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Abstract

Purpose—In image-guided procedures, image acquisition is often performed primarily for the 

task of geometrically registering information from another image dataset, rather than detection / 

visualization of a particular feature. While the ability to detect a particular feature in an image has 

been studied extensively with respect to image quality characteristics (noise, resolution) and is an 

ongoing, active area of research, comparatively little has been accomplished to relate such image 

quality characteristics to registration performance.

Methods—To establish such a framework, we derived Cramer-Rao lower bounds (CRLB) for 

registration accuracy, revealing the underlying dependencies on image variance and gradient 

strength. The CRLB was analyzed as a function of image quality factors (in particular, dose) for 

various similarity metrics and compared to registration accuracy using CT images of an 

anthropomorphic head phantom at various simulated dose levels. Performance was evaluated in 

terms of root mean square error (RMSE) of the registration parameters.

Results—Analysis of the CRLB shows two primary dependencies: 1) noise variance (related to 

dose); and 2) sum of squared image gradients (related to spatial resolution and image content). 

Comparison of the measured RMSE to the CRLB showed that the best registration method, RMSE 

achieved the CRLB to within an efficiency factor of 0.21, and optimal estimators followed the 

predicted inverse proportionality between registration performance and radiation dose.

Conclusions—Analysis of the CRLB for image registration is an important step toward 

understanding and evaluating an intraoperative imaging system with respect to a registration task. 

While the CRLB is optimistic in absolute performance, it reveals a basis for relating the 

performance of registration estimators as a function of noise content and may be used to guide 

acquisition parameter selection (e.g., dose) for purposes of intraoperative registration.
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1. Description of Purpose

Many applications in the field of image-guided procedures use image-based registration to 

improve intraoperative navigation and guidance. Often, this registration is performed to map 

data (e.g., planning information) from a preoperative image to the coordinate system of an 

intraoperative image. The error associated with this registration process is an important 

factor that determines the overall accuracy of the image-guided procedure and clinical 

outcomes. The general understanding of the relationship between image quality and 

registration performance is such that “high-quality” images would likely result in improved 

registration performance. While such qualitative characterizations are often evaluated 

empirically, there is a potential benefit in developing an analytical form to understand how 

changes in quantitative image quality metrics [such as the modulation transfer function 

(MTF) and noise-power spectrum (NPS)] will affect registration performance.

In the case of point-based registration, a well-known analytical framework was developed by 

Fitzpatrick and West1 to relate the error distribution in localizing the fiducial points to the 

distribution in target registration error (TRE), yielding a valuable method for understanding 

registration system performance and limitations. On the other hand, for medical imaging 

systems, analytical performance evaluation has primarily focused on relating image quality 

metrics to detection and visualization tasks2,3, where metrics such as the detectability index 

provide a quantitative framework for understanding the effect of NPS and MTF on a feature 

identification task in the image. However, in image-guided procedures the task of interest is 

often image-based registration rather than visualization/detection. In this work, we 

developed an analytical framework to relate image signal and noise characteristics to 

registration performance.

A valuable step toward this goal was previously proposed by Robinson and Milanfar4, who 

suggested analyzing the relationship between registration performance and noise by 

examining the Cramer-Rao Lower Bound (CRLB) for 2D translation-only image 

registration. They considered a registration model where the two images to be registered 

contained the same underlying true image function, g(x, y); however, both are contaminated 

by additive Gaussian white noise (AGWN) of equal magnitude.

(1)

(2)
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As can be seen from Eqs. (1,2), the registration problem lies in estimating the unknown 

translational shift between the true underlying image functions represented by parameter 

vector θ = [u, v]T. Their formulation had also been extended by Yetik and Nehorai5 for the 

case of rigid (rotation and scale) and 3D registration. To relate this work to image-guided 

interventions, the method requires modification to account for disparate image quality 

characteristics (e.g., noise) between the preoperative and intraoperative image and a 

connection to image quality models that describe how these characteristics relate to imaging 

parameters such as radiation dose, acquisition protocol, and reconstruction method. In this 

work, we investigate theoretical lower bounds for image registration and the relationship to 

dose and noise for intraoperative cone-beam computed tomography (CBCT). We build a 

framework to relate established models of CBCT image quality6,7,8 to registration 

performance.

2. Methods

2.1. The Cramer-Rao lower bound in image registration

The CRLB is commonly examined for many parameter estimation problems, as it provides a 

straightforward approach to derive lower bound for the mean squared error for any estimator. 

In particular, for the unbiased estimator, the CRLB covariance matrix (CLB) is simply the 

inverse of the Fisher Information Matrix (FIM), a metric derived from the log-likelihood 

function [log L(I| θ)], i.e., the log-likelihood of the data (I) conditioned on the parameter 

vector θ. By definition9, we have:

(3)

For image registration, I is the image data, and θ is the transformation parameter vector ([u, 

v]T in this work). By noting that the subtraction of the two images at the true θ shift leaves 

only the subtraction of the noise terms (which is itself a zero-mean Gaussian process), we 

can write the likelihood function as a jointly Gaussian distribution of the image difference 

conditioned on θ.

2.1.1. Signal-known-exactly (SKE) with white noise—While presented as having 

noise in both images, the derivation in Ref. [4] applies to the simplified case of a noiseless I1 

[simplified from Eqs. (1-2)] giving the signal-known-exactly (SKE) scenario [i.e., exactly 

known g(x,y)] described by:

(4)

(5)
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in which only the shifted image is considered to be contaminated by AGWN with variance 

σ2. Following a conceptually similar derivation presented by Kay9 (which treated 1D time 

delay estimation), we define the log-likelihood function for Eqs. (4-5) to be:

(6)

By noting that the expectation of I2 evaluated at θ is g and evaluating the second derivatives, 

we can compute the FIM from Eq. (3) as:

(7)

where for the case of translation θ [u, v], and  can be shown to simply be the image 

derivative with respect to the translation direction, giving 

, (and similarly for v, y), where 

gx(m, n) is the partial derivative image with respect to x. Therefore the FIM is:

(8)

This agrees with the lower bound presented by Robinson and Milanfar4 in the case that noise 

is only included in the moving image, I2. The FIM suggests that registration performance (in 

this simple case) is dependent on two components: (1) the image noise magnitude; and (2) 

the sum of squared image gradients.

2.1.2. Noise-push approximation—Generally for image registration, noise is present in 

both images, thus the SKE case does not directly apply. In order to account for noise in both 
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images, as well as be consistent with the derivation of Eq. (8), we posit an analytical “push” 

of the noise from I1 into I2:

(9)

(10)

which for the AGWN case, provides us with the form given in Eqs. (4-5) of section 2.1.1. 

The FIM under such approximation is:

(11)

Therefore, under the push approximation, the sum of the noise variance terms now enter the 

denominator of the FIM. We note then, that if the noise magnitudes between the images are 

equal, then denominator is increased by a factor of 2 compared to that of Eq. (8).

2.2. Application to intraoperative CBCT

From Eq. (11), we can see that the CRLB is dependent on both the image content (g) and the 

noise characteristics of the image (e.g., σ2 in the AGWN case). For the setting of CBCT 

image registration, we can use established models of CBCT noise and resolution 

characteristics6,7,8 to arrive at an approximation for the CRLB. By ignoring correlations in 

the noise, and only examining noise magnitude, we can compute σ2 relating system and dose 

factors to the CRLB:

(12)

where dose is proportional the number of projections (m) and incident x-ray fluence (q̄0), 

and DQE is the detective quantum efficiency of the imaging system. Spatial resolution terms 

include the voxel size axy (and slice thickness, az, ignored in the current 2D analysis) and the 

“bandwidth integral” over system MTF squared. Considering the registration model of Eq. 

(11) and image quality model of Eq. (12) suggests an immediate result: since variance is 

inversely proportional to dose (via the mq̄0), and the CRLB (FIM−1) is proportional to σ2, 

then the lower bound on registration accuracy scales as (1/dose). When considering 

resolution effects, it is known that reduced MTF or increased voxel size may reduce the 

noise magnitude, however these effects will also lead to a reduction in the image gradient 

strength, suggesting that there may be an optimal resolution for registration performance.
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2.3. Experimental methods

Experiments involved a digital simulation in which axial CT images of an anthropomorphic 

head were computed over a broad range in dose by forward-projecting a high-quality scan of 

the head (with soft tissue set to a constant value of 40 HU)10, scaling the fluence down in 

proportion to dose, and adding Poisson noise in proportion to 1/sqrt((1+SPR)·dose) where 

the scatter to primary ratio (SPR)11,12 was taken to be 9. Each reconstruction use m = 720 

forward projections over 360° and the fluence was determined based on a total mAs at 100 

kVp beam energy using Spektr13. A central 2D axial slice (390 × 485 at 0.5× 0.5 mm2 voxel 

size) was extracted from the 3D filtered backprojection reconstructed image (shown in Fig. 

1). Registration was performed among these images.

2.3.1. Methods and metrics—Empirical evaluation was performed using 3 methods of 

sub-pixel image registration. The three methods involved performing an optimization 

technique over the registration parameters where a cubic-spline interpolated image was 

computed to evaluate a similarity metric at each iteration. SimpleITK14 was used to perform 

this L-BFGS optimization routine using 3 different similarity metrics: (1) Mean-squared 

difference (MSD), (2) Matte's mutual information15 (MMI) (100 bins), and (3) joint-

histogram mutual information16 (JMI) (100 bins, 1.5 σ).

2.3.2. Registration of a High-Dose Image to a Low-Dose Image—To mimic the 

scenario of an image-guided procedure, we performed registration of a high-dose image to a 

low-dose image. Realizations of 100 mAs images were used as the high-dose images, where 

the lower-dose images had dose values ranging from 0.5 mAs to 100 mAs. A known shift of 

θ = [1.2 pix, 1.2 pix] was introduced in the high-dose image prior to registration, and 

registration was computed using the high-dose image as the moving image.

2.3.3 Registration Performance Evaluation—The root mean squared error (RMSE) of 

the estimated translation vector was used to evaluate performance. RMSE was examined as a 

function of dose and compared to the CRLB-Push estimate of Eq. (11). If we assume the 

registration estimators to be unbiased, we may set a lower bound for the RMSE as:

(13)

The CRLB terms were computed by determining the mean image (to yield g) and NPS terms 

from a set of 20 instances of simulated noisy images. To compute g we took the mean over 

20 realizations of the high-dose image. Noise power spectra were computed by subtracting 

out g from 20 realizations at each noise level and then computing the average periodogram 

among these images, from which σ1
2 + σ2

2 [the denominator in Eq. (11)] was computed by 

integrating N1 + N2.

The lower bound presented in Eq. (13) also leads to an interesting question of how efficient 

an empirical estimator performs with respect to this theoretical bound. Therefore we define 

the statistical registration efficiency (SRE):
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(14)

SRE provides a value (bounded between 0 and 1) describing the efficiency of an estimator, 

whereby an SRE of 1 implies that the estimator is achieving the lower bound performance. 

The efficiency of each registration method was examined as a function of dose.

3. Results and Breakthrough Work

3.1. Registration of a High-Dose Image to a Low-Dose Image

Figure 2 shows the registration performance among the 3 similarity metrics. Figure 2A 

depicts the RMSE performance as a function of the low-dose mAs value with a 100 mAs 

high-dose image. As expected, registration performance generally improved with higher 

dose for all metrics. While it is seen in this study that JHMI always performed 

comparatively poorly and MSD nearly always had the highest performance across all dose 

levels, we may also note that MMI has a dose-dependent optimality, with the observation of 

relatively improved performance in the low-dose region. Interestingly, the performance in 

the high-dose region for MSD and JHMI tends to follow the trend established by the CRLB 

(though the bound appears optimistic). However, in the low-dose range the trend with the 

CRLB falls off drastically for JHMI, indicating a threshold after which registration failures 

occur (i.e., a false optimum far from the main lobe of the true solution is found) caused by 

high noise levels that lead to arbitrarily large errors.

Figure 2B shows the same registration data as Fig. 2A now depicting SRE. Similarly, the 

high-dose performance generally follows the trend established by the CRLB as seen by the 

flat SRE performance for MSD and JHMI. The behavior of MMI is interesting in that the 

efficiency seems to improve as dose decreases. This is likely due to a small bias associated 

with the estimator (and possibly dependent on the number of bins) that leads to a 

performance limit shown by the plateau region of MMI in Fig. 2A. Further, we can compare 

the estimators in terms of SRE value at each dose, and also in terms of robustness by 

examining the dose-level at which the registration failure threshold occurs (e.g. around 1 

mAs for JHMI).

4. Conclusion

Understanding how image quality metrics relate to the purpose of image acquisition is an 

important step for evaluating the performance of any imaging system. In the field of image-

guided procedures, an image is often acquired with the intent of relating pre-operative and 

intra-operative coordinate frames; therefore, it is important to understand the image quality 

characteristics with respect to registration error. The framework presented in this paper 

provides a means to relate image quality characteristics such as the NPS and MTF to 

registration performance via the CRLB, thereby creating a framework from which we can 

begin optimizing a system with respect to considerations on both dose and expected 

registration error. The work further provides a means to compare registrations methods in 
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terms of SRE, examining both the stability under low-noise conditions and the robustness 

against a low-dose registration failure threshold. Future work includes extension of this 

model beyond the white noise assumption and accounting for the effect of noise in both 

images beyond the current noise-push approximation.
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Figure 1. 
Example images of the anthropomorphic head phantom at various dose values.
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Figure 2. 
Registration performance as a function of the low-dose image mAs value for a 100 mAs 

high-dose image. (A) Performance in terms of RMSE for three similarity metrics (MSD, 

MMI, and JHMI) with the CRLB-Push approximation of Eq. (11) shown as the dashed line. 

(B) The same experimental data plotted in terms of the SRE.
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