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Abstract. Segmentation of anatomical regions of the brain is one of
the fundamental problems in medical image analysis. It is tradition-
ally solved by iso-surfacing or through the use of active contours/
deformable models on a gray-scale magnetic resonance imaging
(MRI) data. We develop a technique that uses anisotropic diffusion
properties of brain tissue available from diffusion tensor (DT)-MRI to
segment brain structures. We develop a computational pipeline
starting from raw diffusion tensor data through computation of invari-
ant anisotropy measures to construction of geometric models of the
brain structures. This provides an environment for user-controlled
3-D segmentation of DT-MRI datasets. We use a level set approach
to remove noise from the data and to produce smooth, geometric
models. We apply our technique to DT-MRI data of a human subject
and build models of the isotropic and strongly anisotropic regions of
the brain. Once geometric models have been constructed they can
be combined to study spatial relationships and quantitatively ana-
lyzed to produce the volume and surface area of the segmented
regions. © 2003 SPIE and IS&T. [DOI: 10.1117/1.1527628]

1 Introduction
Diffusion tensor magnetic resonance imagdifig DT-MRI)

whereC is the concentration of water molecules, dhds
a diffusion coefficient, which is a symmetric second-order
tensor
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Figure 1 presents a “slice” of the diffusion tensor volume
data of human brain used in our study. Each subimage pre-
sents the scalar values of the associated diffusion tensor
component for one slice of the dataset.

Tissue segmentation and classification based on DT-
MRI offers several advantages over conventional MRI,
since diffusion data contains additional physical informa-
tion about the internal structure of the tissue being scanned.
However, segmentation and visualization using diffusion
data is not entirely straightforward. First, the diffusion ma-

is a technique used to measure the diffusion properties oftrix itself is not invariant with respect to rotations, and the

water molecules in tissues. Anisotropic diffusion can be
described by the equation

g =V-(DVC),

1
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elements that form the matrix will be different for different
orientations of the sample or field gradient and therefore
cannot themselves be used for classification purposes.
Moreover, 3-D visualization and segmentation techniques
available today are predominantly designed for scalar and
sometimes vector fields. Thus, there are two fundamental
problems in tensor imaging?) finding an invariant repre-
sentation of a tensor that is independent of a frame of ref-
erence and constructing a mapping from the tensor field to
a scalar or vector field an@) visualization and classifica-
tion of tissue using the derived scalar fields.
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Fig. 2 Isotropic C; (left) and anisotropic C, (right) tensor invariants
for the tensor slice shown in Fig. 1.

Visualization and model extraction from the invariant
3-D scalar fields is the second issue addressed in this paper.
One of the popular approaches to tensor visualization rep-
resents a tensor field by drawing ellipsoids associated with
the eigenvectors/valuég.This method was developed for
2-D slices and creates visual cluttering when used in three
dimensions. Other standard computational fluid dynamics
(CFD) visualization techniques such as tensor lines do not
provide meaningful results for the MRI data due to rapidly
changing directions and magnitudes of eigenvector/values
and also amount of noise present in the data. Recently
Kindlmann and Weinstefi developed a volume-rendering
approach to tensor field visualization using eigenvalue-
based anisotropy measures to construct transfer function
and color maps, that highlight some brain structures and
diffusion patterns.

The traditional approaches to diffusion tensor imaging  In our work, we perform iso-surfacing on the 3-D scalar
involve converting the tensors into an eigenvalue/ fields derived from our tensor invariants to visualize and
eigenvector representation, which is rotationally invariant. segment the data. An advantage of iso-surfacing over other
Every tensor can then be interpreted as an ellipsoid withapproaches is that it can provide the shape information
principal axes oriented along the eigenvectors and radiineeded for constructing geometric models, and computing
equal to the corresponding eigenvalues. This ellipsoid de-internal volumes and external surface areas of the extracted
scribes the probabilistic distribution of a water molecule regions. A detailed discussion of the modeling method is
after a fixed diffusion time. presented in Sec. 3. Section 4 presents the results of tensor-

Using eigenvalues and eigenvectors one can computdnvariant calculations and model segmentation technique
different anisotropy measurey °that map tensor data onto  with examples from a DT-MRI scan of a human head. Sec-
scalars and can be used for further visualization and segtion 5 then describes the quantitative analysis of obtained
mentation. Although eigenvalue/vector computation of the geometric models.
3x 3 matrix is not expensive, it must be repeatedly per-  Finally, a number of recent publicatioris* have been
formed for every voxel in the volume. This calculation eas- devoted to brain fiber tracking. This is a different and more
ily becomes a bottleneck for large datasets. For examplecomplex task than the one addressed in this paper and re-
requires over 20 CPU min on a powerful workstation. An- than the data used in our study.
other problem associated with eigenvalue computation is .
stability—a small amount of noise will change not only the 2 Tensor Invariants
values but also the ordering of the eigenvaltiSince Tensor invariantgrotational invariants are combinations
many anisotropy measures depend on the ordering of theof tensor elements that do not change after the rotation of
eigenvalues, the calculated direction of diffusion and clas-the tensor’s frame of reference, and thus do not depend on
sification of tissue will be significantly altered by the noise the orientation of the patient with respect to the scanner
normally found in diffusion tensor datasets. Thus it is de- when performing DT imaging. The well-known invariants
sirable to have an anisotropy measure that is rotationallyare the eigenvalues of diffusion tens@natrix) D, which
invariant, does not require eigenvalue computations, and isare the roots of corresponding characteristic equation
stable with respect to noise. The tensor invariants with

Fig. 1 Slice of a tensor volume where every “element” of the image
matrix corresponds to one component of the tensor D.

these characteristics were first proposed by Ulug andZijl. \3—C,-A\2+C,-A—C5=0, (3
In Sec. 2 of this paper we formulate a new anisotropy mea-
sure for tensor field based on these invariants. with coefficients
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C1=Dyy+Dyy+ Dy, segmentatio combined with conventional surface render-
ing. The first option, direct volume rendering, is capable of
C,=D,Dyy,—D,,Dyx+DyD,,—Dy,D,+DyD,, supplying only images of the data. While this method may

provide useful views of the data, it is well known that it is
difficult to construct the exact transfer function that high-
lights the desired structures in the volume datd$@ur
approach instead focuses on extracting geometric models of
the structures embedded in the volume datasets. The ex-
tracted models can be used for interactive viewing, but the
Since the roots of Eq.3) are rotational invariants, the co- segmentation of geometric models from the volume
efficientsC,, C,, andCs are also invariant. In the eigen gatasets provides a wealth of additional benefits and possi-
frame of reference they can be easily expressed through thgjjjiies. The models can be used for quantitative analysis of
eigenvalues the segmented structures, for example, the calculation of
surface area and volume; quantities that are important when
studying how these structures change over time. The mod-

—Dy,D,y, 4
CSI Dxx( Dnyzz_ DzyDyz) - ny(Dnyzz_ szDyz)

+ sz( Dnyzy_ szDyy)-

Clz)\l‘l‘ )\2+ )\3,

Co= Aot A hat Aok (5) els may be used to provide the shape information necessary
S for anatomical studies and computational simulation, for
Ca=A1\o\a, example, electroencephalogram/magnetoencephalogram

(EEG/MEG modeling within the braift® Creating separate
and are proportional to the sum of the radii, surface areageometric models for each structure enables the straightfor-
and the volume of the “diffusion” ellipsoid. Then instead ward study of the relationship between the structures, even
of using (\1,\,,\3) to describe the dataset, we can use though they come from different datasets. The models can
(C1,C,,C3). Moreover, sinceC; are the coefficients of also be used within a surgical planning/simulation/VR
characteristic equation, they are less sensitive to noise, therenvironment® providing the shape information needed for
roots\; of the same equatioft. collision detection and force calculations. The geometric

Any combination of the preceding invariants is, in turn, models can even be used for manufacturing real physical
an invariant. We consider the following dimensionless models of the structurés.lt is clear that there are numer-
combination:C,C,/Cj. In the eigenvector frame of refer- ous reasons to develop techniques for extracting geometric
ence, it becomes models from diffusion tensor volume datasets.

The most widely used technique for extracting polygo-
(6) nal models from volume datasets is the Marching Cubes
algorithm?2 This technique creates a polygonal model that
) ) ) ) approximates the iso-surface embedded in a scalar volume
and we can define a new dimensionless anisotropy measuraaset for a particular iso-value. The surface represents all
the points within the volume that have the same scalar
1/C.Cy . -
_( _3) 7) value. The polygonal surface is created by examining every
Cs “cube” of eight volume grid points and defining a set of
triangles that approximates the piece of the iso-surface
within the space bounded by the eight points. While the
Marching Cubes algorithm is easy to understand and
straightforward to implement, applying it directly to raw
volume data from scanners can produce undesirable results,

c,C Ao+ A Ai+A Ai+A
1C2_5 RNoFhs Maths Mtdy
Cs Ay Ao A3

6

It is easy to show that for isotropic diffusion, whan
=N\,=M\3, the coefficientC,=1. In the anisotropic case,
this measure is identical for both linear, directional diffu-
sion (\1>\,~\3) and planar diffusionX;~\,>\3) and

's equal to as seen in top row images in Figs. 4 and 7. The algorithm

1 Ny As is susceptible to noise and can produce many unwanted

Cgm"w§(1+ w~ )\—). (8) triangles that mask the central structures in the data. To
3 1

alleviate this problem, we utilize a deformable model ap-
ThusC, is always~\ /A, and measures the mag- prqach to smooth the data and remove the noise-related

nitude of the diffusion anisotropy. Note that we use eigen- a"tifacts. Many types of deformable models have been pro-

value representation here only to analyze the behavior ofP0Sed for extracting structures from voluntéd® we uti-

the coefficientC,, but we use invariantsd,,C,,Cs) to  lize level set models as they have been shown to be flexible

tropic C,, tensor invariants maps for the data slice from Fig. Produce active deformable surfaces that may be directed
1 is shown in Fig. 2. to conform to features in a volume dataset while simulta-

neously applying a smoothing operation based on local
surface curvatur® Most importantly, they easily
3 Geometric Modeling change topology during deformation and have no fixed pa-
Two options are usually available for viewing the scalar rameterization, enabling them to represent complex
volume datasets, direct volume rendefitf and volume  shapes.

Journal of Electronic Imaging / January 2003/ Vol. 12(1)/127
Downloaded From: http://astr onomicaltelescopes.spiedigitallibrary.org/ on 09/30/2016 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx



Zhukov et al.

3.1 Level Set Models

A level set modé’*°specifies a surface as a level §gb-
surface of a scalar volumetric functionp:U—fR, where
UcC,3 is the range of the surface model. Thus, a surface
is

S={sl¢(s)=k}, 9

andk is the isovalue. In other word§ is the set of points
sin 3 that composes thk’th iso-surface ofp. The em-
bedding¢ can be specified as a regular sampling on a rec-
tilinear grid. The surfaces may propagate wittime-
varying) curvature-dependent speeds. Level set methods
provide the mathematical and numerical mechanisms for
computing surface deformations as iso-valueg @iy solv-

ing a partial differential equation on the 3-D grid). That

is, the level set formulation provides a set of numerical
methods that describes how to manipulate the gray-scale

values in a volume. so that the iso-surfaceséoﬁove ina Fig. 3 Level set models represent curves and surfaces implicitly

: ’ . using gray-scale images. For example, an ellipse is represented as
prescrlbed manne(l_see Fig. 3 .. the level set of an image (top). To change the shape of the ellipse
There are two different approaches to defining a deform-ye modify the gray-scale values of the image by solving a PDE

able surface from a level set of a volumetric function, as (bottom).

described in Eq(9). Either one can think of(s) as a static

function and change the iso-vallkét) or alternatively fixk

and let the volumetric function dynamically change in time,

i.e., ¢(st). Following the second approach, we can math- F=Fau+ BFcyny - (13
ematically express the dynamic model as

The first termF ., is due to the attraction to the edges in the
d(st)=k. (10 volume. It attracts the surface models to certain gray-scale
features in the input data. For instance, the gradient mag-

To transform this definition into partial differential equation hitude indicates areas of high contrast in volumes. By fol-
that can easily be solved by standard numerical techniqueslowing the gradient of such gray-scale features, surface

we differentiate both sides of E¢LO) with respect to time ~ Models are drawn to minimum or maximum values of that
t, and apply the chain rule: feature. Typically, gray-scale features, such as the gradient
magnitude are computed with a scale operator, e.g., a

ds derivative-of-Gaussian kernel. If models are properly ini-

+V(st) —=0. (11) tialized, they can move according to the gradient of the
dt gradient magnitude and settle onto the edges of an object at

) ] ] ] a resolution that is finer than the original volume. For this
Equation(11) is sometimes referred to as a “Hamilton— \york we used the attraction force

Jacobi-type” equation and defines an initial value problem
for the time-dependenp. Let dJ/dt be the movement of a Fawr=V|(V(G*1(x))], (14)
point on a surface as it deforms, such that it can be ex-
pressed in terms of the position 8& U and the geometry  where the volume dati(x) is convolved with a Gaussian
of the surface at that point, which is, in turn, a differential kernelG with o~0.5, such that a positive sign moves sur-
expression of the implicit functionp. This gives a partial  faces toward maxima and the negative sign toward minima.
differential equatio{PDE) on ¢: s=5(t): There are a variety of options for the curvature smooth-
ing terms in Eq(13), and the question of efficient, effective
d¢ ds ) higher order smoothing terms is the subject of on-going
= V¢ G="V¢ F(sDsD,..), (120 yesearci? For the work presented in this paper the smooth-
ing term uses the mean curvatudg, of the level setS to

whereF is a user-defined “speed” term which generally form a vector in the direction of the surface normal
depends on a set of orderderivatives ofp, D"¢, evalu-

ated ats, as well as other functions & Typically F(x) Fou=Kyn=(V-n)n=Vv. (V_d’) V_¢ (15)
combines a data term with a smoothing term, which pre- v "M IVo|) V|

vents the solution from fitting too closely to noise-

corrupted data. There are a variety of surface-motion termslt is weighted by a factog, enabling the user to control the
that can be used in succession or simultaneously in a lineaemount of smoothing, and is tuned for each dataset. The
combination to formF(x). For the work presented in this level set propagation stops when thg, and BF, terms
paper, we combine a feature attraction term and a smooth€ancel each other, or when the number of computational
ing term weighte® by a factorg, iterations reaches a user-specified value.

dp(st)
ot
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Fig. 4 Segmentation using isotropic measure V; for the first DT-MRI
dataset. The first row is the marching cubes iso-surface with 7.5.iso-
value. The second row is the result of flood-fill algorithm applied to
the same volume and used for level set initialization. The third row is
the final level set model.

discrete grid. The use of a grid and discrete time steps
raises a number of numerical and computational issues that
are important to the implementation. However, it is outside
of the scope of this paper to give a detailed mathematical
description of such a numerical implementation. Rather we
shall give a short outline here and refer to the actual source
code, which is publicly available.

Equations(12)—(15) can be solved using finite forward
differences if one uses the up-wind scheme, proposed by
Osher and Sethiafl, to compute the spatial derivatives.
This up-wind scheme produces the motion of level-set
models over the entire range of the embedding, i.e., for all
values ofk in Eqg. (10). However, this method requires
updating every voxel in the volume for each iteration,
which means that the computation time increases as a func-
tion of the volume, rather than the surface area, of the
model. Because segmentation requires only a single model,
the calculation of solutions over the entire range of iso-
values is an unnecessary computational burden.

This problem can be avoided by the use of narrow-band
methods, which compute solutions only in a narrow band of
voxels that surround the level set of inter&stn previous
work® we described an alternative numerical algorithm,
called the sparse-field method, that computes the geometry
of only a small subset of points in the range and requires a
fraction of the computation time required by previous algo-
rithms. We have shown two advantages to this method. The
first is a significant improvement in computation times. The
second is increased accuracy when fitting models to forcing
functions that are defined to subvoxel accuracy.

4 Segmentation

In this section, we demonstrate the application of our meth-
ods to the segmentation of DT-MRI data of the human
head. We use a high-resolution data set from a normal vol-
unteer, which contains 60 slices each of ¥228 pixels
resolution. The raw data is sampled on a regular uniform
grid.

We begin by generating two scalar volume datasets
based on the invariants described in Sec. 2. The first scalar
volume dataset),) is formed by calculating the trac€()
of the tensor matrix for each voxel of the diffusion tensor
volume. It provides a single number that characterizes the
total diffusivity at each voxel within the sample. Higher
values signify greater total diffusion irrespective of direc-
tionality in the region represented by a particular voxel. A
slice from this volume can be seen in Fig.(I2ft). The

Level set models have a number of practical and theo-second scalar volume datas#b) is formed by calculating
retical advantages over conventional surface models, espetC,,C,,Cs) invariants for each voxel and combining them
cially in the context of deformation and segmentation. into C,. It provides a measure of the magnitude of the
Level set models are topologically flexible; they easily rep- anisotropy within the volume. Higher values identify re-
resent complicated surface shapes that can, form holes, spligions of greater spatial anisotropy in the diffusion proper-
to form multiple objects, or merge with other objects to ties. A slice from the second scalar volume is presented in
form a single structure. These models can incorporate manyrig. 2 (right). The measur€, does not by definition dis-
(millions) of degrees of freedom, and therefore they can tinguish between linear and planar anisotropy. This is suf-
accommodate complex shapes. Indeed, the shapes formegtient for our current study since the brain does not contain

by the level sets o# are restricted only by the resolution of

the sampling. Thus, there is no need to reparameterize the

model as it undergoes significant changes in shape.

The solutions to the partial differential equations de-

*The level-set software used to produce the morphing results in this paper
is available for public use in the VISPACK libraries at http:/

scribed earlier are computed using finite differences on a www.cs.utah.edu/whitaker/vispack.
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Fig. 5 Model segmentation from volume V, . Top left image is an iso-surface of value 1.3, used for initialization of the level set. Clockwise, are
the results of level set development with corresponding 3 values of 0.2, 0.4 and 0.5.

measurable regions with planar diffusion anisotropy. We ization based on the filtered values of the input data (
therefore require only two scalar volumes to segment the~7.0 for Y, and k~1.3 for V,). For gray-scale images,
DT dataset. such as those used in this paper, the classification is equiva-
We then utilize level set methods to extract smoothed jent to high- and low-thresholding operations. These opera-
models from the two derived scalar volumes. Our level setyiong are ysually accurate to only voxel resolution, but the
segmentation approach consists of defining a set of suitableyetormation process will achieve subvoxel results. The fi-
preprocessing techniques for initialization and selecting/ 5| gtep pefore the actual level set deformation consist of

tunlng dn;ferentdfeature-e?tracténgf] terrr;.s 'nv\t;}[ﬁ. level set o forming a set of topological or logical operations on the
equation to produce a surtace detormation. VVithin our S€g-y o\ 4 “clean up” the initialization surface. This enables

mentation framework a variety of operations are alVa"‘rj‘blethe removal of undesired internal and external structures,

in each stage. A user must “mix-and-match” these opera- .o extremely helpful to obtain simple models. It in-

tions to produce the desired result. We describe only those ; 4 .
cludes unions or intersections of voxel sets to create the

operations required to produce the models in this paper. Abetter initializations. Specificallv. the topoloaical opera-
more detailed description of our segmentation methods. Initializations. - specinically, polog! P
. tions consist of connected-component analy®eg., flood
may be found in Ref. 28. . ) .
fill) to remove small pieces or holes from objects.

Because level set models move using gradient descent, S 2 . o
they seek local solutions, and therefore the results are The initialization already described positions the model

strongly dependent on the initialization, i.e., the starting "€&r the desw_ed solution while retaining certain properties
position of the surface. Thus, one controls the nature of theSUCh @s consistent geometry, connectivity, etc. Given this
solution by specifying an initial model from which the sur- rough initial estimate, the level set surface deformation pro-
face deformation process proceeds. We are able to compuc€ss, as described in Sec. 3.1, moves the surface model
tationally construct reasonable initial estimates directly toward specific features in the data.
from the input data by combining a variety of techniques. ~ Figures 4 and 5 present two models that we extracted
The first step involves filtering the input data with a from DT-MRI volume datasets using our techniques. Figure
low-pass Gaussian filtero(~0.5) to blur the data and 6 contains segmentations from volurbg, the measure of
thereby reduce noise. This tends to distort shapes, but théotal diffusivity. The image in the first row shows a march-
initialization can be only approximate. Next, the volume ing cubes iso-surface using an iso-value of 7.5. In the bot-
voxels are classified for inclusion/exclusion in the initial- tom we have extracted just the ventricles frdin This is
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Fig. 6 Combined model of ventricles and (semitransparent) aniso-
tropic regions: rear, exploded view (left), bottom view (right), side
view (bottom). Note how model of ventricles extracted from isotropic
measure dataset V; fits into model extracted from anisotropic mea-
sure dataset V, .

accomplished by creating an initial model with a flood-fill
operation inside the ventricle structure shown in the middle
image. This identified the connected voxels with value of
7.0 or greater. The initial model was then refined and
smoothed with the level set method described in Section 3,
using aB value of 0.2.
. Figure 5 again provides the comparison between dIreCtFig. 7 Segmentation using anisotropic measure V, from the second
iso-surfacing and and level set model, but on the volume pT-MRI dataset. The first row is the marching cubes iso-surface with
V,. The image in the top-left corner is a marching cubes iso-value 1.3. The second row is the result of flood-fill algorithm
iso-surface using an iso-value of 1.3. There is significantapp“.ed to the volume and used for level set initialization. The third is

. . . . the final level set model.
high-frequency noise and features in this dataset. The chal-
lenge here was to isolate coherent regions of high aniso-
tropic diffusion. We applied our segmentation approach to
the dataset and worked with neuroscientists from LA Chil- V, using an initial iso-surface of value 1.4 angaalue of
drens Hospital, City of Hope Hospital, and Caltech to iden- 0.5. The result chosen as the “best” by our scientific/
tify meaningful anatomical structures. We applied our ap- medical collaborators is presented on the bottom-right side
proach using a variety of parameter values, and presentedf Fig. 5. This model is produced with an initial iso-surface
our results to them, asking them to pick the model that theyof 1.3 and g8 value of 0.4. Our collaborators were able to
felt best represented the structures of the brain. Figure Sdentify structures of high diffusivity in this model, for ex-
contains three models extracted framat different values  ample, the corpus callosum, the internal capsul, the optical
of smoothing parametg8 used during segmentation. Since nerve tracks, and other white matter regions.
we were not looking for a single connected structure in this  We can also bring together the two models extracted
volume, we did not use a seeded flood-fill for initialization. from dataset3’; and)), into a single image. Figure 6 dem-
Instead we initialized the deformation process with an iso- onstrates that we are able to isolate different structures in
surface of value 1.3. This was followed by a level set de- the brain and show their proper spatial interrelationship.
formation using &3 value of 0.2. The result of this segmen- For example, it can be seen that the corpus callosum lies
tation is presented on the bottom-left side of Fig. 5. The directly on top of the ventricles, and that the white matter
top-right side of this figure presents a model extracted fromfans out from both sides of the ventricles.

Journal of Electronic Imaging / January 2003/ Vol. 12(1) /131
Downloaded From: http://astr onomicaltelescopes.spiedigitallibrary.org/ on 09/30/2016 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx



Zhukov et al.

Table 1 Total polygon count in the models Ny, , surface areas A tionally invariant anisotropy measure, which does not re-

and volumes V and before/after application of the level set smooth- quire eigenvalue computations. We used the invariants to

ing to datasets V; and V,. generate scalar volumes that characterize the total diffusiv-
) ; ity and diffusion anisotropy of a DT-MRI scan of a human

Data Set Npoly A (em®) vV (cm”) brain. Applying level set modeling and segmentation tech-

niques to the derived scalar volumes we created geometric
models of specific brain structures, e.g., the ventricles, cor-
V, 142,212/81,488 7601743 98/87 pus callosum, and the internal capsul. The geometric mod-
els were then used for quantitative analysis, including vol-
ume and surface area calculations.

Y, 36,620/15,096 188/85 26/22

Finally, to verify the validity of our approach we applied
it to the second data set of a different volunteer. This data
set has 20 slices of the 25&56 resolution. We generated We would like to thank Dr. J. Michael Tyszka, Dr. Miriam
the anisotropy measure voluri and performed the level ~ Scadeng, and Dr. David Dubowitz for helping us to identify
set model extraction using the same iso-values and smooththe 3-D structures extracted from the DT dataset. Dr. Jason
ing parameters as far,. The results are shown in Fig. 7. Wood developed the Iris Explorer modules used to produce

part of the results in the paper. This work was supported by
. National Science FoundatiodiNSPH Grants No. ACI-
5 Model Properties 9982273 and No. ASC-89-20219, the National Institute on
Once a user has produced a satisfactory model of the deprug Abuse, the National Institute of Mental Health, and
sired segmented structures, she or he can perform a numbahe NSF, as part of the Human Brain Project, Office of
of quantitative geometric calculations on the resulting po- Naval Research Volume Visualization Grant No.
lygonal model, e.g., total area, volume, and average curvaiN000140110033, and the National Library of Medicine
ture. Though most of these measures are interesting fronm|nsight” Project No. NO1-LM-0-3503. The first DT-MRI
the modeling point of view, the volume of the ventricles, dataset is courtesy of the University of Utah SCI Institute,
for example, can have clinical applications for disorder di- the second dataset is courtesy of Dr. Mark Bastin, Univer-
agonosis and population comparison. sity of Edinburgh, United Kingdom. Finally, we would like

The models generated in the previous section are repreto thank our reviewers for a very detailed review and mul-
sented by triangle meshes consisting of verticesonnec-  tiple valuable suggestions.
tivities, and associated normal vectors. The total surface
area of the model can be easily computed by adding thépeferences
areasA; of each triangle
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