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ABSTRACT 

The application of computer-vision algorithms in medical imaging has increased rapidly in recent years. However, 

algorithm training is challenging due to limited sample sizes, lack of labeled samples, as well as privacy concerns 

regarding data sharing. To address these issues, we previously developed (Bergen et al. 2022) a synthetic PET dataset for 

Head & Neck (H&N) cancer using the temporal generative adversarial network (TGAN) architecture and evaluated its 

performance segmenting lesions and identifying radiomics features in synthesized images. In this work, a two-alternative 

forced-choice (2AFC) observer study was performed to quantitatively evaluate the ability of human observers to 

distinguish between real and synthesized oncological PET images. In the study eight trained readers, including two 

board-certified nuclear medicine physicians, read 170 real/synthetic image pairs presented as 2D-transaxial using a 

dedicated web app. For each image pair, the observer was asked to identify the “real” image and input their confidence 

level with a 5-point Likert scale. P-values were computed using the binomial test and Wilcoxon signed-rank test. A heat 

map was used to compare the response accuracy distribution for the signed-rank test. Response accuracy for all observers 

ranged from 36.2% [27.9-44.4] to 63.1% [54.8-71.3]. Six out of eight observers did not identify the real image with 

statistical significance, indicating that the synthetic dataset was reasonably representative of oncological PET images. 

Overall, this study adds validity to the realism of our simulated H&N cancer dataset, which may be implemented in the 

future to train AI algorithms while favoring patient confidentiality and privacy protection. 
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1. INTRODUCTION 

Positron emission tomography (PET) imaging is used to assess disease pathology in a wide variety of fields including 

neurology, cardiology, and oncology [1]. The application of computer-vision algorithms in PET has rapidly increased in 

recent years [2], resulting in dedicated artificial intelligence (AI) based approaches for tumor detection, segmentation, 

and image quantification tasks [3]. However, training state-of-the-art AI models is challenging due to limited annotated 

data (labels). Data sharing between institutions is one way to satisfy data requirements, but can be difficult due to 

privacy concerns [4]. On the other hand, public medical dataset availability is limited, particularly for PET, and those 

that are available may vary in quality. Additionally, some disease types may be rare, giving rise to imbalanced data.  

Possible solutions to these problems include federated learning and use of synthetic images. Due to the limitations of the 

former including the heterogeneity of the data, ethical issues regarding the patient information leakage and lack of proper 

frameworks, the latter solution may be preferred. For this reason, a robust generative method to create synthetic data is 

highly sought after. Unfortunately, most three-dimensional (3D) image generators are extremely memory intensive 



 

 
 

 

 

 

and/or require additional image inputs. To address these issues, we already proposed adapting video generation 

techniques for 3D image generation using the temporal generative adversarial network (TGAN) architecture [5]. Due to 

the important role of PET imaging in the diagnosis and management of Head & Neck (H&N) cancer [6], [7], 

implementation of an automatic, accurate, and robust gross tumor volume segmentation and radiomics analysis is in high 

demand for effective H&N cancer management. We used the TGAN architecture to generate a synthetic data set of H&N 

cancer patients. This architecture provides the ability to model patient anatomy, as well as to select tumor geometry and 

location in the synthetic images.  

To highlight the utility of our TGAN architecture for computer-vision applications, we previously trained a segmentation 

model using synthetic images conditioned on real tumor masks. We showed that the segmentation algorithm had similar 

performance for both the real and synthetic datasets (Dice scores of 0.7 and 0.65, respectively). Furthermore, radiomics 

features were highly correlated between the real and synthetic images, which is indicative of the realistic imaging 

features generated by the TGAN architecture. However, we have not yet validated the clinical realism of these images 

for more complex tasks, such as the training of algorithms which seek to perform an objective assessment of image 

quality (OAIQ) in PET images [8], [9]. An important goal of our synthetic dataset is that it effectively models the healthy 

tissue and tumor uptake observed in PET images of H&N cancer patients.  

One possible approach to evaluate the realism of simulated images is using a forced-choice detection paradigm with 

human observers [10]. Within the forced-choice detection paradigm, the observer is presented with paired images (e.g., 

one real and one synthetic) and is asked to differentiate between them. It is well known that computing the probability of 

an observer making a correct assignment in the two-alternative forced-choice (2AFC) study is the same as computing the 

AUC of that observer [11], [12]. By following the mathematical treatment in Barrett et al. [9] but focusing in the context 

of evaluating the clinical realism of synthetic images, Liu et al. [10] showed that an ideal-observer-study-based approach 

provides a mechanism to quantitatively assess the similarity in distributions of the real and synthetic images. This ideal 

observer, while optimal, is typically very challenging to obtain in clinical studies. Another approach is to conduct a 

2AFC study with expert human observers, such as physicians with multiple years of experience in reading PET scans. 

Due to their expertise, the physicians are best placed among all the available human observers to evaluate the clinical 

realism of synthetic images. Additionally, the 2AFC study provides a mechanism to quantify the performance of 

physicians on this task. In this study, we implement a 2AFC observer-based framework to quantitatively evaluate the 

clinical realism of our synthetic dataset. In future work, we will utilize confidence ratings and qualitative feedback from 

expert physicians to refine our TGAN architecture to or training process by adding the feedbacks as new constrains or 

explainability to generate more realistic PET images of H&N cancer patients. 

 

 

2. METHODS 

2.1 TGAN architecture 

The Generative Adversarial Network used in this study is a modified version of the temporal GAN (a.k.a. TGAN), which 

is a deep learning approach that was originally developed to generate videos [13]. As shown in Fig. 1, the TGAN 

consists of two parts: a temporal generator ( ) and an image generator ( ) [5]. The temporal component generates a set 

of latent variables, one for each frame of the video. The image component then uses these latent variables to generate a 

video by transforming them into corresponding video frames. The temporal generator takes a random input ( ) and 

produces a temporal vector ( ), which is then used by the image generator to generate frames of a video at time . 

The video is represented as a series of frames generated by using the inputs  and . In this context, the time 

steps reflect the sequence of axial slices in the Z direction. To stabilize the training process, the spectral norm of the 

weight parameters in each layer was constrained to be less than 1, a technique that is referred to as singular value 

clipping [14]. Overall, this TGAN architecture was used to generate synthetic PET images, as described in the following 

section.  
 



 

 
 

 

 

 

    

Fig. 1: The generator in TGAN for video creation is separated into two parts.  generates seeds for frames by learning the 

temporal patterns in the video, while  produces the individual frames. 

 

2.2 Generating synthetic PET images 

We utilized a publicly available dataset in The Cancer Imaging Archive (TCIA), further refined within the MICCAI 

2020 Head & Neck Tumor (HECKTOR) challenge [15]; it comprises 201 cases from four centers. Each case consists of 

a PET image and GTVt (primary Gross Tumor Volume) mask, as well as a bounding box location (Fig. 2a). We used the 

bounding box information to crop the PET and GTVt masks to 64×64×32 volumes for input into the TGAN and 

segmentation networks. The in-plane (transaxial) resolution of the PET images ranged from 3.5 mm to 3.9 mm while the 

axial resolution was 3.7mm. After cropping, this corresponds to a minimum field of view of (224 mm  224 mm  

118.4 mm). For unconditional TGAN, all 201 cases were used for training. For conditional TGAN, 11 cases were 

randomly withheld for testing. For training the segmentation neural networks, 25% of the cases were randomly withheld 

for testing. 

2.3 Evaluating the realism of synthetic PET images 

A 2AFC observer study was implemented using 170 real and 170 synthetic patient images (Fig. 2b). From each 3D 

image, a single tumor-present slice was randomly selected and visualized using an inverse Grayscale colormap. Pairs of 

real/synthetic images were imported to a dedicated 2AFC web app [10] and split into training and testing modules (n=40 

and n=130, respectively). During the training session, observers were provided with the correct answer after each image 

set. The rationale for the training module was two-fold: a) to train/orient observers on how to use the web app interface, 

and b) to provide observers with feedback such that they can learn to detect any underlying differences between the real 

and synthetic images. During testing, the same steps as in training module were performed, except for the fact that 

correct answers were not released to the observers during the session.  

For each image set, the web app requires the observers to select the image that they believe is real and input their 

confidence level on a 1-to-5 Likert scale. Optionally, the observer may scale the window level and provide qualitative 

feedback regarding the realism of each image set. The 2AFC study was performed with eight readers including two 

board-certified nuclear medicine physicians. The binomial test was applied and a 2-tailed p-value was computed, to 

evaluate the probability that the responses were consistent with random guess decision-making. The response accuracy 

distribution (i.e., using each confidence rating) was compared between observers using the Wilcoxon signed-rank test. 

Lastly, qualitative feedback from observers was recorded to provide qualitative feedback regarding image realism.  



 

 
 

 

 

 

      

Fig. 2: (a) Tumor-present PET images generated to simulate Head and Neck (H&N) cancer patients. (b) Two-alternative forced-

choice (2AFC) study split into training and testing modules (top) and the web app used to implement the study (bottom). 

 

3. RESULTS 

The mean response accuracy for all observers in the 2AFC study was 50.6%. Statistically significant results were 

obtained for reader 1 (P1) and reader 2 (P2), with p-values of 0.011 and 0.002, respectively. Notably, the statistically 

significant result for P2 was achieved with a less than 50% response accuracy, indicating that predictive values from 

their responses may be obtained by taking the inverse of their selected images. Nuclear medicine physician 1 (NMP1) 

had a response accuracy and confidence interval of 63.1% [54.8-71.3], which was statistically significant (p=0.003). 

Meanwhile, NMP2 had a response accuracy and confidence interval of 46.2% [37.6-54.7].  

 

Table 1: Response accuracy, confidence interval, and p-value, for physicists (P) and nuclear medicine physicians (NMP) in the 

2AFC study. 

Observer Response Accuracy (%) P-value 

P1 61.5 [53.2 – 69.9] 0.011* 

P2 36.2 [27.9 – 44.4] 0.002* 

P3 46.2 [37.6 – 54.7] 0.430 

P4 50.8 [42.1 – 59.4] 0.930 

P5 57.7 [49.2 – 66.2] 0.095 

P6 43.0 [34.6 – 51.6] 0.136 

NMP1 63.1 [54.8 – 71.3] 0.003* 

NMP2 46.2 [37.6 – 54.7] 0.430 



 

 
 

 

 

 

 

The response accuracy for each observer and confidence rating is visualized as a heat map in Fig. 3a. NMP1, the highest 

scoring observer, had response accuracy values which monotonically increased with their confidence ratings. This 

indicates that the observer may have been successful in identifying features to discriminate the real and synthetic images. 

For P5, it can also be observed that their response accuracy increased with confidence rating, although the relationship 

was not monotonic. Other observers did not have a distinct relationship between their response accuracy and confidence 

ratings. It should be noted that 4 out of 8 observers did not select a confidence rating for five of their responses, 

indicating that they did not perceive any images to be clearly artificial in nature. 

 

 

Fig. 3: (a) Heat map showing response accuracy for each observer and confidence rating. (b) Heat map of p-values for Wilcoxon  

signed-rank test between each combination of observers. 

 

To compare the response accuracy distribution between observers, the Wilcoxon signed-rank test was used. This test was 

selected due to the inability to assume a normal distribution in our dataset. Due to the low number of categories (i.e., 

confidence intervals), it was not possible to achieve a p-value with 5% significance level. However, we have included a 

heat map of the p-values to highlight any trend that may exist between observers. Compared with other observers, P1, 

P4, and NMP1 had multiple p-values on the verge of significance (i.e., p=0.05-0.1). In general, P1 and NMP1 had high 

response accuracy compared with other observers, while P4 had near-random guessing regardless of their confidence 

interval (i.e., accuracy = 50-60%).  

 

 

4. DISCUSSION 

In medical imaging, there is a significant need to validate AI models for tumor detection, segmentation, and 

quantification, prior to introduction into a clinical setting. However, the availability of public medical datasets is quite 

limited and variable in terms of quality and data annotations. Conversely, most three-dimensional (3D) AI networks are 

extremely memory intensive or require additional image inputs. In this work, we refined and evaluated a TGAN 

architecture that was used to generate a synthetic dataset of H&N cancer patient images. Our TGAN-generated datasets 

may be freely shared while favoring patient confidentiality. This may lead to the efficient development of multi-centre 

studies, and lead to more direct comparison of AI algorithms in medical imaging. 

In this study, we implemented a two-alternative forced-choice (2AFC) observer framework to evaluate the realism of our 

synthetic dataset. This provides a clear strength compared to conventional approaches, which implement a quantitative 

analysis and simple visual inspection to validate realism. Within this observer study, we utilized multiple observers with 

varying expertise (i.e., physics student to trained nuclear medicine physicians), to ensure that we have sufficient 

information. We performed both a quantitative and qualitative analysis of our study, to ensure that we have a conceptual 



 

 
 

 

 

 

understanding of our results. NMP1 provided valuable qualitative feedback which helps to understand the real and 

synthetic datasets. Paraphrased comments are shown below: 

1. In this image, it is challenging to delineate the contour, and its location relative to the neck is not clear. This 

slice appears to be low quality. 

2. The anatomy in this image appears to be rotated. This makes it difficult to perform an assessment of its realism. 

3. This slice does not look comparable to cases that I encounter in the clinic. If this is a real patient, it has poor 

resolution and noise characteristics. 

Many of the challenges experienced by NMP1 appears to be related to a lack of contextual information from single 2D 

slices. This contrasts from clinical tasks which involves reading images from multiple slices and orientations (i.e., 

coronal, sagittal, and transaxial). In future work, we will expand this observer study paradigm to allow observers to scroll 

through the entire 3D volume. To further increase the generalizability of these results, it is important to create fusions of 

functional and anatomical (i.e., PET/CT) information. As CT images are conventionally obtained with higher matrix 

sizes and resolution, this will require a substantial increase in computational time and memory. However, we expect that 

these modifications will result in an improvement in NMP observer accuracy, as this will more closely resemble cases 

encountered in their daily clinical workflow. 

Overall, our study represents progress in the development and validation of realistic synthetic medical image generation. 

This enables creation of datasets to augment training of AI and deep learning models, while favoring patient 

confidentiality and privacy protection [16]. Meanwhile, we also envision that synthetic datasets may be ultimately used 

to further train physicians, technologists, and physicists in nuclear medicine, as also attempted in other fields [17]. 

Within this context, further observer studies will be needed to validate the clinical realism of these synthetic datasets 

before they are introduced into a clinical setting. 

 

 

5. CONCLUSION 

In this study, we performed an observer-study based evaluation of a synthetic PET dataset of H&N cancer patients. The 

null hypothesis could not be rejected in 5 out of 8 observers, indicating that the images appear to be relatively realistic. 

However, many of the physicists in the study did not have a priori knowledge regarding H&N cancer anatomy. This may 

have limited their performance during this task. We aimed to overcome this with implementation of a training module. 

Additionally, physician feedback indicated that images lacked context for differentiating between real vs. synthetic 

images. This prompts the need to implement a full 3D study to ensure geographic realism of nearby anatomy. In essence, 

this study helps to validate the realism of our synthetic H&N cancer dataset, which may be implemented in the future to 

train AI algorithms while favoring patient confidentiality and privacy protection. 
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