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Abstract

Purpose—Localization of target anatomy and critical structures defined in preoperative MR 

images can be achieved by means of multi-modality deformable registration to intraoperative CT. 

We propose a symmetric diffeomorphic deformable registration algorithm incorporating a 

modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT 

registration.

Method—The method, called MIND Demons, solves for the deformation field between two 

images by optimizing an energy functional that incorporates both the forward and inverse 

deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive 

similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian 

coordinates. Direct optimization (without relying on an exponential map of stationary velocity 

fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method 

for fast convergence. Registration performance and sensitivity to registration parameters were 

analyzed in simulation, in phantom experiments, and clinical studies emulating application in 

image-guided spine surgery, and results were compared to conventional mutual information (MI) 

free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons.

Result—The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial 

Jacobians with capability to preserve local orientation and topology. It demonstrated improved 

registration accuracy in comparison to the reference methods, with mean target registration error 

(TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons 

methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-

voxel TRE in cases of cervical, thoracic, and lumbar spine.

Conclusions—A modality-independent deformable registration method has been developed to 

estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The 
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method yields registration accuracy suitable to application in image-guided spine surgery across a 

broad range of anatomical sites and modes of deformation.

Keywords

deformable image registration; Demons algorithm; symmetric diffeomorphism; multimodality 
image registration; MIND; CT; MRI; image-guided surgery

1. INTRODUCTION

Spinal disorders are the main cause of disability limiting locomotion, daily activities, and 

ability to work.1 They cover a broad spectrum of pathologies, such as spinal injury in 25% 

of trauma patients,2 spine metastases identified in 10% of patients with cancer,3 and 

scoliosis presenting in 2–32% of adults and 68% of elderly patients.4 Such spinal diseases 

are treatable by surgery; however, the complexity of spinal structure and function can 

challenge safe and accurate intervention. Image-guided spine surgery (IGSS) has been 

shown to improve surgical accuracy and outcomes in pedicle screw placement,5,6 correction 

of spinal deformities,5,6 trauma surgery,7 percutaneous vertebroplasty,8 and resection of 

tumors.9 In IGSS, preoperative MR often provides a basis for definition of target anatomy 

(e.g., vertebral levels and tumors) and critical structures (e.g., nervous and vascular systems), 

and localization in intraoperative CT requires multimodality registration capable of 

resolving significant deformation (e.g., supine MR to prone, kyphosed intraoperative CT). 

We propose a new symmetric diffeomorphic deformable registration method called MIND 

Demons, which estimates a pair of time-dependent diffeomorphisms as in the SyN10 

approach using a Demons-like optimization framework11 under constraints on geodesics, 

invertibility, and smoothness of the diffeomorphisms. The method demonstrates several 

advances including: i) a single energy functional that incorporates constraints on smoothness 

of both the velocity fields and the incremental diffeomorphisms; ii) imposition of a geodesic 

length constraint satisfying an inverse condition (i.e., the estimated diffeomorphisms are 

inverse of each other); iii) conservation of momentum in Lagrangian coordinates12 which 

allows simple and efficient optimization of the diffeomorphisms; iv) use of modality-

independent neighborhood descriptors (MIND)13 and a robust and smooth Huber metric14 

for non-linear MR-CT image intensity non-correspondence; v) a Gauss-Newton method for 

fast convergence;15 and vi) estimation of diffeomorphic deformations without relying on the 

exponential map of stationary velocity fields as in conventional diffeomorphic Demons.11 

The registration method is described in Section 2. The figures of merit used to evaluate 

registration performance are given in Section 3. Analysis of parameter sensitivity and 

registration performance in comparison to well-established methods is described in Sections 

4 and 5, including simulation, physical phantom experiments, and clinical studies. A 

discussion on advantages and limitations as well as future work is provided in Section 6.

2. MIND DEMONS REGISTRATION

2.1 Notation and Basic Derivation

Registration seeks diffeomorphisms ψ: Ω × t ∈ [0,1] → Ω on a closed domain Ω ⊂ ℝn (n = 2 

or 3 for 2D and 3D, respectively) that nonlinearly map a moving image I0 to a fixed image I1 
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as I0 ∘ ψ = I1. Since a group of diffeomorphisms is closed under composition,10 one can 

decompose ψ into a pair of diffeomorphisms ϕi for i ∈{0,1} as shown in Fig. 1. The 

diffeomorphism ϕi(x, t) is a flow of time-dependent velocity fields:

(1)

where τ ∈ [0,0.5] denotes elapsed time, t = (0.5 − (−1)iτ) ∈ [0,1] denotes a time point, and νi 

∈ L2([0,1], V) is a velocity field in a Sobolev space V.16 The diffeomorphisms ϕi and 

velocity fields νi are defined with respect to the Lagrangian frame of a virtual image I0.5 

domain defined at time 0.5 such that ϕi(0.5) = Id and νi(0.5) = 0. The diffeomorphisms ϕi(t) 
push the Lagrangian frame (defined at time 0.5) forward to time t. As shown in Fig. 1, ϕ0(x, 

0) maps a point x defined at time 0.5 to a point y defined at time 0, and ϕ1(x, 1) maps x to a 

point z defined at time 1, implying I0 ∘ ϕi(x, 0) = I0.5(x) = I1 ∘ ϕ1(x, 1). For brevity, the time 

arguments are dropped for the diffeomorphisms at the endpoints as ϕi(x) = ϕi(x, i).

The energy of the flow ϕi is computed as the time-integrated square norm of νi, 

, where the differential operator L = (Id − a2∇2) for a ∈ ℝ 

is used to defined a norm on V as ||νi(t)||V = ||Lνi(t)||2.16,17 The energy minimizing path is 

the optimal geodesic12 of ϕi and the geodesic shortest length – measured using the left-

invariance metric (i.e., inverse invariance)18 – is defined in terms of the minimizing energy 

as:

(2)

with a boundary ϕi(x, 0.5) = x and ϕ0(x) = y and ϕ1(x) = z.

A fundamental principle of mechanics states that the Lagrangian (measurement-based) 

momentum Mi(t) = Lνi(t) is constant over time along optimal geodesics (i.e., energy 

minimizing paths) in the absence of external forces.12 Since ϕi and νi are defined in the 

Lagrangian frame, we have Mi(t) = Lνi(t) = Mi(0.5), and since the energy of the flow can be 

computed in terms of Mi as ,12 we can impose a constraint 

on the conservation of momentum by using a time step Δt = 0.5. In this work, we use Δt = 

0.5 to impose such a constraint and to reduce computational complexity.

2.2 MIND Demons

The method merges the SyN10 approach to the Demons11 approach by optimizing a pair of 

time-dependent diffeomorphisms ϕi for i ∈ {0,1} that yields  under the 

constraint on the smoothness of ϕi in an alternating optimization enabled through 

introduction of intermediate diffeomorphisms ηi The alternating optimization allows 

separation between maximization of image alignment and imposition of a smoothness prior. 

This separation simplifies the optimization process, allows estimation of various 

deformation models (e.g., fluid, elastic, and viscoelastic models), and could allow simple 
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integration of additional prior information (e.g., a rigidity constraint on vertebral bodies19); 

however, it could yield a local optimum that is different from the true optimum of the energy 

functional. The optimization is performed in the Lagrangian frame with the time step of 

Δt=0.5 to impose the conservation of momentum. We use Lagrangian push-forward (i.e, 

diffeomorphisms at each time point are defined with respect to the Lagrangian frame at time 

0.5) to bypass the computation of Jacobian change of variables.10,16 Since the method can 

be used with various similarity metrics and image representations, we present a similarity 

metric in an abstract form as S(I0, I1, x). The Huber metric and the MIND descriptor 

representation, used in this work to define S(I0, I1, x), are described in the next section.

(a) Constrained Energy Functional—We constrain the estimated deformations ϕi to be 

invertible and smooth using an invertibility constraint  and minimization of 

their harmonic energy, respectively. The deformations are, additionally, subject to a geodesic 

length constraint ρ(ϕ0(x), ϕ1(x, 0.5)) = ρ(ϕ1(x), ϕ1(x, 0.5)) which yields a relation 

for i ≠ j ∈ {0,1} from the inverse invariance property of the geodesic shortest length18 and 

the uniqueness of the ordinary differential equation ∂tϕi(x, t) = νi(ϕi(x, t), t) with initial 

condition ϕi(x, 0.5) = x.20 We use this relation  to impose the geodesic length 

constraint in the energy functional as

(3)

where αS, αU, and αP control regularization strengths, and ηi = ϕi ∘ (Id + νi) for Δt =0.5. The 

relation  and the invertibility constraint lead to the inverse condition ϕi 

∘ ϕj = Id (i.e., ϕ0 and ϕ1 are inverse of each other).

(b) Alternating Optimization—The functional (3) is optimized by alternating between 

two simple steps: (i) maximization of image alignment with imposition of the geodesic 

length constraint; and (ii) imposition of the smoothness prior and invertibility constraint.

Inexact Image Matching using a Gauss-Newton Method: In the first step, given an 

estimate of , we seek ηi for i ≠ j ∈ {0,1} that maximizes alignment of I0 and I1. The 

optimization of ηi is equivalent to minimization of an energy functional defined in terms of 

νi (i.e., ηi is a function of νi) as
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(4)

where  from  (i.e., imposition of the geodesic 

length constraint), Ii ∘ ηi Ii ∘ ϕi(Id + νi), and 

for Δt = 0.5. The functional (4) consists of the first two terms in (3). The first term measures 

similarity between I0 ∘ ϕ0 and I1 ∘ ϕ1 in the Lagrangian frame, and the second term measures 

the energy of the diffeomorphisms. We optimize the functional (4) using a Gauss-Newton 

(GN) method that uses approximations to both first and second–order derivatives of (4) and 

can generally achieve convergence in fewer iterations than a method using only a first 

derivative.15 As in the classic Demons method,11 we use the Sherman-Morrison formula to 

compute inverse of the second-order term in GN, resulting in simplified momenta:

(5)

where ∇ϕiS is the gradient of S with respect to ϕi and we use αS(x) = 1/S(x) to penalize 

noise in a spatially varying manner. Using the fact that (αU|S(x)| − ||∇ϕiS(x)||2)2 ≥ 0, we 

have a constraint on the length of the momenta as ||u(x)||2 ≤ 1/2αU.21 The momentum field 

equation in (5) is similar to the update equation of the classic Demons method11 except that 

the regularization strengths in (3) are defined differently. We can retrieve a velocity field 

from a momentum field using a Green kernel K for L as KMi = KLνi = νi.12 We 

approximate the Green kernel K for L with a = 1 by a Gaussian kernel GσU with width σU.10 

The intermediate diffeomorphisms are updated using the momenta in (5) and the Green 

kernel K under the geodesic length constraint as

(6)

where * is a convolution operator, and k is an iteration number. After both intermediate 

diffeomorphisms are estimated, the method continues to the second step.

Tikhonov Regularization: The diffeomorphisms ϕi are regularized under smoothness and 

invertibility constraints by minimizing the energy functional consisting of the last two terms 

in (3) as

Reaungamornrat et al. Page 5

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2016 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(7)

where  from Δt =0.5 and 

. By omitting the invertibility constraint, (7) can be optimized using 

Tikhonov regularization22 which leads to a partial differential equation:

(8)

By letting a =0 as in previous work12,17,23 we have L = Id and the solution of (8) can be 

approximated by  (i.e., a solution to an isotropic heat equation) where GσD 

is a Gaussin kernel with width . The invertibility constraint is sequentially 

imposed by  using a gradient descent method. We do not use 

GN here, since it requires inversion of the second-order term (which cannot be simplified 

using the Sherman-Morrison formula), and the increase in computation time from the 

required matrix inversion could adversely compromise the convergence rate of GN. After 

both diffeomorphisms ϕi have been estimated, the diffeomorphic map between I0 and I1 is 

.

2.3 Modality Independent Neighborhood Descriptor (MIND)

A MIND descriptor13 is constructed using a non-local mean operator24,25 similar to a self-

similarity descriptor,26 and is capable of capturing local structures in MR and CT images. It 

is a vector representation of each voxel, and its computation involves other voxels in its 

neighborhood. The configuration of neighboring voxels used in the calculation is called a 

stencil and is given the symbol S.13 Stencils can be arranged in a variety of patterns—e.g., 

the 2D and 3D examples shown in Fig. 2.

A MIND descriptor for a voxel x in an image I is mI(x) = [mI,i(x)] for i = 1 − | S|. Each 

element mI,i in the descriptor corresponds to a voxel ri ∈ S in the stencil, and its value is 

computed as:

(9)

where c is a normalization factor such that  (i.e., for intensity and 

contrast invariance) and d(I, x, ri) measures the distance between a patch of x and that of ri 

as
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(10)

where p denotes a neighborhood configuration of a patch (e.g., a cube), z is an offset from 

the center voxel in p, and Gσp is a discrete Gaussian kernel— with width σp mm and 

truncation (tail cut-off) errors tp = 1 − Σz∈ p Gσp(z)—used to increase the importance of 

the central voxel. The term V(I, x) in (9) approximates the local variance at x by an average 

of patch distances between the patch of x and patches of the nearest neighboring voxels of x 
(i.e., 4 and 6 nearest neighbors for 2D and 3D images, respectively).

2.4 Huber Distance Metric

Registration is generally ill-posed27 implying that small changes in images (e.g., due to 

noise and artifacts) can lead to large changes in the estimated deformations. A metric such as 

the L1 norm tends to be relatively insensitive to noise and outliers28 and could yield more 

reliable estimation (i.e., less confounded by noise) than quadratic norms (e.g., L2 and square 

norm); however, numerical optimization involving the L1 criterion is difficult due to its 

singularity. To exploit the robustness of L1 with the twice differentiability of L2, we use a 

Huber distance14 as the similarity metric between a MIND descriptor of I0 ∘ ϕ0, mI0∘ϕ0(x), 

and that of I1 ∘ ϕ1, mI1∘ϕ1(x). Note that mIi∘ϕi is computed on images after transformation Ii ∘ 

ϕi and mIi∘ϕi ≠ mIi∘ϕi. We denote the difference between an element i of the MIND 

descriptors as φi(x) = mI0∘ϕ0i(x) − mI1∘ϕ1, i. The Huber distance between the descriptors is:

(11)

where ε is the threshold between the quadratic and linear parts.

The Huber metric yields a more reliable deformation estimation, since the influence of 

outliers on gradients of the metric is less than that on gradients of quadratic norms. 

Moreover, edges in images can be preserved since it penalizes large differences less than the 

quadratic penalty in the L2 norm

2.5. MIND Demons Registration Method

We incorporate a multiresolution strategy to improve robustness against local minima. As 

shown in Fig. 3, a multiresolution pyramid (defining coarse-to-fine evolution in each 

pyramid level) is constructed only for the virtual image I0.5 since the method uses the 

Lagrangian push-forward of the I0.5 domain to the domain of I0 and I1 using ϕ0 and ϕ1, 

respectively. In each level of the pyramid, the optimization described in Section 2.2 is 

performed until it reaches either convergence or a maximum number of iterations. Since a 

MIND descriptor is not deformation invariant, it is recomputed in every optimization 

iteration. The parameters intrinsic to the MIND Demons method along with their nominal 
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ranges and values (see Section 4.1 and 5.1) are given in Table 1. The algorithm was 

implemented using the Insight Segmentation and Registration Toolkit (ITK).29

3. REGISTRATION PERFORMANCE

Registration performance was quantified in terms of geometric accuracy [target registration 

error (TRE) and structural similarity metric (SSIM)] and diffeomorphic properties 

[invertibility ( ) and preservation of topology] of the estimated deformations.

3.1. Target Registration Error (TRE)

Geometric accuracy of registration was measured in terms of TRE – the distance between 

corresponding anatomical points in I1 and I0 after registration:

(12)

where xi denotes an unambiguous anatomical point (“target”) in Ii, and ψ is the estimated 

deformation.

3.2. Structural Similarity Metric (SSIM)

The difference between images from a similar modality can be quantified in terms of 

SSIM,30 computed using local statistical features as:

(13)

where y denotes a voxel in I0 after registration, z denotes a corresponding voxel in I1, μi is a 

local mean computed within a sliding window of size Nw centered on i,  denotes a local 

variance within the window, and σyz is a local covariance in the window centered on y and z. 

Prior to computation of local statistical features, a Gaussian kernel of size Nw was applied to 

images to avoid blocking artifacts from the rectangular sliding window. In this work, we set 

Nw = 11×11 pixels, C1 = (0.01R)2, and C2 = (0.03R)2, where R is the dynamic range of the 

pixel values.30 In the simulations (below), SSIM was computed with respect to the deformed 

moving image (I0 after registration) and a known true image (a simulated fixed MR image) 

of the same modality (i.e., image intensity).

3.3. Invertibility ( )

A desirable characteristic of diffeomorphisms as described above is their invertibility, which 

can be characterized in terms of the residual:

(14)
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where y is a point in I0, z is a point in I1, ψ is a diffeomorphism, and ψ−1 is its inverse. The 

residual  = 0 for invertible or singular transformations.

3.4. Minimum of Jacobian Determinant ( )

The preservation of topology and lack of folding/tearing31 in a given deformation can be 

characterized in terms of its Jacobian determinant, (x) = det(Dxψ(x)) where Dxψ are 

spatial Jacobians of ψ, and det(·) denotes a matrix determinant. A deformation is nonsingular 

if  ≠ 0 and preserves topology if  > 0 (i.e., local reflection occurs for  < 0, which could 

lead to self-intersection). To quantify invertibility and preservation of orientation as well as 

topology, we measure the minimum value of  within a sliding window ΩV as

(15)

where the size of the sliding window ΩV is set to 11n voxels (for n = 2 or 3 for 2D and 3D, 

respectively).

4. EXPERIMENTAL METHODS

The registration performance of MIND Demons was analyzed in comparison to other well-

established reference methods, including elastix free-form deformation (FFD) with MI and 

local MI (LMI),32,33 and NMI Demons34,35 with a symmetric energy formulation. Each 

method was evaluated using nominal parameter settings identified through analysis of 

parameter sensitivity in simulation. Comparison of the overall registration performance was 

performed in a 3D physical phantom experiment (ovine spine phantom), and validation of 

the registration performance under realistic imaging conditions was performed in clinical 

studies using MR and CT images of the cervical, thoracic, and lumbar spine.

4.1. Simulation Studies

(a) Formation of Simulated Images—Figures 4(a–b) depict a simulated T2-weighted 

MR moving image (I0) and a CT fixed image (I1) (1500×1500 pixels, 0.25 mm2). Each 2D 

simulated image contains 5 simulated (rigid) vertebrae within (deformable) soft-tissue 

surroundings. The scoliotic curvature in I0 (Fig. 4(a)) was generated from a radial basis 

interpolation of a rigid motion36 associated with each vertebrae in I1. The MR pixel value 

was computed using T2 and proton density of tissue for a spin-echo pulse sequence with a 

constant main magnetic field at 1.5 T.37 As shown in Fig. 4, 31 target points were defined in 

each image at the corners of the vertebrae, the centroid of the tumors, and the unambiguous 

points in soft-tissue for TRE measurement.

(b) Analysis of Parameter Sensitivity and Registration Performance—The 

sensitivity to individual parameter settings in each method was investigated in univariate 

analysis to identify nominal parameter range and value. The nominal parameter values were 

subsequently used in evaluating the performance of each method in comparison to MIND 

Demons. A similar morphological pyramid was constructed for the Demons-based methods 
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using Gaussian kernel widths of [16, 8, 4, 2, 1] pixels and downsampling factors of [32, 16, 

8, 4, 2] pixels, while a pyramid for the FFD methods was constructed using only Gaussian 

smoothing.

4.2. Physical Phantom Studies (Ovine Spine)

(a) Image Acquisition—As shown in Fig. 5, an ovine spine was enclosed in a MR-CT 

compatible and bendable plastic cylinder filled with polyvinyl alcohol (to simulate soft-

tissue). The phantom was imaged first in a preoperative setup with scoliotic curvature for 

T2-weighted MR and CT moving images (I0), followed by T2-weighted MR and 

intraoperative CT fixed images (I1) with the spine straightened to natural posture. The MR 

scans were acquired with 3D acquisition type on a 1.5 T Magnetom Avanto (Siemens 

Healthcare, Malvern PA) and one echo with TE = 125 ms. An average of two acquisitions 

was used to reduce noise in the images. The MR I0 was reconstructed at 0.9×0.9×0.9 mm3 

with a size of 192×384×128 voxels, and the MR I1 was reconstructed at 0.5×0.5×0.9 mm3 

with a size of 192×384×144 voxels. The CT images were acquired with a Somatom 

Definition Flash scanner (Siemens Healthcare, Erlangen, Germany) (100 kVp, 291 mAs) 

and reconstructed at 0.6×0.6×0.8 mm3 with a size of 256×256×312 voxels. Example sagittal 

slices of MR and CT images are shown in Figs. 5(b, c). The MR I0 and CT I1 images were 

used as the moving and fixed images, respectively, in the following phantom experiments. 

For visualization and target point definition (TRE calculation), both CT images (I0 and I1) 

were segmented (simple thresholding at 200 HU), and 32 target points were defined on 

unambiguous anatomical features (tips of the spinous and transverse processes). The target 

points and segmentation defined in the CT I0 were translated to those defined in the MR I0 

using NMI rigid registration. The MR I1 was visually compared to the MR I0 after nonlinear 

transformation.

(b) Assessment of MR-to-CT Registration Performance—The registration 

performance of MIND Demons was evaluated in comparison to that of MI FFD, LMI FFD, 

and NMI Demons implemented using the nominal parameter settings. The three-level image 

pyramids for the Demons-based methods were constructed with Gaussian kernel widths of 

[4, 2, 1] voxels and downsampling factors of [8, 4, 2] voxels, while those for the FFD-based 

methods were constructed using only Gaussian smoothing without downsampling.

4.3. Clinical Studies

An institutional review board (IRB) approved retrospective study was performed to validate 

the registration performance of MIND Demons for clinically realistic patient images. The 

study used three pairs of T2-weighted MR and CT acquired for three patients undergoing 

intervention of cervical, thoracic, and lumbar disorders at our institution.

(a) Image Acquisition—The T2-weighted MR images and their corresponding CT images 

(for the cervical, thoracic, and lumbar spines) exhibit realistic variations in imaging 

protocols and image quality (Fig. 6). The MR scans were acquired with 2D (sagittal-slice) 

acquisition type on a 3T Signa HDxt (GE Healthcare, Little Chalfont, UK), a 1.5T Aera 

(Siemens Healthcare, Erlangen, Germany), or a 1.5T Vantage Titan (Toshiba Corporation, 

Tokyo, Japan) with slice thickness of ~3 mm and TE varied from 100–120 ms. The CT 
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images were acquired using a LightSpeed Ultra scanner (GE Healthcare, Little Chalfont, 

UK) or a Somatom Definition Flash scanner (Siemens Healthcare, Erlangen, Germany) with 

scan techniques varied from 120–140 kVp and 80–165 mAs, and reconstructed at 

approximately 0.3×0.3×0.5 mm3. The MR images of the cervical, thoracic, and lumbar 

spines were used as moving images I0 (Figs. 6(a, c, e)) and their corresponding CT images 

were used as fixed images I1 (Figs. 6(b, d, f)). Example sagittal slices of the MR and CT 

images are shown in Fig. 6. For visualization and target point definition, the vertebrae in MR 

were manually segmented, and those in the CT images were segmented using simple bone-

thresholding after median filtering. Twelve, eight, and eleven target points were identified 

for the cervical, thoracic, and lumbar spine, respectively.

(b) Validation of MR-to-CT Registration Performance—The registration 

performance of MIND Demons with clinical data was evaluated using the nominal 

parameter settings. The studies used a four-level morphological pyramid with Gaussian 

kernel widths of [8, 4, 2, 1] voxels and downsampling factors of [16, 8, 4, 2] voxels. MIND 

Demons was initialized using NMI rigid registration.

5. RESULTS

5.1. Simulation Studies

Table 2 and Figure 7 summarize results from the simulation studies using the nominal 

parameter settings for each method. All methods were initialized with a rigid transformation 

with mean TRE 13.0 mm and interquartile range (IQR) of (9.0, 15.9) mm, and registration 

accuracy of each method is summarized in Table 2 and Fig. 7. The p-values (Table 2) 

measure statistical significance in the differences between the measured mean values of each 

metric from that of MIND Demons. All methods were found to preserve topology (lack of 

tissue folding and tearing) with  > 0. MIND Demons and NMI Demons yielded invertible 

deformations with sub-voxel ; however, NMI Demons achieved smaller  than MIND 

Demons due to stronger smoothing applied to the update and displacement fields. The 

invertibility  was not measured for the FFD-based methods since the methods only 

provided forward deformations (i.e., a map from I0 to I1). MIND Demons yielded mean 

TRE = 1.3 mm, compared to 2.1 mm for MI FFD, 3.9 mm for LMI FFD, and 2.0 mm for 

NMI Demons. Additionally, MIND Demons outperformed the others in terms of SSIM. 

Figure 7 shows I0 after registration. The cyan spheres represent the target points in I1 and the 

green lines mark the shortest distances between the target points after registration. MIND 

Demons demonstrated the ability to resolve large deformations with robustness against 

spurious distortion that is evident in the MI FFD, LMI FFD, and NMI Demons methods.

5.2. Physical Phantom Studies

For the ovine spine phantom studies, each registration method was initialized with a rigid 

transformation with mean TRE 6.0 mm and IQR of (3.7, 7.5) mm. Table 3 and Figures (8, 9) 

summarize the overall registration performance of MIND Demons compared to the reference 

methods. Figure 8(b) demonstrates sub-voxel  (mean  = 0.008 mm) with a small range 

and IQR for MIND Demons compared to that for NMI Demons. All of the methods were 

capable of preserving structural topology with  > 0; however, MI FFD yielded min  close 
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to 0 (Table 3 and Fig. 8(c)). The large ranges in  associated with MI FFD and MIND 

Demons reveal a large change in local volume (i.e., expansion and compression) from large 

local motions. Table 3, Figures 8(a) and 9 summarize the registration accuracy of each 

method. The top row in Fig. 9 depicts semi-opaque overlays of the pink MR I0 and the cyan 

CT I1 after registration. The cyan spheres represent the target points in I1 and the yellow line 

segments mark the distance between the corresponding target points after registration. The 

bottom row shows the yellow Canny-edges of the MR I0 after registration superimposed on 

the gray MR I1. MIND Demons achieved statistically significant improvement in registration 

accuracy with mean TRE of 1.5 mm.

5.3. Clinical Studies

Figures 10 and 11 summarize the registration performance of MIND Demons in clinical 

studies using MR and CT images of the cervical (C), thoracic (T), and lumbar (L) spines. As 

illustrated in Figs. 10(b, c), MIND Demons yielded invertible deformations with 

preservation of topology and sub-voxel values of  and  >0. Figures 10(a) and 11 

summarize the registration accuracy of MIND Demons. The top row in Fig. 11 depicts semi-

opaque overlays of the pink MR I0 and the cyan CT I1 after registration for each spinal 

section, each section with results from NMI rigid and MIND Demons registration. The cyan 

spheres represent the target points in I1 and the yellow line segments mark the distance 

between the corresponding target points after registration. The middle row depicts the 

yellow Canny edges of the CT I1 superimposed on the gray MR I0 after registration, and the 

bottom row shows checkerboard images between the CT I1 and the MR I0 after registration. 

MIND Demons was able to resolve deformation induced by variation in patient positioning 

and provided improved registration accuracy, with TRE improved from 3.3±1.2 mm after 

rigid registration to 1.6±0.6 mm after MIND Demons for the C spine, from 4.4±1.8 mm to 

1.7±0.6 mm for the T spine, and from 4.3±1.7 mm to 1.9±0.5 mm for the L spine.

6. DISCUSSION AND CONCLUSION

A deformable registration method merging the Demons11 and SyN10 approaches for 

symmetric time-dependent diffeomorphisms has been developed. The algorithm incorporates 

MIND descriptors13 and the Huber metric14 for robust multimodality registration and the 

Gauss-Newton approach for fast convergence.15 The sensitivity analysis showed that the 

Huber metric with a small quadratic region (i.e., ε = 0.001–0.01) was able to reject outliers 

from local structural differences captured by corresponding MIND descriptors and provide 

reliable estimation of the deformation. Locality of the MIND descriptor—determined 

through the configuration of the stencil and the patches (i.e., values of σp and tp)—led to 

robustness against distortion, and its patch-based computation reduced sensitivity to image 

noise. Viscoelastic deformations, with adjustable strength of fluid and elastic models, were 

able to resolve large deformation in realistically noisy data and attain accurate registration 

(sub-voxel TRE < 2.0 mm in clinical studies – within the range required for spinal 

intervention38,39). The estimated deformation was diffeomorphic to the extent that topology 

was preserved with sub-voxel  < 0.008 mm and  > 0.
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MI-based methods have been somewhat widely used for MR-to-CT volumetric registration; 

however, MI-based metrics are sensitive to intensity non-uniformity, and they lose 

robustness when used as local measures.40 Incorporation of spatial information40,41 and/or 

image features42,43 could improve their sensitivity to intensity distortion. However, due to 

the challenge associated with the assumption of tissue-class correspondence, we adopted 

MIND descriptors. The descriptors are not deformation invariant, but this could increase 

their discriminative power.44

A diffeomorphism is a bijective map; it therefore assumes consistent anatomical structures 

to appear in both images. This inhibits applications of the method to resolve deformation 

involving content mismatch (e.g., due to insertion and removal of surgical tools/implants 

and/or tissue resection). A method using an asymmetric energy formulation of MIND 

Demons and a geometrical penalty term45 or extra-dimension46 to handle added and/or 

missing structures could be applicable in this case. Within the current implementation, we 

have demonstrated registration accuracy suitable to registration of preoperative MR and 

intraoperative CT before the delivery of surgical implants – i.e., at the beginning of the case, 

allowing localization of target and critical structures. Future work will consider registration 

to intraoperative images featuring a high density of implants (e.g., spine screws).

In this work, the time step used in the integration of time-dependent velocity fields was fixed 

at 0.5 to impose the conservation of momentum in Lagrangian coordinates.12 The smaller 

time step might yield improved registration accuracy, but lack of the constraint and more 

importantly increase in computational complexity and expense is discouraging. The clinical 

studies used three image pairs for the cervical, thoracic, and lumbar spines. An IRB-

approved retrospective study using a database of clinical data to further validate application 

of the method in realistic clinical setups is a subject of future work. Since our main objective 

is application in intraoperative use, application of the method to intraoperative CBCT 

images is also to be investigated. Owing to voxel-wise computation of the algorithm, 

distributed and/or parallel computing can be used to improve computational time. Future 

work can additionally include application of deformation-invariant descriptors, sensitivity 

analysis to image noise and intensity distortion, as well as incorporation of other prior 

knowledge, such as rigidity of the vertebrae to further constrain the solution space.
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Figure 1. 
Lagrangian description of the diffeomorphisms (ϕ0, ϕ1, and ψ) and their associated time-

dependent velocity fields.17
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Figure 2. 
MIND stencil configurations used in this work.

(a, b) Stencil for 2D and 3D images, respectively.

(c) Corresponding coronal slices of the 3D stencil in (b).

Gray voxels mark members of the stencil, and the black voxel marks the voxel for which 

MIND is computed.
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Figure 3. 
Flowchart for the MIND Demons algorithm.
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Figure 4. 
2D Simulated images emulating simple coronal curvature (scoliosis) of the spine, each with 

31 target points. (a) T2-weighted MR moving image (I0). (b) CT fixed image (I1).
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Figure 5. 
Ovine spine phantom. (a) Phantom assembly – spine encased in polyvinyl alcohol (PVA) 

hydrogel within a flexible cylinder. (b) CT images with the scoliotic spine (I0) and the 

straight spine (I1). (c) T2-weighted MR images with the scoliotic spine (I0) and the straight 

spine (I1).
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Figure 6. 
Clinical MR and CT image data. (a) T2-weighted MR (I0) and (b) CT (I1) images of the 

cervical spine. (c, d) The same, in the thoracic spine. (e, f) The same, in the lumbar spine.
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Figure 7. 
Simulation study results. Transformed I0 image following (a) MI FFD, (b) LMI FFD, (c) 

NMI Demons, and (d) MIND Demons. Note the reduced TRE (alignment of cyan target 

points) and robustness against spurious distortion for the MIND method.
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Figure 8. 

MR-to-CT registration of the ovine spine phantom. (a–c) TRE, , and  as a function of 

registration methods.
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Figure 9. 
MR-to-CT registration of the ovine spine phantom. (Top) Semi-opaque surface rendering of 

the pink MR moving image I0 and the cyan fixed CT image I1 after registration. Cyan 

spheres represent the target points in I1 and yellow lines mark distances between 

corresponding target points in I0 and I1 after registration. (Bottom) Superposition of yellow 

Canny edges of the MR moving image I0 after registration on the MR fixed image I1. (a, f) 

NMI rigid registration. (b, g) MI FFD. (c, h) LMI FFD. (d, i) NMI Demons. (e, j) MIND 

Demons.
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Figure 10. 

MR-to-CT registration in clinical studies. (a–c) TRE, , and  as a function of the spinal 

sections: cervical, thoracic, and lumbar spines.
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Figure 11. 
MR-to-CT registration in clinical studies. (Top) Semi-opaque surface rendering of the pink 

MR moving image I0 and the cyan fixed CT image I1 after NMI rigid and MIND Demons 

registration for each spinal section. Cyan spheres represent the target points in I1 and yellow 

lines mark distances between corresponding target points in I0 and I1 after registration. 

(Middle) Superposition of yellow Canny edges of the CT fixed image I1 on the MR moving 

image I0 after NMI rigid and MIND Demons registration for each spinal section. (Bottom) 

Checkerboard images between the MR moving image I0 and the CT fixed image I1 after 

NMI rigid and MIND Demons registration.
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Table 1

MIND Demons Parameters and Nominal Settings

Parameters Ranges Values

MIND descriptor Weighting kernel width (σp) (mm) 0.5 – 1.0 0.5

Weighting kernel truncation error (tp) 0.015 – 0.4 0.1

Huber metric Huber threshold (ε) 0.001 – 0.01 0.005

Demons Update field kernel width (σU) (voxels) 4 – 7 5

Displacement field kernel width (σD) (voxels) 0.6 – 1.4 1
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