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ABSTRACT

We present a system architecture for robust target following with a mobile robot. The system is based on tracking
multiple cues in binocular stereo images using the XVision toolkit [1]. Fusion of complementary information in
the images, including texture, color and depth, combined with a fast optimized processing reduces the possibility
of loosing the tracked object in a dynamic scene with several moving targets on intersecting paths.

The presented system is capable of detecting objects obstructing its way as well as gaps. It supports
application in more cluttered terrain, where a wheel drive of mobile robot cannot take the same path as a
walking person.

We describe the basic principles of the fast feature extraction and tracking in the luminance, chrominance and
disparity domain. The optimized tracking algorithms compensate for illumination variations and perspective
distortions as already presented in our previous publications about the XVision system.
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1. INTRODUCTION

Tracking is an essential task in mobile systems. It is used to perform a variety of tasks including localization,
obstacle avoidance, surveillance and gesture recognition. A common problem in most applications of mobile
systems is to keep the vehicle on a pre-defined path. This path may be a corridor through a factory to transport
parts from one machine to another, or a route through a building to give a pre-specified tour [2], or it may be
a known path between offices in case of a courier robot [3]. Several systems have been proposed to solve this
problem, most of which operate based on maps [4], [5], [6], [7] or based on localization from artificial landmarks
in the environment [3].

Map-based systems use a stored two or three-dimensional representation of the environment together with
sensing to provide such a reference. However, it is not clear that building a metrically accurate map is in
fact necessary for navigation tasks which only involve following the same path continuously. Another approach
would be to use no prior information, but rather to generate the control signals directly from only currently
sensed data [8]. In this case no path specification at all is possible. For this second field of applications tracking
is essential.

The main problem in tracking applications on mobile systems are the changing light and geometric conditions.
A static or quasi-static camera allows a-priori optimization of the tracking primitives for robust operation. This
task proves to be more complex on mobile systems, where changing light conditions and environment complexity
do not allow a fixed set of tracking clues.

Usually, the restricted resources on mobile systems limit the number of tracking tasks to be run in parallel.
An optimal set of them needs to be chosen depending on the current situation. This choice is only possible, if
a global error function can be found for all tracking primitives that makes it possible to compare their results.

We structure this paper as follows. In section 2 we introduce the camera model of our system. In section 3,
we give a global system description (section 3.1) followed by a description of the processing in the single
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system layers. We present a method for calculating the quality of the tracking result for the single primitives
in section 3.4.3. The results section (section 4) presents the experimental tracking results in real system
applications. We conclude in section 5 with a few remarks about the system and a description of future work.

2. CAMERA MODEL

We use in our system a binocular stereo camera system with two cameras mounted in a distance B from each
other. The focal lengths of the lenses are f;, fr. The sensor image is organized as a matrix with the horizontal
and vertical coordinates (u,v) originating in the middle of the image (Fig. 1). The origin of the world coordinate
system (z,y, z) is in the optical center of the left camera that is used as a reference image in the entire processing.
The image planes of the cameras are parallel to each other.

Figure 1: Coordinate systems and dimensions used in this paper.

In the following text we will call the tracking primitives features. Possible features in the system are lines,
corner points, color regions, etc. Each feature is specified by its middle point M;, horizontal and vertical
extension d,, d, and distance from the image plane z;, if available.

3. APPROACH

In this paper we present a tracking system that choses automatically a best set of tracking tokens to fulfill the
task specified in the coordination layer (Fig. 2). We introduce a general tracking system that can dynamically
compose an optimal set of tracking primitives for a given task and adapting to changing light conditions and
environments. We will motivate it with an example of a robot following an object through different parts of our
lab under different light conditions and densities of the surrounding objects.

3.1. System description

The entire tracking process is subdivided into four layers in our system:

- Physical Sensor Layer - this layer is responsible for image acquisition from the physical sensor into the
system memory and contains the interfaces to the actual hardware drivers;

- Image Processing Layer - this layer is responsible for filtering and extraction of relevant information
from the raw sensor image. We distinguish two categories of image processing as depicted in Fig. 2: feature
extraction, where the image content is abstracted to derive information about region boundaries in form
of corner points, lines and curves, and domain conversion, where the image content is just transformed to
a desired representation, like hue, gray-scale, disparity;

- Feature Identification Layer - this layer identifies the position of the tracked features in the current
image frame and passes their position together with a quality value to the tracking module;
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Figure 2: Tracking System Hierarchy.

- Tracking Layer - this layer maintains the state of the tracked object. It is responsible for filtering,
predictions that are required to follow the movement of the tracked object in the image. This layer
decides, based on the quality value ~; described in section 3.4.3, which features are appropriate in a given
moment in time.

- Coordination Layer - this layer is not part of the tracking system, but it represents the interface to the
real application.

In this paper we will discuss the implementation of the gray-shaded modules of the system. We will show
with an example of color blob and disparity tracking, how tracking modules can be dynamically composed.

3.2. Physical Sensor Layer

As already mentioned in the global description (section 3.1) the purpose of this layer is robust and efficient image
acquisition from the physical sensor into the system memory. In our implementation, we use ring structure for
the frame buffer where consecutive frames are stored. Each frame is stored with a time-stamp referencing the
point in time when the image was acquired.

3.3. Image Processing Layer
3.3.1. Color segmentation

The color images acquired from the camera can have different representations. While most graphics system
favor the RGB color representation, the YUV color coding seems to be a better alternative for color processing.
Fig. 3 depicts the relation between these two representations.

Our color segmentation uses the fact that the hue information © for a given surface P stays constant for all
brightness values Y (Fig. 3). Therefore, in the YUV representation just the UV part is used to compute the
hue. The RGB information needs to be split with into its YUV components. The segmentation subdivides the
color circle in the UV plane into sectors

Ci=](i+1)-AB;i-AO] (1)

3.3.2. Disparity segmentation

In our system we use dense disparity images from a correlation based stereo reconstruction algorithm as the
source of data for processing [9].



Figure 3: Different image representations: (left) YUV, (right) RGB color coding.

3.4. Feature Identification Layer

In this paper we want to concentrate on two feature identification processes: color blobs and disparity regions.
An example of each of the regions in the corresponding image domain is shown in Fig. 4.

Figure 4: Region selection in disparity and color image space.

The Feature Identification Layer needs to provide three basic functionalities that are subsequently required
by the Tracking Layer: initial feature selection, evaluation of uniqueness, and localization in the image.

3.4.1. Initial feature selection

A region R; in the image represents a set of pixels with a similar property in the chosen image domain. In case
of a color image it can be the hue range of the corresponding pixels or in case of a disparity image it can be a
disparity range describing a cluster of points in space.

The goal is to identify a unique object that can be detected robustly in consecutive images. The uniqueness
of the object is in our case defined based on the following criteria.

Compactness in the object space. The tracked region in our system represents a compact cluster spanning
a range in the given domain. We require that the cluster to be continuous in the given domain to ensure that
the region property is preserved during the tracking process. In real images areas on an object may not be
detected correctly due to texture on the surface in this area. Therefore, we analyse the histogram of the image
to specify the range of the tracked object in the domain. This search can be done for the entire image, which
corresponds to an automatic landmark selection, or it can be restricted to a local area of the image specified by
the user.



Figure 5: Example of a landmark selection in a disparity image.

Fig. 5 depicts the initial target selection in the disparity image shown in Fig. 4. In this case the nearest
significant object was supposed to be selected. From the histogram the range of the peak [h; h,] was estimated
as shown with the dashed lines.

In this example we require the distances z; for all points to be in the estimated disparity range between the

dashed lines. B
'_f L < h, (2)
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The values B, fr,, z; are already introduced in Fig. 1 and s, represents the horizontal pixel-size of the camera
chip. This is a basic stereo disparity equation discussed in [10] in more detail. This restriction may be sufficient
to detect clusters in a local window, where only the tracked object needs to be segmented from the background,
but it cannot be applied on the entire image. Objects in similar depth can appear in the image that should not
be classified as members of the same cluster R;. Properties in the image space need to be taken into account.

Compactness in the image space. The extraction of a region in a given image domain requires uniformity
of the imaged surfaces in this domain. In ideal case only pixels creating a continues area in the image should
be selected. This assumption is often violated in real images due to noise in the sensor, texture and shape of
the surface, and light conditions. To compensate for these errors we allow gaps between the neighboring pixels.

We require that the distance between neighboring image elements (pixels) p, in the considered cluster should
not exceed a given threshold e..

i —pjl < ec (3)
3.4.2. Identification in the disparity domain

The initial identification in the disparity domain needs an additional processing step. The problem is to extract
single standing clusters representing objects from continuous disparity images. An example is shown in Fig. 6.
This image shows several objects, which are classified correctly, with different heights.

Typically, the floor connects the entire image to one large cluster, making any kind of segmentation difficult
if not impossible. Since the floor is not interesting for further processing, our first step is to remove it from the
input data.

Geometrical constraints. In stereo data processing, the disparity value d, in the image depends solely on
the distance z, between the imaged point P and the image plane of the sensor (Fig. 7). In case of a camera
tilted at an angle © against the ground plane and pointing at an empty floor, each pixel in a horizontal image
row has the same disparity

dp:E'i (4)
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Figure 6: Detected three obstacles (right) from a pair of images (top) in the dense disparity image (left).

because z, is independent of the horizontal coordinate in the image. B is the distance between the two
cameras of the stereo system, f is the focal length of the camera, which is used as base for the reconstruction
(in our case the left camera), and p,. is the horizontal pixel-size of the camera chip.

(¢] P

Figure 7: Geometrical consideration for expected disparity in an image.

The estimates for d, or z, in equation (4) come directly from the image. This is done in an on-line re-
calibration process, which is described in the next section.

Estimation of the ground plane. In indoor environments systems usually operate on flat surfaces. These
surfaces can be estimated from the sparse information available in the images.

The internal camera parameters and the orientation of the cameras to each other are estimated in an off-
line calibration process [11], [ 12]. The re-calibration procedure running on-line in each reconstruction step
estimates the orientation of the camera system with respect to the ground plane p (Fig. 8). Basically, the
presented calibration process estimates the rotation between the coordinate systems of the camera (u, v, e) and
the world (z,v, 2).
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Figure 8: Calibration of ©® and H from two arbitrary points Py, Ps.

The calibration values can be calculated based on the reconstructed position of two points P;, P;, which
are part of the ground plane P. The stereo reconstruction process reconstructs the 3D position of each point



in the image. Since the system is supposed to be used for collision avoidance, the probability is high that the
bottom rows of the image contain, at least partially, the ground plane. A histogram over the entire image row
is calculated in 10 different rows in the bottom part of the image and the peak values are used to estimate
disparity value d, for this row. A pixel in each row with exactly this disparity value is used to estimate the
coordinates of the point P, in the coordinate system (u,v,e) of the camera system.

The angle pj, can be calculated using the scalar product of the normalized vector P;P; between any two of
the ten extracted points and the normalized vector along the z-axis Zg.

n = |P2 — P1|
= V(2 —u1)?+ (2 —v1)% + (e2 — €1)?
Ug — U 0
U = arccos | — Vg — U1 . 0
€y — €1 1
= arccos ”;z% (5)

The set {pr } is used to vote for the estimated angle fiese. The RANSAC [13] method can be used to estimate
a valid set S of points reconstructing ji.s;. The calibration value © can be calculated using pies; as

0= z_ Hest = T _ arccos lej — eil

2 2 |P; — Pi| )

The height of the camera system H can be estimated from the scalar product of the vector P, with the
z-axis expressed in the coordinate system of the camera

Uy 0
H, =1 vy |- cospest
e Sin flest
= Vg * COS [est + €4 sin Hest
- H -——L. > H,. (7)
|S| €S

We have included a “sanity” check in our system that verifies the computed values to catch outliers. If the
calculated height changes differs significantly AH > 10cm from the initially estimated value then the current
calibration is rejected.

Prediction of the disparity for the ground plane. The parameter z, can be calculated from the geomet-
rical values depicted in Fig. 7 as

H - cos~y
z =
P cos 3

with =0+~ A vzarctan%,

where v, is the vertical pixel coordinate in the image relative to the optical center, pointing down (Fig. 8
and p, is the vertical pixel-size of the camera. The angle v is the vertical angle in the camera image between
the optical axis and the current line vp,.



Using the equations (4),(8) we can formulate the equation for the expected disparity value for a given line
vp to be

B-f .
dy = H.pz-(cos@—sm@-tan’y)
B-f ( , vp~py>
= -l cos® —sin® - —= |. 9
H - p, 7 (9)

Using the equation (9) the initial disparity image is processed to remove the supporting plane.
3.4.3. Evaluation of the uniqueness factor ~;

The quality of the tracked feature can be defined based on two factors:

- distance ¢ to similar regions in the scene. The similarity of the regions is defined based on equa-
tions (2), (3).

-
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Figure 9: Region uniqueness.

All image elements that are in a distance smaller than €. are merged to a single region (equation (3)). In
the current application the value ¢, (Fig. 9) is chosen to

eq =10 - .. (10)
The distance dependent uniqueness value v;p is estimated to
) €
vip = min(1l, —). (11)
€d
- cue relevance ;¢ in the region is defined as the percentage of the pixels within the tracked region R,

that were classified as belonging to the tracked object.

The resulting uniqueness value ~; is defined by the lower of the both values ;¢ and ~;p
¥ = min(yic, ¥ip)- (12)

This definition reflects the fact that a flaw in one field cannot be compensated by good performance in the
other one. The resulting value ~; has a range between [0; 1] with 1 being the best value.

The same can be defined for the SSD algorithm (Fig. 2). This definition of the uniqueness allows a robust
choice between the region-based tracking algorithms.



Figure 10: Definition of the subimage size based on p;.

3.4.4. Localization of the feature in the subimage

Tracking in our implementation is based on re-localization of the tracked object in the image. The position
of the object p; at time ¢; is used to define a search window in the subsequent frame acquired at time t;11
(Fig. 10).

The piyeqi,ru,qy Values represent the distances from the tracked region in all four directions (Fig. 10). In
the initial step and in case the speed of the tracked region is not estimated (section 3.5), all Mae{lru,dy values
in Fig. 10 are set to the same value, which needs to be large enough to keep the tracked object inside of the
defined subimage. We set in this case pu, = €4 (see equation (10)). If the speed of the object with the size 7, r,
in the camera image is known (s,, s,) then the size of the sub-window (Fig. 10) can be estimated to be

Ml = Piuw — €d — Suy Hr:piu+€d+5u
[td = Div + €4 + Sus  Hu = Div — €4 — Su (13)

The processing in the Image Processing Layer (section 3.3) can be limited to the calculated region. The
segmented image is clustered into regions and the region with the highest v; (section 3.4.3) is chosen as the
result of the current localization step.

3.5. Tracking Layer

The tracking module maintains the state of the tracked object. This state needs to contain the following
domain-specific properties &;:

- position in the image p; - the position of the middle point of the tracked feature;

- size of the region r,,r, - the (u,v)-extension of the object in the image;

- range in the current domain d,,;,, dymq, - the hue or disparity range of the tracked object;

- shape in the image v - it describes the ratio of width to height in the image;

- compactness of the region ¢ - it describes the percentage of the pixels that are in the valid range

dminy dmaz;

- uniqueness 7; - the uniqueness of the region in the given image domain.

The robustness of the tracking process can be increased by estimating additional state values that are
independent of the image domain. They describe global properties £, of the actual object:

- speed in the image s,, s, - the speed of the tracked region R, in the image;



Figure 11: State transitions in the tracking process.

- state in the object space - the translation and rotation of the real object estimated based on, e.g.,
Kalman estimation [14] techniques.

The tracking process consists of three states, initial search, tracking, and re-initialization (Fig. 11), which
are chosen based on the value of the current ;.

In the initialization state a unique region is selected. The initial state values are stored for all employed
tracking cues. This step is necessary to re-initialize the tracker later based on the information from other cues.
Fig. 4 depicts an example where, based on the segmentation results in the disparity domain, state information
for the box in the color domain was extracted. In this example the disparity domain had a ~; value of 0.95
compared to 0.24 in the color domain.

Once the appropriate region and method are selected, the system changes to the tracking state. In this
state, the active module in the Feature Identification Layer is triggered to estimate the current position p; and
the uniqueness value -; for the current step. The system stays in this state until one of two possible exceptions
oceur:

- boundary exception - the tracked region leaves the image p; ¢ S. In this case the system switches back
to the initialization state.

- uniqueness exception - the ~; value drops below a threshold 7,,,,. In this case the system goes to the
re-initialization state.

In the re-initialization state the other possible cues for the given subimage are queried to determine if
they can provide a valid ; value. If this is the case and the shape v and compactness ¢ values match the initial
estimates then the system switches back to the tracking state using the new cue. In the other case, the system
predicts an estimated value for the region until 7., is reached and goes back to the initialization state.

4. RESULTS

In our experiments we used a Nomad Scout as a mobile robot with a PentiumIII@850MHz notebook running
Linux-OS. The system was equipped with SRI’s MEGA-D Megapixel Stereo Head with 8mm lenses. The
cameras were mounted in a distance of 8.8cm from each other.

The typical tilt angle of the camera system during the experiments was © = 53°. The system was mounted
H = 48.26¢m above the ground. This configuration robustly detected obstacles in front of the robot while still
allowing viewing up to 4m in front of the robot. In this configuration the system was running with a frequency
of 11.2 Hz for the tracking.
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Figure 12: The newspaper is visible in the top, but it disappeared in the bottom image.

4.1. Quality of Ground Plane Detection

Ground plane suppression is fundamental for operation in the disparity domain. An example of suppression is
shown in Fig. 12. It shows the resolution of the system, which is capable of distinguishing between the ground
plane and objects as low as lem above the ground at a distance up to 2m. The newspaper disappears as an
obstacle as soon as it lays flat on the ground.

Ground suppression was tested on different types of floor. We modified the tilt angle of the camera in a
range 45° < © < 70° in 5° steps. The number of pixels that could not be removed correctly was 0.6 £0.01% of
the total number of pixels in the image. All these remaining pixels were incorrect depth estimations from the
stereo algorithm.

4.2. Quality of Feature Identification

The algorithm was applied in a variety of situations and generated reliable results. A first example was already
presented in Fig. 4 where, based on position of the region in one domain the corresponding region in the other
one was selected. A few more examples are shown in the Fig. 13.

I : scene disparity ~; color ~;
— before door 0.33 0.32
in door 0.22 0.33
behind door 0.42 0.30

|

Figure 13: Example of feature identifications during passing a door.

Fig. 13 shows the result of feature identifications for different scene types. In the first case due to poor
texture and dark light conditions both tracker types return similar results. In this situation both tracker types
could be used, but the disparity mode was chosen due to a slightly better ~; value. In the door the neighborhood
criterion seems to cause «y; to drop for the disparity tracker. The color tracker, which shows constant values
over the entire time is chosen. Behind the door the different light conditions and reduced complexity in the



distance range of the object raise the 7; value for the disparity tracker significantly above the value of the color
tracker.

5. CONCLUSIONS AND FUTURE WORK

We have presented a system that allows a dynamic composition of tracking primitives depending on the current
quality value from the underlying identification process. It allows dynamic changes in the tracker composition
depending on the current light conditions and environment complexity.

The system was tested on our mobile system Goomba, where it successfully tracked an object through the
lab under changing environment complexity. The system was able to switch autonomously between color and
disparity tracking while passing through narrow passages and it switched back to the more robust tracker once
the scene complexity allowed it.

In the future we want to extend the set of modules used for tracking to allow a larger variety of composition
possibilities that will allow more robust tracking and re-initialization.
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