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Abstract. We are interested particularly in the estimation of pas-
senger flows entering or exiting from buses. To achieve this mea-
surement, we propose a counting system based on stereo vision. To
extract three-dimensional information in a reliable way, we use a
dense stereo-matching procedure in which the winner-takes-all
technique minimizes a correlation score. This score is an improved
version of the sum of absolute differences, including several similar-
ity criteria determined on pixels or regions to be matched. After cal-
culating disparity maps for each image, morphological operations
and a binarization with multiple thresholds are used to localize the
heads of people passing under the sensor. The markers describing
the heads of the passengers getting on or off the bus are then
tracked during the image sequence to reconstitute their trajectories.
Finally, people are counted from these reconstituted trajectories.
The technique suggested was validated by several realistic experi-
ments. We showed that it is possible to obtain counting accuracy of
99% and 97% on two large realistic data sets of image sequences
showing realistic scenarios. © 2010 SPIE and
IS&T. �DOI: 10.1117/1.3455989�

1 Introduction
The considerable development of passengers traffic in pub-
lic transportation has made it indispensable to set up spe-
cific methods of organization and management. For this

reason, public transport companies are very much con-
cerned with counting passengers,1 which allows improved
diagnosis of fraud, optimization of line management, traffic
control and forecast, budgetary distribution between the
different lines, and improvements in the quality of service.
Therefore, developing a reliable passenger counting system
becomes an important issue. Counting objects under con-
trolled conditions, such as in manufacturing, is relatively
easy, but counting people is much more difficult, especially
under highly variable realistic environmental and opera-
tional conditions. Counting should be carried out with good
accuracy, i.e., at least �3% with a confidence rate of 95%.
Accuracy and reliability should be consistently maintained
throughout the counting process.

In France, several counting systems have been tested or
are currently being tested in buses of the RATP, the Parisian
transport operator. According to the results of these tests,
the system must either be improved or replaced with a more
accurate one. This is particularly necessary where fraud
�people using buses without tickets� is concerned. The con-
clusion is that manual counting is carried out for one week
every, on each bus line, in order to have an accurate evalu-
ation of the traffic.

Nonetheless, technological progress has greatly im-
proved systems of counting passengers. For example, the
RATP has chosen a system with integrated infrared cells.
Two types of cells, developed by ACOREL and ELINAP,
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were initially tested by the RATP. These two solutions were
not considered to provide sufficiently accurate counting.
Thus, in 1996, a third type of cell, developed by BRIME,
was considered to be sufficiently accurate and was installed
in all the new vehicles.

Currently, RATP uses two types of automatic counting:
ELINAP cells installed in 1500 vehicles �see http://
www.acorel.com, for more details� and the BRIME systems
installed in around 1000 vehicles �see http://www.brime-
sud.fr, for more details�. It is clear from this paragraph that
RATP has been looking for automatic passenger counting
systems for many years. The company has tested many of
these without obtaining satisfactory results and now must
carry out manual countings to readjust the automatic ones,
which get less accurate over time. As far as we know, there
are currently no systems in France that allow counting of
passengers with an accuracy of �95% in buses. A study of
the reliability of different systems of counting enables us to
conclude that the two most reliable approaches:

1. The use of infrared directional sensors
2. Video sensing and image processing

Infrared directional sensors have a number of advan-
tages, which explain their use in several systems of
counting.2 The major advantages are reduced size and cost,
easy installation, and reliability. However, in crowded situ-
ations, their high sensitivity to noise, to variations in tem-
perature, and to dust and smoke makes them less reliable in
real-life situations. Moreover, they cannot distinguish be-
tween one passenger and a group of passengers, which is a
huge drawback for counting in a bus. Thus, when counting
passengers in a bus, a highly accurate system is necessary,
particularly during rush hours. We believe that video-based
systems are very promising for this task.

People counting using video is not a recent approach; we
found in the literature many works dealing with this issue.
The proposed techniques are various; however, based on
their basic principle as a classification criterion, we distin-
guish the following classes:

1. Motion detection and analysis-based techniques:
These can be described by a succession of two stages.
The first one is to detect moving regions in the scene
corresponding mostly to individuals. The second step
uses the result of detection to rebuild over time, the
trajectories of moving objects. The trajectory analysis
is used to identify and count the people who crossed
a virtual line or a predefined area.3–5

2. Edge analysis-based techniques: As their name sug-
gests, these techniques exploit the extraction of edges
for the detection. The objects of interest, in this case,
correspond to a set of edges with a particular shape
and organization. For example, a head corresponds to
an edge with a circular shape.6–8

3. Model based techniques: These techniques attempt to
find regions in the processed images that match pre-
defined templates.9,10 These models are either charac-
teristics models or appearance models. The disadvan-
tage of these approaches is either the need of a large
learning database or a problem of model generaliza-
tion.

4. Spatiotemporal techniques: These involve the selec-

tion of lines of interest in the acquired images and
build on each line a space-time card by stacking lines
in time. A second step is to use statistical models
�templates� to derive the number of persons crossing
the line and to analyze the discrepancies between the
space-time maps in order to determine the
direction.11,12 These techniques have the advantage of
being fast and simple to implement; however, works
based on these techniques have not provided concrete
solutions to interpret a significant number of cases.
For example, the “blob” generated by a stationary
person can be interpreted as that of several people.

Some researchers have been working in the field of
counting people with monocular vision systems13,14 and
some with sets of video cameras scattered in the
environment.15,16 In the transport field, a system was devel-
oped by Mecoci et al.17 to count passengers entering and
exiting from buses. The authors claim that their system
reaches a counting accuracy of 98%, but the evaluation
presented in their paper was performed on a very reduced
data set. Very few complete systems exploiting optical sen-
sors and used in operation in transport context exist nowa-
days. Among these, we can mention the system developed
by Albiol and Naranjo from Valencia University in Spain,18

which provided interesting results. This system uses a
single camera installed above the train doors of the RENFE
railway network. The author announces a counting accu-
racy of 98% on realistic data sets corresponding to 149
train stops. The disadvantage of this system is that it mis-
takes an object and a large person, and the results are ob-
tained using a correction factor. Given recent advances in
computer vision and decreasing prices of hardware, the use
of stereo vision is attractive. This approach is less sensitive
to illumination changes and could also provide the neces-
sary information to detect, model, and track objects or
people. For all these reasons, we have chosen to develop a
system based on dense stereo vision. However, we will see
that stereo vision does not solve all the problems related to
our application. In particular, the stereo matching could be
very difficult for some cases.

This paper is organized as follows: In Section 2, we
recall the basic aspects of stereo vision and show the inter-
est of dense stereo vision for people counting. We also
describe the hardware part of our system and present the
overall structure of our image-processing chain. In Section
3, we present the similarity constraints enhancing the sum
of absolute differences �SAD� score and compare the pro-
posed stereo-matching technique with other methods on
common images of the literature. Section 4 is devoted to
the description of the other links of the processing chain:
height map segmentation and feature tracking. In Section 5,
we present the evaluation of our system on a laboratory
data set, including various image sequences showing real-
istic scenarios, and on a real data set. Finally, a conclusion
and a description of possible future work are provided in
Section 6.

2 Stereovision for Counting Passengers
Stereo vision is a well-known method based on the analysis
of several images �usually two� of the same object taken
from different angles, along the optical axis of the camera
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�axial stereo vision�, or by moving the acquisition system
sideways �lateral stereo vision�. Passive stereo vision oper-
ates a set of two �binocular vision� or three �trinocular vi-
sion� stereoscopic images.19 It is static when observed ob-
jects do not move and dynamic where the objects can
move.

In Section 2.1, we present the principle of the adopted
binocular stereo vision. Then, we describe the hardware
structure of the people-counting setup.

2.1 Stereovision Vision Principles
Figure 1 shows a typical stereo-vision setup, in which op-
tical axes of the two cameras are parallel. The distance d
between these optical axes is called the baseline of the
stereo-vision setup. It is generally assumed that the two
cameras have exactly the same focal distance f . A region of
the scene exists in which points are visible by both cam-
eras. In the image-formation process, a point P of this re-
gion is projected onto a pixel Pl of the image sensor of the
left camera and onto a pixel Pr of the image sensor of the
right camera. Pixels Pl and Pr are called homologous be-
cause they correspond to the same point of the scene. The
disparity is defined as the difference between horizontal
positions of homologous pixels; the further the point P is
from the cameras, the smaller the disparity is. Stereo-vision
techniques aim at recovering various information about the
real scene using only the visual data contained in the two
images. This problem is not trivial since the pairs of ho-
mologous pixels are not known a priori.

Usually, stereo-vision techniques include two parts: ste-
reo matching and 3-D reconstruction. For passenger count-
ing in buses, because the sensor is very close to persons
passing under it, it is difficult to extract particular points
�such as curves� and segments, and to match them. We have
tested some well-known sparse stereo-vision algorithms on
our data set,20–22 without success for features extraction.
With a dense stereo approach, we will show later that it is
possible to reconstruct a height map, in which the heads of
people can be easily located.

2.2 Our People Counting System
The global system is composed of an acquisition part and a
processing part. The acquisition device is an industrial ste-
reoscopic sensor called bumblebee �manufactured by the
PointGrey Company�, fixed vertically above the entrance of
the bus at a height of 235 cm with a baseline of 12 cm. The
processing chain, which counts people passing under the
system using the images acquired by the hardware setup, is
composed of the following links:

1. A stereo-matching block that computes the disparity
map for each pair of images. This map is then trans-
formed into a height map for further processing.

2. A segmentation block that identifies, in the height
map, heads of people by detecting round shapes with
a constant height value.

3. Tracking and counting modules that reconstruct the
trajectories of people’s heads using the round shapes
marked in successive stereo pairs. A person is
counted by this module when the trajectory of his/her
head enters or leaves the stereo field of view.

The key point of this processing chain is the computa-
tion of precise and accurate height maps. The proposed
dense stereo-matching approach is described in Section 3.
The other steps of the processing chain �i.e., segmentation
and marker tracking for trajectory reconstruction� will be
described later.

3 Improved Stereo Matching

3.1 Principles of SAD Matching Cost
The dissimilarity measure, also called correlation, is one of
the most widely used techniques for determining all the
homologous pixels. It consists of defining a neighborhood,
around each pixel of the right image, and measuring the
ressemblance between it and the same neighborhoods sur-
rounding pixels of the left image. We calculate for each
pixel of the left image a dissimilarity curve as a function of
the shift that defines the minimum and maximum dispari-
ties allowed by the imaging system. In the case of the SAD
matching cost �winner-takes-all �WTA� algorithm�,23,24 the
dissimilarity measurement corresponds to the absolute dif-
ference defined by Eq. �1�. Thus, the shift corresponding to
the minimum value of the dissimilarity curve marks the
pixel supposed to be the homologous one of the pixel of the
left image that we try to match,

CSAD�x,y,s� = �
ij

�G�x + i + s,y + j� − D�x + i,y + j�� . �1�

where G�x ,y� is the gray level of the pixel �x ,y� we want to
match and that belongs to the left image, D�x ,y� is the gray
level of the pixel �x ,y� in the right image, s is the shift
between the two pixels �left and right�, and d is the dispar-
ity that corresponds to the shift-minimizing CSAD criterion
defined in Eq. �1�.

The advantage of the SAD matching cost �WTA algo-
rithm� described above is that it is simple to implement,
robust and fast enough to operate in real time.25 However,
some matching errors are caused by this approach, which
leads to an incorrect disparity value on some given pixels.
In addition, one of the major drawbacks of this method is to
systematically yield a matching result even if the area of
the scene is partially or totally occluded, in which case
these results are false. Thus, in order to reduce the number
of matching errors, we propose an approach, based on the
SAD matching cost �WTA algorithm�, in which we impose
constraints for the selection and better matching of the
neighborhoods.26 This improves the matching, taking into
account various types of areas: hidden, not hidden, and un-
der the influence of illumination changes.

Fig. 1 Geometric modeling of binocular stereoscope.
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3.2 Improvements Brought to the SAD Matching
Cost (WTA Algorithm)

Four similarity constraints are introduced to improve the
matching process with the WTA algorithm.

3.2.1 Similarity of the gray levels of pixels to be
matched

The first similarity criterion between two homologous pix-
els is the similarity of their gray levels. When using square
or symmetric rectangular neighborhoods, we consider the
pixel to match as the center of the first calculation neigh-
borhood, called fixed, and the candidate pixel as the center
of the second calculation neighborhood, called sliding. The
aim of this constraint is to increase the matching accuracy
by promoting the matching of the most similar pixels. This
is achieved by promoting a minimum compared to others in
the case of multiple minima of the dissimilarity curve �for
example, in the case of repetitive textures�. We call � the
coefficient assigned to this similarity criterion. This coeffi-
cient can take only two values, depending on whether the
constraint is introduced or not. We look for the pixel that
minimizes the dissimilarity criterion of Eq. �2�. Thus, for a
shift satisfying the constraint, the introduction of the coef-
ficient � will further minimize the value of dissimilarity.
We propose a simple multiplication of the coefficient � and
the dissimilarity term of Eq. �2�. Let us call this expression
C1. In order to make the overall term lower when the con-
straint is introduced, it is necessary that the particular value
that � takes when the constraint is introduced be �1.

C1�x,y,s� = � � �
ij

�G�x + i + s,y + j� − D�x + i,y + j�� , �2�

where �=1 if the constraint is not verified and �=�0
knowing that 0��0�1, if the constraint is introduced. We
consider that the constraint is introduced if the difference
between the gray levels does not exceed a given threshold,
fixed experimentally.

3.2.2 Stereo matching of pixels belonging to
identified edges

We also use an additional similarity criterion to deal with
the matching of edge pixels. These pixels have a higher
probability to correspond to regions of hidden areas or
near-hidden �occluded� regions. Usually, in stereo vision,
we can reasonably assume that if a pixel corresponds to an
edge, so does the homologous pixel. On the basis of this
assumption, we can introduce this constraint to try to im-
prove the matching of pixels corresponding to these edges.
Edge pixels are extracted using a classical Laplacian-based
technique.27 Because of the difficult application environ-
ment �occlusion, high illumination variation�, good detec-
tion is hard to achieve. However, even though it is not
perfect, we use this information. Therefore, there is no need
to develop a complex approach to obtain it. As with the
previous constraint, we have associated a weighting factor
called � to this similarity criterion. Let us call the expres-
sion linked to this constraint C2

C2�x,y,s� = � � �
ij

�G�x + i + s,y + j� − D�x + i,y + j�� , �3�

where �=1 if the constraint is not introduced and �=�0
knowing that 0��0�1, if the constraint is introduced.

3.2.3 Similarity of simplified gray-level profiles of
the pixels corresponding to the centerlines of
calculation neighborhoods

We define an additional similarity criterion in analyzing
simplified gray-level profiles of the pixels of the center
lines of the two calculation neighborhoods. Figure 2 pro-
vides the main simplified gray-level profiles for a given
window size. The gray level profiles of the center lines of
the two calculation neighborhoods are analyzed and com-
pared. If the two gray-level profiles correspond to homolo-
gous pixels, the two-gray-level curves should have the
same profile.

We associate to this new constraint the weighting factor
�. Let us call the expression linked to this new constraint
C3,

C3�x,y,s� = � � �
ij

�G�x + i + s,y + j� − D�x + i,y + j�� , �4�

where �=1 if the constraint is not introduced and �=�0
knowing that 0��0�1, if the constraint is introduced.

3.2.4 Use of motion
The motion-detection approach is based on the substraction
of a background image. The motion detection is carried out
for both images. Before matching, we classify the pixels of
the left and right images into two classes, based on whether
or not the pixels belong to regions affected by motion. The
basic idea is to introduce, as with the previous similarity
constraints, a coefficient called � in the dissimilarity crite-
rion �called C4�. This coefficient will favor homologous
pixels belonging to the same class of regions: moving or
static. This also drastically lowers the computation time by
matching only pixels belonging to moving areas,

C4�x,y,s� = � � �
ij

�G�x + i + s,y + j� − D�x + i,y + j�� , �5�

where �=1 if the constraint is not introduced and �=�0
knowing that 0��0�1, if the constraint is introduced.

Fig. 2 Profiles for the gray levels of the pixels belonging to the
central lines of the calculation neighborhoods.
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3.2.5 Associations of constraints
Thus far, we have proposed four similarity constraints to
improve the accuracy of pixel matching. Knowing that each
of these constraints is of a different nature, it becomes in-
teresting to combine these various similarity criteria to in-
crease the robustness of the matching process and analyze
their respective values. In other words, we simultaneously
do the following:

1. Compare the similarity or dissimilarity of neighbor-
hoods corresponding to the pixel to match and the
candidate pixel

2. Check if their gray levels are similar
3. Test if they belong to edges
4. Verify whether the gray-level profiles of central lines

of calculation neighborhoods are similar
5. And, finally, test if they both belong to a region af-

fected by motion

We can find in the literature diverse techniques allowing
the association of several criteria in order to optimize a
global one. The most used optimization criteria are based
on genetic algorithms,28 fuzzy logic,29 analysis of
variance,30 decision trees,31 and derivative approaches.32

The optimization technique choice should meet a compro-
mise between the complexity of the problem to solve and
the optimization result.

In our case, we consider that the similarity criteria are of
a different nature and are more or less independent. Thus,
we chose to use an additive model for the calculation of
dissimilarity, which corresponds to summing the dissimilar-
ity of four criteria,

C�x,y,s� = C1�x,y,s� + C2�x,y,s� + C3�x,y,s� + C4�x,y,s� ,

�6�

where C1, C2, C3, and C4 match dissimilarity in the order
they were presented. The global formulation becomes

C�x,y,s� = �� + � + � + �� � �
ij

�G�x + i + s,y + j� − D�x

+ i,y + j�� . �7�

Figure 3 provides two disparity maps calculated with the
SAD alone and with the four constraints together, on a pair
of stereoscopic images. We not that for SAD some match-
ing errors appear �marked with ellipses�. This visually
shows the improvement brought by the introduction of con-
straints in SAD model.

To test the relevance of our algorithm, we compared our
approach to classical approaches having the same complex-

ity and calculation time as ours. We retained methods using
the following statistical distances: SAD, zero mean SAD,
sum of squared differences �SSD�, and zero mean SSD. The
algorithms with which we conduct a comparison are those
proposed by Scharstein and Szeliski.33 In the framework of
this paper, we only provide results on the evaluations of the
first three constraints �C1, C2, and C3� because we only
have single images with ground truth and thus cannot com-
pute motion. Therefore, the C4 constraint, which requires
motion detection, is not used in this comparison. The first
stereoscopic images of the test are a couple of synthetic
images �Corridor of Lena in Fig. 4�. The second stereo-
scopic pair is relatively difficult to match because of the
complex and repetitive textures �Cones in Fig. 4�. The third
stereoscopic pair of images is a view of a natural scene.
The main difficulties of matching pixels of this pair of im-
ages is a highly textured background and many occlusions
�Tsukuba in Fig. 4�. In Fig. 4, for each case, we show left
and right images and the disparity map representing the
ground truth.

Our algorithm is compared to SAD matching cost �WTA
algorithm� and its family following two criteria: with the
ground truth, we calculate the number of pixels correctly
matched to the total number of candidate pixels. This is
achieved separately for occluded and nonoccluded pixels.
For each pair of images tested, the best values of the pa-
rameters �0=0.85, �0=0.85, �0=0.90, and �0=0.80 with a
neighborhood of 15�15 pixels. The coefficients and
neighborhood values corresponding to those minimize the
matching-error rate curves. The overall results are as fol-
lows:

1. Each of the constraints taken independently from the
others reduces the matching error rate of mapping.

2. By combining the three constraints, we obtain the
best results.

3. By varying the size of the calculation neighborhood
from 3�3 pixels to 21�21 pixels, the matching er-

Fig. 3 Example of disparity maps calculated on a pair of images: �a�
Left image, �b� SAD, and �c� our method.

Fig. 4 Pair of stereoscopic images for comparison: �a� Corridor of
Lena, �b� cones, and �c� Tsukuba.
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ror rate decreases to reach a minimum corresponding
to an average calculation neighborhood size �often
15�15 pixels�, and then it increases. The effect of
the three constraints together on the real Cones and
Tsukuba images �gain of 3%� are the most important,
especially on occluded pixels.

4 Segmentation and Tracking
In Section 3.2, we described an improved stereo-matching
method that allows the computation of precise and noise-
free height maps. These maps are segmented in order to
detect heads of people, and the marked areas are tracked
across the image sequence.

In Fig. 5, we can see the processing carried out and the
results obtained: for a given disparity map in Fig. 5�b�, a
threshold is first applied to retain only the parts of the im-
age close to the camera; the result is displayed in Figs. 5�c�
and 6�a�. Then, a binarization and size-based artifact re-
moval yields the binary image in Fig. 5�b�. One more pro-
cessing step is necessary to highlight the heads of people.
For this, we use binary mathematical morphology. Three
opening operations are applied to the binary images with a
circular structuring element. As with every morphological
filtering, the size of the structuring element is very impor-
tant. The result is shown in Fig. 6�c�. We can see in Fig.
6�a� that the majority of the artifacts have disappeared. The
result is satisfactory because we get three different kernels
corresponding exactly to the heads of the persons if we
compare to the original images.

For a given stereo configuration, we can define a statis-
tical average size of a head on the image as a function of
the distance that separates the human head from the cam-
eras. This means that we cannot use the same structuring
element for segmenting heads of people having different
heights. To deal with this problem, we define several height
intervals corresponding to different height classes. For each
class, we use a specific structuring element having a size
equivalent to the average size of a head, based on the height

and, therefore, on the distance from the camera. Given the
variability of people’s heights, defining the number of
height classes is not easy. This number has a strong influ-
ence on the quality of the result; thus, it must be chosen
carefully. It must be large enough to represent the majority
of people’s height classes and not too large to avoid in-
creasing the processing time. Experimentally, we found that
four classes are a good compromise.

These classes are used for thresholding the disparity
map, and in the same way as shown in Fig. 6, morphologi-
cal tools are then applied to each thresholding result to
segment the heads of people. For a given class, the size of
the kernels resulting from this segmentation step leads to
differentiate objects larger than the average head size of the
class. Then, the differentiation between large objects and
head is carried out by the tracking procedure.

The tracking of the kernels for the final counting is per-
formed using a Kalman filter.34 Each kernel resulting from
the segmentation of the disparity maps is represented by a
vector of the following seven components:

1. Number of pixels
2. Width of the kernel in pixels
3. Length of the kernel in pixels
4. Average height calculated from the heights of each

pixel
5. Average gray level
6. Abscissa in the image
7. Ordinate in the image

The main aim of the tracking algorithm in this case is to
track the kernels in the processing zone �called also count-
ing zone� and to analyze the behavior of the kernels �which
are, in fact, the heads of the persons passing under the
sensor� in the counting zone. The first step of the tracking
procedure is the multitarget Kalman filter, which provides
prediction of kernels positions. We assume that each target
is represented by a vector X of two components �x ,y�,
where x and y are the horizontal and vertical coordinates of
kernels in the image. The prediction is made based on two
assumptions: the speed of objects is constant and the mea-
sures are affected by white noise. The second step corre-
sponds to the calculation of a probability mapping. In this
step, the estimation of the probabilities requires the predic-
tion from Kalman filter, corresponding to horizontal and
vertical coordinates of the targets, and the five others kernel
parameters used without prediction. These probability mea-
sures are also weighted by tracking hypotheses �merging,
splitting, appearance, disappearance, …�. A similar tracking
methodology is described in Ref. 34. We introduce, then,
the notion of trajectory. A valid trajectory corresponds to
somebody entering and exiting from the counting zone. The
counting zone has an upper and lower line; the interior is
called the tracking zone.

The valid trajectories corresponding to an entry in the
counting zone are the following �Fig. 7�a��:

1. Appearance of a person at the upper line of the count-
ing zone and disappearance in the tracking zone �the
person has entered and stays in the tracking zone:
they are taken into account�

2. Appearance at the upper line of the counting zone
and disappearance at the lower line of the counting

Fig. 5 Artifacts elimination by morphological filtering: �a� Left image,
�b� disparity map, and �c� result of smoothing.

Fig. 6 Use of binary mathematical morphology for the disparity map
segmentation: �a� Result of smoothing of the previous step, �b� bi-
nary image, and �c� kernels results.
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zone �the person entered and crossed the counting
zone: they are counted�.

The nonvalid trajectories are linked to the following
situations �Fig. 7�b��:

1. Appearance at the upper line of the counting zone
and disappearance at the same line �entry followed by
an immediate exit�

2. Appearance at lower line and disappearance at the
same line

3. Appearance and disappearance in the counting zone
�wandering under the sensor without intention�

4. Appearance at lower line and disappearance in the
tracking zone

5 Evaluation of the Counting System
The overall evaluation of the system is carried out follow-
ing two directions. First of all, we are interested in the
performance of the system by comparing globally the re-
sults of the counting system to ground truth determined by
several experts. It is a quantitative evaluation. Then, be-
cause the counting is based on the notion of valid trajecto-
ries, a qualitative evaluation is also carried out in order to
analyze the ability of the system to manage difficult situa-
tions.

5.1 Data Sets Used for the Evaluation

First of all, let us mention that the counting system was
entirely evaluated on real data sets. The data sets on which
the system was evaluated come from two different data
bases. In the framework of this paper, the data used for the
evaluation includes 30 laboratory scenarios and 96 sce-
narios coming from a bus.

Laboratory data respecting specific scenarios was pro-
vided by the RATP, and 30 scenarios were simulated in our
laboratory. They reflect mainly situations where people are
exiting from a bus. The scenarios represent very diverse
situations: high-density groups of people moving in oppo-
site directions; people of different sizes, carrying bags, suit-
cases, or big objects; and people with strollers. One should
note here that the position of the sensor and the choice of
the focal length of the lens were chosen to reproduce ex-
actly the geometrical aspects of the bus. The first 15 sce-
narios were simulated with ambient illumination �artificial
light and daylight coming from the windows�, whereas the
must 15 were played with closed windows and artificial
light shut off.

Real data coming from a bus during the exploitation
period lasted for one day, on a very crowded line. The
collected data represent various situations: crowd, strollers,
luggage, children, and people with hats; 150 scenarios of
these typical situations were collected. The processing time

Fig. 7 Examples of �a� valid and �b� nonvalid trajectories.

Fig. 8 Counting results for 30 scenarios in laboratory �from top to bottom�: �a� entering and �b� exiting
by the same door.
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is 30 fps if we consider images whose resolution is 160
�120 pixels on a pentium IV 2 GHz. This is compatible
with our application.

5.2 Quantitative Evaluation
The counting results presented in Fig. 8 indicate the num-
ber of people entering or exiting for each sequence in the
laboratory. In Fig. 8, we can see the ground-truth counting
results versus the counting results computed by our algo-
rithm. One can note that whatever the difficulty of the sce-
nario is, the difference between the reference and calculated
countings is very low. Indeed, these differences are in the
interval �−1;+1�. This is an encouraging result showing the
robustness of our algorithm, which is able to cope with
diverse situations. There are fewer people entering because
the data set corresponds mainly to people exiting by the
back door, and there are counting errors because people are
entering and exiting at the same time by the same door.

In order to determine the accuracy of our counting sys-
tem, globally—that is to say considering all the entering
and exiting scenarios together—we have defined an error
rate that is calculated with Eq. �8�. In this equation, we
consider the real counting �the ground truth obtained with
three different experts� as the basis of comparison and de-
termine the difference between the counting with the algo-
rithm. Thus, the error rate is �1%,

Errorcounting = 100
�Realcounting − Automaticcounting�

Realcounting
. �8�

The same error rate is obtained with any laboratory sce-
nario, under any illumination type. This is also encourag-
ing. For the bus data sets, the results are shown in Fig. 9.
We can note in Fig. 9 that the ground-truth results are very
close to the results after computation with our algorithm.
Even though the scenarios are much more difficult to deal
with in the bus, the overall counting error is only 3%.
When analyzing more closely the counting results, we ob-
serve that when our system differs from the reference
counting, it systematically underestimates the number of
people. Several reasons could explain this fact: the diffi-
culty to detect short people. The fixed size of the structur-
ing element in the segmentation of the disparity maps could

also be another reason. Finally, the merging of two trajec-
tories, corresponding to two different people could also be
an additional reason. Additional explanations could also be
found with a more intensive evaluation.

5.3 Qualitative Evaluation of the Counting System
After the quantitative evaluation of the system, it is inter-
esting to carry out qualitative evaluation of the algorithm
on typical image sequences. The main aim of this section is
to show the behavior of the counting system on different
trajectories of people passing under the sensor. The objec-
tive is also to verify the ability of the system to detect
specific people, to track them, and finally to count them. To
achieve this goal, we have selected three typical sequences:
two from laboratory data sets and one from a bus in normal
operation. For each sequence, we present the following
conclusions.

Sequence 1 represents a crowd exiting from the counting
zone while at the same time, several other people are en-
tering one behind the other �Fig. 10�. The main interest of
this sequence is to show the ability of the system to analyze
the trajectories of people having the same characteristics in
terms of size and appearance. We have marked people un-
der analysis, with color ellipses: red for people exiting and
green for people entering.

Sequence 2 illustrates two people walking very close to
each other. One person puts his arm on the shoulders of the
other. This situation is illustrated in Fig. 11 in four frames.
As for the previous sequence, the heads are marked with
red ellipses. The two persons are exiting from the counting
zone.

Sequence 3, which is acquired in the bus, represents a
crowd getting off the bus. Among this crowd are several
children, and several other people are standing at the en-
trance without leaving the bus �typical situation in buses�.

Fig. 9 Counting results for 96 scenarios in a bus.

Fig. 10 Images taken from sequence 1: Evolution in time.
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The main interest of the sequence is to test the ability of the
system to detect a young child, a stationary person, and a
person wearing a hat. Figure 12 illustrates this situation.
The green ellipse indicates the stationary person; the red
one, the child exiting from the bus; and the blue one, the
man with the hat who is also exiting from the bus.

5.3.1 Tracking results
The tracking results are illustrated in Figs. 13–15. The col-
ors used for drawing the trajectories are those used in Figs.
10–12.

In Fig. 13, which corresponds to sequence 1, we have
represented the trajectory of the person entering in continu-
ous line and the trajectory of the person exiting in dashed
line. The abscissa and ordinate in the graph represent the
spatial position, of the centers of gravity of the heads of the
passengers, in the counting area, detected during the seg-
mentation phase. Every kernel is calculated at 30 fps, but
the center of gravity is plotted only every five frames for
visual convenience. We note that, in spite of the high prox-
imity of the two people, the respective trajectories are per-
fectly identified: one entering and the other exiting. We can
also note that the trajectory of the person entering is more
rectilinear than that of the exiting person because the latter
has diverted his trajectory in order to avoid a collision.

In Fig. 14, we can note that the system has perfectly
dealt with the typical situation where two people are cross-
ing the counting zone very closely. We can clearly distin-
guish two parallel trajectories describing their passage.

In Fig. 15, we can easily note the trajectory �dashed line�
of the kid who has rapidly gotten off the bus. The continu-
ous line corresponds to the man with the hat. For this per-
son, in spite of the lack of contrast between his clothes and
the background, the system has detected the trajectory
properly. The third trajectory is typical of people standing
at the exit of the bus but moving a little, from time to time,
to let the other passengers get off the bus. That is why the
position of the center of gravity of the head moves slightly.
In Fig. 15, because the child and the man with the hat are
getting off the bus, one behind the other, the corresponding
trajectories are almost aligned.

5.4 Real-Time Constraints
The first version of the algorithm was implemented on a PC
Pentium IV 2 GHz and processed images of size 640
�480 pixels. But, with this size, the algorithm was only

able to process up to 2 fps, and it was impossible to count
people moving very quickly. The real-time constraints for
this system are the following: Every person must be
counted, regardless of their speed of movement. A process-
ing time of 2 fps cannot be considered real time.

Therefore, in order to speed up the processing time, we
tried to reduce the size of the images while striving to
maintain the accuracy. Then, we tested two images sizes:
320�240 and 160�120 pixels. We have concluded that
the best compromise, in terms of accuracy and processing
time, was achieved by an image size of 160�120 pixels. In
this case, the accuracy is maintained and the processing
speed is 30 fps, which is compatible with a real-time imple-
mentation. The accuracy is not affected when we divide the
resolution by four moving from 640�480 to 160
�120 pixels, which demonstrates the robustness of the al-
gorithm proposed.

6 Conclusion
In this paper, we have presented a counting system and its
evaluation on life-situation data sets. The comparison be-
tween ground-truth values and the ones calculated with our
algorithm leads to a counting accuracy that is around 99%
for laboratory and 97% for bus data sets. These values are
obtained on 30 scenarios coming from the laboratory and
96 coming from a bus during the exploitation period and
representing a total of �1400 people. This counting accu-
racy needs to be confirmed with a more intensive evalua-
tion, mainly on the scenarios coming from the bus. We
have also conducted a qualitative evaluation in order to test
the ability of our algorithm to detect and track persons and
their trajectories in a few very difficult situations. We have
tested the robustness of the algorithm to deal with very hard
cases: very crowded situations where there are people
walking in two directions under the sensor.

The results obtained in these cases are very satisfactory
and encourage conducting us to continue working in this

Fig. 11 Images taken from sequence 2: Evolution in time.

Fig. 12 Images taken from sequence 3: Evolution in time.

Fig. 13 Trajectories of people marked in sequence 1.
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direction. That is why numerous perspectives are planned
in the near future. We plan, for instance, to separate the
data to assess the results in crowded situations versus non-
crowded ones. Because we wanted a real-time counting
system, from the beginning, the use of color images was
avoided because of the extra processing time they imply.
However, the use of color would provide improvements in
the choice of homologous pixels for the stereo-matching
process because we have more information for neighbor-
hood comparison. Finally, color information could be used
to perform pixel clustering of the stereoscopic images in a
number of classes which could be then exploited. For in-
stance, we could imagine adding additional constraints de-
pending on the classification results.
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