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ABSTRACT

Objective evaluation of new and improved methods for PET imaging requires access to images with ground truth,
as can be obtained through simulation studies. However, for these studies to be clinically relevant, it is important
that the simulated images are clinically realistic. In this study, we develop a stochastic and physics-based method
to generate realistic oncological two-dimensional (2-D) PET images, where the ground-truth tumor properties
are known. The developed method extends upon a previously proposed approach1. The approach captures the
observed variabilities in tumor properties from actual patient population. Further, we extend that approach to
model intra-tumor heterogeneity using a lumpy object model. To quantitatively evaluate the clinical realism of
the simulated images, we conducted a human-observer study. This was a two-alternative forced-choice (2AFC)
study with trained readers (five PET physicians and one PET physicist). Our results showed that the readers
had an average of ∼ 50% accuracy in the 2AFC study. Further, the developed simulation method was able to
generate wide varieties of clinically observed tumor types. These results provide evidence for the application of
this method to 2-D PET imaging applications, and motivate development of this method to generate 3-D PET
images.
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1. INTRODUCTION

Positron emission tomography (PET) is a widely used imaging modality with multiple clinical applications, in
particular for diagnosis and assessment of treatment response of cancers2. Thus, several new and improved
methods have been developed for oncological PET image reconstruction3, segmentation4, and quantification5.
Objective evaluation and optimization of these methods typically requires knowledge of the corresponding ground
truth. For instance, evaluation of segmentation methods typically requires knowledge of the ground-truth tumor
boundaries. Similarly, optimization of PET imaging methods for clinical tasks using objective assessment of
image quality (OAIQ) studies6 typically requires knowledge of the ground truth. Simulation studies provide a
mechanism for such evaluation since the ground truth is known in these studies. Further, these studies provide
the ability to model in vivo anatomical and physiological properties of the patient, incorporate patient-population
variability, model imaging-system physics, and generate multiple scan realizations of the same patient to evaluate
repeatability. Even more importantly, this is all done in silico, which is inexpensive and enables optimizing the
method before conducting clinical studies. However, for these evaluation and optimization studies to be clinically
relevant, the simulated PET images must be clinically realistic.

In simulation-based studies to evaluate oncological PET methods, one set of studies uses synthetic phantoms,
such as the NEMA phantom7. However, these phantoms have limited ability to model patient anatomy and
physiology. Thus, to improve clinical realism, anthropomorphic phantom-based studies, such as using the XCAT
phantom8, have been conducted9. However, recent studies suggest that anthropomorphic phantoms may have
limitations in modeling patient physiology1. Another limitation of existing simulation studies is that the tumor is
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typically modeled as a spherically shaped structure with limited incorporation of intra-tumor heterogeneity7,9, 10.
To incorporate variabilities in patient population and tumor models for more clinically relevant evaluation, Leung
et al.1 developed a simulation-based strategy that uses patient images as backgrounds and generates a wide
variety of clinically observed tumor types. However, this strategy had limitations in modeling variabilities in intra-
tumor heterogeneity. This heterogeneity is often observed in tumors, and methods to quantify this heterogeneity
from PET images and evaluate its clinical predictive and prognostic value is a topic of intense research11,12. To
model this intra-tumor heterogeneity more realistically, in this manuscript, we propose a lumpy model-based
approach. Using this approach in conjunction with the simulation-based strategy, we develop a stochastic and
physics-based method to generate clinically realistic PET images.

The second contribution of this manuscript is in providing a theoretical premise for an observer-study-based
framework to quantitatively evaluate the clinical realism of simulated images. An important goal of evaluating
the clinical realism is that the simulation studies should accurately capture the variabilities in patient population.
Further, ideally, the distribution of simulated images should match that of real images. Human-observer studies
have been applied to evaluate the clinical realism of simulated images13,14. These studies account for the role
of end users such as radiologists in clinical tasks. Human-observer studies are typically conducted using either
rating-based methods or forced-choice-based methods. In this study, we consider specifically a forced-choice-
based method, namely the two-alternative forced-choice (2AFC) study. We first provide a theoretical premise
for this study to evaluate the realism of simulated images. We then apply the study to quantitatively evaluate
the realism of the simulated PET images generated using our developed simulation method.

2. METHODS

In this section, we first describe the developed stochastic and physics-based method to generate simulated PET
images. The theoretical background and methods for conducting the 2AFC study are subsequently provided.

2.1 Generating simulated PET images

This study was conducted in the context of simulating the primary tumor in [18F]fluorodeoxyglucose (FDG)-PET
images of patients with lung cancer. The study was retrospective, used clinical imaging data, was approved by
our institutional review board, and was HIPAA-compliant with a waiver of informed consent.

The method is summarized in Fig. 1. In the first step, a realistic high-resolution tumor model was developed
to capture the observed variabilities in tumor properties from an actual patient population (Fig. 1a). For this
purpose, we advanced on a simulation-based strategy proposed by Leung et al.1. Briefly, tumor descriptors,
including first- and second-order statistics for the shape, size, and tumor-to-background intensity ratio, were
first extracted from clinical FDG-PET images of patients with lung cancer. Tumor shape was quantified by
five harmonic elliptical Fourier shape descriptors15, and tumor size was quantified by diameter and volume. The
distribution of each tumor descriptor was defined using kernel density estimation. The kernel distribution of each
descriptor was then sampled, and from the sampled parameters, simulated tumors were generated. In Leung et
al.1, necrosis within the tumor was modeled by assigning a lower intensity to the tumor core than the rim. We
advanced on that approach to model intra-tumor heterogeneity more realistically. We used the observation that
the tracer-uptake patterns within tumors can be modeled as a combination of lumps, where the lump locations,
amplitudes, and sizes are random variables. More generally, it is suitable to characterize the tracer uptake
within a tumor as a random process16. Thus, the intra-tumor heterogeneity was modeled using a stochastic
lumpy object model. This lumpy object model was inspired by the original lumpy background model17, but with
some adaptations to account for intra-tumor heterogeneity. Our lumpy object model was given by

f(r) = s(r)

N∑
n=1

Λ(r− cn|an, σn) = s(r)

N∑
n=1

an
2πσ2

n

exp

(
−|r− cn|2

σ2
n

)
, (1)

where s(r) denotes the support for the tumor, N denotes the total number of lumps, Λ(·) denotes the lump
function, r denotes the spatial coordinate in two dimensions, and cn, an, and σn denote the center, magnitude,
and width of the nth lump function, respectively. To model the tracer uptake as a random process, cn was



uniformly distributed within the support of tumor, and an and σn were uniformly distributed within a pre-
defined range but appropriately scaled based on the clinically extracted values of the tumor-to-background
intensity ratios.

Through this strategy, high-resolution simulated tumors with known ground-truth properties were generated.
Note that the ground truth was not needed for the background. To ensure the clinical realism of tumor back-
ground and model inter-patient variability, existing patient images containing lung cavities but with no tumor
present were selected as tumor background. To ensure that the simulated tumors only appear at visually realistic
locations within the lung cavities, tumor locations were manually identified in advance. The simulated tumors
were then randomly generated and placed at these locations.

In the second step (Fig. 1b), forward projections for the simulated tumor and patient background were
generated using a PET simulation software1. The high-resolution simulated tumor and low-resolution patient
background were passed through corresponding projection models to obtain the projection data. Similar to Ma
et al.14, adding the data in the projection space and then performing reconstruction helped incorporate the
impact of noise texture on the tumor appearance in the reconstructed image. The reconstruction was performed
using a 2-D ordered subset expectation maximization (OSEM) algorithm. Detailed simulation and reconstruction
parameters are provided in Table 1.
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Figure 1: Description of the developed method to first (a) generate high-resolution realistic tumor models with
tumor properties extracted from clinical data and intra-tumor heterogeneity modeled using a stochastic lumpy

object model, and then (b) generate simulated PET images using the patient images and tumor model.



Table 1: Technical acquisition and reconstruction parameters of the PET system. (FWHM:
full-width-half-maximum)

Parameters Values
Transaxial field of view 684 mm

Pixel size 4.07 mm × 4.07 mm
Reconstruction method OSEM

Subsets 21
Iterations 2

FWHM @ 1 cm 5 mm

2.2 Evaluating the realism of the simulated PET images

To quantitatively evaluate the clinical realism of the simulated PET images, we conducted a 2AFC study. We first
provide the theoretical background for conducting this study. It is well known that computing the probability of
an observer making a correct assignment in the 2AFC study is the same as computing the AUC of that observer.
We first consider a hypothetical scenario, where an ideal observer can be constructed to discriminate between
the real and simulated images. Following the treatment in Barrett et al.18,19, but in the context of the task of
discriminating between real and simulated images, we show that an ideal-observer AUC of 0.5 on this task leads
to the inference that the distribution of simulated images exactly matches that of real images. However, an ideal
observer is challenging to implement for this discrimination task. Thus, we instead use a practical but rigorous
option, namely evaluation by trained human observers with multiple years of experience in reading PET scans.
We first present the theoretical background for conducting this observer study.

2.2.1 Theoretical background

Denote the sets of simulated and real PET images by f̂ and f̂ ′, each in M-dimensional space. Consider two
hypotheses H1 and H2, where H1 and H2 refer to the class of simulated and real PET images, respectively.
Denote the conditional probability distribution of the observed data f̂ under hypothesis j by pr(f̂ |Hj). For

convenience in notation, we define qj(f̂) ≡ pr(f̂ |Hj). In the 2AFC study, an observer is presented with two sets

of images f̂ and f̂ ′ such that f̂ is sampled from q1(f̂) and f̂ ′ is sampled from q2(f̂ ′). The observer is then asked
to select the image that they think is the real PET image.

The observer computes two test statistics θ(f̂) and θ(f̂ ′) and assigns the image that has the higher test
statistic to H2. The assignment is correct if θ(f̂ ′) > θ(f̂). Thus, the probability of a correct assignment can be
computed as follows:

pr
[
θ(f̂ ′) > θ(f̂)

]
=

∫
∞
dM f̂ q1(f̂)

∫
∞
dM f̂ ′ q2(f̂ ′) step

[
θ(f̂ ′)− θ(f̂)

]
, (2)

where step(·) denotes the step function. As shown in Barrett and Myers19, Eq. (2) is the same as the equation
to compute AUC for an arbitrary test statistic with unknown probability law. Thus, the percentage of times
that an observer correctly identifies the real PET image is equivalent to the AUC of that observer.

We now consider the special case of an ideal observer. An ideal observer can be defined as a decision strategy

that computes the likelihood ratio q2(f̂)

q1(f̂)
and compares it to a threshold. This likelihood ratio is considered as

the optimal discriminant function and is a sufficient statistic that contains all the information needed to perform
the discrimination task. For this ideal observer, we can use the concept of the likelihood-generating function18

to derive the relationship between the AUC and q1(f̂) and q2(f̂). Essentially, this likelihood-generating function,
defined as G(·), provides a lower bound for the AUC as follows:

AUC ≥ 1− 1

2
exp

[
−1

2
G(0)

]
, (3)

where G(0) is the likelihood-generating function evaluated at origin. G(0) can further be expressed in terms of
q1(f̂) and q2(f̂), i.e.

G(0) = −4 log

[∫
∞
dM f̂

√
q1(f̂)q2(f̂)

]
. (4)



From Eq. (3), we see that a lower bound of AUC = 0.5 is achieved by setting G(0) = 0. From Eq. (4),
G(0) = 0 is achieved when q1(f̂) = q2(f̂). Thus, an ideal-observer AUC of 0.5 leads to the inference that the
distributions of real and simulated images exactly match.

Implementation of the ideal observer would require knowledge of the probability distribution of likelihood
ratio under both hypotheses. While this is not feasible in our study, we use a practical but rigorous alternative,
namely a set of trained human observers with multiple years of experience in reading PET scans. Specifically,
five nuclear medicine radiologists and one PET physicist participated in the observer study. Our goal is to have
an observer that that sets an upper limit to the performance of any available human observer. If the trained
human observer obtains an AUC of 0.5, we may infer that the distribution of the simulated images is close to
that of the real images. Thus, our 2AFC study provides a rigorous and practical mechanism to validate the
clinical realism of the simulated images. We next describe the design of this observer study to evaluate the
clinical realism of the PET images generated using our simulation method.

2.2.2 Experimental design

To conduct the 2AFC study, we developed a web-based app (Fig. 2). During the study, the trained readers
were shown two images side-by-side at a time, one a real patient image sampled from q2(f̂) and the other a
simulated PET image sampled from q1(f̂) using our simulation method. As described in Sec. 2.2.1, the readers
were instructed that the task was to identify the real PET image that they thought had the real tumor. The
tumor location was shown in the images to ensure that the readers were focusing on the tumor-realism task, and
not implicitly treating this as a tumor-detection task. To facilitate a robust observer study, the app incorporated
functionalities provided by clinical software, including the option to invert the image intensities and adjust
the image contrast. Further, the app used MySQL to manage the readers’ records, easing data collection and
analysis.

Home

WashU Jha Lab

Select Select

Figure 2: Interface of the web-based application presented to readers in the 2AFC study.

Six trained readers, which included five board-certified radiologists with specialization in nuclear medicine
and many years of experience in PET (B.A.S., F.D., J.C.M., T.J.F., M.I.) and one experienced nuclear-medicine
physicist (R.L.), participated as readers in this study. The readers performed this test for 50 image pairs. We
computed the fraction of times that each reader correctly identified the patient image. As shown in Sec. 2.2.1,
a percent accuracy close to 50% for a well-trained reader suggests a high similarity between the distributions of
the real and simulated images.

3. RESULTS

Fig. 3 shows the representative simulated images generated using our simulation method (Sec. 2.1). These images
demonstrate that the method can generate a wide variety of clinically observed tumor types, including (a) small
tumors, (b) tumors with multiple hot spots, and (c) tumors with necrotic cores.



(c) Tumors with necrotic core

(b) Tumors with multiple hot spots

(a) Small tumors

Figure 3: Representative high-resolution tumor models with different tumor types and the corresponding recon-
structed PET images. Tumor locations in the reconstructed images are marked by the arrows.

Table 2 lists the results of the 2AFC study. Each trained reader identified the real images accurately in only
approximately 50% of the cases, suggesting that the distribution of the simulated images closely matches that
of the real images (Sec. 2.2.1). Examples of simulated images that were incorrectly identified by at least half of
the readers are shown in Fig. 4. Overall, these results demonstrate that the simulated images generated using
the developed simulation method are highly realistic.

Table 2: Percent accuracy for each trained reader participating in the 2AFC test. (NM: nuclear medicine)
Percent accuracy

NM physician 1 44%
NM physician 2 50%
NM physician 3 58%
NM physician 4 58%
NM physician 5 44%
NM physicist 58%

Figure 4: Representative simulated images incorrectly identified by at least 3 readers. Tumor locations are
marked by the red arrows.



4. DISCUSSIONS

In this manuscript, we first developed a stochastic and physics-based method to generate 2-D oncological PET
images. Generation of realistic images is valuable for evaluating imaging methods for clinical tasks. For this
purpose, several techniques have been developed to generate synthetic medical images. These include traditional
data augmentation techniques, such as translation, scaling, shear, and rotation. However, these techniques
fundamentally produce highly correlated images20 and do not show an improvement in training performance in
certain tasks1. Another approach to image generation is the use of generative adversarial network (GAN)21.
GAN-based image generation has shown promise in multiple imaging modalities20,22. However, such technique
suffers from limitations of training instability22 and requirement of large-scale training data. In addition, in
the context of lung cancer, definition of ground-truth tumor properties is not well defined unlike our simulation
method. Further, GAN-based techniques do not directly exploit the imaging physics and do not incorporate the
variability in instrumentation1. In contrast, our method does not suffer from these limitations.

High realism of our simulated PET images, as quantitatively validated using the 2AFC study, motivates the
application of our method to a broader range of quantitative evaluation studies. These include evaluation of
imaging methods for segmentation tasks. For example, Liu et al.23,24 developed a deep-learning-based estimation
approach to PET segmentation that estimates the tumor-fraction area within each pixel in a 2-D PET image. Our
simulation method provides a mechanism to objectively evaluate the performance of this segmentation approach
using clinically realistic simulation studies, where the ground-truth tumor boundaries are known. Our method
can also be used to evaluate other imaging methods for metric quantification. In this context, simulation studies
have been used to evaluate the performance of PVE correction techniques in PET. Existing simulation-based
evaluation studies25 typically assume simplistic tumor models26 such as spherically shaped tumors, and thus do
not incorporate variability in actual patient population. The ability of our method to generate wide varieties
of clinically observed tumor types will make the evaluation studies more clinically relevant. Additionally, the
method can be used to evaluate imaging methods for OAIQ-based studies in detection27,28 and quantification29–32

tasks. Further, our proposed lumpy model-based approach to model intra-tumor heterogeneity could be used
to evaluate image-reconstruction methods, as well as methods to quantify intra-tumor heterogeneity from PET
images7,12,33. In all these studies, access to clinically realistic tumor models will make the studies even more
clinically relevant.

To conduct the 2AFC study, we developed a web-based app. The goal was to provide a mechanism to increase
the flexibility of conducting this study. The web-based app eliminates the need to have the readers participate
in the study on site. In addition, this app provides functionalities to create a more familiar user interface design
as observed in common clinical software. All these features increase the rigor and clinical relevance of the 2AFC
study. This web app design can be naturally extended to conduct the 2AFC study for other image-simulation
methods such as GAN-based approaches and is generalizable for other imaging modalities. Pending necessary
permissions, we will publish this app on GitHub for wider usage by the image-science community.

Limitations of our study include the fact that the developed simulation method generates 2-D tumor models
on transaxial image slices. While the method is less computationally expensive in 2-D tumor modeling, developing
3-D tumor models is important for incorporating the whole tumor features and thus is an important research area.
Another area of future work is to simulate the PET physics and system instrumentation even more accurately,
using approaches such as GATE34. One limitation in the observer study design is that the readers are typically
trained on the task of detecting the tumor and not of discriminating the simulated tumor from the real tumor.
One strategy to address this issue is to present examples of simulated images and real images to the readers
prior to the 2AFC study and thus train them on this discrimination task. Another limitation of our study is
that the choice of parameters for the lumpy object model to generate intra-tumor heterogeneity was based on
visual inspection and not quantitatively obtained. In this context, several methods have been developed to fit
statistical models of object based on image data35,36. Thus, extending our method to statistically fit lumpy
object model using patient data provides a mechanism to address this limitation.

5. CONCLUSION

In this manuscript, we quantitatively evaluated a stochastic and physics-based method to generate 2-D oncologi-
cal PET images with known ground-truth tumor properties. A trained-reader-based observer study demonstrated



that the method yielded highly realistic simulated images. In addition, the method demonstrates the ability to
generate a wide variety of clinically observed tumor types, including tumors with complex intra-tumor hetero-
geneity. These results motivate the application of the method to a broader range of clinically relevant quantitative
evaluation studies. Further, the theoretical premise for the observer study provides a foundation for the use of
such observer-based studies to evaluate the clinical realism of images generated using other simulation-based
approaches.
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