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Abstract

Marr’s seminal work laid out a program of research by specifying key questions for cognitive 

science at different levels of analysis. Because Dynamic Systems Theory focuses on time and 

interdependence of components DST research programs come to very different conclusions 

regarding the nature of cognitive change. We review a specific DST approach to cognitive-level 

processes: Dynamic Field Theory. We review research applying dynamic field theory to several 

cognitive-level processes: object permanence, naming hierarchical categories, and inferring intent, 

that demonstrate the difference in understanding of behavior and cognition that results from a DST 

perspective. These point to a central challenge for cognitive science research as defined by Marr—

emergence. We argue that appreciating emergence raises questions about the utility of 

computational level analyses and opens the door to insights concerning the origin of novel forms 

of behavior and thought (e.g., a new chess strategy). We contend this is one of the most 

fundamental questions about cognition and behavior.
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Introduction

Marr’s landmark book Vision (1982) has had numerous lasting influences on the field of 

cognitive science. Most notably, Marr defined a research program for the field of vision but 

more generally, his tri-level approach created key questions for cognitive science at different 

levels of analysis: what abstract problem is the system designed to solve, what algorithm 

does it use on what representations, and how is this implemented in the brain. While these 

questions enable explanations at each level that are relatively independent, Marr emphasized 

that an understanding of any complex system at only one level is ultimately insufficient—

“…one must be prepared to contemplate different kinds of explanation at different levels of 

description that are linked, at least in principle, into a cohesive whole…” (Marr, 1982 pp. 

20). Similarly, he wrote, “To understand fully a particular machine carrying out a particular 

information-processing task, one has to [understand both hardware and information 

processing]. Neither alone will suffice,” (Marr, 1982 pp. 5). Nevertheless, Marr stressed the 
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computational level and stressed the necessity of analyzing the task presented to the system 

as critical to defining the scope of the research question.

We argue that compared to other approaches, the focus on time and integration across 

system components that are central to Dynamic Systems Theory (DST) lead to different 

answers to Marr’s questions and, critically, suggests that starting with the computational-

level analysis can lead to serious misunderstandings of behavior (see also, McClelland et al., 

2010; other papers in this topic). Below we present an overview of the DST approach, 

focusing on Dynamic Field Theory (Schöner et al., in press; Spencer, Perone & Johnson, 

2009), which translates DST concepts into formal models that integrate neural, cognitive 

and behavioral levels. We then provide three examples that demonstrate the contrast in 

conclusions reached when the research question is defined by an abstract computational-

level analysis versus an DST analysis focused on behavioral change. We highlight the role 

of formal dynamic systems approaches like DFT for grounding our understanding of 

cognitive phenomena, real-time processes and neural population dynamics. We close by 

considering the implications of these examples for the question for this topic: what is the 

role of process-oriented theories and cognitive constructs in understanding brain/behavior 

relationships?

Dynamic Systems Theory

Dynamic Systems Theory focuses on the processes of change over time in complex systems. 

It views behavior, including cognition, as emerging from the interaction of multiple softly 

assembled components that are mutually influential and evolve over multiple embedded 

timescales (Beer, 2000; Fischer & Bidell, 1998; Kelso, 1995, 2000; Lewis & Liu, 2011; 

Newell & Molenaar, 1998; Port & Van Gelder 1995; Thelen & Smith, 1994; ; Spivey 2007; 

van der Maas & Molenaar, 1992, van Gelder, T., 1998). Appreciating that behavior is 

emergent and softly assembled means understanding that behavior is the product of multiple 

components brought together in a moment of time based on the particular context, task, and 

history of the organism. The interaction of these components is not pre-specified or 

deterministic; thus, the particular assembly and resulting behavior are unique and variable 

from moment-to-moment and across specific contexts. For example, the particular muscles 

and joint angles used to pick up your coffee cup will change based on many factors 

including the starting point of the reach, the introduction of obstacles in the path, or the 

weight of a new watch on your wrist (see also Spencer et al., 2006, Thelen & Smith, 1994 

for additional examples). The implication of this is that identical behavioral outputs can be 

the result of very different specific processes in different contexts or in organisms with 

different histories. Mutual interactivity means interactions proceed in both directions; not 

only does attentional selection influence the contents of visual working memory, but the 

contents of visual working memory reciprocally influence selective attention (Hollingworth 

et al. in press; Schneegans, et al. 2014; Schneegans et al., in press). Viewing timescales as 

embedded means appreciating that the different timescales cognitive science often considers 

are not independent and cannot be studied without recourse to each other.

The application of dynamic systems to psychological phenomena has its origins in motor 

control and perception-action (see for discussion Spencer & Schöner, 2003), but these 
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approaches are often criticized for being overly metaphorical and not applicable to 

cognitive-level processes (Griffiths, Chater, Kemp, Perfors & Tenenbaum, 2010). Dynamic 

Field theory (DFT, Schöner, Spencer, & the DFT Research Group, in press) has emerged as 

a response to such critiques. DFT is an embodied, dynamic systems approach to cognitive-

level processes based on an understanding of brain function at the level of neural population 

dynamics (Erlhagen, Bastian, Jancke, Riehle, & Schöner, 1999; Jancke, et al., 1999). The 

basic building block of formal Dynamic Neural Field models is a field of metrically-

organized neurons, that is neurons in this field are structured such that those close together 

have receptive fields that respond to similar feature values while those farther apart have 

receptive fields tuned to very different feature values (Schöner, Spencer, & the DFT 

Research Group, in press. These neurons interact according to a local excitation/lateral 

inhibition function (Spencer, Austin & Schutte, 2012), a common form of interaction in 

neural models of cortical function (Durstewitz, 2000). Neural fields, like local neural 

populations in the brain (Cohen & Newsome, 2009; Amari, 1977; Fuster, 2003), move into 

and out of attractor states, reliable patterns of activation that the neural population maintains 

in the context of particular inputs. For instance, when presented with visual input, neural 

populations in visual cortex create stable ‘peaks’ of activation representing a location and set 

of features.

Whereas DST provides a set of theoretical tools, mathematical formalizations, and empirical 

approaches for understanding complex systems (Lewis & Granic, 2000; Newell & 

Molenaar, 1998; Port & van Gelder, 1995; Thelen & Smith, 1994). DFT adds a formal 

approach for analyzing and understanding cognitive-level processes. Furthermore, because 

DFT links cognitive-level processes to both neural population dynamics and behavior, and 

focuses on how behavior evolves over time, it explicitly integrates brain and behavior and 

provides a formal method for understanding both behavior and behavior change. Critically, 

as we demonstrate in the following examples, explicitly linking cognitive-level processes to 

neural population dynamics and behavior, radically changes how phenomena are analyzed 

and our understanding of cognition.

The A-not-B error

The A-not-B error refers to the finding that infants (and adults under the right circumstances, 

Spencer & Hund, 2002) will continue to search for a hidden object in the place it has been 

previously found even after observing it being hidden in another location. Thus, the 

computational analysis suggested that the task was to remember that something existed even 

when it is out of sight (see for discussion McClelland et al, 2010; Thelen & Smith, 1994, 

Smith & Thelen, 2003), and the behavioral change was explained at the algorithmic and 

representational level in terms of a deficit in cognitive processing. Ten-month-old infants, 

who make the error reliably, were said to lack a specific representation called the “object 

concept” (Piaget, 1954) and did not understand that the object continued to exist after it was 

hidden. In contrast, 12-month-old infants, who are typically able to search correctly, were 

said to represent the object mentally even when it was not visually available.

In contrast, a DST analysis of this phenomenon revealed critical influences of the motor 

system and body by recognizing the role of infants’ ability to stabilize and repeat a reach to 
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the same location (Thelen & Smith, 1994). Later research supported this analysis, 

demonstrating that the number of reaches to A, the posture of the infant, and the use of 

wrist-weights to change the specifics of the reaching trajectory all determined whether 

infants made the error (Smith, Thelen, Titzer & McLin, 1999). Likewise, a formal DNF 

model of developmental changes in the A-not-B error captured the relation between the 

body and neural populations that represent reaching direction (Smith et al., 1999; Thelen et 

al.; 2001) and made predictions about behavioral conditions that could both increase and 

decrease the likelihood of the behavior. Subsequent studies have supported the DNF models’ 

predictions for infants (e.g., Clearfield et al., 2009), toddlers (Spencer, Smith, & Thelen, 

2001) and school-aged children (Hund and Spencer, 2003).

The final blow to the computational-level analysis that object permanence was the goal, and 

the algorithm-level explanation of a missing representation, however, was the demonstration 

that hidden toys were not even needed to produce the error—infants will make the error 

even when reaching to visible objects (Smith et al., 1999). Clearly, the A-not-B error cannot 

be about a failure to represent an object’s existence if the object is in full view. Rather, DST 

behavioral analysis suggests that changes in motor components at two different timescales 

affected behavioral change: reaches made over the course of an experiment, and motor 

stability over the course of development. Thus, this work demonstrates that the behavior is 

not just about cognitive-level processes but about the body as well—the representation of 

things in the world is tightly coupled to the dynamics of the body (see also Eerland, 

Guadalupe & Zwaan, 2011; Zwaan & Kaschack, 2009 for related results in adults and 

Zwaan, van der Stoep, Guadalupe & Bouwmeester, 2012 for discussion). This has been 

recently demonstrated by instantiating the DNF model in an autonomous robot and 

quantitatively simulating experimental data from infants (Schöner, et al., in press).

Thus, this program of work demonstrates how a computational level analysis that defined 

the research question with respect to a cognitive-level process only—a missing 

representation—missed the crucial influence of the integrated body-brain system that is the 

basis of the A-not-B error. Some might argue that the dynamics apparent in this example 

reflect the motor system used in the behavioral response rather than cognitive-level 

processes. To counter this argument, we next turn to recent research on adults’ and 

children’s acquisition of names for hierarchical categories. This program of work has 

applied a DST perspective to a phenomenon—the suspicious coincidence effect (SCE)—

previously thought to reflect abstract reasoning about category membership. A dynamic 

systems approach has integrated the SCE with the trajectory of vocabulary development and 

with lower-level processes such as perceptual comparison and working memory. In addition, 

this perspective grounds the SCE in neural population dynamics via dynamic field theory.

Generalization of names for hierarchical categories

The challenge in learning names for hierarchically-nested categories is in inferring the 

correct level of application of a novel word based on limited exposure. For example, when 

the novel word “Fep” is heard in association with a single Dalmatian, its meaning is 

ambiguous. Does “Fep” refer to only that particular dog, or to other Dalmatians, or even to 
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other breeds of dog or other species of animal? Both children and adults must resolve these 

ambiguities when learning words for anything that might be part of a taxonomy.

Xu and Tenenbaum (2007) analyzed this generalization problem at an exclusively 

computational level, focusing only on Bayesian inductive reasoning as an overall 

explanation of learners’ strategy and logic, without respect to dynamics that might occur 

during the task or timescales beyond that of the task itself. Xu and Tenenbaum explicitly 

separated Marr’s levels in their approach, stating “Our analysis of word learning focuses on 

what Marr (1982) called the level of computational theory. We have tried to elucidate the 

logic behind word learners’ inductive inferences, without specifying how that logic is 

implemented algorithmically in the mind or physiologically in neural hardware,” (pp. 270).

Xu and Tenenbaum (2007) presented adults and children with one or more exemplars of a 

category and a novel label. The exemplars were either identical (multiple Dalmatians), 

members of the same basic level category (different breeds of dog), or members of a 

superordinate category (different species of animal). Participants were then asked whether 

the novel word generalized to test objects chosen from different taxonomic levels. Based on 

their computational-level analysis, Xu and Tenenbaum made a novel prediction—the 

“suspicious coincidence effect”— that both preschoolers and adults would generalize the 

novel words more narrowly when they were presented with three identical exemplars rather 

than just one. The idea is that it would be highly unlikely to hear the same word applied to 

three identical but separate instances of a category unless that word referred to that level of 

the category. This is what Xu and Tenenbaum found: “Fep” applied to one Dalmatian led to 

generalization to all dogs, whereas “Fep” applied to three identical Dalmatians led to 

generalization only to other Dalmatians. Xu and Tenenbaum suggested that rational 

Bayesian statistical reasoning was the basis for children’s and adults’ ability to quickly learn 

names. They presented a formal Bayesian model that fit the results from both adults and 

children. Furthermore, they convincingly argued that their model was the only one that 

would predict the suspicious coincidence effect and the only one to account for the data.

Subsequent research, however, suggests that details of the neural and behavioral process by 

which novel names are perceived, remembered, and generalized matter greatly in the 

suspicious coincidence effect, and change our understanding of the computational-level task. 

Spencer, Perone, Smith, and Samuelson (2011) examined the influence of stimulus 

presentation in the word generalization task. Their motivation was decades of research 

suggesting that generalization depends critically on variability in the presented instances and 

contexts of exposure, as well as whether exemplars are presented together (allowing direct 

comparison) or in sequence (forcing more global similarity analysis, see Spencer et al., 

2011). In addition, prior work had shown a narrowing of representations in a visual working 

memory study when similar objects appeared near one another in time and space (Johnson, 

Spencer, Luck, & Schöner, 2009), a finding captured by a dynamic field model of visual 

working memory. In particular, these interactions produce narrowing of activated 

representations when multiple similar stimuli are seen close in time and space (see Fig. 1). 

Based on this prior work then, Spencer et al. (2011) presented adults with either three 

subordinate-level exemplars at once or sequentially and found that that the SCE was 

eliminated in the sequential condition. Furthermore, Spencer et al. (2011) were able to 
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eliminate the SCE entirely by presenting six exemplars—an amount predicted to overwhelm 

working memory—sequentially. Thus, the DST analysis of the suspicious coincidence effect 

led to both a demonstration of when it does not occur and a critical contradiction of the 

rational analysis—more exemplars produced a reversal of the effect rather than the 

strengthening predicted by the Bayesian account. We have recently captured these data in a 

formal DNF model (Jenkins, Samuelson & Spencer, 2014; Samuelson, Spencer & Jenkins, 

2013), thereby grounding the suspicious coincidence effect in neural population dynamics.

In addition to these effects which emerge in real-time in the task, we have also found 

changes in the SCE over developmental timescales. In a series of studies, we have examined 

the relation between the category knowledge children bring to the SCE task and the strength 

of the effect they demonstrate. According to the Bayesian account, more knowledge should 

lead to a stronger suspicious coincidence effect. In contrast, Jenkins, Samuelson, Smith & 

Spencer (in press; see also Samuelson, Spencer & Jenkins, 2013) showed that children who 

had less knowledge of the familiar categories used in Xu and Tenenbaum’s task showed a 

strong suspicious coincidence effect, whereas children entering with more knowledge of the 

English categories showed no effect. Thus, the suspicious coincidence follows a nonlinear, 

U-shaped curve over the developmental timescale of category learning.

Similar to Spencer et al. (2011), the discontinuity between the Bayesian model’s predictions 

of category representations at the algorithmic level and the U-shaped curve of suspicious-

coincidence behavior suggests that separating these levels of analysis leaves much of what is 

critical for understanding the behavior unexamined (see also Jenkins, Samuelson & Spencer, 

2011). Rather, grounding the suspicious coincidence effect in neural population dynamics 

and time-dependent processes via the DNF model revealed critical influences that were not 

detectable when the abstract levels of analysis were explicitly separated. Thus, this work 

again highlights how a DST analysis results in a more integrated and grounded 

understanding of even a very high-level, abstract behavior.

Our final example focuses on another behavior that has been taken to represent one of the 

most abstract and potentially ungrounded abilities that humans demonstrate—inferring the 

thoughts of others. This work demonstrates how a DST analysis appreciating that behavior 

happens in the here and now of space and time creates an integrated neural, cognitive and 

perceptual-motor understanding of early referent selection.

Using space to infer reference

A central question in the field of early word learning is how is it that young learners are so 

good at inferring the meaning of novel words given that the possible referents in a naming 

situation can range from the objects present in the visual scene to properties of those objects, 

ongoing actions, and so on. Answers to this question range from the proposal that internal 

constraints limit the possibilities the child considers at the moment of naming (i.e., the 

whole object assumption, the taxonomic assumption and mutual exclusivity; see Markman, 

1992 for review); to attentional biases such as the shape bias that direct children’s focus to 

the most critical object features based on their prior word learning history (e.g., Landau, 
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Smith & Jones, 1988). Also popular are social-pragmatic theories that suggest children use 

knowledge of speakers’ intentions to determine the meaning of novel words.

Consider a seminal study by Baldwin (1993) examining young children’s ability to read the 

referential intent of a speaker. A schematic of the task is presented in the far left column of 

Fig. 2. A novel object is presented to a 20-month-old child for exploration and manipulation 

on one side of a table. This object is then removed and a second novel object is presented on 

the other side of the table and the child is again allowed to reach for, grasp and explore the 

object. This is repeated for a set of familiarization trials. Both objects are then placed in 

separate opaque buckets on either side of the table. The experimenter looks into one bucket 

and says “Modi!” The object from the other bucket is then taken out and placed on its side 

of the table. It is removed after the child examines it and the other object is placed on the 

table. After examination, this item is also removed. Both objects are then placed on a tray on 

the center of the table. The tray is pushed toward the child, and the experimenter asks, “Can 

you get me the modi?” Children retrieve the object that was in the bucket the experimenter 

was looking in when she said the novel word .70 of the time. Baldwin interpreted this result 

as suggesting children understood the pragmatic use of eye gaze as an intentional cue 

(Baldwin, 1993).

In contrast, we have used a DST analysis and a formal Dynamic Neural Field model to 

demonstrate that children’s word-referent mappings in Baldwin’s task are based instead on 

the neural encoding of the objects’ spatial locations and the recall of those locations at the 

point of naming (Samuelson, et al., 2011). That is, during the familiarization trials, the 

children’s behaviors—looking at the objects, reaching for them, manipulating them and 

attending as each is removed—create associations between each of the novel objects and 

their unique locations in the space of the task. Thus, when the experimenter looks into a 

bucket placed at one of those unique locations and says the name the child’s memory of the 

object previously seen and acted on at that location is recalled and bound to the novel name. 

Thus, the child is able to link the novel name to the correct object via the space in which her 

body, her attention, her actions and the object itself occur.

We have tested several predications of this account (Figs. 2 and 3) and quantitatively 

simulated children’s behavior with the same DNF model used to capture the suspicious 

coincidence effect. This work demonstrates, for instance, that children can bind the novel 

word to the correct object even in when the experimenter points to an empty location on the 

table. We have also demonstrated that space is special in facilitating these mappings: 

associating the potential referents with unique colors and providing the name in the presence 

of one of these colors does not support mapping. Furthermore, children learn words better 

when their parents keep objects in consistent spatial locations when teaching them. Thus, a 

nonobvious factor—the history of where objects have been placed in a task—matters in 

young children’s early word learning. This initially surprising finding fits with research 

showing that both adults and children will look back to the location in which a fact or sound 

was previously presented when trying to recall that information (Richardson & Spivey, 

2000; Richardson & Kirkham, 2004). It is also consistent with the use of space for reference 

in sign languages and in gestural communication. A computational-level analysis that 

defines the task as inference from the intentions of another person does not predict the 
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connection between space and word learning. Thus, a DST analysis again provides 

fundamentally different view on cognition and an integrated understanding of behavior 

grounded in terms of both neural dynamics and sensori-motor processes.

Conclusion

Each of the examples above show how a DST approach results in a radically different view 

of cognition compared to research that starts with a computational level analysis. We do not 

think these differences are a coincidence. Rather, they reflect a deep challenge in trying to 

infer a computational-level theory from an inherently nonlinear, complex, and emergent 

system (see also McClelland et al., 2010). Emergence—the idea that behavior arises through 

the interaction of many components over time without recourse to explicit coding and 

without needing to be hardwired—played a key role in each of the examples we reviewed. 

For instance, according to Thelen et al. (2001), A-not-B errors are reduced when excitatory 

neural interactions increase sufficiently to support a qualitatively new attractor state—the 

self-sustaining state where neural activation patterns are actively maintained even in the 

absence of input. Recent work demonstrates how this new attractor state can arise through a 

variant of Hebbian learning as infants repeatedly reach to different locations in space 

(Schöner, et al., in press; Perone & Spencer, 2013). Thus, Hebbian learning gives rise to a 

new emergent ability—the ability to actively and flexibly remember a cued target location.

Of course, viewing cognition and behavior as the emergent product of a complex, time-

extended system presents challenges for how we do our science. One of the lasting 

influences of Marr’s seminal work was to lay out a framework for cognitive research and a 

method of analysis that enabled investigators to define the scope of the problem in a 

tractable way that was rigorous but not reductionist. Fortunately, DST also provides 

organized ways of analyzing a system and defining the scope of a research question. 

Specifically, if components are strongly coupled, we have to care about them and their 

interactions as a set because they all matter for the behavior or cognition in question. If, 

however, components are weakly coupled, then we can study each more independently (at 

least within context). A “subsystem” in DST, therefore, is defined as a collection of strongly 

coupled components that function as an integrated system, actively resisting perturbations 

from, for instance, external inputs, and showing only weak coupling to other components 

(Schöner, 1995). Thus, while scientific examination requires carving the system into 

analyzable sub-systems, the joints used to carve a dynamic system are defined relative to the 

specific behavior or phenomenon under examination; they are the places where a behavioral 

analysis suggests weak coupling among components. Such joints are not always readily 

apparent. For instance, one might think that learning names for hierarchically nested 

categories might be immune to perceptual-level processes, but this was not the case with the 

suspicious coincidence effect.

Viewing cognition and behavior as the product of a complex, time-extended system also 

means that the major unit of analysis and subject of study is defined in terms of a process of 

change and the trajectory of behavior over time (Beer, 1995, 2000; van Gelder & Port, 1995; 

Spivey, 2007). DST approaches strive to understand the next state of the system based on its 

current state. They recognize the history of the system as a critical influence on its current 
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and future states. Thus, to understand cognition, we must examine thinking with respect to 

that history and over multiple timescales. This is evident in the referent selection example, 

where a child’s history of past events enables the mapping of novel words to referents 

without having to read the minds of social partners. This DST focus on time and trajectories 

opens the door to both developmental approaches, defined not as the study of children but as 

the study of the system at multiple points in time (Smith & Thelen, 2003; Thelen & Smith, 

2006), and to an appreciation of individual differences (see, e.g., Hollenstein & Lewis, 

2006).

It is, of course, possible to do a computational level analysis that incorporates some of the 

critical components of a dynamic systems perspective—for example agent/environment 

interactions or the influence of the body. What we have argued, however, is that the concept 

of emergence is fundamentally at odds with a computational-level analysis because such 

analyses start by defining the agent’s behavior in terms of goals that are independent of the 

neural, physical, and historical processes that produce behavior. This does not mean that 

computational-level thinking cannot still be impactful. It is clear that Marr’s Vision has 

provided great benefit to cognitive science, and that computational analyses have led to 

advancements in many areas of cognitive science (see papers in Perception v41, 2012 for 

review and commentary). Nevertheless, the specific examples reviewed here demonstrate 

that a dynamic systems perspective provides a valuable alternative framework for cognitive 

science, because it appreciates that the neural-behavioral system is complex, nonlinear, and 

emergent (see also McClelland et al., 2010).

Furthermore, taking emergence seriously opens the door to answers to one of the most 

critical questions concerning cognitive-level processes: where do new forms of behavior and 

thought such as riding a bicycle or a new chess strategy, come from (see also Poggio, 2012)? 

This is a question that other approaches to cognition typically ignore, sometimes going so 

far as to build in miniature pre-formed versions of new behaviors (Smith & Pereira, 2009; 

Smith, 2001; McClelland, 2010). In contrast, a DST perspective suggests that new behaviors 

can emerge organically as subtle changes in the components of the system—the strength of a 

muscle that stabilizes a reach, the presentation of objects sequentially in time, the 

association of an object with a specific location—softly assemble and produce changes in 

cognition and action. But does emergence require that we throw up our hands and say 

everything matters? No, we can (and should) be analytical about our research question. DST 

offers a way to determine a unit of study, that is, what a ‘subsystem’ is and how to separate 

one subsystem from another. And DST identifies the focus of study—trajectories of 

behavior and behavioral change through time. The examples here illustrate the comparative 

utility of this perspective, and how changing our focus can lead to a deeper understanding 

about the organization of behavior and how behavior changes over learning and 

development.
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Fig. 1. 
The narrowing effect revealed by Johnson et al., 2009. The two peaks on the right that are in 

close proximity in the dynamic neural field are narrower than the peak on then left even 

though the original inputs (lighter curves) were the same widths. This narrowing is caused 

by the inhibitory interactions of the field.
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Fig. 2. 
Schematic of experimental tasks in Samuelson et al., 2011; including a replication of 

Baldwin, 1993 (far left column).
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Fig. 3. 
Performance of children and model in Samuelson et al. 2011 Experiments 1–5. Children’s 

percent of correct choices for each experiment (black bars) with standard deviations (range 

of error bars). *s indicate performance significantly above chance (.50 in a two item forced-

choice task). The mean performance of the Dynamic Neural Field model (across 12 batches 

of simulations) for all experiments is also shown (white bars). Error bars show the standard 

deviation of the model’s performance (across 12 batches of simulations) per condition, 

relative to the target means.
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