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ABSTRACT 
 
Chromatic adaptation transforms generally rely on a variant of the von 
Kries transformation method to account for changes in the LMS cone 
signals that occur when changing from one illuminant to another. Von 
Kries adaptation—also often referred to as the coefficient rule method 
or the diagonal transformation method—adjusts the 3 color channels by 
independent scale factors.  Since there generally are only 3 known 
quantities available, namely the ratio of the cone signals of the two 
adapting illuminants, a crucial aspect of the von Kries method is that 
it requires only 3 parameters to be specified. A 9-parameter, 3x3 matrix 
transformation would be more accurate, but it is generally not possible 
to determine the extra parameters.  This paper presents a novel method 
of predicting the effect a change of illumination has on the cone 
signals, while still relying on only 3 parameters.  To begin, we create 
a large set of 3x3 matrices representing illuminant changes based on a 
sizable database of typical illuminant spectra and surface spectral 
reflectances.  Representing these 3x3 matrices as points in a 9-
dimensional space, we then apply principal components analysis to find a 
3-dimensional basis which best approximates the original matrix space. 
To model an illumination change, a 3x3 matrix is constructed using a 
weighted combination of the 3 basis matrices. The relative weights can 
be calculated based on the 3 standard cone ratios obtained from the 
illuminant pair. Tests show that the new method yields better results 
than von Kries adaptation with or without sensor sharpening. 
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1. INTRODUCTION 
 
When there is a change in illumination, the cones’ quantum catches 
change.  We address the problem of predicting how they change. While the 
problem of predicting cone quantum catches relates to chromatic 
adaptation, it is not the same as chromatic adaptation.  Models of 
chromatic adaptation3,4 try to predict which colors will appear the same 
to a human subject under different illuminants. In this paper, we are 
concerned with predicting the LMS cone signals under a second illuminant 
given the LMS cone signals under a first illuminant along with the LMS 
cone signals of a white surface under each of the illuminants.  
 
One common method of predicting LMS under a second illuminant is with a 
diagonal model of illuminant change.  
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This model is known as the coefficient rule or von Kries rule5,7. Often 

the coefficients iC  are chosen as the ratio of the quantum catches 
obtained from a white surface under the two illuminants: 
 

white
a

white
bL LLC /=  

 
 
The accuracy of the diagonal model generally can be improved by 
including a sharpening transformation2 so that the diagonal 
transformation occurs in an optimal space. With sharpening 
transformation T, the diagonal model becomes: 
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Finlayson et. al.2 show that diagonal model with sharpening performs 
better than the simple diagonal model; however, its performance does not 
equal that of a full 9-parameter, 3x3 linear model of the form: 
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The usual reason the full 3x3 linear model is not used is that there is 
not enough information available to determine the 9 coefficients. In 
particular, if all we know about the two illuminants are the LMS values 
of a white surface (or something equivalent such as the average scene 
LMS used in the gray world method) under each illuminant then we have 
only 3 equations for the 9 unknowns.  
 
The question we ask here is: Is there some other non-diagonal 3-
parameter model that we could use that would perform better than the 
sharpened diagonal model?  We establish our new model by considering the 
9-dimensional space of 3x3 transformations that model illuminant change 
and then finding the 3-dimensional subspace that best approximates it. 
This subspace provides a new 3-parameter, non-diagonal model of 
illuminant change that works better than previous models of illuminant 
change. 
      
 
 
 

2. COLOR PREDICTION BASED ON PRINCIPLE COMPONENT ANALYSIS 
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In the color prediction problem, we are going to estimate the color of a 
surface under different illuminations. In this process, we assume matte 
surfaces and ignore changes due to shading since by a change of 
illumination we mean only a change in the spectral composition of the 
illumination, not a change in the illuminant’s position. The quantum 
catch at single point on the surface as determined by the incoming 
spectrum of the illumination and the surface reflectance is then 

                     ∫=
λ

λλλλ dRSEh ii )()()( , 

where )(λE is the spectrum of the illumination, )(λR is the percent 

surface spectral reflectance function, )(λiS , i=1, 2, 3 are the sensor 
or cone sensitivities.  
     Assume that the lighting spectrum can be expanded based on an 
arbitrary set of orthogonal bases as, 

            )(...)()()( 1100 λλλλ nn fefefeE +++= . 
Then the quantum catches on three channels corresponding to the sensors 
are, 

               ∫∑
=

=
λ

λλλλ dRfSeh ji

n

j
ji )()()(

0

. 

Rewriting in matrix form results in 
               Aeh = , 
where A  is a 3xn matrix which is independent of the illumination. If 

two illuminant spectra have a linear relationship, say ab Mee = , where 

M  is an n-by-n transformation matrix then we have,  

               ab AMeh = , 
               
For three-dimensional illuminants, we can swap the position of A  and 
M  to yield 
 

aab MhMAeh == . 

Since M  is independent of the surface reflectance, this relationship 
applies to all surfaces under the two illuminants so M  models 
illumination change.   
 
If we write the elements of the 3-by-3 M  out as a vector, the space of 
such matrices is 9 dimensional. However, what is the underlying 
dimensionality of matrices M ? Might the 9-dimensional space be 
embedded in a lower dimensional space of dimension as low as three? 
Since we know that color prediction based on diagonal matrix works quite 
well, it seems reasonable to expect the dimensionality of M  to be much 
lower than 9. Instead of forcing the 3 parameters to be those of a 
diagonal matrix, we use principal component analysis to estimate the 
real dimensionality of the transformation matrix M  and extract the 
optimum 3-parameter linear color prediction method.  
 
To determine the dimensionality of the space of illumination 
transformation matrices, M , we first constructed a large set of 
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corresponding quantum catches under various illuminant pairs. These 
pairs of illuminants were chosen from a set of 140 different illuminants 
in the Simon Fraser University database1. All the illuminants were 
normalized to unit energy. For each illuminant pair, the corresponding 
quantum catches for 1995 surface reflectances from the Kodak reflectance 
database1,6 were calculated. The best, in the least-squares sense, 3-by-3 
illumination transformation matrix, M , mapping one set to the other is 
then calculated.  For n illuminant pairs, we have n new such matrices 
M . 
 
We applied principal components analysis to the set of matrices M . To 
do so, we first write each M  as a vector m by scanning the matrix row 
by row. Arranging all such 9-element vectors as rows in a matrix results 
in an n-by-9 matrix S.  Principal components analysis of S produces 

basis vectors iv , i=1,…,9. Let the mean m vector be m0. These vectors 

can be reshaped back into corresponding 3x3 matrices iV  and 0M . 
 
An illumination transformation matrix M can then be represented as 

        0

9

1
MVcM

i
ii += ∑

=

,      

where ii vmmc ⋅−= )( 0 .  
 
We can also approximate M  by truncating the summation and using fewer 

than 9 basis matrices iV . Figure 1 shows the residual error in 

approximating all matrices M  as the number of basis matrices is 
increased.  
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Figure 1. Residual error as a function of dimension 
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More than 99% of the total energy is concentrated in the first 3 
degrees. As expected, a 3-dimensional model of illumination change is 
very good. The remaining issue is how to use this model for color 
prediction. 
 
Based on principal component analysis, we have the first three bases 

matrices denoted as 1V , 2V  and 3V . M  is approximated as       

0332211 MVcVcVcM +++= . Then given the LMS 3-vectors, al and bl , of 

white under the two illuminants, the coefficients ic  required to predict 
colors under illumination b from colors under illumination a can be 

determined as follows. Since Mll ab = , we have 

   

Qccc
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The notation )( jVi  denotes the jth column of matrix iV . 

Letting ],,[ 321 cccc = , we have, 

     1
0 )( −−= QMllc ab  

 
Diagonal matrix color prediction can be viewed as a special case in 
which the base matrices are simply 
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3. EXPERIMENTAL RESULTS 
 
Experiments were carried out to verify the performance of the new non-
von-Kries, PCA-based color prediction scheme. We compare the new method 
to diagonal-matrix color prediction and to sharpened diagonal 
prediction. The data in the experiment is generated based on the same 
database of 140 different illuminants and 1995 different surfaces 
described above.   
 
In the first experiment, we use all the data in the database for both 
training (i.e., deriving the optimal basis matrices) and for testing. 
Table 1 illustrates the comparative results based on the absolute L1 
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norm error. The row labeled “Full Linear” is based on color prediction 
with a full 3-by-3 matrix fit to the training data. It represents the 
best possible linear prediction and acts as a benchmark.  The Sharpened 
Diagonal result is based on randomly selecting ten illumination pairs 
for calculating the sharpening matrix and using the one that results in 
the least error. As can be seen from the table, the new non-von-Kries 
PCA-based method gives the best result across all three channels.  
 
 
 
 
 
 L M S 
Diagonal  2.3611     1.1931     0.0048 
Sharpened Diagonal  1.1449     0.7478     0.0070 
New non-von-Kries 0.9525     0.5920     0.0049 
Full Linear 0.6079     0.3275     0.0030 
 
Table 1  Comparison of the average absolute error for the case in which 
all the data in the database is used for both training and testing.  
 
Table 2 shows the average relative error where again the new method is 
best and Table 3 gives the error in CIE L*a*b* ∆E. 
 
 
 L M S 
Diagonal method 0.0455     0.0508     0.0151 
Sharpening method 0.0243     0.0318     0.0299 
New non-von-Kries 0.0200 0.0274 0.0181 
Full Linear 0.0132     0.0175     0.0142 
 
Table 2  Relative error comparison results with all the data in the 
database for training and testing.  
 
 
Diagonal method     0.9335 
Sharpening method     0.3609 
New non-von-Kries     0.2085 
Table 3  Comparison of results using the average CIE L*a*b* ∆E error for 
the case in which all the data in the database is used for both training 
and testing. 
 
 
In a second experiment, we randomly selected 100 illuminants for 
training and the rest of the data, which include 40 other illuminants, 
for testing. All 1995 surface reflectances were used for both training 
and testing. The results presented in Tables 4, 5 and 6 show that new 
non-von-Kries method still performs the best whether measured in terms 
of absolute error or CIE L*a*b* ∆E error. 
 
For the sharpening method, 50 randomly selected illumination pairs were 
used when calculating the sharpening matrix. Since sharpening is derived 
from a single illuminant pair, when applied to color prediction on 
different illuminant pairs the results vary. Table 4 shows how the error 
varies with the training pair. 
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 L M S 
Mean of Mean Absolute Prediction Error 1.7658 1.3073 0.0174 
Std Dev of Mean Prediction Error 2.7687 1.7376 0.0379 
Maximum of Mean Prediction Error 19.3155 12.2909 0.2718 
Minimum of Mean Prediction Error 0.9147 0.6586 0.0059 
 
Table 4 The variation in the absolute color prediction error for 
different sharpening matrices. The sharpening matrices were calculated 
using 50 different randomly selected illuminant pair. For each pair the 
mean color prediction error is computed. 
 
 
 L M S 
Diagonal method 1.9501 1.0650 0.0059 
Sharpening method (Best L1) 0.9147 0.6586 0.0059 
New non-von-Kries 0.8839 0.5813 0.0053 
Full Linear 0.7103 0.4128 0.0041 
 
Table 5 Absolute error comparison results with 100 illuminants for 
training and 40 illuminants for testing. The sharpening method is given 
the benefit of the doubt by choosing the sharpening matrix that yields 
the best results in Table 4. 
 
 
Diagonal method 0.6836  
Sharpening method (best L1) 0.2444 
New non-von-Kries 0.2050 
Full Linear 0.1327 
 
Table 6 CIE L*a*b* ∆E error with 100 illuminants for training and 40 for 
testing. 
 
In the third experiment, we randomly selected 100 illuminants and 1000 
reflectances for training. The testing data included the remaining 40 
illuminants and 995 surfaces from the database. As before, the new non-
von-Kries method has the least absolute, relative and CIE L*a*b* ∆E 
error. Table 7 shows the CIE L*a*b* ∆E case. 
  
 
Diagonal method 0.4752          
Sharpening method (best L1) 0.1707 
New non-von-Kries 0.1410         
Full Linear 0.0790 
 
Table 7. CIE L*a*b* ∆E error comparison for the case of 100 illuminants 
and 1000 reflectances used in training with testing on 40 illuminants 
and 995 reflectances. 
 
 
 
 

4. CONCLUSION 
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Many color correction and constancy methods have used a von-Kries-type 
coefficient rule for modeling the color change induced by a change in 
illuminant. The fact that only 3 parameters need to be specified for the 
coefficient rule is an important aspect of the model.  This paper 
introduced a new non-von-Kries model of illuminant change that also only 
requires 3 parameters; therefore, it can be applied in the same 
situations as the coefficient rule model. The new model approximates the 
9 parameters of a 3-by-3 linear transformation with a 3-dimesional 
linear model determined by principal components analysis. Whether 
unsharpened or sharpened cone sensitivity functions are used, the new 
method predicts LMS quantum catches more accurately than the coefficient 
rule.  
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