning
Tello‐Leal and Macías‐Hernández (2020) Spain × Confirmed cases
Mollalo, Rivera, et al. (2020) Mexico × Confirmed cases Lock‐down Victoria
Meraj et al. (2021) USA × Confirmed cases × ×
Li, Wang, et al. (2020) India × Confirmed cases × ×
Vergara‐Perucich et al. (2020) China × Confirmed cases × ×
Oxoli, Cedeno Jimenez, and brovelli (2020) Chile × Confirmed cases × × Santiago de Chile Urban planning
Hu, Qiu, et al. (2020) Italy × Remote sensing Lock‐down Regional geography, environmental repercussions
Sun, Di, et al. (2020) China × Confirmed cases ×
Spearman and Kendall Prunet et al. (2020) USA Confirmed cases × × ×
Pani et al. (2020) France, Italy, Spain, Greece × Lock‐down Paris, Milan, Madrid, Athens ×
Ran et al. (2020) Singapore × Confirmed cases × × Singapore
Urban and Nakada (2021) China × × Confirmed cases × × ×
Nakada and Urban (2020) Brazil × Confirmed cases × × × São Paulo
Husnayain et al. (2020) Brazil × × Confirmed cases × × São Paulo × Urban planning
Kuzmenko et al. (2020) South Korea × Confirmed cases × ×
Huang, Li, et al. (2020) Ukraine × × × Confirmed cases × ×
K‐means Gan et al. (2020) USA × × × Atlanta ×
Lai et al. (2020) China × Confirmed cases × × Shanghai
Abdallah et al. (2020) USA × × Confirmed cases Lock‐down × ×
Thomas et al. (2020) Egypt × Confirmed cases
SIR models O’Sullivan et al. (2020) USA × × Confirmed cases ×
Geng et al. (2020) New Zealand × Confirmed cases Lock‐down × Regional geography
Iyanda et al. (2020) USA Confirmed cases × × ×

Another common method is geographically weighted regression (GWR), using the variables previously included in OLS regression (Alkhaldy, 2020; Fan, Zhan, Yang, Liu, & Zhan, 2020; Iyanda et al., 2020; Karaye & Horney, 2020; Shariati, Jahangiri‐rad, Mahmud Muhammad, & Shariati, 2020; Urban & Nakada, 2021; Wu et al., 2020). GWR creates a local model and calculates the parameters for all points of the sample considering the spatial variation in the relationships (Brunsdon, Fotheringham, & Charlton, 1996; Maiti et al., 2020). It can consider non‐stationary variables (such as climate, demographic factors, and environmental factors) and models the local relationships between those predictors and the patterns under study. It facilitates the analysis of spatial variation in a phenomenon in a given place (Murgante et al., 2020), following Tobler's first law of geography—that “everything is related to everything else, but near things are more related than distant things” (Tobler, 1970). Regarding COVID‐19, GWR has been used to examine the relationships between the disease and air quality and a variety of socioeconomic variables. For example, Fan et al. (2020) applied GWR and other models to assess the evolution of air pollution during 2020 in urban contexts in China. Murgante et al. (2020) examined the geographic parallels between affected areas in the Po Valley, Italy, and Wuhan, China, where they found that pollution and land use play an important role in the distribution of COVID‐19 in both regions. Mansour, Al Kindi, Al‐Said, Al‐Said, and Atkinson (2020) used GWR to identify relationships between sociodemographic variables (population density, age groups, diabetics) and COVID‐19 in Oman.

GWR has the limitation of assuming that all the processes that are modeled operate on the same spatial scale, which led to the development of multiscale geographically weighted regression (MGWR) where modeling can be applied at different spatial scales (Fotheringham, Yang, & Kang, 2017; Maiti et al., 2020). Iyanda et al. (2020) used MGWR to identify significant sociodemographic and economic factors of COVID‐19 at the country level. Sannigrahi et al. (2020) estimated local spatial correlation coefficients between sociodemographic variables and COVID‐19 data in Europe. Mollalo, Vahedi, et al. (2020), on the other hand, used MGWR for a local‐level examination of the spatial non‐stationarity between 35 environmental, socioeconomic, topographic, and demographic variables in the United States.

Geographically weighted principal component analysis (GWPCA) is an extension of the classic principal component analysis that adapts the approach for use with geographic data by considering spatial heterogeneity (Fernández, Cotos‐Yáñez, Roca‐Pardiñas, & Ordóñez, 2018). For COVID‐19, Das et al. (2021) use GWPCA in developing their improved Index of Multiple Deprivations in districts of Kolkata, India, using housing conditions, household amenities, water, sanitation, and hygiene, asset possession, and gender disparity.

Nomura et al. (2020), in the prefecture of Fukuoka, Japan, used a modified test of spatial correlation coefficients (Clifford, Richardson, & Hémon, 1989) to relate the number of PCR‐confirmed COVID‐19 cases to a social network application that provides real‐time monitoring of self‐reported COVID‐19 symptoms. The highly significant correlation they report indicates the utility of crowdsourced data in spatial analysis, which can assist in policy evaluations such as emergency declarations.

3.1.2. Hotspots and clustering

Another common method utilized to study COVID‐19 is hotspot analysis (Table 1), which can facilitate targeted interventions by local, state, and federal agencies. Two of the most common tools to measure local clustering is the Getis–Ord Gi statistic and kernel density. The Gi statistic uses a global index to measure the level of spatial autocorrelation, that is, the degree to which objects or activities in a geographic unit are similar to other objects or activities in nearby geographic units (Goodchild, 1987). It has been used in numerous studies to understand the distribution of COVID‐19 cases, their spatial evolution over time, and for vulnerability and risk maps (e.g., Al‐Kindi et al., 2020; Barboza, Schiamberg, & Pachl, 2021; Maroko, Nash, & Pavilonis, 2020; Mollalo, Vahedi, Bhattarai, et al., 2020; Rahman, Islam, & Islam, 2020).

Kernel density estimation (KDE) is used to estimate data densities that do not have parametric statistical behaviors, that is, do not follow normal, binomial, or exponential distributions (Okabe, Satoh, & Sugihara, 2009). Rex, Borges, and Käfer (2020) applied KDE to identify areas with a high density of COVID‐19 cases; and Nian et al. (2020) examined public transport mobility data.

Following the review of spatial autocorrelation methods, the global univariate Moran's I method is the most widely used, although it has mainly been utilized with socioeconomic and COVID‐19 data. It can evaluate whether the data tend to be clustered, dispersed, or spatially random. It has been used to identify clustering of COVID‐19 (Alcântara et al., 2020; Baum & Henry, 2020; Kang, Choi, Kim, & Choi, 2020; Liu, Fang, & Gao, 2020; Wu et al., 2020) and facilitate the production of vulnerability and risk maps (e.g., Andrades‐Grassi et al., 2020; Gomes et al., 2020; Shariati, Mesgari, Kasraee, & Jahangiri‐Rad, 2020).

As a global indicator, Moran's I neglects the instability of local spatial processes, which led to the development of the local version of Moran's I (Anselin, 1995) which identifies both the spatial clustering of entities with similar values and the occurrence of divergent values. This latter version is also known as a local indicator of spatial association (LISA). Xie et al. (2020) and Wu et al. (2020) in China, Murgante et al. (2020) and Sun, Di, et al. (2020) in the United States, and Santana Juárez, Castañeda, Carillo, Carillo, and Alcántara (2020) in Mexico produced LISA cluster maps to analyze the characteristics of COVID‐19 at various spatial levels of aggregation.

Other prominent clustering techniques are:

  • Self‐organizing maps, also known as Kohonen networks, a particular type of unsupervised neural network that performs spatial groupings of data based on similar behaviors. Melin et al. (2020) used a self‐organizing map to examine COVID‐19 cases in various countries.

  • Spatial scan statistics (Kulldorf, 2018) to identify significant clusters of cumulative COVID‐19 cases (Andersen, Harden, Sugg, Runkle, & Lundquist, 2020).

  • GeoMEDD (Curtis et al., 2020) is a new real‐time cluster detection methodology that provides indicators on the spatial evolution of the disease, based on access to various public sources that account for the location and timing of cases.

3.1.3. Interpolation and geostatistics

Here we focus on the interpolation methods used in works that address the spatial and spatiotemporal patterns of the pandemic, associated with atmospheric themes (pollution and climate), but also socioeconomic ones (Table 1). Many works pay special attention to the severe lockdowns that have been imposed in different countries, mainly in Europe and Asia.

  • Inverse distance weighting interpolation: Saha, Barman, and Chouhan (2020) analyzed the impact of the COVID‐19 lockdown on community mobility in different Indian states and used IDW to show movement trends before and after the lockdown.

  • Voronoi: Bherwani et al. (2020) used Bayesian probabilistic modeling to understand the relationship between COVID‐19 cases and population density in a given region together with GIS‐based Voronoi diagrams to identify high‐risk areas. Thiessen polygons delineate the risk zone boundaries.

  • Geostatistics estimate values of phenomena in areas where the values are uncertain or missing based on the covariance (how two random variables change) or variogram (spatial dependence among stochastic (random) processes); see Moral García (2004). Spline interpolations are another technique using discrete data points to model a continuous variable. Sui et al. (2020) used a cubic spline technique to estimate the second‐by‐second speed of buses and taxis through vehicle GPS data devices; they discuss the potential change in emissions in a post‐COVID period.

  • Kriging is probably the most commonly used geostatistical method and has been used in the COVID‐19 literature to predict climatic variables (Sarfo & Karuppannan, 2020; Wei et al., 2020; Yao, Zuo, et al., 2020; Yao, Pan, et al., 2020) and common atmospheric contaminants (Huang & Brown, 2021; Ran et al., 2020). In the latter case, research has used kriging to identify associations between air pollution and COVID‐19. A related technique is cokriging. Kerimray et al. (2020) use cokriging to map distributions of PM 2.5 and benzene in Almaty, Kazakhstan, in 2018–2019 and 2020, respectively. In particular, they examined the effect of government‐mandated lockdowns on concentrations of the pollutants.

3.1.4. Other spatial models

We mention other models used (Table 1).

  • Spatial Markov (Dehghan Shabani & Shahnazi, 2020; Gayawan et al., 2020; Krisztin, Piribauer, & Wögerer, 2020) is a method where the probability of an event occurring depends only on the immediately preceding event, characterizing the spatial evolution of COVID‐19.

  • Geodetector (Hu, Qiu, et al., 2020; Wu et al., 2020; Xie et al., 2020) is a method to detect stratified spatial heterogeneity and determine related factors, in this case with COVID‐19.

  • Spatial agent‐based models (ABM), which are popular in the study of epidemics, simulate the spatial behavior of the agents (population in this case), identifying the areas with the greatest concurrence, the population mobility, and the interactions between them. This can re‐create and predict the appearance of COVID‐19 cases based on expected social behavior. It has been applied in urban environments (Gharakhanlou & Hooshangi, 2020; Prudhomme, Cruz, & Cherifi, 2020)

  • The two‐step floating catchment area (2SFCA) method was used by Tao, Downs, Beckie, Chen, and McNelley (2020) to calculate the accessibility of COVID‐19 testing sites in Florida.

  • The birthday paradox is a probability model which was used to estimate the risks of exposure of populations to contagion (Sun, Di, et al., 2020).

  • Topological weighted centroid (TWC; Buscema, Della Torre, Breda, Massini, & Grossi, 2020) is a new algorithm used in Italy to analyze the evolution of the outbreak and to predict future epidemic processes.

  • The spatial seemingly unrelated regression (SUR) equations model can be used when the structure of the data consists of cross‐sections for different time periods. Saez, Tobias, and Barceló (2020) analyzes the possible seasonality of COVID‐19.

  • The spatiotemporal refined risk model was used by Michalak et al. (2020) for the unbiased identification of time periods with high risk of COVID‐19 in Poland.

3.1.5. Aspatial models in GIS

There are studies that use aspatial models and methods in conjunction with GIS, which is also important to mention due to its geographical contribution to the study of the pandemic (Table 1).

  • Poisson regression has been applied for COVID‐19 in socioeconomic studies with health services infrastructure, especially in urban contexts (Ballesteros, Salazar, Sánchez, & Bolaños, 2021; DiMaggio, Klein, Berry, & Frangos, 2020; Saez et al., 2020; Yip, Huang, & Liang, 2020).

  • Pearson correlation has been used with all kinds of variables, but especially with socioeconomic data, for spatiotemporal analysis, risk maps, health accessibility, and environmental repercussions due to the pandemic (Chatterjee et al., 2020; Li, Wang, Huang, & Lu, 2020; Marquès, Rovira, Nadal, & Domingo, 2020; Meraj et al., 2021; Tello‐Leal & Macías‐Hernández, 2020; Vergara‐Perucich, Correa‐Parra, & Aguirre‐Nuñez, 2020).

  • Spearman and Kendall tests have been used with confirmed cases of COVID‐19 and socioeconomic variables, as well as with climate and air quality, to analyze the spatiotemporal evolution of the pandemic, mainly in urban contexts (Kuzmenko, Vasylieva, Vojtovič, Chygryn, & Snieška, 2020; Nakada & Urban, 2020; Pani, Lin, & RavindraBabu, 2020).

  • Cox regression has been used to produce maps of vulnerability and risk in urban contexts (Fortaleza, Guimarães, de Almeida, Pronunciate, & Ferreira, 2020; Hutter et al., 2020).

  • K‐means is an unsupervised clustering algorithm that partitions the data based on the closest mean. In this review we identify those works that used it to perform clustering as part of the process of a spatial analysis. For example, Lai, Charpignon, Ebner, and Celi (2020) used it to group US counties based on sociodemographic characteristics and COVID‐19 data; and Abdallah, Khafagy, and Omara (2020) for GPS location data.

  • SIR models can add explicit geographical variables to study epidemic dynamics (Geng et al., 2020; O'Sullivan, Gahegan, Exter, & Adams, 2020; Thomas et al., 2020).

3.2. Multicriteria analysis

The analytic hierarchy process (AHP) is a multicriteria decision‐making model (Saaty, 1988). It is an additive and compensatory technique of pair‐based comparison, based on three principles: decomposition, comparative evaluation, and establishment of priorities. It is a process for identifying, understanding, and evaluating the interactions of a system in a holistic way by providing a scale to measure intangible factors and a method to establish priorities (Requia, Kondo, Adams, Gold, & Struchiner, 2020). For COVID‐19, it has been widely used for issues related to the environment and health geography through the development of maps of social vulnerability and risks, and health accessibility (Table 2). Requia et al. (2020) developed a hierarchical network for issues of land use, socioeconomics, population, health conditions, and the health‐care system in Brazil. Mishra, Gayen, and Haque (2020) used AHP to generate a COVID‐19 Vulnerability Index for urban environments in India, and Fang, Huang, Zhang, and Nitivattananom (2020) performed a similar analysis for the island of Xiamen, China.

TABLE 2.

Multicriteria

Tools Study Region or country of study Variables used Specific topics and analysis
Demographic and socioeconomic Contamination Weather Mobility Health services COVID‐19 data Spatiotemporal analysis Correlations Risk maps Urban context Political measures in research Geographic specifications
AHP Fang et al. (2020) China × × Xiamen Urban planning
Requia et al. (2020) Brazil × × Confirmed cases Territorial planning
Mishra et al. (2020) India × × × × Mumbai, Delhi, Chennai, Kolkata ×
Yao, Zuo, et al. (2020) China × × Confirmed cases × × Land use, environmental repercussions
Mahato, Bushi, and Nimasow (2020) India × × Confirmed cases × × × Territorial planning
Rahman, Islam, et al. (2020) Bangladesh × Confirmed cases × Territorial planning
Sarkar (2020) Bangladesh × × × Polls and confirmed cases × × Territorial planning
Ghosh, Das, et al. (2020) India × × Remote sensing Lockdown Mumbai, Delhi, Kolkata, Chennai Normalized Difference Vegetation Index (NDVI)
Habibi, Guellouh, Filali, and Berchiche (2020) Algeria × × Confirmed cases × Territorial planning
MCDA Sánchez‐Sánchez et al. (2020) Mexico × × × Confirmed cases × Chetumal × Urban planning
Maharjan et al. (2020) Nepal × Confirmed cases × Territorial planning
Bamweyana et al. (2020) Uganda × × × × × Polls × Kampala Urban planning
Others Karaye and Horney (2020) USA × × × Confirmed cases ×
Wie et al. (2020) China × × Confirmed cases
Cuadros et al. (2020) USA × × Confirmed cases × × Territorial planning
Cos et al. (2020) Spain × × Confirmed cases × × × Territorial planning
Sangiorgio and Parisi (2020) Italy × × Confirmed cases × × Predictive modeling

With GIS tools, multi‐criteria decision analysis (MCDA) has also been used (Table 2). It is a methodology to evaluate alternatives on specific topics, often conflicting, and combine them in a general evaluation (Albahri et al., 2020). Using this procedure, Sánchez‐Sánchez, Chuc, Canché, & Uscanga (2020) created a population vulnerability model where they evaluate and map the susceptibility to the risk of contagion of COVID‐19 in Chetumal, Mexico. Other similar examples are found in Kampala, Uganda (Bamweyana et al., 2020), and in Nepal (Maharjan et al., 2020).

3.3. Remote sensing and unmanned aerial vehicles

3.3.1. The atmosphere

Relevant atmospheric analyses (Table 3) tend to fall into one of two categories: climatic conditions or pollution. The spatiotemporal dynamics of climatic conditions and their relationship to COVID‐19 have been analyzed at many scales (Aman, Salman, & Yunus, 2020; El‐Magd & Zanaty, 2020; Ghahremanloo, Lops, Choi, & Mousavinezhad, 2020; Mishra et al., 2020; Pei, Han, Ma, Su, & Gong, 2020; Rahman, Azad, et al., 2020; Wyche et al., 2020). Spatiotemporal analyses of pollution levels during the pandemic tend to focus on the consequence of reductions in mobility and economic production (Filonchyk, Hurynovich, Yan, Gusev, & Shpilevskaya, 2020; Sandifer et al., 2020; Wu et al., 2020). Special attention is paid to countries that imposed lockdowns to control the pandemic, as well as to issues specifically affecting urban areas (Das et al., 2021; Guida & Carpentieri, 2020; Kerimray et al., 2020; Prunet, Lezeaux, Camy‐Payret, & Thevenon, 2020; Ran et al., 2020; Yao, Pan, et al., 2020). PM 2.5, PM 10, SO2, NO2, CO2, O3, O x , and black carbon have been the most studied particles.

TABLE 3.

Remote sensing and unmanned aerial vehicles

Earth spheres Study Region or country of study Variables used Specific topics and analysis
Demographic and socioeconomic Contamination Weather Mobility Health services COVID‐19 data Remote sensing source Spatiotemporal analysis Correlations Risk maps Urban context Political measures in research Geographic specifications
Atmosphere Wu et al. (2020) China × × × Confirmed cases Gesopatial Data Cloud × ×
Das et al. (2021) India × × Confirmed cases Landsat−8 OLI/TIRS Kolkata ×
Yao, Pan, et al. (2020) China × × × Confirmed cases China Meteorological Data Sharing Service System × × ×
Prunet et al. (2020) France, Italy, Spain, Greece × S5P TROPOMI Lockdown Paris, Milan, Madrid, Athens ×
Yao, Zuo, et al. (2020) China × × Confirmed cases Resource and Environmental Science Data Center of the Chinese Academy of Sciences × × Land use, environmental repercussions
Aman et al. (2020) India × Landsat‐8 OLI/TIRS Lockdown Ahmedabad
Pei et al. (2020) China × S5P TROPOMI Lockdown Beijing, Wuhan, Guangzhou ×
Ghahremanloo et al. (2020) East Asia × S5P TROPOMI × × Environmental repercussions
Wyche et al. (2020) UK × S5P TROPOMI × × Environmental repercussions
Rahman, Azad, et al. (2020) Bangladesh × S5P TROPOMI Lockdown x Dhaka ×
El‐Magd and Zanaty (2020) Egypt × MODIS Lockdown ×
Stieb, Evans, To, Brook, and Burnett (2020) Canada × × Confirmed cases MODIS, MISR, GEOS‐Chem × × × NDVI
Filonchyk et al. (2020) China × × MODIS, AIRS, AURA OMI Lockdown ×
Stratoulias and Nuthammachot (2020) Thailand × S5P TROPOMI Lockdown
Ghosh, Das, et al. (2020) India × × Landsat‐8 OLI/TIRS Lockdown Mumbai, Delhi, Kolkata, Chennai NDVI
Roman‐Gonzalez, Navarro‐Raymundo, and Vargas‐Cuentas (2020) Peru × S5P TROPOMI × × Environmental repercussions
Metya, Dagupta, Halder, Chakraborty, and Tiwari (2020) South‐East Asia × AIRS, AURA OMI Lockdown
Ogen (2020) Europe × S5P TROPOMI × Environmental repercussions
Vîrghileanu, Săvulescu, Mihai, Nistor, and Dobre (2020) Europe × × Confirmed cases S5P TROPOMI × × Regional geography
Naeger and Murphy (2020) USA × × S5P TROPOMI × × Regional geography, environmental repercussions
Tan, Li, Gao, and Jiang (2020) China × S5P TROPOMI Lockdown × Regional geography, environmental repercussions
Roman‐González and Vargas‐Cuentas (2020) Peru × S5P TROPOMI × Environmental repercussions
Sandifer et al. (2020) USA × × Polls NOAA, IOOS × Territorial planning
Lyalko, Yelistratove, Apstolov, and Romanciuc (2020) Ukraine × Envisat, NOAA Lockdown Environmental repercussions
Evangeliou et al. (2020) Europe × × Global Atmosphere Watch × Environmental repercussions
Oxoli et al. (2020) Italy × S5P TROPOMI Lockdown Regional geography, environmental repercussions
Pathakoti et al. (2020) India × × AURA OMI, S5P TROPOMI, MODIS Lockdown ×
Ash’aari et al. (2020) Malaysia × × MODIS Lockdown Environmental repercussions
Venter, Aunan, Chowdhury, and Lelieveld (2020) World × × × S5P TROPOMI Lockdown Environmental repercussions
Karaer, Balafkan, Gazea, Arghandeh, and Ozguven (2020) USA × × S5P TROPOMI × ×
Lithosphere Das et al. (2021) India × × Confirmed cases Landsat 8 OLI/TIRS Kolkata ×
Prunet et al. (2020) France, Italy, Spain, Greece × S5P TROPOMI Lockdown Paris, Milan, Madrid, Athens ×
Yao, Zuo, et al. (2020) China × × Confirmed cases Resource and Environmental Science Data Center of the Chinese Academy of Sciences × × Land use, environmental repercussions
Wang, Peng, et al. (2020) China × Institute of Geographic Sciences and Natural Resources Research of the Chinese Academy of Sciences × Land use, environmental repercussions
Renigier‐Biłozor et al. (2020) World × × Land use, economic repercussions
Elvidge et al. (2020) China × × VIIRS, DNB, NOAA × × Land use, economic and environmental repercussions
Minetto et al. (2020) World × × WorldView‐2 satellite × Munich, Phoenix, Moscow, Wuhan, North Korea × Land use, economic repercussions
Okyere et al. (2020) Ghana × × Unmanned aerial vehicle × Aquatic geoenvironments, urban planning, economic repercussions
Mobaied (2020) Syria × × × Land use
Ghosh, Elvidge, et al. (2020) India × VIIRS DNB NOAA × Land use, economic and environmental repercussions
Taoyang et al. (2020) China × Gaofen‐2, Jilin‐1, Pléiades × Wuhan Urban planning
Saxena, Rabha, Tahlani, and Ray (2020) India × National Remote Sensing Center ISRO × Land use, NDVI, economic and environmental repercussions
Gupta, Bhatt, Roy, and Chauhan (2020) India × MODIS Lockdown Environmental repercussions, NDVI
Kanga et al. (2020) India × × WorldView‐1 × Jaipur Urban planning
Hydrosphere Aman et al. (2020) India × Landsat‐8 OLI/TIRS Lockdown Ahmedabad
Okyere et al. (2020) Ghana × × UAV × Aquatic geoenvironments, urban planning, economic repercussions
Garg et al. (2020) India × Sentinel‐2A and Sentinel‐2B Lockdown × Aquatic geoenvironments
Yunus et al. (2020) India × S5P TROPOMI, AURA OMI Lockdown × Aquatic geoenvironments
Rodríguez‐Benito et al. (2020) Chile × Sentinel‐2 and Sentinel‐3 Lockdown × Aquatic geoenvironments
Avtar et al. (2020) China and India × × Landsat 8 OLI, Sentinel‐2 Lockdown Wuhan Aquatic geoenvironments, environmental repercussions

3.3.2. The lithosphere

On the Earth's surface, remote sensing (RS) and UAVs have been used for studies of land use change, with significant examples such as the case of Yao, Zuo, et al. (2020) who analyze the potential distribution of soya crops and how COVID‐19 has affected the soya market. Wang, Peng, et al. (2020) conducted a land use analysis of crops in China to evaluate whether the pandemic led to increased cultivation and land exploitation; their findings are relevant to the development of agricultural policy to improve food security. RS and UAVs also have applications for the real estate market as they are used for property inspection in a study that analyzes the consequences of COVID‐19 on the real estate sector (Renigier‐Biłozor, Zróbek, Walacik, & Janowski, 2020).

Several studies have analyzed pollutant levels in urban environments (Das et al., 2021; Prunet et al., 2020). Lighting is considered an indicator of economic recovery or recession, as in the case of several Chinese cities, where lighting levels are compared during peak closure with the same variable a year earlier (Elvidge, Ghosh, Hsu, Zhizhin, & Bazilian, 2020).

Research on the dynamics of human movement during the pandemic demonstrates important applications of RS and UAVs. Minetto, Segundo, Rotich, and Sarkar (2020) employ a deep learning technique to automatically detect objects, such as cars and aircraft, from satellite imagery. They suggest that the ability to automatically identify these objects in a time series of images will allow for temporal analysis of societal indicators (Minetto et al., 2020). Similarly, Wu et al. (2020) use deep learning to identify vehicles within Wuhan, China, from RS imagery and thus evaluate the effect of a transportation ban on the city. In a very different type of analysis, Okyere et al. (2020) use UAVs to monitor fishing boats and assess adherence the effects of physical distancing mandates and risks of exposure in the fishing sector.

There are also studies in areas with armed conflict, as in the case of Syria (Mobaied, 2020). Using RS and spatial models, the authors designed the “Risk of Vulnerability to COVID‐19 in War Zones Index” to identify areas that are vulnerable to the pandemic and thus help decision‐makers to limit risk and avoid and/or manage widespread infection.

3.3.3. The hydrosphere, with special attention to lockdowns

Addressing the concepts of rivers and pollution: changes in water quality as a result of a major lockdown have been evaluated in both the Ganges River (Garg, Aggarwal, & Chauhan, 2020) and the Sabarmati River (Aman et al., 2020) in India using Landsat 8 and Sentinel‐2 imagery, respectively. Similar methods have been applied to measure lake pollution, such as by Yunus, Masago, and Hijioka (2020) who use Landsat 8 to measure water turbidity in Vembanad Lake in India, finding an improvement in water quality as a result of lockdown.

In another hemisphere, Sentinel‐2 and Sentinel‐3 imagery was applied to detect a harmful algal bloom in salmonid aquaculture in Chile. The analysis technique, combined with rapid delivery of the high‐resolution satellite imagery, allowed for near real‐time monitoring and decision‐making when in‐situ sampling was restricted by a mandated lockdown (Rodríguez‐Benito, Navarro, & Caballero, 2020).

RS and UAVs are also highly relevant to topics related to ocean economic activities. For example, a UAV was used in Ghana to monitor water‐based activity during COVID‐19, providing solid scientific evidence as a basis for decision‐making in the artisanal fishing sector (Okyere et al., 2020).

3.4. GPS and networks

Throughout this overview we have detailed numerous works employing GPS. Here we focus on data mining and analysis of communication and transportation networks (Table 4).

TABLE 4.

GPS and networks

Tools Study Region or country of study Variables used Specific topics and analysis
Demographic and socioeconomic Contamination Weather Mobility Health services COVID‐19 data Info data mining Source data Spatiotemporal analysis Correlations Risk maps Urban context Political measures in research Geographic specifications
Data mining Yabe et al. (2020) Japan × Confirmed cases Mobile phone location Agoop 20, NTT × Tokyo ×
Pepe et al. (2020) Italy × Mobile phone location Cuebiq Inc. × ×
Arimura et al. (2020) Japan × × Confirmed cases Mobile phone location NTT DOCOMO × Sapporo
Lai et al. (2020) USA × × Confirmed cases Mobile phone location PlaceIQ Lockdown × ×
Gao, Rao, et al. (2020) USA × × Confirmed cases Mobile phone location SafeGraph Lockdown ×
Kang, Gao, et al. (2020) USA × × Mobile phone location SafeGraph × ×
Roy and Kar (2020) USA × × Mobile phone location SafeGraph Lockdown Los Angeles
Huang, Li, et al. (2020) USA × × Mobile phone location SafeGraph × Atlanta ×
Ye et al. (2020) China × × Confirmed cases Mobile phone location × ×
Hu, Qiu, et al. (2020) China × Confirmed cases Mobile phone location
Gan et al. (2020) China × Confirmed cases Mobile phone location × × Shanghai
Abdallah et al. (2020) Egypt × Confirmed cases Mobile phone location
Kapoor et al. (2020) USA × Confirmed cases Mobile phone location, internet SafeGraph, Google × ×
Sarfo and Karuppannan (2020) Ghana Confirmed cases GPS GH COVID‐19 Tracker × ×
He et al. (2020) China × × Confirmed cases GPS LBS Tencent ×
Guida and Carpentieri (2020) Italy × × × × GPS OpenStreetMap, Agenzia Transporti Milanesi, GTFS Milan × Urban planning
Vannoni, McKee, Semezna, Bonell, and Stuckler (2020) World × GPS Citymapper × × ×
Nian et al. (2020) China × × GPS Taxi × Chongqing × Environmental repercussions
Depellegrin et al. (2020) Italy × × GPS Boats (Automatic Identification System, AIS) Lockdown Venice ×
Pase et al. (2020) USA × × GPS Citi Bike × New York × Urban planning
Sui et al. (2020) China × × Polls GPS BUS public × × Qingdao Urban planning
Sahraoui et al. (2020) Algeria × × GPS Police and health departments vehicles Annaba
Mu et al. (2020) China × × × Confirmed cases Internet Baidu × ×
Cheng et al. (2020) China × Confirmed cases Internet Baidu × ×
Shi et al. (2020) China × Confirmed cases Internet Baidu × Territorial planning
Xu et al. (2020) China × × Confirmed cases Internet Baidu × ×
Shen (2020) China × Confirmed cases Internet Baidu ×
Liu, Fang, et al. (2020) China × × × Confirmed cases Internet Baidu × × ×
Tong et al. (2020) China × × Confirmed cases Internet Baidu × × Regional geography
Niu, yue, Zhou, and Zhang (2020) China × × Confirmed cases Internet Baidu ×
Pászto and Vondráková (2020) Europe × × Confirmed cases Internet Google × Mapping techniques
Husnayain et al. (2020) South Korea × Confirmed cases Internet Google ×
Nguyen et al. (2020) USA × Confirmed cases Internet Google Street View × Urban planning
Coven and Gupta (2020) USA × × Social network Facebook × New York ×
Heo et al. (2020) USA × × Social network Facebook × × × Territorial planning
Kuchler et al. (2020) USA, Italy × Confirmed cases Social network Facebook
Yang et al. (2020) World, USA × × × Confirmed cases Social network Geotagged Twitter × ×
Li, Li, et al. (2020) USA × × Confirmed cases Social network Geotagged Twitter × ×
Iranmanesh and Alpar Atun (2020) Cyprus × × Confirmed cases Social network Geotagged Twitter × Kyrenia
Zhu et al. (2020) China × Confirmed cases Social network Qingbo Big Data Agency × ×
Peng et al. (2020) China × Confirmed cases Social network Weibo Data Wuhan Urban planning
Network Valjarević et al. (2020) World × × Confirmed cases Flights × Regional geography
Sun, Wandelt, et al. (2020) World × Flights ×
Saeed et al. (2021) Pakistan × × × Confirmed cases Geotagging COVID‐19 cases × Punjab × Urban planning
Taiwo (2020) Nigeria × × × Testing sites and confirmed cases Public services × Regional geography
Desmet and Wacziarg (2020) USA × × × × Confirmed cases Public transport × × × Regional geography
Saladié et al. (2020) Spain × × Road network Lockdown ×
Wan (2020) China × Confirmed cases Road network × Beijing
Shah and Patel (2020) India × × × Confirmed cases Road network × Surat × Urban planning
Bessa and da Luz (2020) Brazil × Confirmed cases Road network × Regional geography
Snyder and Parks (2020) USA × × × × Road network, flights × Multi‐criteria analysis
Kanga et al. (2020) India × × Urban layout × Jaipur Urban planning
Silalahi et al. (2020) Indonesia × × Confirmed cases Urban layout × Jakarta ×
Alasadi et al. (2020) Iraq × × × Urban layout × Basra Urban planning
Deponte et al. (2020) Italy × × Urban layout Milan Urban planning
Zecca et al. (2020) Scotland × Urban layout Aberdeen × Urban planning
Liu, Lin, et al. (2020) China × × Urban layout Wuhan Urban planning

Studies using data mining to study human mobility tend to focus on areas where lockdowns have been established. We differentiate these studies by their inputs:

  • Cellphone location (Arimura, Ha, Okumura, & Asada, 2020; Gao, Rao, et al., 2020; Kang, Gao, et al., 2020; Kapoor et al., 2020; Pepe et al., 2020; Roy & Kar, 2020; Yabe et al., 2020; Ye et al., 2020).

  • Internet and social networks: Google (Husnayain, Shim, Fuad, & Su, 2020; Kapoor et al., 2020; Nguyen et al., 2020; Pászto & Vondráková, 2020), Baidu (Cheng et al., 2020; Liu, Fang, et al., 2020; Mu, Yeh, & Zhang, 2020; Shen, 2020; Shi et al., 2020; Tong, Ma, & Liu, 2020; Xu, Wang, Dong, Shen, & Xu, 2020), Facebook (Coven & Gupta, 2020; Heo, Lim, & Bell, 2020; Kuchler, Russel, & Stroebel, 2020), Twitter geotagged tweets (Iranmanesh & Alpar Atun, 2021; Li, Li, et al., 2020; Saeed et al., 2021; Yang et al., 2020), Weibo (Peng, Wang, Liu, & Wu, 2020), Quingbo (Zhu, Zheng, Liu, Li, & Wang, 2020).

  • Air and sea transport (Depellegrin, Bastianini, Fadini, & Menegon, 2020; Snyder & Parks, 2020; Sun, Wandelt, & Zhang, 2020; Valjarević et al., 2020).

  • Monitoring of public transport: bus (Desmet & Wacziarg, 2020; Guida & Carpentieri, 2020; Sui et al., 2020), taxi (Nian et al., 2020), and urban bicycles (Pase, Chiariotti, Zanella, & Zorzi, 2020).

  • Geotagged data for identified infections compiled with travel histories (He et al., 2020; Sarfo & Karuppannan, 2020).

On the use of layers on networks and transport flow, we emphasize the topics of road networks for accessibility to health services and the analysis of the change in the flow of vehicles due to lockdown (Bessa & da Luz, 2020; Desmet & Wacziarg, 2020; Saladié, Bustamante, & Gutiérrez, 2020; Shah & Patel, 2020; Snyder & Parks, 2020; Taiwo, 2020; Tao et al., 2020; Wan, 2020).

Studies on urban planning also occupy a very prominent space. As a result, the issue of health infrastructure and its accessibility is addressed, opening up a political debate about public spaces (Alasadi, Aziz, Dhiya, & Abdulmajed, 2020; Deponte, Fossa, & Gorrini, 2020; Kanga et al., 2020; Liu, Lin, et al., 2020; Silalahi, Hidayat, Dewi, Purwono, & Oktaviani, 2020; Zecca, Gaglione, Laing, & Gargiulo, 2020). We highlight the use of OSMnx tools to download spatial data from OpenStreetMap and model, project, visualize, and analyze street networks (Boeing, 2020).

3.5. Web maps

Thanks to the availability of constantly updated open data and the availability of web maps, plugins, and code sharing, there are many geospatial platforms online for monitoring COVID‐19 around the world (Ghilardi et al., 2020), which have emerged from organizations, academic institutions, or media platforms.

WebGIS platforms for the dissemination of information to the public and data accessibility have already been addressed in other previous works (Boulos & Geraghty, 2020; Franch‐Pardo et al., 2020; Koller et al., 2020; Zúñiga et al., 2020). Some papers explain the technical operations of the web platform (Ghilardi et al., 2020; Graves & He, 2020; Hohl, Delmelle, Desjardins, & Lan, 2020; Mooney et al., 2020; Peddireddy et al., 2020; Sarfo & Karuppannan, 2020). Here we present a specific example in Mexico and briefly explain the operation of the university‐based platform maintained by the National Autonomous University of Mexico (https://covid19.ciga.unam.mx/). The platform is supported by a package written in R, which runs a daily process to download the current COVID‐19 data published by the federal government. The system first cross‐checks the data publication date and downloads the database for the current day from the page maintained by the Health Agency. The data are combined with spatial data for the geographic regions (states and municipalities) and with 2020 population counts for the given regions. Next, the following statistics are calculated at the national, state, and municipal level: total recovered cases, active cases, deaths, and accumulated cases. Combining these totals with the population counts, the process computes rates of incidence, mortality, and fatality. The absolute change between consecutive weeks is calculated for weekly values for positive cases, hospitalizations, and deaths, as well as the weekly change in incidence and mortality rates, and the percent positivity rate (Ghilardi et al., 2020). These geographic data are mapped and published through an ArcGIS Online web dashboard using the template of the widely known dashboard created by Johns Hopkins University (Dong, Du, & Gardner, 2020).

In recent months, other notable graphics have been produced using cartograms to represent COVID‐19 data worldwide (Yalcin, 2020), for China (Gao, Zhang, Wu, & Wang, 2020; Shi & Liu, 2020), Italy (Casti, 2020) and the United States (Zhang, 2020).

3.6. Volunteered geographic information and public participation GIS

Green areas in cities, the layout of their streets, environmental quality, and public spaces play an important role in times of the pandemic (Honey‐Roses et al., 2020; Samuelsson, Barthel, Colding, Macassa, & Giusti, 2020). PPGIS and VGI are important tools, in addition to existing information sources, for gathering data from the population to fight COVID‐19 (Table 5). Gorayeb et al. (2020) describe information gathering through citizen surveys in Fortaleza, Brazil. The information provided by the population through the surveys exhibits similarities with data provided by official maps, suggesting that these are promising tools for rapid data collection. In Israel, an online questionnaire was carried out to identify possible symptoms and to follow up with infected persons over time (Rossman et al., 2020). In the interpretation of the data, differences in the proportion of reported symptoms in participants from different cities and different neighborhoods that are geographically close to each other are revealed, which could suggest the ability to detect changes at a high geographical resolution.

TABLE 5.

Volunteered geographic information

Study Region or country of study Variables used Specific topics and analysis
Demographic and socioeconomic Contamination Weather Mobility Health services COVID‐19 data Spatiotemporal analysis Risk maps Urban context Political measures in research Geographic specifications
Gorayeb et al. (2020) Brazil × × VGI × Fortaleza × Urban planning
Rossman et al. (2020) Israel × × Polls and confirmed cases × × Territorial planning
Antoniou et al. (2020) Greece × × Crowdsourcing GIS × × Territorial planning
Debnath and Bardhan (2020) Turkey × × Polls and confirmed cases × × Territorial planning
Brito et al. (2020) Brazil × × Polls and confirmed cases × × × Territorial planning
Sandifer et al. (2020) USA × × Polls and remote sensing × Territorial planning
Leal‐Neto, Santos, Lee, Albuquerque, and Souza (2020) Brazil × Participatory surveillance testing and confirmed cases × Caruaru Urban planning
Yoneoka et al. (2020) Japan VGI and confirmed cases × Tokyo
Vannoni et al. (2020) World × × × ×

The implementation of PPGIS in Greece (Antoniou, Vassilakis, & Hatzaki, 2020) and India (Debnath & Bardhan, 2020) during the spring of 2020 was motivated by the need to rapidly acquire data based on location. These studies find that crowdsourcing applications are important tools for real‐time mapping and monitoring to allow health authorities to make decisions and design effective management approaches (Antoniou et al., 2020; Brito et al., 2020; Desjardins, 2020).

4. DISCUSSION

In the review of the first half of 2020 on GIS and spatial analysis prepared by Franch‐Pardo et al. (2020), the authors alluded to the fact that Tobler's (1970) law was much less evident in the geographic analyses of COVID‐19 due to the fact that numerous works conducted studies on global and national scales. This was largely because spatial analysis requires adequate spatial and spatiotemporal data sets, which was rare in the early months of 2020.

At first, the disease evolution patterns worldwide were more like Lévy's flight (Gross et al., 2020), in other words, randomly distributed, where human movement seemed to be the only driving factor for the spatial distribution and the intensity of COVID‐19. In fact, the dominance of this factor has changed little; however, we see more evidence of spatial autocorrelation of COVID‐19 data in the second half of the year. We found that spatial and temporal scale and improved resolution have uncovered disease patterns that can better inform decision‐making at the local level. It is interesting to see how the proportion of studies that study COVID‐19 on a global scale has fallen compared to the first half of 2020, from 30% to 7% of papers (Franch‐Pardo et al., 2020). The geoenvironmental and socioeconomic dynamics play a statistically more important role in the distribution of diseases at more local levels. Not only that, but based on the health measures adopted by each country, there are very diverse spatial and temporal variations in behavior and response, strengthening the notion of mitigating the pandemic at the local levels where health‐care systems typically operate.

For this reason, to facilitate the applicability of spatial analysis in decision‐making, information must be collected and made available at high spatial and temporal resolution. Although it is also true that the latter can be discussed under the current issue of levels of violation of privacy for human security. It is an open debate.

However, the anonymous and detailed data sets allow the design of specific management strategies with greater possibilities of limiting the chains of infection. The probability of significantly reducing spread is further increased if high‐resolution data are combined with field work (Ghilardi et al., 2020). While aggregated spatial data at the county or municipal level have utility at the state or national political scope, they offer an debatable utility to contain the pandemic in local perspective. To address this, many studies working at the city level use alternative data sources, such as VGI, mobility data, and RS to overcome this limiting factor (Tables 3, 4, 5).

Temporality regarding data access and information dissemination is the other main issue faced by the spatial epidemiology of COVID‐19 when studies try to conduct real‐time analysis of an ongoing pandemic. It is well known that there are lags in COVID‐19 data reporting. Curtis et al. (2020) propose that COVID‐19 data go directly from health systems and automatically to GIS platforms that can routinely monitor cases and deaths, due to the speed of transmission. Conversely, the publication process of peer‐reviewed scientific articles can delay important findings. For example, research that studied the impacts of lockdowns were published in late 2020, when many nations had already relaxed COVID‐19 public health measures that were implemented in the first half of 2020. However, retrospective studies are still valuable for improving public health preparation and response for current and future outbreaks.

The spatial analysis of COVID‐19 also highlights important advances in technology for spatial and geographical science research, for example, the development and consolidation of new spatial analysis software such as GeoMEDD (Curtis et al., 2020) and OSMnx (Boeing, 2020); new models for risk estimation (Chatterjee et al., 2020; Mobaied, 2020; O'Sullivan et al., 2020; Sun, Di, et al., 2020); algorithms for the management of spatial big data (Buscema et al., 2020; Fang et al., 2020; Li, Li, et al., 2020; Shah & Patel, 2020); new clustering techniques and automated spatial statistics (Curtis et al., 2020; Fang et al., 2020; Melin et al., 2020); effective new forms of COVID‐19 mapping on the web (Ghilardi et al., 2020; Graves & He, 2020; Maharjan et al., 2020); novel UAV applications (Okyere et al., 2020; Sahraoui, Korichi, Kerrache, Bilal, & Amadeo, 2020); and utilization of VGI (Hohl et al., 2020; Rossman et al., 2020; Yoneoka et al., 2020), among others.

Spatial statistical models are among the most widely used and thus could be considered among the most popular tools for studying the COVID‐19 pandemic during the second half of 2020 (Figure 2). Spatial regression and autocorrelation as well as multicriteria analysis are found in the majority of GIS‐based studies, although we found the study of socioeconomic variables to be more common compared to the first half of the year (Franch‐Pardo et al., 2020). Specifically, there has been a substantial increase in the production of vulnerability maps of COVID‐19 in urban environments.

FIGURE 2.

FIGURE 2

GIS tools and (a) variables used, (b) topics covered

There has also been an increase in studies using RS analysis. A majority of these studies have focused on air quality. In contrast, in the first half of 2020, analyses were more likely to focus on the climate and its relationship to COVID‐19. In this regard, some studies affirm that the climate played a greater role in the first months of the pandemic, and that its impact has dissipated in later phases (Méndez‐Arriaga, 2020).

Web mapping continues to be a principal medium for disseminating public information about COVID‐19. Consistent with Chatterjee et al. (2020), public health organizations and governments recommend many preventive measures such as social distancing and personal hygiene, but one of the dominant strategies remains communicating risks and raising awareness to break chains of infection. Web maps provide a powerful means to influence these strategies.

Most spatial analyses use administrative boundaries as their units of study. From a global perspective, nation‐states dictate the management of the pandemic since they control land, air, and water ports of entry, something that is decisive in times of crisis. For example, decreasing mobility via air traffic may decrease COVID‐19 transmission by up to 90% (Foucher, 2020).

In this regard, another important objective in the reviewed papers has been to analyze how political decisions in each country have impacted populations at various spatial scales. The government decisions adopted explain a large part of the geographical changes that have occurred: the spatiotemporal evolution of the pandemic, pollution levels, mobility, and socioeconomic repercussions. Specifically, lockdowns were the most studied space‐time phenomenon in the second half of 2020, something addressed by all disciplines that spatially analyze COVID‐19. Not all countries implemented lockdowns, but, to a greater or lesser degree, all have reduced the mobility of their residents as well as their economic and production activities. Altogether, the other most studied event in this pandemic has been the Spring Festival of China in the first half of 2020 (Gan, Li, He, & Li, 2020; He et al., 2020; Tian et al., 2020; Tong et al., 2020; Yang et al., 2020).

On the other hand, COVID‐19 transmission is higher in metropolitan areas, as discussed in the large number of reviewed works in urban environments around the world. The UN‐Habitat report for the mitigation of the externalities based on SARS‐CoV‐2 in global cities corroborates other studies in urban environments. The report expresses concern that the pandemic will be most devastating in poor and densely populated urban areas (Mishra et al., 2020; UN Habitat, 2020). COVID‐19 is also influenced by the notion of metabolic rift (Foster & Suwandi, 2020; Wallace, Liebman, Chaves, & Wallace, 2020), that is, in relation to the effects of geographical changes between rural and urban populations, associated with capitalism (Foster, 1999; Napoletano et al., 2019).

Following this argument, and although there are notable studies based in Ghana, Egypt, Morocco, Algeria, Nigeria, and Uganda, we observe a gap in contributions from Africa. In the second half of 2020, the majority of spatial analyses were conducted within the territories of China and the United States. In comparison with the previous 6 months, India accounted for the greatest increase in studies using spatial analysis, whereas global‐scale studies have mostly declined. Finally, there seems to be a consistent amount of research coming from Brazil and Italy in the latest contributions.

5. CONCLUSIONS

This work is a synthesis on the spatial analytical tools, their themes, and their fields of application on COVID‐19. We hope this review provides new reflections and facilitates the development and improvement of spatial science methods to study COVID‐19. GIS‐related tools and techniques have served to monitor, evaluate situations, predict events, and inform policy decisions, all while the world has begun vaccination campaigns. We expect that the economic, societal, and environmental changes as a consequence of the evolution of the COVID‐19 pandemic will influence the scientific world with new research strategies. However, new waves of the pandemic and the arrival of vaccines may result in a more uneven distribution of the impact of COVID‐19. Spatial analysis and geography will continue to be powerful tools to understand and predict the evolution of the pandemic at a variety of spatial and spatiotemporal scales.

Franch‐Pardo, I. , Desjardins, M. R. , Barea‐Navarro, I. , & Cerdà, A. (2021). A review of GIS methodologies to analyze the dynamics of COVID‐19 in the second half of 2020. Transactions in GIS, 25, 2191–2239. 10.1111/tgis.12792

Contributor Information

Ivan Franch‐Pardo, Email: [email protected].

Michael R. Desjardins, Email: [email protected].

Isabel Barea‐Navarro, Email: [email protected].

Artemi Cerdà, Email: [email protected].

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in [repository name e.g., “figshare”] at http://doi.org/[doi], reference number [reference number].

REFERENCES

  1. Abdallah, H. S. , Khafagy, M. H. , & Omara, F. A. (2020). Case study: Spark GPU‐enabled framework to control COVID‐19 spread using cell‐phone spatio‐temporal data. Computers, Materials & Continua, 65(2), 1303–1320. [Google Scholar]
  2. Adler, P. , Florida, R. , & Hartt, M. (2020). Mega regions and pandemics. Tijdschrift voor Economische en Sociale Geografie, 111(3), 465–481. 10.1111/tesg.12449 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ahasan, R. , Alam, M. S. , Chakraborty, T. , & Hossain, M. M. (2020). Applications of GIS and geospatial analyses in COVID‐19 research: A systematic review. F1000Research, 9, 1379. 10.12688/f1000research.27544.1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alasadi, H. A. A. , Aziz, M. T. , Dhiya, M. , & Abdulmajed, A. (2020). A network analysis for finding the shortest path in hospital information system with GIS and GPS. Journal of Network Computing and Applications, 5(1), 10–23. 10.23977/jnca.2020.050103 [DOI] [Google Scholar]
  5. Albahri, O. S. , Zaidan, A. A. , Albahri, A. S. , Zaidan, B. B. , Abdulkareem, K. H. , Al‐qaysi, Z. T. , … Rashid, N. A. (2020). Systematic review of artificial intelligence techniques in the detection and classification of COVID‐19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects. Journal of Infection and Public Health, 13(10), 1381–1396. 10.1016/j.jiph.2020.06.028 [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Alcântara, E. , Mantovani, J. , Rotta, L. , Park, E. , Rodrigues, T. , Carvalho, F. C. , & Souza Filho, C. R. (2020). Investigating spatiotemporal patterns of the COVID‐19 in São Paulo State, Brazil. Geospatial Health, 15(2), 201–209. 10.4081/gh.2020.925 [DOI] [PubMed] [Google Scholar]
  7. Alkhaldy, I. A. (2020). GIS application for modeling covid‐19 risk in the Makkah region, Saudi Arabia, based on population and population density. Egyptian Journal of Environmental Change, 12(2), 13–30. 10.21608/ejec.2020.115873 [DOI] [Google Scholar]
  8. Al‐Kindi, K. M. , Alkharusi, A. , Alshukaili, D. , Al Nasiri, N. , Al‐Awadhi, T. , Charabi, Y. , & El Kenawy, A. M. (2020). Spatiotemporal assessment of COVID‐19 spread over Oman using GIS techniques. Earth Systems and Environment, 4(4), 797–811. 10.1007/s41748-020-00194-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Aman, M. A. , Salman, M. S. , & Yunus, A. P. (2020). COVID‐19 and its impact on environment: Improved pollution levels during the lockdown period—A case from Ahmedabad, India. Remote Sensing Applications: Society and Environment, 20, 100382. 10.1016/j.rsase.2020.100382 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Andersen, L. M. , Harden, S. R. , Sugg, M. M. , Runkle, J. D. , & Lundquist, T. E. (2020). Analyzing the spatial determinants of local Covid‐19 transmission in the United States. Science of The Total Environment, 754, 142396. 10.1016/j.scitotenv.2020.142396 [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Andrades‐Grassi, J. E. , Cuesta‐Herrera, L. , Bianchi‐Pérez, G. , Grassi, H. C. , López‐Hernández, J. Y. , & Torres‐Mantilla, H. (2020). Spatial analysis of risk of morbidity and mortality by COVID‐19 in Europe and the Mediterranean in the year 2020. Cuadernos Geograficos, 60(1), 279–294. 10.30827/cuadgeo.v60i1.15492 [DOI] [Google Scholar]
  12. Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93–115. 10.1111/j.1538-4632.1995.tb00338.x [DOI] [Google Scholar]
  13. Antoniou, V. , Vassilakis, E. , & Hatzaki, M. (2020). Is crowdsourcing a reliable method for mass data acquisition? The case of COVID‐19 spread in Greece during spring 2020. ISPRS International Journal of Geo‐Information, 9(10), 605. 10.3390/ijgi9100605 [DOI] [Google Scholar]
  14. Arimura, M. , Ha, T. V. , Okumura, K. , & Asada, T. (2020). Changes in urban mobility in Sapporo city, Japan due to the Covid‐19 emergency declarations. Transportation Research Interdisciplinary Perspectives, 7, 100212. 10.1016/j.trip.2020.100212 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ash'aari, Z. H. , Aris, A. Z. , Ezani, E. , Ahmad Kamal, N. I. , Jaafar, N. , Jahaya, J. N. , … Saifuddin, M. F. U . (2020). Spatiotemporal variations and contributing factors of air pollutant concentrations in Malaysia during movement control order due to pandemic COVID‐19. Aerosol and Air Quality Research, 20(10), 2047–2061. 10.4209/aaqr.2020.06.0334 [DOI] [Google Scholar]
  16. Avtar, R. , Kumar, P. , Supe, H. , Jie, D. , Sahu, N. , Mishra, B. K. , & Yunus, A. P. (2020). Did the COVID‐19 lockdown‐induced hydrological residence time intensify the primary productivity in lakes? Observational results based on satellite remote sensing. Water, 12(9), 2573. 10.3390/w12092573 [DOI] [Google Scholar]
  17. Bag, R. , Ghosh, M. , Biswas, B. , & Chatterjee, M. (2020). Understanding the spatio‐temporal pattern of COVID‐19 outbreak in India using GIS and India's response in managing the pandemic. Regional Science Policy & Practice, 12(6), 1063–1103. 10.1111/rsp3.12359 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ballesteros, P. , Salazar, E. , Sánchez, D. , & Bolaños, C. (2021). Spatial and spatiotemporal clustering of the COVID‐19 pandemic in Ecuador. Revista de la Facultad de Medicina, 69(1), 1–8. 10.15446/revfacmed.v69n1.86476 [DOI] [Google Scholar]
  19. Bamweyana, I. , Okello, D. A. , Ssengendo, R. , Mazimwe, A. , Ojirot, P. , Mubiru, F. , … Zabali, F. (2020). Socio‐economic vulnerability to COVID‐19: The spatial case of Greater Kampala Metropolitan Area (GKMA). Journal of Geographic Information System, 12(4), 302. 10.4236/jgis.2020.124019 [DOI] [Google Scholar]
  20. Barboza, G. E. , Schiamberg, L. B. , & Pachl, L. (2021). A spatiotemporal analysis of the impact of COVID‐19 on child abuse and neglect in the city of Los Angeles, California. Child Abuse & Neglect, 16(2), 104740. 10.1016/j.chiabu.2020.104740 [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Baum, C. F. , & Henry, M. (2020). Socioeconomic factors influencing the spatial spread of COVID‐19 in the United States. Retrieved from SSRN: 10.2139/ssrn.3614877 [DOI]
  22. Bernasconi, A. , & Grandi, S. (2021). A conceptual model for geo‐online exploratory data visualization: The case of the COVID‐19 pandemic. Information, 12(2), 69. 10.3390/info12020069 [DOI] [Google Scholar]
  23. Bessa, K. , & da Luz, R. A. (2020). A pandemia de Covid‐19 e as particularidades regionais da sua difusão no segmento de rede urbana no estado do Tocantins, Brasil. Ateliê Geográfico, 14(2), 6–28. 10.5216/ag.v14i2.63987 [DOI] [Google Scholar]
  24. Bherwani, H. , Anjum, S. , Kumar, S. , Gautam, S. , Gupta, A. , Kumbhare, H. , … Kumar, R. (2020). Understanding COVID‐19 transmission through Bayesian probabilistic modeling and GIS‐based Voronoi approach: A policy perspective. Environment, Development and Sustainability, 23, 5846–5864. 10.1007/s10668-020-00849-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Boeing, G. (2020). The right tools for the job: The case for spatial science tool‐building. Transactions in GIS, 24(5), 1299–1314. 10.1111/tgis.12678 [DOI] [Google Scholar]
  26. Boulos, M. N. K. , & Geraghty, E. M. (2020). Geographical tracking and mapping of coronavirus disease COVID‐19/severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) epidemic and associated events around the world: How 21st century GIS technologies are supporting the global fight against outbreaks and epidemics. International Journal of Health Geographics, 19, 8. 10.1186/s12942-020-00202-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Brito, P. L. , Kuffer, M. , Koeva, M. , Pedrassoli, J. C. , Wang, J. , Costa, F. , & Freitas, A. D. D. (2020). The spatial dimension of COVID‐19: The potential of Earth observation data in support of slum communities with evidence from Brazil. ISPRS International Journal of Geo‐Information, 9(9), 557. 10.3390/ijgi9090557 [DOI] [Google Scholar]
  28. Brunsdon, C. , Fotheringham, A. S. , & Charlton, M. E. (1996). Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis, 28(4), 281–298. 10.1111/j.1538-4632.1996.tb00936.x [DOI] [Google Scholar]
  29. Buscema, P. M. , Della Torre, F. , Breda, M. , Massini, G. , & Grossi, E. (2020). COVID‐19 in Italy and extreme data mining. Physica A: Statistical Mechanics and Its Applications, 557, 124991. 10.1016/j.physa.2020.124991 [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Casti, E. (2020). Geografia a “vele spiegate”. Analisi territoriale e mapping riflessivo sul COVID‐19 in Italia. Documenti Geografici, 1, 61–83. 10.19246/DOCUGEO2281-7549/202001_03 [DOI] [Google Scholar]
  31. Chatterjee, R. , Bajwa, S. , Dwivedi, D. , Kanji, R. , Ahammed, M. , & Shaw, R. (2020). COVID‐19 Risk Assessment Tool: Dual application of risk communication and risk governance. Progress in Disaster Science, 7, 100109. 10.1016/j.pdisas.2020.100109 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Cheng, C. , Zhang, T. , Song, C. , Shen, S. , Jiang, Y. , & Zhang, X. (2020). The coupled impact of emergency responses and population flows on the COVID‐19 pandemic in China. GeoHealth, 4(12), e2020GH000332. 10.1029/2020GH000332 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Clifford, P. , Richardson, S. , & Hémon, D. (1989). Assessing the significance of the correlation between two spatial processes. Biometrics, 45, 123–134. 10.2307/2532039 [DOI] [PubMed] [Google Scholar]
  34. Collectif . (2020). La pandémie de Covid‐19, regards croisés de géographes. Géoconfluences. Retrieved from http://geoconfluences.ens‐lyon.fr/actualites/eclairage/pandemie‐de‐covid‐19‐regards‐croises‐de‐geographes [Google Scholar]
  35. Cordes, J. , & Castro, M. C. (2020). Spatial analysis of COVID‐19 clusters and contextual factors in New York City. Spatial and Spatio‐temporal Epidemiology, 34, 100355. 10.1016/j.sste.2020.100355 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Cos, O. D. , Castillo, V. , & Cantarero, D. (2020). Facing a second wave from a regional view: Spatial patterns of COVID‐19 as a key determinant for public health and geoprevention plans. International Journal of Environmental Research and Public Health, 17(22), 8468. 10.3390/ijerph17228468 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Coven, J. , & Gupta, A. (2020). Disparities in mobility responses to covid‐19. NYU Stern Working Paper. [Google Scholar]
  38. Cuadros, D. F. , Xiao, Y. , Mukandavire, Z. , Correa‐Agudelo, E. , Hernández, A. , Kim, H. , & MacKinnon, N. J. (2020). Spatiotemporal transmission dynamics of the COVID‐19 pandemic and its impact on critical healthcare capacity. Health & Place, 64, 102404. 10.1016/j.healthplace.2020.102404 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Curtis, A. , Ajayakumar, J. , Curtis, J. , Mihalik, S. , Purohit, M. , Scott, Z. , … Goldberg, D. W. (2020). Geographic monitoring for early disease detection (GeoMEDD). Scientific Reports, 10(1), 1–11. 10.1038/s41598-020-78704-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Dangermond, J. , De Vito, C. , & Pesaresi, C. (2020). Using GIS in the time of the COVID‐19 crisis, casting a glance at the future. A joint discussion. J‐Reading: Journal of Research and Didactics in Geography, 1(9), 195–205. 10.4458/3099-16 [DOI] [Google Scholar]
  41. Das, A. , Ghosh, S. , Das, K. , Basu, T. , Dutta, I. , & Das, M. (2021). Living environment matters: Unravelling the spatial clustering of COVID‐19 hotspots in Kolkata megacity, India. Sustainable Cities and Society, 65, 102577. 10.1016/j.scs.2020.102577 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Debnath, R. , & Bardhan, R. (2020). India nudges to contain COVID‐19 pandemic: A reactive public policy analysis using machine‐learning based topic modelling. PLoS ONE, 15(9), e0238972. 10.1371/journal.pone.0238972 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Dehghan Shabani, Z. , & Shahnazi, R. (2020). Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: Spatial Markov chain approach. Regional Science Policy & Practice, 12(6), 1005–1025. 10.1111/rsp3.12372 [DOI] [Google Scholar]
  44. Delmelle, E. , Hagenlocher, M. , Kienberger, S. , & Casas, I. (2016). A spatial model of socioeconomic and environmental determinants of dengue fever in Cali, Colombia. Acta Tropica, 164, 169–176. 10.1016/j.actatropica.2016.08.028 [DOI] [PubMed] [Google Scholar]
  45. Depellegrin, D. , Bastianini, M. , Fadini, A. , & Menegon, S. (2020). The effects of COVID‐19 induced lockdown measures on maritime settings of a coastal region. Science of The Total Environment, 740, 140123. 10.1016/j.scitotenv.2020.140123 [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Deponte, D. , Fossa, G. , & Gorrini, A. (2020). Shaping space for ever‐changing mobility. Covid‐19 lesson learned from Milan and its region. TeMA—Journal of Land Use, Mobility and Environment, Special Issue ‐ Covid‐19 vs City‐20, 133–149. 10.6092/1970-9870/6857 [DOI] [Google Scholar]
  47. Desjardins, M. R. (2020). Syndromic surveillance of COVID‐19 using crowdsourced data. The Lancet Regional Health—Western Pacific, 4, 100024. 10.1016/j.lanwpc.2020.100024 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Desjardins, M. R. , Hohl, A. , & Delmelle, E. M. (2020). Rapid surveillance of COVID‐19 in the United States using a prospective space‐time scan statistic: Detecting and evaluating emerging clusters. Applied Geography, 118, 102202. 10.1016/j.apgeog.2020.102202 [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Desmet, K. , & Wacziarg, R. (2020). Understanding spatial variation in COVID‐19 across the United States (NBER Working Paper No. 27329). Cambridge, MA: National Bureau of Economic Research. 10.3386/w27329 [DOI] [Google Scholar]
  50. Devasia, J. T. , Lakshminarayanan, S. , & Kar, S. S. (2020). How modern geographical information systems based mapping and tracking can help to combat severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) pandemic around the world and India. International Journal of Health Systems and Implementation Research, 4(1), 30–54. https://ijhsir.ahsas‐pgichd.org/index.php/ijhsir/article/view/64 [Google Scholar]
  51. Dickson, M. M. , Espa, G. , Giuliani, D. , Santi, F. , & Savadori, L. (2020). Assessing the effect of containment measures on the spatio‐temporal dynamic of COVID‐19 in Italy. Nonlinear Dynamics, 101(3), 1833–1846. 10.1007/s11071-020-05853-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. DiMaggio, C. , Klein, M. , Berry, C. , & Frangos, S. (2020). Black/African American communities are at highest risk of COVID‐19: Spatial modeling of New York City ZIP code‐level testing results. Annals of Epidemiology, 51, 7–13. 10.1016/j.annepidem.2020.08.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Dong, E. , Du, H. , & Gardner, L. (2020). An interactive web‐based dashboard to track COVID‐19 in real time. The Lancet Infectious Diseases, 20(5), 533–534. 10.1016/S1473-3099(20)30120-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. El‐Magd, I. A. , & Zanaty, N. (2020). Impacts of short‐term lockdown during COVID‐19 on air quality in Egypt. Egyptian Journal of Remote Sensing and Space Science, 1–8. 10.1016/j.ejrs.2020.10.003 [DOI] [Google Scholar]
  55. Elvidge, C. D. , Ghosh, T. , Hsu, F. C. , Zhizhin, M. , & Bazilian, M. (2020). The dimming of lights in China during the COVID‐19 pandemic. Remote Sensing, 12(17), 2851. 10.3390/rs12172851 [DOI] [Google Scholar]
  56. Evangeliou, N. , Platt, S. M. , Eckhardt, S. , Lund Myhre, C. , Laj, P. , Alados‐Arboledas, L. , … Stohl, A. (2020). Changes in black carbon emissions over Europe due to COVID‐19 lockdowns. Atmospheric Chemistry and Physics Discussions, 2675–2692. 10.5194/acp-2020-1005 [DOI] [Google Scholar]
  57. Fan, Z. , Zhan, Q. , Yang, C. , Liu, H. , & Zhan, M. (2020). How did distribution patterns of particulate matter air pollution (PM2.5 and PM10) change in China during the COVID‐19 outbreak: A spatiotemporal investigation at Chinese city‐level. International Journal of Environmental Research and Public Health, 17(17), 6274. 10.3390/ijerph17176274 [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Fang, L. , Huang, J. , Zhang, Z. , & Nitivattananon, V. (2020). Data‐driven framework for delineating urban population dynamic patterns: Case study on Xiamen Island, China. Sustainable Cities and Society, 62, 102365. 10.1016/j.scs.2020.102365 [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Fernández, S. , Cotos‐Yáñez, T. , Roca‐Pardiñas, J. , & Ordóñez, C. (2018). Geographically weighted principal components analysis to assess diffuse pollution sources of soil heavy metal: Application to rough mountain areas in Northwest Spain. Geoderma, 311, 120–129. 10.1016/j.geoderma.2016.10.012 [DOI] [Google Scholar]
  60. Filonchyk, M. , Hurynovich, V. , Yan, H. , Gusev, A. , & Shpilevskaya, N. (2020). Impact assessment of COVID‐19 on variations of SO2, NO2, CO and AOD over East China. Aerosol and Air Quality Research, 20(7), 1530–1540. 10.4209/aaqr.2020.05.0226 [DOI] [Google Scholar]
  61. Fortaleza, C. M. C. B. , Guimarães, R. B. , de Almeida, G. B. , Pronunciate, M. , & Ferreira, C. P. (2020). Taking the inner route: Spatial and demographic factors affecting vulnerability to COVID‐19 among 604 cities from inner São Paulo State, Brazil. Epidemiology & Infection, 148, e118. 10.1017/S095026882000134X [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Foster, J. B. (1999). Marx's theory of metabolic rift: Classical foundations for environmental sociology. American Journal of Sociology, 105(2), 366–405. 10.1086/210315 [DOI] [Google Scholar]
  63. Foster, J. B. , & Suwandi, I. (2020). COVID‐19 and catastrophe capitalism. Monthly Review, 72(2), 1–20. 10.14452/MR-072-02-2020-06_1 [DOI] [Google Scholar]
  64. Fotheringham, A. S. , Yang, W. , & Kang, W. (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. 10.1080/24694452.2017.1352480 [DOI] [Google Scholar]
  65. Foucher, M. (2020). La pandémie de Covid‐19, regards croisés de géographes. Géoconfluences. Retrieved from http://geoconfluences.ens‐lyon.fr/actualites/eclairage/pandemie‐de‐covid‐19‐regards‐croises‐de‐geographes [Google Scholar]
  66. Franch‐Pardo, I. , Napoletano, B. M. , Rosete‐Verges, F. , & Billa, L. (2020). Spatial analysis and GIS in the study of COVID‐19. A review. Science of The Total Environment, 79, 140033. 10.1016/j.scitotenv.2020.140033 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Gan, T. , Li, W. , He, L. , & Li, J. (2020). Intracity pandemic risk evaluation using mobile phone data: The case of Shanghai during COVID‐19. ISPRS International Journal of Geo‐Information, 9(12), 715. 10.3390/ijgi9120715 [DOI] [Google Scholar]
  68. Gao, P. , Zhang, H. , Wu, Z. , & Wang, J. (2020). Visualising the expansion and spread of coronavirus disease 2019 by cartograms. Environment and Planning A: Economy and Space, 52(4), 698–701. 10.1177/0308518X20910162 [DOI] [Google Scholar]
  69. Gao, S. , Rao, J. , Kang, Y. , Liang, Y. , Kruse, J. , Dopfer, D. , … Patz, J. A. (2020). Association of mobile phone location data indications of travel and stay‐at‐home mandates with covid‐19 infection rates in the US. JAMA Network Open, 3(9), e2020485. 10.1001/jamanetworkopen.2020.20485 [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Garg, V. , Aggarwal, S. P. , & Chauhan, P. (2020). Changes in turbidity along Ganga River using Sentinel‐2 satellite data during lockdown associated with COVID‐19. Geomatics, Natural Hazards and Risk, 11(1), 1175–1195. 10.1080/19475705.2020.1782482 [DOI] [Google Scholar]
  71. Gayawan, E. , Awe, O. O. , Oseni, B. M. , Uzochukwu, I. C. , Adekunle, A. , Samuel, G. , … Adegboye, O. A. (2020). The spatio‐temporal epidemic dynamics of COVID‐19 outbreak in Africa. Epidemiology & Infection, 148(e212), 1–11. 10.1017/s0950268820001983 [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Geng, X. , Gerges, F. , Katul, G. G. , Bou‐Zeid, E. , Nassif, H. , & Boufadel, M. C. (2020). Population agglomeration is a harbinger of the spatial complexity of COVID‐19. Chemical Engineering Journal, 420, 127702. 10.1016/j.cej.2020.127702 [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Ghahremanloo, M. , Lops, Y. , Choi, Y. , & Mousavinezhad, S. (2020). Impact of the COVID‐19 outbreak on air pollution levels in East Asia. Science of The Total Environment, 754, 142226. 10.1016/j.scitotenv.2020.142226 [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Gharakhanlou, N. M. , & Hooshangi, N. (2020). Spatio‐temporal simulation of the novel coronavirus (COVID‐19) outbreak using the agent‐based modeling approach (case study: Urmia, Iran). Informatics in Medicine Unlocked, 20, 100403. 10.1016/j.imu.2020.100403 [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Ghilardi, A. , Ruiz, I. , Navarrete, A. , Sturdivant, E. , Velasco‐Segura, R. , Orozco, A. , … Vieyra, A. (2020). Plataforma de información geográfica de la UNAM sobre COVID‐19 en México. BioTecnología, 24(3), 39–53. https://smbb.mx/wp‐content/uploads/2020/12/2020_24_3.pdf#page=40 [Google Scholar]
  76. Ghosh, P. , & Mollah, M. M. (2020). The risk of public mobility from hotspots of COVID‐19 during travel restriction in Bangladesh. Journal of Infection in Developing Countries, 14(7), 732–736. 10.3855/jidc.13104 [DOI] [PubMed] [Google Scholar]
  77. Ghosh, S. , Das, A. , Hembram, T. K. , Saha, S. , Pradhan, B. , & Alamri, A. M. (2020). Impact of COVID‐19 induced lockdown on environmental quality in four Indian megacities using Landsat 8 OLI and TIRS‐derived data and Mamdani fuzzy logic modelling approach. Sustainability, 12(13), 5464. 10.3390/su12135464 [DOI] [Google Scholar]
  78. Ghosh, T. , Elvidge, C. D. , Hsu, F. C. , Zhizhin, M. , & Bazilian, M. (2020). The dimming of lights in India during the COVID‐19 pandemic. Remote Sensing, 12(20), 3289. 10.3390/rs12203289 [DOI] [Google Scholar]
  79. Gianquintieri, L. , Brovelli, M. A. , Pagliosa, A. , Dassi, G. , Brambilla, P. M. , Bonora, R. , … Caiani, E. G. (2020). Mapping spatiotemporal diffusion of COVID‐19 in Lombardy (Italy) on the base of emergency medical services activities. ISPRS International Journal of Geo‐Information, 9(11), 639. 10.3390/ijgi9110639 [DOI] [Google Scholar]
  80. Gomes, D. S. , Andrade, L. A. , Ribeiro, C. J. N. , Peixoto, M. V. S. , Lima, S. V. M. A. , Duque, A. M. , … Santos, A. D. (2020). Risk clusters of COVID‐19 transmission in northeastern Brazil: Prospective space–time modelling. Epidemiology & Infection, 148(e188), 1–8. 10.1017/s0950268820001843 [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Goodchild, M. F. (1987). A spatial analytical perspective on geographical information systems. International Journal of Geographical Information Systems, 1(4), 327–334. 10.1080/02693798708927820 [DOI] [Google Scholar]
  82. Gorayeb, A. , de Oliveira Santos, J. , da Cunha, H. G. N. , da Silva, R. B. , de Souza, W. F. , Mesquita, R. D. P. , … de Sá Pereira Filho, N . (2020). Volunteered geographic information generates new spatial understandings of Covid‐19 in Fortaleza. Journal of Latin American Geography, 19(3), 260–271. 10.1353/lag.2020.0048 [DOI] [Google Scholar]
  83. Graves, S. M. , & He, L. (2020). Covid‐19 mapping with Microsoft Power BI. Terra Digitalis, 4(2), 1–5. 10.22201/igg.25940694e.2020.2.74 [DOI] [Google Scholar]
  84. Gross, B. , Zheng, Z. , Liu, S. , Chen, X. , Sela, A. , Li, J. , … Havlin, S. (2020). Spatio‐temporal propagation of COVID‐19 pandemics. Europhysics Letters, 131(5), 58003. 10.1209/0295-5075/131/58003 [DOI] [Google Scholar]
  85. Guida, C. , & Carpentieri, G. (2020). Quality of life in the urban environment and primary health services for the elderly during the Covid‐19 pandemic: An application to the city of Milan (Italy). Cities, 110, 103038. 10.1016/j.cities.2020.103038 [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Gupta, A. , Banerjee, S. , & Das, S. (2020). Significance of geographical factors to the COVID‐19 outbreak in India. Modeling Earth Systems and Environment, 6(4), 2645–2653. 10.1007/s40808-020-00838-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Gupta, A. , Bhatt, C. M. , Roy, A. , & Chauhan, P. (2020). COVID‐19 lockdown a window of opportunity to understand the role of human activity on forest fire incidences in the Western Himalaya, India. Current Science, 119(2), 390–398. 10.18520/cs/v119/i2/390-398 [DOI] [Google Scholar]
  88. Habibi, Y. , Guellouh, S. , Filali, A. , & Berchiche, R. (2020). Analysis of social resilience to the novel coronavirus (Covid‐19) in Algeria. Geomatics, Land Management and Landscape, 2020(3), 19–29. 10.15576/GLL/2020.3.19 [DOI] [Google Scholar]
  89. Harris, R. (2020). Exploring the neighbourhood‐level correlates of Covid‐19 deaths in London using a difference across spatial boundaries method. Health & Place, 66, 102446. 10.1016/j.healthplace.2020.102446 [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. He, H. , Shen, Y. , Jiang, C. , Li, T. , Guo, M. , & Yao, L. (2020). Spatiotemporal big data for PM2.5 exposure and health risk assessment during COVID‐19. International Journal of Environmental Research and Public Health, 17(20), 7664. 10.3390/ijerph17207664 [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Heo, S. , Lim, C. C. , & Bell, M. L. (2020). Relationships between local green space and human mobility patterns during COVID‐19 for Maryland and California, USA. Sustainability, 12(22), 9401. 10.3390/su12229401 [DOI] [Google Scholar]
  92. Hohl, A. , Delmelle, E. M. , Desjardins, M. R. , & Lan, Y. (2020). Daily surveillance of COVID‐19 using the prospective space‐time scan statistic in the United States. Spatial and Spatio‐temporal Epidemiology, 34, 100354. 10.1016/j.sste.2020.100354 [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Honey‐Roses, J. , Anguelovski, I. , Bohigas, J. , Chireh, V. , Daher, C. , Konijnendijk, C. , … Oscilowicz, E. (2020). The impact of COVID‐19 on public space: A review of the emerging questions. OSF Preprint. 10.31219/osf.io/rf7xa [DOI]
  94. Hu, B. , Qiu, J. , Chen, H. , Tao, V. , Wang, J. , & Lin, H. (2020). First, second and potential third generation spreads of the COVID‐19 epidemic in mainland China: An early exploratory study incorporating location‐based service data of mobile devices. International Journal of Infectious Diseases, 96, 489–495. 10.1016/j.ijid.2020.05.048 [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Hu, T. , Yue, H. , Wang, C. , She, B. , Ye, X. , Liu, R. , … Bao, S. (2020). Racial segregation, testing site access, and COVID‐19 incidence rate in Massachusetts, USA. International Journal of Environmental Research and Public Health, 17(24), 9528. 10.3390/ijerph17249528 [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Huang, G. , & Brown, P. E. (2021). Population‐weighted exposure to air pollution and COVID‐19 incidence in Germany. Spatial Statistics, 41, 100480. 10.1016/j.spasta.2020.100480 [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Huang, J. , Kwan, M. P. , Kan, Z. , Wong, M. S. , Kwok, C. Y. T. , & Yu, X. (2020). Investigating the relationship between the built environment and relative risk of COVID‐19 in Hong Kong. ISPRS International Journal of Geo‐Information, 9(11), 624. 10.3390/ijgi9110624 [DOI] [Google Scholar]
  98. Huang, X. , Li, Z. , Lu, J. , Wang, S. , Wei, H. , & Chen, B. (2020). Time‐series clustering for home dwell time during COVID‐19: What can we learn from it? ISPRS International Journal of Geo‐Information, 9(11), 675. 10.3390/ijgi9110675 [DOI] [Google Scholar]
  99. Husnayain, A. , Shim, E. , Fuad, A. , & Su, E. C. Y. (2020). Understanding the community risk perceptions of the COVID‐19 outbreak in South Korea: Infodemiology study. Journal of Medical Internet Research, 22(9), e19788. 10.2196/19788 [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Hutter, H. P. , Poteser, M. , Moshammer, H. , Lemmerer, K. , Mayer, M. , Weitensfelder, L. , Wallner, P. , & Kundi, M. (2020). Air pollution is associated with COVID‐19 incidence and mortality in Vienna, Austria. International Journal of Environmental Research and Public Health, 17(24), 9275. 10.3390/ijerph17249275 [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Iranmanesh, A. , & Alpar Atun, R. (2021). Reading the changing dynamic of urban social distances during the COVID‐19 pandemic via Twitter. European Societies, 23(Suppl. 1), S872–S886. 10.1080/14616696.2020.1846066 [DOI] [Google Scholar]
  102. Islam, A. , Sayeed, M. A. , Rahman, M. K. , Ferdous, J. , Shano, S. , Choudhury, S. D. , & Hassan, M. M. (2021). Spatiotemporal patterns and trends of community transmission of the pandemic COVID‐19 in South Asia: Bangladesh as a case study. Biosafety and Health, 3(1), 39–49. 10.1016/j.bsheal.2020.09.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Iyanda, A. E. , Adeleke, R. , Lu, Y. , Osayomi, T. , Adaralegbe, A. , Lasode, M. , … Osundina, A. M. (2020). A retrospective cross‐national examination of COVID‐19 outbreak in 175 countries: A multiscale geographically weighted regression analysis (January 11–June 28, 2020). Journal of Infection and Public Health, 13(10), 1438–1445. 10.1016/j.jiph.2020.07.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Jain, S. , & Sharma, T. (2020). Social and travel lockdown impact considering coronavirus disease (COVID‐19) on air quality in megacities of India: Present benefits, future challenges and way forward. Aerosol and Air Quality Research, 20(6), 1222–1236. 10.4209/aaqr.2020.04.0171 [DOI] [Google Scholar]
  105. Kang, D. , Choi, H. , Kim, J. H. , & Choi, J. (2020). Spatial epidemic dynamics of the COVID‐19 outbreak in China. International Journal of Infectious Diseases, 94, 96–102. 10.1016/j.ijid.2020.03.076 [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Kang, Y. , Gao, S. , Liang, Y. , Li, M. , Rao, J. , & Kruse, J. (2020). Multiscale dynamic human mobility flow dataset in the US during the COVID‐19 epidemic. Scientific Data, 7(1), 1–13. 10.1038/s41597-020-00734-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Kanga, S. , Sudhanshu, Meraj, G. , Farooq, M. , Nathawat, M. S. , & Singh, S. K. (2020). Reporting the management of COVID‐19 threat in India using remote sensing and GIS‐based approach. Geocarto International, 1–8. 10.1080/10106049.2020.1778106 [DOI] [Google Scholar]
  108. Kapoor, A. , Ben, X. , Liu, L. , Perozzi, B. , Barnes, M. , Blais, M. , & O'Banion, S . (2020). Examining covid‐19 forecasting using spatio‐temporal graph neural networks. Preprint, arXiv:2007.03113. [Google Scholar]
  109. Karaer, A. , Balafkan, N. , Gazzea, M. , Arghandeh, R. , & Ozguven, E. E. (2020). Analyzing COVID‐19 impacts on vehicle travels and daily nitrogen dioxide (NO2) levels among Florida counties. Energies, 13(22), 6044. 10.3390/en13226044 [DOI] [Google Scholar]
  110. Karaye, I. M. , & Horney, J. A. (2020). The impact of social vulnerability on COVID‐19 in the US: An analysis of spatially varying relationships. American Journal of Preventive Medicine, 59(3), 317–325. 10.1016/j.amepre.2020.06.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Kerimray, A. , Baimatova, N. , Ibragimova, O. P. , Bukenov, B. , Kenessov, B. , Plotitsyn, P. , & Karaca, F. (2020). Assessing air quality changes in large cities during COVID‐19 lockdowns: The impacts of traffic‐free urban conditions in Almaty, Kazakhstan. Science of The Total Environment, 730, 139179. 10.1016/j.scitotenv.2020.139179 [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Kim, S. , & Castro, M. C. (2020). Spatiotemporal pattern of COVID‐19 and government response in South Korea (as of May 31, 2020). International Journal of Infectious Diseases, 98, 328–333. 10.1016/j.ijid.2020.07.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Klapka, P. , Ellegård, K. , & Frantál, B. (2020). What about time‐geography in the post‐Covid‐19 era? Moravian Geographical Reports, 28(4), 238–247. 10.2478/mgr-2020-0017 [DOI] [Google Scholar]
  114. Koller, D. , Wohlrab, D. , Sedlmeir, G. , & Augustin, J. (2020). Geografische Ansätze in der Gesundheitsberichterstattung. Bundesgesundheitsblatt—gesundheitsforschung—gesundheitsschutz, 63, 1108–1117. 10.1007/s00103-020-03208-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Krisztin, T. , Piribauer, P. , & Wögerer, M. (2020). The spatial econometrics of the coronavirus pandemic. Letters in Spatial and Resource Sciences, 13(3), 209–218. 10.1007/s12076-020-00254-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Kuchler, T. , Russel, D. , & Stroebel, J. (2020). The geographic spread of COVID‐19 correlates with structure of social networks as measured by Facebook (NBER Working Paper No. 26990). Cambridge, MA: National Bureau of Economic Research. [Google Scholar]
  117. Kulldorff, M. (2018). SaTScan user guide. Retrieved from https://www.satscan.org/cgi‐bin/satscan/register.pl/SaTScan_Users_Guide.pdf?todo=process_userguide_download
  118. Kuzmenko, O. , Vasylieva, T. , Vojtovič, S. , Chygryn, O. , & Snieška, V. (2020). Why do regions differ in vulnerability to COVID‐19? Spatial nonlinear modeling of social and economic patterns. Economics & Sociology, 13(4), 318–340. 10.14254/2071-789X.2020/13-4/20 [DOI] [Google Scholar]
  119. Lai, Y. , Charpignon, M. L. , Ebner, D. K. , & Celi, L. A. (2020). Unsupervised learning for county‐level typological classification for COVID‐19 research. Intelligence‐Based Medicine, 1, 100002. 10.1016/j.ibmed.2020.100002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Layati, E. , Ouigmane, A. , de Carvalho Alves, M. , Murugesan, B. , & El Ghachi, M. (2020). Spread mapping of Covid‐19 in Morocco using geospatial approach. Journal of Geographical Studies, 4(1), 34–43. 10.21523/gcj5.20040104 [DOI] [Google Scholar]
  121. Leal‐Neto, O. B. , Santos, F. A. S. , Lee, J. Y. , Albuquerque, J. O. , & Souza, W. V. (2020). Prioritizing COVID‐19 tests based on participatory surveillance and spatial scanning. International Journal of Medical Informatics, 143, 104263. 10.1016/j.ijmedinf.2020.104263 [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Li, X. , Zhou, L. , Jia, T. , Peng, R. , Fu, X. , & Zou, Y. (2020). Associating COVID‐19 severity with urban factors: A case study of Wuhan. International Journal of Environmental Research and Public Health, 17(18), 6712. 10.3390/ijerph17186712 [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Li, Z. , Li, X. , Porter, D. , Zhang, J. , Jiang, Y. , Olatosi, B. , & Weissman, S. (2020). Monitoring the spatial spread of COVID‐19 and effectiveness of control measures through human movement data: Proposal for a predictive model using big data analytics. JMIR Research Protocols, 9(12), e24432. 10.2196/24432 [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Li, Z. , Wang, J. , Huang, J. , & Lu, J. (2020). Epidemiological characteristics of COVID‐19 in Shenzhen, China: Comparison between imported and local cases. Journal of Infection in Developing Countries, 14(8), 853–860. 10.3855/jidc.12801 [DOI] [PubMed] [Google Scholar]
  125. Liang, Z. , Wang, Y. , Sun, F. , Liang, C. , & Li, S. (2020). Geographical pattern of COVID‐19 incidence of China's cities: Role of migration and socioeconomic status. Research of Environmental Sciences, 33(7), 1571–1578. https://search.bvsalud.org/global‐literature‐on‐novel‐coronavirus‐2019‐ncov/resource/en/covidwho‐827761 [Google Scholar]
  126. Lieberman‐Cribbin, W. , Tuminello, S. , Flores, R. M. , & Taioli, E. (2020). Disparities in COVID‐19 testing and positivity in New York City. American Journal of Preventive Medicine, 59(3), 326–332. 10.1016/j.amepre.2020.06.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Liu, F. , Wang, J. , Liu, J. , Li, Y. , Liu, D. , Tong, J. , … Mo, S. (2020). Predicting and analyzing the COVID‐19 epidemic in China: Based on SEIRD, LSTM and GWR models. PLoS ONE, 15(8), e0238280. 10.1371/journal.pone.0238280 [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Liu, H. , Fang, C. , & Gao, Q. (2020). Evaluating the real‐time impact of COVID‐19 on cities: China as a case study. Complexity, 2020, 8855521. 10.1155/2020/8855521 [DOI] [Google Scholar]
  129. Liu, Q. , Lin, C. , Wang, Y. , Long, C. , Qian, W. , & Cao, J. (2020). Assistant decision method for intelligent dispatch of emergency medical materials. In Proceedings of the 2020 Conference on Artificial Intelligence and Healthcare (pp. 84–90). New York, NY: ACM. 10.1145/3433996.3434012 [DOI] [Google Scholar]
  130. Liu, Y. , He, Z. , & Zhou, X. (2020). Space‐time variation and spatial differentiation of COVID‐19 confirmed cases in Hubei province based on extended GWR. ISPRS International Journal of Geo‐Information, 9(9), 536. 10.3390/ijgi9090536 [DOI] [Google Scholar]
  131. Lyalko, V. , Yelistratova, L. , Apostolov, A. , & Romanciuc, I. (2020). Remote monitoring of the atmosphere in Ukraine during the COVID‐19 restrictions. Ukrainian Journal of Remote Sensing, 2020(26), 48–54. 10.36023/ujrs.2020.26.182 [DOI] [Google Scholar]
  132. Maharjan, B. , Maharjan, A. , Dhakal, S. , Gadtaula, M. , Shrestha, S. B. , & Adhikari, R. (2020). Geospatial mapping of COVID‐19 cases, risk and agriculture hotspots in decision‐making of lockdown relaxation in Nepal. Applied Science and Technology Annals, 1(1), 1–8. 10.3126/asta.v1i1.30263 [DOI] [Google Scholar]
  133. Mahato, R. , Bushi, D. , & Nimasow, G. (2020). AHP and GIS‐based risk zonation of COVID‐19 in North East India. Current World Environment, 15(3), 640–652. 10.12944/CWE.15.3.29 [DOI] [Google Scholar]
  134. Maiti, A. , Zhang, Q. , Sannigrahi, S. , Pramanik, S. , Chakraborti, S. , & Pilla, F . (2020). Spatiotemporal effects of the causal factors on COVID‐19 incidences in the contiguous United States. Preprint, arXiv:2010.15754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Mansour, S. , Al Kindi, A. , Al‐Said, A. , Al‐Said, A. , & Atkinson, P. (2020). Sociodemographic determinants of COVID‐19 incidence rates in Oman: Geospatial modelling using multiscale geographically weighted regression (MGWR). Sustainable Cities and Society, 65, 102627. 10.1016/j.scs.2020.102627 [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Maroko, A. R. , Nash, D. , & Pavilonis, B. T. (2020). Covid‐19 and inequity: A comparative spatial analysis of New York City and Chicago hot spots. Journal of Urban Health, 97(4), 461–470. 10.1007/s11524-020-00468-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Marquès, M. , Rovira, J. , Nadal, M. , & Domingo, J. L. (2020). Effects of air pollution on the potential transmission and mortality of COVID‐19: A preliminary case‐study in Tarragona Province (Catalonia, Spain). Environmental Research, 192, 110315. 10.1016/j.envres.2020.110315 [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Melin, P. , Monica, J. C. , Sanchez, D. , & Castillo, O. (2020). Analysis of spatial spread relationships of coronavirus (COVID‐19) pandemic in the world using self organizing maps. Chaos, Solitons & Fractals, 138, 109917. 10.1016/j.chaos.2020.109917 [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Méndez, R. (2020). Sitiados por la pandemia. Del colapso a la reconstrucción: Apuntes geográficos. Madrid, Spain: Revives. [Google Scholar]
  140. Méndez‐Arriaga, F. (2020). The temperature and regional climate effects on communitarian COVID‐19 contagion in Mexico throughout phase 1. Science of The Total Environment, 735, 139560. 10.1016/j.scitotenv.2020.139560 [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Meraj, G. , Farooq, M. , Singh, S. K. , Romshoo, S. A. , Sudhanshu, Nathawat, M. S. , & Kanga, S. (2021). Coronavirus pandemic versus temperature in the context of Indian subcontinent: A preliminary statistical analysis. Environment, Development and Sustainability, 23, 6524–6534. 10.1007/s10668-020-00854-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Metya, A. , Dagupta, P. , Halder, S. , Chakraborty, S. , & Tiwari, Y. K. (2020). COVID‐19 lockdowns improve air quality in the South‐East Asian regions, as seen by the remote sensing satellites. Aerosol and Air Quality Research, 20(8), 1772–1782. 10.4209/aaqr.2020.05.0240 [DOI] [Google Scholar]
  143. Michalak, M. P. , Cordes, J. , Kulawik, A. , Sitek, S. , Pytel, S. , Zuzańska‐Żyśko, E. , & Wieczorek, R. (2020). A systematic framework for spatiotemporal modelling of COVID‐19 disease. Preprint, arXiv:2010.03307. [Google Scholar]
  144. Minetto, R. , Segundo, M. P. , Rotich, G. , & Sarkar, S. (2020). Measuring human and economic activity from satellite imagery to support city‐scale decision‐making during COVID‐19 pandemic. IEEE Transactions on Big Data, 7(1), 1–13. 10.1109/TBDATA.2020.3032839 [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Mishra, S. V. , Gayen, A. , & Haque, S. M. (2020). COVID‐19 and urban vulnerability in India. Habitat International, 103, 102230. 10.1016/j.habitatint.2020.102230 [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Mobaied, S. (2020). A new method for identifying and mapping areas vulnerable to Covid‐19 in an armed conflict zone: Case study north‐west Syria. MethodsX, 7, 101091. 10.1016/j.mex.2020.101091 [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Mollalo, A. , Rivera, K. M. , & Vahedi, B. (2020). Artificial neural network modeling of novel coronavirus (COVID‐19) incidence rates across the continental United States. International Journal of Environmental Research and Public Health, 17(12), 4204. 10.3390/ijerph17124204 [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Mollalo, A. , Vahedi, B. , Bhattarai, S. , Hopkins, L. C. , Banik, S. , & Vahedi, B. (2020). Predicting the hotspots of age‐adjusted mortality rates of lower respiratory infection across the continental United States: Integration of GIS, spatial statistics and machine learning algorithms. International Journal of Medical Informatics, 142, 104248. 10.1016/j.ijmedinf.2020.104248 [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Mollalo, A. , Vahedi, B. , & Rivera, K. M. (2020). GIS‐based spatial modeling of COVID‐19 incidence rate in the continental United States. Science of The Total Environment, 728, 138884. 10.1016/j.scitotenv.2020.138884 [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Mooney, P. , Grinberger, A. Y. , Minghini, M. , Coetzee, S. , Juhasz, L. , & Yeboah, G. (2020). OpenStreetMap data use cases during the early months of the COVID‐19 pandemic. Preprint, arXiv:2008.02653.
  151. Moral García, F. (2004). Aplicación de la geoestadística en las ciencias ambientales. Revista Ecosistemas, 13(1), 78–86. 10.7818/ECOS.582 [DOI] [Google Scholar]
  152. Mu, X. , Yeh, A. G. O. , & Zhang, X. (2020). The interplay of spatial spread of COVID‐19 and human mobility in the urban system of China during the Chinese New Year. Environment and Planning B: Urban Analytics and City Science, 1–17. 10.1177/2399808320954211 [DOI] [Google Scholar]
  153. Murgante, B. , Balletto, G. , Borruso, G. , Las Casas, G. , Castiglia, P. , & Dettori, M. (2020). Geographical analyses of Covid‐19’s spreading contagion in the challenge of global health risks. TeMA—Journal of Land Use, Mobility and Environment, Special Issue ‐ Covid‐19 vs City‐20, 283–304. 10.6092/1970-9870/6849 [DOI] [Google Scholar]
  154. Naeger, A. R. , & Murphy, K. (2020). Impact of COVID‐19 containment measures on air pollution in California. Aerosol and Air Quality Research, 20(10), 2025–2034. 10.4209/aaqr.2020.05.0227 [DOI] [Google Scholar]
  155. Nakada, L. Y. K. , & Urban, R. C. (2020). COVID‐19 pandemic: Environmental and social factors influencing the spread of SARS‐CoV‐2 in São Paulo, Brazil. Environmental Science and Pollution Research, 1–7. 10.1007/s11356-020-10930-w [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Napoletano, B. M. , Foster, J. B. , Clark, B. , Urquijo, P. S. , McCall, M. K. , & Paneque‐Gálvez, J. (2019). Making space in critical environmental geography for the metabolic rift. Annals of the American Association of Geographers, 109(6), 1811–1828. 10.1080/24694452.2019.1598841 [DOI] [Google Scholar]
  157. Nguyen, Q. C. , Huang, Y. , Kumar, A. , Duan, H. , Keralis, J. M. , Dwivedi, P. , … Tasdizen, T. (2020). Using 164 million Google Street View Images to derive built environment predictors of COVID‐19 cases. International Journal of Environmental Research and Public Health, 17(17), 6359. 10.3390/ijerph17176359 [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Nian, G. , Peng, B. , Sun, D. J. , Ma, W. , Peng, B. , & Huang, T. (2020). Impact of COVID‐19 on urban mobility during post‐epidemic period in megacities: From the perspectives of taxi travel and social vitality. Sustainability, 12(19), 7954. 10.3390/su12197954 [DOI] [Google Scholar]
  159. Niu, X. , Yue, Y. , Zhou, X. , & Zhang, X. (2020). How urban factors affect the spatiotemporal distribution of infectious diseases in addition to intercity population movement in China. ISPRS International Journal of Geo‐Information, 9(11), 615. 10.3390/ijgi9110615 [DOI] [Google Scholar]
  160. Nomura, S. , Yoneoka, D. , Shi, S. , Tanoue, Y. , Kawashima, T. , Eguchi, A. , … Miyata, H. (2020). An assessment of self‐reported COVID‐19 related symptoms of 227,898 users of a social networking service in Japan: Has the regional risk changed after the declaration of the state of emergency? The Lancet Regional Health—Western Pacific, 1, 100011. 10.1016/j.lanwpc.2020.100011 [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Ogen, Y. (2020). Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID‐19) fatality. Science of The Total Environment, 726, 138605. 10.1016/j.scitotenv.2020.138605 [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Okabe, A. , Satoh, T. , & Sugihara, K. (2009). A kernel density estimation method for networks, its computational method and a GIS‐based tool. International Journal of Geographical Information Science, 23(1), 7–32. 10.1080/13658810802475491 [DOI] [Google Scholar]
  163. Okyere, I. , Chuku, E. O. , Ekumah, B. , Angnuureng, D. B. , Boakye‐Appiah, J. K. , Mills, D. J. , … Crawford, B. (2020). Physical distancing and risk of COVID‐19 in small‐scale fisheries: A remote sensing assessment in coastal Ghana. Research Square, Preprint. 10.21203/rs.3.rs-39872/v1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Oster, A. M. , Kang, G. J. , Cha, A. E. , Beresovsky, V. , Rose, C. E. , Rainisch, G. , … Villanueva, J. (2020). Trends in number and distribution of COVID‐19 hotspot counties—United States, March 8–July 15, 2020. Morbidity and Mortality Weekly Report, 69(33), 1127. 10.15585/mmwr.mm6933e2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. O'Sullivan, D. , Gahegan, M. , Exeter, D. J. , & Adams, B. (2020). Spatially explicit models for exploring COVID‐19 lockdown strategies. Transactions in GIS, 24(4), 967–1000. 10.1111/tgis.12660 [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Oxoli, D. , Cedeno Jimenez, J. R. , & Brovelli, M. A. (2020). Assessment of sentinel‐5p performance for ground‐level air quality monitoring: Preparatory experiments over the covid‐19 lockdown period. ISPRS ‐ International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43(W1), 111–116. http://hdl.handle.net/11311/1154518 [Google Scholar]
  167. Paez, A. , Lopez, F. A. , Menezes, T. , Cavalcanti, R. , & Pitta, M. G. D. R. (2020). A spatio‐temporal analysis of the environmental correlates of COVID‐19 incidence in Spain. Geographical Analysis, 1–25. 10.1111/gean.12241 [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Pani, S. K. , Lin, N. H. , & RavindraBabu, S. (2020). Association of COVID‐19 pandemic with meteorological parameters over Singapore. Science of The Total Environment, 740, 140112. 10.1016/j.scitotenv.2020.140112 [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Pase, F. , Chiariotti, F. , Zanella, A. , & Zorzi, M. (2020). Bike sharing and urban mobility in a post‐pandemic world. IEEE Access, 8, 187291–187306. 10.1109/ACCESS.2020.3030841 [DOI] [Google Scholar]
  170. Pászto, V. , & Vondráková, A. (2020). Mobility Community Reports data: Geovisual analytics and cartographic synthesis of behaviour changes due to COVID‐19 pandemic in Europe. Abstracts of the ICA, 2, 13. 10.5194/ica-abs-2-13-2020 [DOI] [Google Scholar]
  171. Pathakoti, M. , Muppalla, A. , Hazra, S. , Dangeti, M. , Shekhar, R. , Jella, S. , … Vijayasundaram, U. (2020). An assessment of the impact of a nation‐wide lockdown on air pollution—A remote sensing perspective over India. Atmospheric Chemistry and Physics. 10.5194/acp-2020-621 [DOI] [Google Scholar]
  172. Peddireddy, A. S. , Xie, D. , Patil, P. , Wilson, M. L. , Machi, D. , Venkatramanan, S. , … Marathe, M. (2020). From 5Vs to 6Cs: Operationalizing epidemic data management with covid‐19 surveillance. In 2020 IEEE International Conference on Big Data (Big Data) (pp. 1380–1387). IEEE. [Google Scholar]
  173. Pei, Z. , Han, G. , Ma, X. , Su, H. , & Gong, W. (2020). Response of major air pollutants to COVID‐19 lockdowns in China. Science of The Total Environment, 743, 140879. 10.1016/j.scitotenv.2020.140879 [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Peng, Z. , Wang, R. , Liu, L. , & Wu, H. (2020). Exploring urban spatial features of COVID‐19 transmission in Wuhan based on social media data. ISPRS International Journal of Geo‐Information, 9(6), 402. 10.3390/ijgi9060402 [DOI] [Google Scholar]
  175. Pepe, E. , Bajardi, P. , Gauvin, L. , Privitera, F. , Lake, B. , Cattuto, C. , & Tizzoni, M. (2020). COVID‐19 outbreak response, a dataset to assess mobility changes in Italy following national lockdown. Scientific Data, 7(1), 1–7. 10.1038/s41597-020-00575-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Pollán, M. , Pérez‐Gómez, B. , Pastor‐Barriuso, R. , Oteo, J. , Hernán, M. A. , Pérez‐Olmeda, M. , … Vázquez de la Villa, A. (2020). Prevalence of SARS‐CoV‐2 in Spain (ENE‐COVID): A nationwide, population‐based seroepidemiological study. The Lancet, 396(10250), 535–544. 10.1016/S0140-6736(20)31483-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Prudhomme, C. , Cruz, C. , & Cherifi, H . (2020). An agent based model for the transmission and control of the COVID‐19 in Dijon. In Interdonato R. (Ed.), MARAMI 2020: Modèles & Analyse des Réseaux: Approches Mathématiques & Informatiques. The 11th Conference on Network Modeling and Analysis (CEUR Workshop Proceedings Vol. 750). Retrieved from http://ceur‐ws.org/Vol‐2750/paper10.pdf [Google Scholar]
  178. Prunet, P. , Lezeaux, O. , Camy‐Peyret, C. , & Thevenon, H. (2020). Analysis of the NO2 tropospheric product from S5P TROPOMI for monitoring pollution at city scale. City and Environment Interactions, 8, 100051. 10.1016/j.cacint.2020.100051 [DOI] [Google Scholar]
  179. Radojević, B. , Lazić, L. , & Cimbaljević, M. (2020). Rescaling smart destinations: The growing importance of smart geospatial services during and after COVID‐19 pandemic. Geographica Pannonica, 24(3), 221–228. 10.5937/gp24-28009 [DOI] [Google Scholar]
  180. Rahman, M. S. , Azad, M. A. K. , Hasanuzzaman, M. , Salam, R. , Islam, A. R. M. T. , Rahman, M. M. , & Hoque, M. M. M. (2020). How air quality and COVID‐19 transmission change under different lockdown scenarios? A case from Dhaka city, Bangladesh. Science of The Total Environment, 762, 143161. 10.1016/j.scitotenv.2020.143161 [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Rahman, M. R. , Islam, A. H. , & Islam, M. N. (2020). Geospatial modelling on the spread and dynamics of 154 day outbreak of the novel coronavirus (COVID‐19) pandemic in Bangladesh towards vulnerability zoning and management approaches. Modeling Earth Systems and Environment, 1–29. 10.1007/s40808-020-00962-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Ran, J. , Zhao, S. , Han, L. , Chen, D. , Yang, Z. , Yang, L. , … He, D. (2020). The ambient ozone and COVID‐19 transmissibility in China: A data‐driven ecological study of 154 cities. Journal of Infection, 81, 3. 10.1016/j.jinf.2020.07.011 [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Renigier‐Biłozor, M. , Źróbek, S. , Walacik, M. , & Janowski, A. (2020). Hybridization of valuation procedures as a medicine supporting the real estate market and sustainable land use development during the covid‐19 pandemic and afterwards. Land Use Policy, 99, 105070. 10.1016/j.landusepol.2020.105070 [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Requia, W. J. , Kondo, E. K. , Adams, M. D. , Gold, D. R. , & Struchiner, C. J. (2020). Risk of the Brazilian health care system over 5572 municipalities to exceed health care capacity due to the 2019 novel coronavirus (COVID‐19). Science of The Total Environment, 730, 139144. 10.1016/j.scitotenv.2020.139144 [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Rex, F. E. , Borges, C. A. D. S. , & Käfer, P. S. (2020). Spatial analysis of the COVID‐19 distribution pattern in São Paulo State, Brazil. Ciência & Saúde Coletiva, 25, 3377–3384. 10.1590/1413-81232020259.17082020 [DOI] [PubMed] [Google Scholar]
  186. Rodríguez‐Benito, C. V. , Navarro, G. , & Caballero, I. (2020). Using Copernicus Sentinel‐2 and Sentinel‐3 data to monitor harmful algal blooms in Southern Chile during the COVID‐19 lockdown. Marine Pollution Bulletin, 161, 111722. 10.1016/j.marpolbul.2020.111722 [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Roman‐Gonzalez, A. , Navarro‐Raymundo, A. F. , & Vargas‐Cuentas, N. I. (2020). Air pollution monitoring in Peru using satellite data during the quarantine due to COVID‐19. IEEE Aerospace and Electronic Systems Magazine, 35(12), 73–79. 10.1109/MAES.2020.3018895 [DOI] [Google Scholar]
  188. Roman‐González, A. , & Vargas‐Cuentas, N. I. (2020). Variation of aerosol pollution in Peru during the quarantine due to COVID‐19. International Journal of Advanced Computer Science and Applications, 11(4), 47–50. 10.14569/IJACSA.2020.0110407 [DOI] [Google Scholar]
  189. Rosenkrantz, L. , Schuurman, N. , Bell, N. , & Amram, O. (2020). The need for GIScience in mapping COVID‐19. Health & Place, 67, 102389. 10.1016/j.healthplace.2020.102389 [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Rossman, H. , Keshet, A. , Shilo, S. , Gavrieli, A. , Bauman, T. , Cohen, O. , … Segal, E. (2020). A framework for identifying regional outbreak and spread of COVID‐19 from one‐minute population‐wide surveys. Nature Medicine, 26(5), 634–638. 10.1038/s41591-020-0857-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Roy, A. , & Kar, B. (2020). Characterizing the spread of COVID‐19 from human mobility patterns and sociodemographic indicators. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities (pp. 39–48). New York, NY: ACM. 10.1145/3423455.3430303 [DOI] [Google Scholar]
  192. Saaty, T. L. (1988). What is the analytic hierarchy process? In Mitra G., Greenberg H. J., Lootsma F. A., Rijkaert M. J., & Zimmermann H. J. (Eds.), Mathematical models for decision support (pp. 109–121). Berlin, Germany: Springer. 10.1007/978-3-642-83555-1_5 [DOI] [Google Scholar]
  193. Saeed, U. , Sherdil, K. , Ashraf, U. , Younas, I. , Butt, H. J. , & Rashid, S. (2021). Identification of potential lock‐down area during COVID‐19 transmission in Punjab, Pakistan. Public Health, 190, 42–51. 10.1016/j.puhe.2020.10.026 [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Saez, M. , Tobias, A. , & Barceló, M. A. (2020). Effects of long‐term exposure to air pollutants on the spatial spread of COVID‐19 in Catalonia, Spain. Environmental Research, 191, 110177. 10.1016/j.envres.2020.110177 [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Saha, J. , Barman, B. B. , & Chouhan, P. (2020). Lockdown for COVID‐19 and its impact on pupil mobility in India: An analysis of the COVID‐19 Community Mobility Reports, 2020. Children and Youth Services Review, 116, 105160. 10.1016/j.childyouth.2020.105160 [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Saha, J. , & Chouhan, P. (2021). Lockdown and unlock for the COVID‐19 pandemic and associated residential mobility in India. International Journal of Infectious Diseases, 104, 382–389. 10.1016/j.ijid.2020.11.187 [DOI] [PubMed] [Google Scholar]
  197. Sahraoui, Y. , Korichi, A. , Kerrache, C. A. , Bilal, M. , & Amadeo, M. (2020). Remote sensing to control respiratory viral diseases outbreaks using Internet of Vehicles. Transactions on Emerging Telecommunications Technologies, 1–17. 10.1002/ett.4118 [DOI] [Google Scholar]
  198. Saladié, Ò. , Bustamante, E. , & Gutiérrez, A. (2020). COVID‐19 lockdown and reduction of traffic accidents in Tarragona province, Spain. Transportation Research Interdisciplinary Perspectives, 8, 100218. 10.1016/j.trip.2020.100218 [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Samuels‐Kalow, M. E. , Dorner, S. , Cash, R. , Dutta, S. , White, B. , Ciccolo, G. , … Camargo, C. A. (2020). 104 associations between neighborhood disadvantage measures and COVID‐19 case clusters. Annals of Emergency Medicine, 76(4), S41. 10.1016/j.annemergmed.2020.09.115 [DOI] [Google Scholar]
  200. Samuelsson, K. , Barthel, S. , Colding, J. , Macassa, G. , & Giusti, M . (2020). Urban nature as a source of resilience during social distancing amidst the coronavirus pandemic. OSF Preprint. 10.31219/osf.io/3wx5a [DOI] [Google Scholar]
  201. Sánchez‐Sánchez, J. A. , Chuc, V. M. K. , Canché, E. A. R. , & Uscanga, F. J. L. (2020). Vulnerability assessing contagion risk of Covid‐19 using geographic information systems and multi‐criteria decision analysis: Case study Chetumal, México. In Mata‐Rivera M. F., Zagal‐Flores R., Arellano Verdejo J., & Lazcano Hernandez H. E. (Eds.), GIS LATAM: First Conference (pp. 1–17). Cham, Switzerland: Springer. 10.1007/978-3-030-59872-3_1 [DOI] [Google Scholar]
  202. Sandifer, P. , Knapp, L. , Lichtveld, M. , Manley, R. , Abramson, D. , Caffey, R. , … Singer, B. (2020). Framework for a community health observing system for the Gulf of Mexico region: Preparing for future disasters. Frontiers in Public Health, 8, 588. 10.3389/fpubh.2020.578463 [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Sangiorgio, V. , & Parisi, F. (2020). A multicriteria approach for risk assessment of Covid‐19 in urban district lockdown. Safety Science, 130, 104862. 10.1016/j.ssci.2020.104862 [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Sannigrahi, S. , Pilla, F. , Basu, B. , Basu, A. S. , & Molter, A. (2020). Examining the association between socio‐demographic composition and COVID‐19 fatalities in the European region using spatial regression approach. Sustainable Cities and Society, 62, 102418. 10.1016/j.scs.2020.102418 [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Santana Juárez, M. V. , Castañeda, G. S. , Carillo, C. S. , Carrillo, R. S. , & Alcántara, R. O. (2020). COVID‐19 en México: Asociación espacial de cara a la fase tres. Hygeia—revista Brasileira de Geografia Médica e da Saúde, 16(Special Issue), 36–48. 10.14393/Hygeia0054317 [DOI] [Google Scholar]
  206. Sarfo, A. K. , & Karuppannan, S. (2020). Application of geospatial technologies in the covid‐19 fight of Ghana. Transactions of the Indian National Academy of Engineering, 5(2), 193–204. 10.1007/s41403-020-00145-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Sarkar, S. K. (2020). COVID‐19 susceptibility mapping using multicriteria evaluation. Disaster Medicine and Public Health Preparedness, 14(4), 521–537. 10.1017/dmp.2020.175 [DOI] [PubMed] [Google Scholar]
  208. Saxena, S. , Rabha, A. , Tahlani, P. , & Ray, S. S. (2020). Crop situation in India, before, during and after COVID‐19 lockdown, as seen from the satellite data of Resourcesat‐2 AWiFS. Journal of the Indian Society of Remote Sensing, 49, 365–376. 10.1007/s12524-020-01213-5 [DOI] [Google Scholar]
  209. Shah, P. , & Patel, C. R. (2020). Prevention is better than cure: An application of big data and geospatial technology in mitigating pandemic. Transactions of the Indian National Academy of Engineering, 5, 187–192. 10.1007/s41403-020-00120-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Shariati, M. , Jahangiri‐rad, M. , Mahmud Muhammad, F. , & Shariati, J. (2020). Spatial analysis of COVID‐19 and exploration of its environmental and socio‐demographic risk factors using spatial statistical methods: A case study of Iran. Health in Emergencies and Disasters, 5(3), 145–154. 10.32598/hdq.5.3.358.1 [DOI] [Google Scholar]
  211. Shariati, M. , Mesgari, T. , Kasraee, M. , & Jahangiri‐Rad, M. (2020). Spatiotemporal analysis and hotspots detection of COVID‐19 using geographic information system (March and April, 2020). Journal of Environmental Health Science and Engineering, 18(2), 1499–1507. 10.1007/s40201-020-00565-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Shen, J. (2020). Covid‐19 and inter‐provincial migration in China. Eurasian Geography and Economics, 61(4–5), 620–626. 10.1080/15387216.2020.1820355 [DOI] [Google Scholar]
  213. Shi, Q. , & Liu, T. (2020). Should internal migrants take full responsibility for spreading COVID‐19? Environment and Planning A, 52(4), 695–697. 10.1177/0308518X20916764 [DOI] [Google Scholar]
  214. Shi, Z. , Chen, H. , Fan, K. , & Chen, P. (2020). Some thoughts and strategies of planning for the impact of “COVID‐19” epidemic in Yunnan plateau basin. E3S Web of Conferences, 185, 03044. 10.1051/e3sconf/202018503044 [DOI] [Google Scholar]
  215. Silalahi, F. E. S. , Hidayat, F. , Dewi, R. S. , Purwono, N. , & Oktaviani, N. (2020). GIS‐based approaches on the accessibility of referral hospital using network analysis and the spatial distribution model of the spreading case of COVID‐19 in Jakarta, Indonesia. BMC Health Services Research, 20(1), 1–20. 10.1186/s12913-020-05896-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Smith, C. D. , & Mennis, J. (2020). Incorporating geographic information science and technology in response to the COVID‐19 pandemic. Preventing Chronic Disease, 17, 200246. 10.5888/pcd17.200246 [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Snyder, B. F. , & Parks, V. (2020). Spatial variation in socio‐ecological vulnerability to COVID‐19 in the contiguous United States. Health & Place, 66, 102471. 10.1016/j.healthplace.2020.102471 [DOI] [PubMed] [Google Scholar]
  218. Spagnuolo, G. , De Vito, D. , Rengo, S. , & Tatullo, M. (2020). COVID‐19 outbreak: An overview on dentistry. International Journal of Environmental Research and Public Health, 17(6), 2094. 10.3390/ijerph17062094 [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Stieb, D. M. , Evans, G. J. , To, T. M. , Brook, J. R. , & Burnett, R. T. (2020). An ecological analysis of long‐term exposure to PM2.5 and incidence of COVID‐19 in Canadian health regions. Environmental Research, 191, 110052. 10.1016/j.envres.2020.110052 [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Stratoulias, D. , & Nuthammachot, N. (2020). Air quality development during the COVID‐19 pandemic over a medium‐sized urban area in Thailand. Science of The Total Environment, 746, 141320. 10.1016/j.scitotenv.2020.141320 [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Sugg, M. M. , Spaulding, T. J. , Lane, S. J. , Runkle, J. D. , Harden, S. R. , Hege, A. , & Iyer, L. S. (2020). Mapping community‐level determinants of COVID‐19 transmission in nursing homes: A multi‐scale approach. Science of The Total Environment, 752, 141946. 10.1016/j.scitotenv.2020.141946 [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Sui, Y. I. , Zhang, H. , Shang, W. , Sun, R. , Wang, C. , Ji, J. , … Shao, F. (2020). Mining urban sustainable performance: Spatio‐temporal emission potential changes of urban transit buses in post‐COVID‐19 future. Applied Energy, 280, 115966. 10.1016/j.apenergy.2020.115966 [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Sun, F. , Matthews, S. A. , Yang, T. C. , & Hu, M. H. (2020). A spatial analysis of the COVID‐19 period prevalence in US counties through June 28: Where geography matters? Annals of Epidemiology, 52, 54–59.e1. 10.1016/j.annepidem.2020.07.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Sun, X. , Wandelt, S. , & Zhang, A. (2020). How did COVID‐19 impact air transportation? A first peek through the lens of complex networks. Journal of Air Transport Management, 89, 101928. 10.1016/j.jairtraman.2020.101928 [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Sun, Z. , Di, L. , Sprigg, W. , Tong, D. , & Casal, M. (2020). Community venue exposure risk estimator for the COVID‐19 pandemic. Health & Place, 66, 102450. 10.1016/j.healthplace.2020.102450 [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Taiwo, O. J. (2020). Maximal Covering Location Problem (MCLP) for the identification of potential optimal COVID‐19 testing facility sites in Nigeria. African Geographical Review, 1–17. 10.1080/19376812.2020.1838306 [DOI] [Google Scholar]
  227. Tan, Z. , Li, X. , Gao, M. , & Jiang, L . (2020). The environmental story during the COVID‐19 lockdown: How human activities affect PM2.5 concentration in China? IEEE Geoscience and Remote Sensing Letters, 1–5. 10.1109/LGRS.2020.3040435 [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Tao, R. , Downs, J. , Beckie, T. M. , Chen, Y. , & McNelley, W. (2020). Examining spatial accessibility to COVID‐19 testing sites in Florida. Annals of GIS, 26, 319–327. 10.1080/19475683.2020.1833365 [DOI] [Google Scholar]
  229. Taoyang, W. A. N. G. , Xi, L. I. , Liqiao, T. I. A. N. , Zhenwei, C. H. E. N. , Zhijiang, L. I. , Guo, D. , … Haonan, Z. H. U . (2020). Space remote sensing dynamic monitoring for urban complex. Geomatics and Information Science of Wuhan University, 45(5), 640–650. 10.13203/j.whugis20200096 [DOI] [Google Scholar]
  230. Tello‐Leal, E. , & Macías‐Hernández, B. A. (2020). Association of environmental and meteorological factors on the spread of COVID‐19 in Victoria, Mexico, and air quality during the lockdown. Environmental Research, 196, 110442. 10.1016/j.envres.2020.110442 [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Thomas, L. J. , Huang, P. , Yin, F. , Luo, X. I. , Almquist, Z. W. , Hipp, J. R. , & Butts, C. T. (2020). Spatial heterogeneity can lead to substantial local variations in COVID‐19 timing and severity. Proceedings of the National Academy of Sciences, 117(39), 24180–24187. 10.1073/pnas.2011656117 [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Tian, H. , Liu, Y. , Li, Y. , Wu, C.‐H. , Chen, B. , Kraemer, M. U. G. , … Dye, C. (2020). An investigation of transmission control measures during the first 50 days of the COVID‐19 epidemic in China. Science, 368(6491), 638–642. 10.1126/science.abb6105 [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(Suppl. 1), 234–240. 10.2307/143141 [DOI] [Google Scholar]
  234. Tong, Y. , Ma, Y. , & Liu, H. (2020). The short‐term impact of COVID‐19 epidemic on the migration of Chinese urban population and the evaluation of Chinese urban resilience. Dili Xuebao/Acta Geographica Sinica, 75(11). 10.11821/dlxb202011017 [DOI] [Google Scholar]
  235. UN Habitat . (2020). UN‐Habitat COVID‐19 response plan. Nairobi, Kenya: United Nations Human Settlements Programme. Retrieved from https://unhabitat.org/sites/default/files/2020/04/final_un‐habitat_covid‐19_response_plan.pdf [Google Scholar]
  236. Urban, R. C. , & Nakada, L. Y. K. (2021). GIS‐based spatial modelling of COVID‐19 death incidence in São Paulo, Brazil. Environment and Urbanization, 33(1), 229–238. 10.1177/0956247820963962 [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Valjarević, A. , Milić, M. , Valjarević, D. , Stanojević‐Ristić, Z. , Petrović, L. , Milanović, M. , … Lukić, T. (2020). Modelling and mapping of the COVID‐19 trajectory and pandemic paths at global scale: A geographer's perspective. Open Geosciences, 12(1), 1603–1616. 10.1515/geo-2020-0156 [DOI] [Google Scholar]
  238. Vannoni, M. , McKee, M. , Semenza, J. C. , Bonell, C. , & Stuckler, D. (2020). Using volunteered geographic information to assess mobility in the early phases of the COVID‐19 pandemic: A cross‐city time series analysis of 41 cities in 22 countries from March 2nd to 26th 2020. Globalization and Health, 16(1), 1–9. 10.1186/s12992-020-00598-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Vaz, E. (2021). COVID‐19 in Toronto: A spatial exploratory analysis. Sustainability, 13(2), 498. 10.3390/su13020498 [DOI] [Google Scholar]
  240. Venter, Z. S. , Aunan, K. , Chowdhury, S. , & Lelieveld, J. (2020). COVID‐19 lockdowns cause global air pollution declines. Proceedings of the National Academy of Sciences, 117(32), 18984–18990. 10.1073/pnas.2006853117 [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Vergara‐Perucich, J. F. , Correa‐Parra, J. , & Aguirre‐Nuñez, C. (2020). The spatial correlation between the spread of COVID‐19 and vulnerable urban areas in Santiago de Chile. Critical Housing Analysis, 7(2), 21–35. 10.13060/23362839.2020.7.2.512 [DOI] [Google Scholar]
  242. Vîrghileanu, M. , Săvulescu, I. , Mihai, B. A. , Nistor, C. , & Dobre, R. (2020). Nitrogen dioxide (NO2) pollution monitoring with Sentinel‐5P satellite imagery over Europe during the coronavirus pandemic outbreak. Remote Sensing, 12(21), 3575. 10.3390/rs12213575 [DOI] [Google Scholar]
  243. Wallace, R. , Liebman, A. , Chaves, L. F. , & Wallace, R. (2020). COVID‐19 and circuits of capital. Monthly Review, 72(1), 1–13. 10.14452/MR-072-01-2020-05_1 [DOI] [Google Scholar]
  244. Wan, X. (2020). Application of semantic location awareness computing based on data mining in COVID‐19 prevention and control system. Journal of Intelligent & Fuzzy Systems, 39(6), 8971–8980. 10.3233/JIFS-189295 [DOI] [Google Scholar]
  245. Wang, Y. , Liu, Y. , Struthers, J. , & Lian, M. (2020). Spatiotemporal characteristics of COVID‐19 epidemic in the United States. Clinical Infectious Diseases, 72(4), 643–651. 10.1093/cid/ciaa934 [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Wang, Y. , Peng, D. , Yu, L. E. , Zhang, Y. , Yin, J. , Zhou, L. , … Li, C. (2020). Monitoring crop growth during the period of the rapid spread of COVID‐19 in China by remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6195–6205. 10.1109/JSTARS.2020.3029434 [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Wei, J.‐T. , Liu, Y.‐X. , Zhu, Y.‐C. , Qian, J. , Ye, R.‐Z. , Li, C.‐Y. , … Cao, W.‐C. (2020). Impacts of transportation and meteorological factors on the transmission of COVID‐19. International Journal of Hygiene and Environmental Health, 230, 113610. 10.1016/j.ijheh.2020.113610 [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Wolf, G. W. (2020). Corona‐Geographien oder wie ein Virus die Bedeutungslosigkeit eines Fachs offenbarte. Innovation, Innovativität und GW‐Unterricht, 159, 79–87. 10.1553/gw-unterricht159s79 [DOI] [Google Scholar]
  249. Wu, X. , Yin, J. , Li, C. , Xiang, H. , Lv, M. , & Guo, Z. (2020). Natural and human environment interactively drive spread pattern of COVID‐19: A city‐level modeling study in China. Science of The Total Environment, 756, 143343. 10.1016/j.scitotenv.2020.143343 [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Wyche, K. P. , Nichols, M. , Parfitt, H. , Beckett, P. , Gregg, D. J. , Smallbone, K. L. , & Monks, P. S. (2020). Changes in ambient air quality and atmospheric composition and reactivity in the South East of the UK as a result of the COVID‐19 lockdown. Science of The Total Environment, 755, 142526. 10.1016/j.scitotenv.2020.142526 [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Xie, Z. , Qin, Y. , Li, Y. , Shen, W. , Zheng, Z. , & Liu, S. (2020). Spatial and temporal differentiation of COVID‐19 epidemic spread in mainland China and its influencing factors. Science of The Total Environment, 744, 140929. 10.1016/j.scitotenv.2020.140929 [DOI] [PMC free article] [PubMed] [Google Scholar]
  252. Xu, X. , Wang, S. , Dong, J. , Shen, Z. , & Xu, S. (2020). An analysis of the domestic resumption of social production and life under the COVID‐19 epidemic. PLoS ONE, 15(7), e0236387. 10.1371/journal.pone.0236387 [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Yabe, T. , Tsubouchi, K. , Fujiwara, N. , Wada, T. , Sekimoto, Y. , & Ukkusuri, S. V. (2020). Non‐compulsory measures sufficiently reduced human mobility in Tokyo during the COVID‐19 epidemic. Scientific Reports, 10(1), 1–9. 10.1038/s41598-020-75033-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Yalcin, M. (2020). Mapping the global spatio‐temporal dynamics of Covid‐19 outbreak using cartograms during the first 150 days of the pandemic. Geocarto International, 1–10. 10.1080/10106049.2020.1844310 [DOI] [Google Scholar]
  255. Yang, C. , Sha, D. , Liu, Q. , Li, Y. , Lan, H. , Guan, W. W. , … Ding, A. (2020). Taking the pulse of COVID‐19: A spatiotemporal perspective. International Journal of Digital Earth, 13(10), 1186–1211. 10.1080/17538947.2020.1809723 [DOI] [Google Scholar]
  256. Yao, H. , Zuo, X. , Zuo, D. , Lin, H. , Huang, X. , & Zang, C. (2020). Study on soybean potential productivity and food security in China under the influence of COVID‐19 outbreak. Geography and Sustainability, 1(2), 163–171. 10.1016/j.geosus.2020.06.002 [DOI] [Google Scholar]
  257. Yao, Y. E. , Pan, J. , Wang, W. , Liu, Z. , Kan, H. , Qiu, Y. , … Wang, W. (2020). Association of particulate matter pollution and case fatality rate of COVID‐19 in 49 Chinese cities. Science of The Total Environment, 741, 140396. 10.1016/j.scitotenv.2020.140396 [DOI] [PMC free article] [PubMed] [Google Scholar]
  258. Ye, Y. , Wang, C. , Yang, J. , Liu, Z. , Wu, K. , & Deng, Y. (2020). Spatiotemporal analysis of COVID‐19 risk in Guangdong Province based on population migration. Journal of Geographical Sciences, 30(12), 1985–2001. 10.11821/dlxb202011018 [DOI] [Google Scholar]
  259. Yip, T. L. , Huang, Y. , & Liang, C. (2020). Built environment and the metropolitan pandemic: Analysis of the COVID‐19 spread in Hong Kong. Building and Environment, 188, 107471. 10.1016/j.buildenv.2020.107471 [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Yoneoka, D. , Tanoue, Y. , Kawashima, T. , Nomura, S. , Shi, S. , Eguchi, A. , … Miyata, H. (2020). Large‐scale epidemiological monitoring of the COVID‐19 epidemic in Tokyo. The Lancet Regional Health—Western Pacific, 3, 100016. 10.1016/j.lanwpc.2020.100016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Yunus, A. P. , Masago, Y. , & Hijioka, Y. (2020). COVID‐19 and surface water quality: Improved lake water quality during the lockdown. Science of The Total Environment, 731, 139012. 10.1016/j.scitotenv.2020.139012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Zecca, C. , Gaglione, F. , Laing, R. , & Gargiulo, C. (2020). Pedestrian routes and accessibility to urban services: An urban rhythmic analysis on people's behaviour before and during the COVID‐19. TeMA—Journal of Land Use Mobility and Environment, 13(2), 241–256. 10.6092/1970-9870/7051 [DOI] [Google Scholar]
  263. Zhang, C. H. , & Schwartz, G. G. (2020). Spatial disparities in coronavirus incidence and mortality in the United States: An ecological analysis as of May 2020. Journal of Rural Health, 36(3), 433–445. 10.1111/jrh.12476 [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. Zhang, T. (2020). Integrating geographic information system technique with Google Trends data to analyse COVID‐19 severity and public interest. Public Health, 189, 3–4. 10.1016/j.puhe.2020.09.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. Zhang, Y. , Li, Y. , Yang, B. , Zheng, X. , & Chen, M. (2020). Risk assessment of COVID‐19 based on multisource data from a geographical viewpoint. IEEE Access, 8, 125702–125713. 10.1109/ACCESS.2020.3004933 [DOI] [Google Scholar]
  266. Zhou, C. , Su, F. , Pei, T. , Zhang, A. N. , Du, Y. , Luo, B. , … Song, C. (2020). COVID‐19: Challenges to GIS with big data. Geography and Sustainability, 1(1), 77–87. 10.1016/j.geosus.2020.03.005 [DOI] [Google Scholar]
  267. Zhu, B. , Zheng, X. , Liu, H. , Li, J. , & Wang, P. (2020). Analysis of spatiotemporal characteristics of big data on social media sentiment with COVID‐19 epidemic topics. Chaos, Solitons & Fractals, 140, 110123. 10.1016/j.chaos.2020.110123 [DOI] [PMC free article] [PubMed] [Google Scholar]
  268. Zulkarnain, R. , & Ramadani, K. D. (2020). Kualitas udara dan potensi transmisi COVID‐19 di pulau Jawa. Seminar Nasional Official Statistics 2020(1), 23–33. 10.34123/semnasoffstat.v2020i1.398 [DOI] [Google Scholar]
  269. Zúñiga, M. , Pueyo, A. , & Postigo, R. (2020). Herramientas espaciales para la mejora de la gestión de la información en alerta sanitaria por COVID‐19. Geographicalia, 72, 141–145. 10.26754/ojs_geoph/geoph.2020725005 [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The data that support the findings of this study are openly available in [repository name e.g., “figshare”] at http://doi.org/[doi], reference number [reference number].


Articles from Transactions in Gis are provided here courtesy of Wiley

RESOURCES