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ABSTRACT

Deep learning approaches may help radiologists in the early diagnosis and timely treatment of cerebrovascular
diseases. Accurate cerebral vessel segmentation of Time-of-Flight Magnetic Resonance Angiographs (TOF-
MRAs) is an essential step in this process. This study investigates deep learning approaches for automatic, fast
and accurate cerebrovascular segmentation for TOF-MRAs.

The performance of several data augmentation and selection methods for training a 2D and 3D U-Net for
vessel segmentation was investigated in five experiments: a) without augmentation, b) Gaussian blur, c) rotation
and flipping, d) Gaussian blur, rotation and flipping and e) different input patch sizes. All experiments were
performed by patch-training both a 2D and 3D U-Net and predicted on a test set of MRAs. Ground truth was
manually defined using an interactive threshold and region growing method. The performance was evaluated
using the Dice Similarity Coefficient (DSC), Modified Hausdorff Distance and Volumetric Similarity, between
the predicted images and the interactively defined ground truth.

The segmentation performance of all trained networks on the test set was found to be good, with DSC
scores ranging from 0.72 to 0.83. Both the 2D and 3D U-Net had the best segmentation performance with
Gaussian blur, rotation and flipping compared to other experiments without augmentation or only one of those
augmentation techniques. Additionally, training on larger patches or slices gave optimal segmentation results.

In conclusion, vessel segmentation can be optimally performed on TOF-MRAs using a trained 3D U-Net on
larger patches, where data augmentation including Gaussian blur, rotation and flipping was performed on the
training data.

Keywords: Cerebrovascular diseases, Magnetic Resonance Angiography (MRA), segmentation, deep learning,
U-Net

1. INTRODUCTION

Stroke, including ischemic and hemorrhagic stroke and aneurysmal subarachnoid hemorrhage, is a major cause
of death and disability worldwide with more than six million deaths in 2015.1 In some cases it can be caused by
abnormalities of the intracranial arteries including stenosis, intracranial aneurysms and other vascular malfor-
mations. The incidence is even increasing because of the increasing population ages.1,2

For an early diagnosis and timely treatment of various cerebrovascular diseases, detailed information about the
vasculature might aid a radiologist in decision making. This information could be obtained from cerebrovascular
segmentations, where the blood vessels are extracted from the images. This will allow for quantitative analysis
of the vasculature, as well as better (3D) visualization.1,3, 4 Currently, use of such segmentations is not common
practice, because this often requires manual segmentation; a difficult and time-consuming procedure, which is
prone to inter- and intra-rater variability.1,5 Automatic vessel extraction methods could overcome this issue,
including methods as Markov random fields,6 multi scale filtering,3 deformable models,7 hybrid methods8 and
deep learning.1,5 Such methods create a 3D vascular model for every patient, which can be useful to find
vessel abnormalities.4 In a study of Gan et al. (2005), an automatic vessel segmentation method based on
maximum intensity projections (MIP) was presented. This method compiled the vessel segmentation iteratively
by using the segmentation of the MIP images along a fixed direction. The MIP images were segmented with a
finite mixture model (FMM) and expectation maximization (EM) algorithm. Once the images were segmented
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along the individual axes, the results were combined.4 In addition, a study of Phellan et al. (2017) proposed
a deep Convolutional Neural Network (CNN) to automatically segment the vessels in TOF-MRA images of
healthy subjects. Experiments were performed with a varying number of images for training the CNN and cross
validation was used to test the generalization of the model. The ground truth was obtained by manual annotated
image patches extracted in the axial, coronal and sagittal directions.1

This study provides an automatic vessel segmentation method by training and evaluating a CNN with U-Net
architecture,9 which is one of the most promising deep learning networks for segmentation tasks. To evaluate the
performance of this network, different experiments were performed to compare a 2D and 3D U-Net architecture
with several training data augmentation and selection methods.

2. MATERIALS AND METHODS

2.1 Dataset

The data used in this study included 69 patients with unruptured aneurysms scanned in the University Medical
Center Utrecht, the Netherlands. All patients underwent a 3D TOF-MRA scan in the period between 2004 and
2012 and were scanned twice, a baseline scan and a follow up scan. An example of one slice of a TOF-MRA is
shown in Figure 1. Overall, the slice thickness ranged from 0.4 to 0.7 mm and the in-plane voxel size ranged
from 0.195x0.195 to 0.586x0.586 mm.

Figure 1: Example slice in the transverse plane of a TOF-MRA.

2.2 Pre-processing

Before segmenting the vascular structure, the images in the dataset, as described in section 2.1, were preprocessed
by using N4 bias field inhomogeneity correction10,11 and Z-score normalization.12

The dataset did not contain delineations of the brain vasculature. To acquire the labelled ground truth
data for vessel segmentation, interactive vessel segmentation was performed. First, the image was interactively
thresholded by using histogram-based thresholding in which the user can choose the image specific intensity
percentage at which the threshold was determined. The threshold of all images was chosen between 95% and
99% of the maximum image intensity. The resulting thresholded image was used to define seed points for region
growing. The resulting labels were manually checked for accuracy and corrected as required. The interactive
vessel segmentation was performed in MevisLab (version 3.2).13



2.3 Network

Both a 2D and 3D fully convolutional neural network with U-Net architecture9 were trained on randomly selected
and augmented patches from TOF-MRA images. For the 2D network, the input patches had a size of 64x64
voxels and for the 3D network a size of 16x16x16 voxels in order to train on the same number of voxels per patch
in 2D and 3D. The same patches were used for all the experiments.

A balanced number of patches from vessel (80%) and non-vessel (20%) regions were used for training. The
selection of patches was based on the center voxel of each patch. When this voxel was labelled as vessel in the
ground truth image, the patch was categorized as a patch containing vessels and otherwise it was categorized as
non-vessel patch.

Finally, both the 2D and 3D network were optimized using a dice loss function, Adam optimizer and a
learning rate of 1 × 10−4.

2.4 Experiments

For both the 2D and 3D architectures (190.396 trainable parameters), five experiments were compared. In
all experiments, the same MRAs were used for training (n = 84, 64%), validation (n = 21, 16%) and test (n
= 26, 20%). The first experiment, (a), was performed without applying any augmentation technique to the
training data. Next, three experiments were performed by training the networks with the patches with different
augmentation techniques: b) Gaussian blurring, c) rotation and flipping and d) both Gaussian blurring and
rotation and flipping. The fifth experiment, (e), was performed by training the networks with full slices instead
of patches for 2D and training the 3D network with larger patches (64x64x64 voxels) with all augmentation
techniques mentioned before.

The resulting trained networks were used to segment the blood vessels in the pre-processed test set of MRAs.
Voxels with a probability larger than 0.7 were assumed to be inside a vessel.

Post-processing was performed using connected component analysis in which regions with less than 200 voxels
were eliminated from the segmentation.

2.5 Evaluation metrics

To evaluate and compare the performances of the different experiments, the Dice Similarity Coefficient (DSC),14,15

Modified Hausdorff Distance (MHD)14,15 and Volumetric Similarity (VS)15 between the predicted segmentation
and the generated ground truth segmentation for each MRA were determined.

The DSC was used to evaluate the overlap between the ground truth and predicted segmentation. However,
the DSC is limited for the evaluation of the vessel segmentations as vessels are narrow and elongated. For this
reason, segmentation errors can quickly lead to a loss of overlap. Therefore, a distance metric was also used
for evaluation.5 A commonly used distance metric is the Hausdorff Distance (HD). However, this measure is
very sensitive to outliers, which are common in medical segmentations. For this reason, the Modified Hausdorff
Distance (MHD) was used, which is not based on the maximum distance between points but on a defined per-
centile (95%) of the distance between boundary points.14,15 Finally, the VS was used to compare the segmented
volumes without taking into account the location or overlap of the segmentations.

A Wilcoxon signed-rank test was performed to compare the results achieved by the different experiments.
This test was performed with the goal of determining whether there is a difference between the evaluation metrics
of the experiments.16 Python version 3.7.6 with the SciPy library was used to perform this test.

3. RESULTS

Tables 1a and 1b show the average resulting numerical results expressing the performance of the experiments in
both 2D and 3D, respectively. It can be observed that the segmentation performance of all trained networks in
both 2D and 3D was good with all mean DSC scores larger than 0.70.



Table 1: Segmentation metrics for the test set for the proposed augmentation techniques and the use of patches
or slices for the training of the U-Net. Values are provided as the mean ± the standard deviation. The size in
voxels of the patches used for the different experiments are indicated between the brackets. (a) 2D U-Net, (b)
3D U-Net.

(a) 2D U-Net

2D U-Net Augmentation DSC MHD [mm] VS
a Patches None 0.74 ± 0.17 47.6 ± 40.4 0.74 ± 0.18

(64x64)
b Patches Gaussian blur 0.81 ± 0.12 41.6 ± 42.5 0.83 ± 0.13

(64x64)
c Patches Rotation and flipping 0.80 ± 0.14 35.8 ± 39.0 0.84 ± 0.16

(64x64)
d Patches Gaussian blur, rotation and flipping 0.82 ± 0.15 34.1 ± 42.5 0.85 ± 0.17

(64x64)
e Slices Gaussian blur, rotation and flipping 0.83 ± 0.14 28.0 ± 37.0 0.85 ± 0.16

(b) 3D U-Net

3D U-Net Augmentation DSC MHD [mm] VS
a Patches None 0.72 ± 0.15 81.3 ± 57.0 0.78 ± 0.17

(16x16x16)
b Patches Gaussian blur 0.76 ± 0.15 27.5 ± 30.3 0.77 ± 0.16

(16x16x16)
c Patches Rotation and flipping 0.79 ± 0.12 33.7 ± 33.1 0.85 ± 0.15

(16x16x16)
d Patches Gaussian blur, rotation and flipping 0.81 ± 0.12 36.6 ± 37.0 0.85 ± 0.15

(16x16x16)
e Patches Gaussian blur, rotation and flipping 0.83 ± 0.11 29.9 ± 30.9 0.86 ± 0.12

(64x64x64)

In addition, Figure 2 shows the boxplots of the used evaluation metrics of the 2D U-Net segmentation results
compared to the ground truth. According to this figure and a Wilcoxon signed-rank test, it is observed that the
performance of the 2D U-Net improved by augmenting the training data (experiments (b)-(e)) compared to no
augmentation (experiment (a)). This was observed from the DSC and VS of experiments (b)-(e), which were
significantly higher compared to experiment (a) (p<0.05).

Figure 3 shows the boxplots of the DSC, MHD and VS computed from the 3D U-Net results. From this
figure and a Wilcoxon signed-rank test it is also observed that the performance of the 3D U-Net was improved
by augmenting the training data (experiments (b)-(e)) compared to no augmentation (experiment (a)). This
can be observed from the DSC of experiments (b) (p=0.002) and (e) (p=3.43 ∗ 10−8), which were significantly
higher compared to experiment (a). Additionally, the MHD of experiment (a) was significantly higher compared
to all the other experiments (p<0.05).



Figure 2: Boxplots of the vessel segmentation results obtained by training a 2D U-Net. The evaluation was
performed by five experiments: A) without augmentation; B) augmented training data with Gaussian blurring;
C) augmented training data with rotation and flipping; D) augmented training data with Gaussian blurring,
rotation and flipping and E) trained on slices with augmented training data with Gaussian blurring, rotation
and flipping.



Figure 3: Boxplots of the vessel segmentation results obtained by training a 3D U-Net. The evaluation was
performed by five experiments: A) without augmentation; B) augmented training data with Gaussian blurring;
C) augmented training data with rotation and flipping; D) augmented training data with Gaussian blurring,
rotation and flipping and E) trained on larger patches (64x64x64) with augmented training data with Gaussian
blurring, rotation and flipping.

Figures 4 and 5 display the segmentation results of experiment (e), the optimally performing method. From
Figure 4, no important differences were visually observed between the ground truth and automatically obtained
segmentation result, as confirmed by the quantitative analysis. Only a small oversegmentation in the automatic
segmentation was observed of a posterior cortical vein (arrow 1). In addition, Figure 5 showed an undersegmen-
tation in the automatic segmentation of the left posterior cerebral artery (arrow 2).



(a) (b)

Figure 4: Example segmentation for one slice in the transverse plane of a TOF-MRA. (a) Ground truth segmen-
tation. (b) Automatic segmentation resulted from the 3D U-Net trained on patches of size 64x64x64 voxels with
Gaussian blur, rotation and flipping. Arrow 1 indicates a small oversegmentation in the automatic segmentation.

(a) (b)

Figure 5: Example segmentation for one slice in the transverse plane of a TOF-MRA. (a) Ground truth segmen-
tation. (b) Automatic segmentation resulted from the 3D U-Net trained on patches of size 64x64x64 voxels with
Gaussian blur, rotation and flipping. Arrow 2 indicates an undersegmentation in the automatic segmentation.



The optimum method for cerebrovascular segmentation was found to be the 3D U-Net trained on patches of
size 64x64x64 voxels with all augmentation procedures, which resulted in a DSC of 0.83, MHD of 29.9 mm and
VS of 0.86.

4. DISCUSSION

Comparing the performance of the proposed deep learning experiments for vessel segmentation yielded some
interesting results. This study showed that the automatic cerebrovascular segmentation can be accurately per-
formed using a CNN with U-Net architecture. The performance of the U-Net can be improved with augmenting
the training data. The optimum network for vessel segmentation was determined to be the 3D U-Net on patches
of size 64x64x64 voxels and augmented by Gaussian blur, rotation and flipping.

As described in section 3, all experiments performed with the proposed CNN with U-Net architecture resulted
in good DSC scores ranging from 0.72 to 0.83. In general, this overlap measure was higher compared to the
DSC of 0.74 reported in a study of Chen et al. (2017), which used a 3D convolutional autoencoder for vessel
segmentation.17 Another CNN for vessel segmentation in TOF-MRA was proposed by a study of Phellan et al.
(2017) and resulted in DSCs ranging from 0.764 to 0.786 depending on the number of images used for training.1

On the contrary, the U-Net framework proposed by a study of Livne et al. (2019) showed higher overlap measure
with a mean DSC of 0.88.5 This could be caused by the larger patches this study used. The study of Livne et
al. (2019) found an optimal patch size of 96x96 voxels.5 In our study, it was also found that the experiment
with training on slices or larger patches gave the best results, as described in section 3.

In general, the 2D U-Net performs better compared to the 3D U-Net for cerebrovascular segmentation except
in the experiment with training on slices or larger patches (e). This may be caused by the complicated shape of
the vessels in 3D, which makes it more difficult for the network to learn.

As described in section 2, we performed experiments with Gaussian blur, rotation and flipping. The Gaus-
sian blur could help the network to learn more robust features, by varying the contrast between the vessels and
surrounding tissues. The rotation and flipping overcome positional biases. The combination of those augmenta-
tion techniques results in more diverse training data resulting in a better segmentation accuracy. This was also
observed in section 3, where it was described that experiments (d) and (e) gave the best results for both the
2D and 3D U-Net. This section also described that both the 2D and 3D U-Net performances were improved by
augmenting the training data compared to no augmentation, which proves the importance of data augmentation
to increase the diversity of the data without actually collecting new data.

Finally, for both the 2D and 3D U-Net, the best results were obtained by training on slices or larger patches
(64x64x64 voxels) (experiment (e)). This was also reported in a study by Livne et al. (2019)5 and may be due
to the larger patches providing a better representation of the small vessels in the full brain MRA and thereby
improving the learning process of the vessel locations in the brain.

4.1 Advantages and limitations

The proposed vessel segmentation experiments have both advantages and limitations.

Firstly, the computation time of the algorithm is important in clinical use. As described in section 1, this is
one of the main reasons to provide an automatic vessel segmentation method. The trained U-Net can provide
the vessel segmentations in the order of seconds per image.

Second, as described in section 2, the same MRAs were used for both the 2D and 3D experiments for vessel
segmentation. In addition, the patches used for training the 2D network were of size 64x64 voxels and for the 3D
network of size 16x16x16 voxels in order to train on the same number of voxels per patch in 2D and 3D. Those
factors make it easier to compare the experiments performed in this study.

One main limitation of deep learning is the dependency on training data. This training data should be able
to represent the unlabelled test data well enough to provide good results. In this study, the dataset consisted of
patients with unruptured aneurysms. To obtain a more representative dataset for vessel segmentation, healthy
patients and patients with other pathologies, such as vessels containing stenoses, occlusions or infarcts could be
included.



Another limitation of the vessel segmentation is the lack of a manually labeled vessel imaging dataset. One
main advantage of the proposed vessel segmentation method was that an interactive vessel segmentation method
(described in section 2.2) was used for generating the ground truth labels. Manual annotations are labour and
time intensive and this study showed that it is possible to produce a robust vessel segmentation without them.
However, some small vessels were missed by the interactive ground truth generation technique. This was the
main cause of the relatively high MHD results, described in section 3. Further investigation into optimising the
ground truth segmentation is warranted.

Finally, as described in section 3, the best vessel segmentation results were obtained by training a U-Net on
slices in 2D or larger patches in 3D. However, the largest patches in 3D were of size 64x64x64 voxels as the patch
size was limited due to memory constraints. This potentially reduced the performance of the 3D U-Net where
more context might be needed.

4.2 Future work

As described in section 2, the data used for the vessel segmentation was randomly split into a training, validation
and testing set. Cross-validation could be performed to ensure the robustness and generalization of the trained
network.

As this was a preliminary study, the test set used for the evaluation of the proposed vessel segmentation
algorithm only contained 26 images, which is relatively small. Consequently, outlier images could have a large
influence on the results. Future work could focus on using a larger dataset to evaluate the performance of
the proposed segmentation method. For example, the full dataset provided by the Aneurysm Detection And
segMentation (ADAM) challenge containing 113 sets of brain MR images for training and 142 sets for testing
could be used.18

Furthermore, future work could improve the ground truth used for the deep learning. With multiple medical
experts, a systematic quantitative rating could be performed which includes the intra- and inter-rater variability
and improves the ground truth segmentations.

In this study, only vessel segmentations generated by the U-Net architecture were evaluated. The U-Net
architecture was chosen because of its prevalent and successful use in previous medical image segmentation
problems. In future work, other network architectures for vessel segmentation could be investigated. However,
due to the nature of this segmentation problem, no large improvements with respect to the U-Net performance are
expected. In addition, a study of Livne et al. (2019) compared the performance of the U-Net to the performance
of a U-Net with half of the convolutional layers. This resulted in comparable segmentation results and reduced
the training time.5 Further research could focus on evaluating the half U-Net, or a U-Net with less parameters,
for vessel segmentation and comparing the performance to the original U-Net performance as described in our
study.

5. CONCLUSION

In conclusion, our study found that a 3D U-Net trained on patches of size 64x64x64 voxels augmented using
Gaussian blur, rotation and flipping performs optimally for vessel segmentation from TOF-MRAs.
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