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Abstract

Mapping the quantitative relationship between structure and function in the human brain is an 

important and challenging problem. Numerous volumetric, surface, region of interest and 

voxelwise image processing techniques have been developed to statistically assess potential 

correlations between imaging and non-imaging metrics. Recently, biological parametric mapping 

has extended the widely popular statistical parametric approach to enable application of the 

general linear model to multiple image modalities (both for regressors and regressands) along with 

scalar valued observations. This approach offers great promise for direct, voxelwise assessment of 

structural and functional relationships with multiple imaging modalities. However, as presented, 

the biological parametric mapping approach is not robust to outliers and may lead to invalid 

inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy 

between subjects. To enable widespread application of this approach, we introduce robust 

regression and robust inference in the neuroimaging context of application of the general linear 

model. Through simulation and empirical studies, we demonstrate that our robust approach 

reduces sensitivity to outliers without substantial degradation in power. The robust approach and 

associated software package provides a reliable way to quantitatively assess voxelwise 

correlations between structural and functional neuroimaging modalities.
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1. INTRODUCTION

Structure and function relationships play an important role in developing our understanding 

of the human brain. These relationships appear to transcend scales, with connectivity 

dynamics appearing at both a micro- (intra-voxel) and macro-(the whole brain) scales [1]. 
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While there is firm evidence that structure shapes neural dynamics and function, the 

quantitative relationships and how such relationships might be altered in aging and disease 

remain unclear. [2]

Statistical parametric mapping (SPM) has emerged as a powerful tool to simultaneously 

study changes within single voxels along with spatial patterns of activity or tissue volume 

changes [3]. Recently, biological parametric mapping (BPM) [4] has provided a 

methodology which allows multi-modal images to be analyzed in the same manner that SPM 

enables regression of images on scalars. However, the existence of outliers can influence the 

results of a statistical analysis considerably, especially when the sample size is small. In 

neuroimaging outliers can appear both because of imaging artifacts, data processing 

anomalies, and also anatomical differences between brains. These anatomical differences are 

especially problematic because they introduce systematic and highly correlated variation in 

both regressors and regressands. To deal with outliers, the field of robust statistics has 

emerged [5]. Herein, we extend the BPM approach to apply a robust estimation method with 

robust inference by using M-estimates (first introduced in [6]) in place of ordinary least 

squares regression.

This manuscript is organized as follows. First, we introduce the robust regression theory as 

well as robust inference. Then we describe how this approach can be used to develop robust 

BPM. Simulation examples compare the results from original and robust BPM. We close 

with a discussion of the advantages of robust BPM and the potential opportunities for 

continued innovation.

2. THEORY

M-estimators are popular robust regression methods [7]. In the ordinary least squares 

estimates method, it is assumed that each data point has a measurement error that is 

independently random and has a normal distribution. But when there are outliers, our 

measurement errors are not normally distributed. M-estimator assumes that the probability 

of measurement error is: ([8])

(1)

where yi is measurement, y(xi|β) is predicted value based on the model, σ is weight factor, 

denotes standard deviation, Δy is small fixed factor on each data point.

The ρ function must be chosen appropriately. If , the M-estimate is equal to the 

Least Squares estimates. In this case, when an outlier occurs, y(xi|β) is pulled towards the 

outlier to minimize , which makes the least squares estimates method 

sensitive to outliers. In robust regression, ρ(r) does not increase or it increases slowly when r 

> C, thus assigning a small weight to outliers which avoids pulling y(xi|β) towards the 

outlier. Here in, we choose a Bisquare weight function [9]:
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(2)

Where c is the tuning constant, usually the value is chosen for 95% asymptotic efficiency 

when the distribution of observation error is Gaussian distribution.

We can use the maximum likelihood algorithm to estimate β. We need to maximize P(data|

model), which is equal to minimizing −logP(data|model), which minimizes

(3)

Using maximum likelihood method, β should satisfy

(4)

To solve this equation, we can use the iteratively reweighted least squares techniques 

developed in [10], which can be applied to the general linear model (GLM). A specific 

algorithm to compute the estimated solution of β is provided in [11].

The usual formulas for statistical inference are not meaningful when computed using robust 

regression. Recently, many robust inference methods have been developed. Huber ([12]) has 

provided a method to calculate robust covariance:

(5)

The author noted that we can use

(6)

in place of XTX. Where n is the number of observation y, and m is the number of 

independent β parameters. The robust covariance formula is based on the assumption that 1 

<< m << n. Details are discussed in [13], which proved in most cases, for normal errors, the 

agreement with Monte Carlo results is up to . A conservative approach was 

discussed by [14], when there are not many degrees of freedom for error. It is done by not 

allowing the robust variance to fall much below the variance of the least squares estimate.
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3. METHODS

BPM enables the use of image regressors by solving the general linear model (GLM) with 

different design matrixes in each voxel. This contrasts with conventional SPM (statistical 

parametric mapping) which can only use non-image regressors as it uses the same design 

matrix in every voxel. By choosing “regression” in BPM, we can evaluate one image 

relative to another set of images. BPM has been shown to work well when outliers are not 

present [4]. The following simulations explore potential modes of failure.

To illustrate the potential problem with outliers, we created 10 simulated images as imaging 

regressors and another 10 images as the main modality (regressands). The imaging regressor 

images were created from one image by adding different noises (SNR = 20, CNR = 8). The 

main modality images were created from the regressor images by multiplying the signal by 3 

within a spherical region and constant outside the region. (i.e., β = 3 inside the sphere, β = 0 

outside the sphere), with SNR = 50, CNR = 31. To simulate an artifact, one pair of regressor 

and main modality images was shifted. Then, a y = βx + μ model was used to evaluate 

correlations between the pairs of simulated images. The null hypothesis of β > 0 was tested.

To explore the potential of robust regression to resolve this issue, we simulated a simple, 

single voxel model with and without outliers. A set of 21 observations were simulated with 

an approximately uniform distribution between 10 and 30 (arbitrary units). First, we created 

simulated data for robust regression in one voxel 10,000 times using the model:

(6)

where β is the association parameter and η is noise variable. We used the GLM to fit the dots 

with the model:

(7)

The p value is estimated based on a T-test with null hypothesis H0: c’ * β = 0, c = [0 1]. We 

evaluate both robust variance provided in [12] with modified XTX and weighted robust 

variance in [14]. The estimates results are displayed in Figure 2. The results from ordinary 

least squares regression and robust regression are similar when there are no outliers. When β 

= 2 and there are outliers, the β estimations from ordinary least squares are incorrect while 

the β estimations from robust regression are around 2. The p values from least squares are 

not significant. The p values from robust test which uses robust standard error are very 

small, which show significance. Some of the p values from robust test which uses weighted 

robust standard error exhibit significance but some of them do not. When β = 0 and there are 

outliers, the β estimations from ordinary least squares are not 0 while the beta estimations 

from robust regression are around 0. The p values from least squares are significant, which 

are wrong. The p values from robust test which uses robust standard error are distributed as 

uniform distribution. The p values from robust test which uses weighted robust standard 

error are closer to 1 than to 0.
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From the simple, single voxel model, we can see that the robust regression and robust 

variance are not affected by outliers. As for the weighted robust variance we found that the p 

value is not significant when β = 2 and there are outliers. It is because the least squares 

variance increases rapidly if the value of y is large. In the practical environment, the 

assumption m << n should be satisfied. Therefore, we decided to use robust variance 

introduced by [12]. The robust variance can be used to do T-tests and F-tests. In BPM, we 

propose replacing ordinary variance by robust variance, and use modified XTX to reduce the 

outlier effects.

We tested the nonrobust BPM and the robust BPM using a sub-set of the normal aging study 

of the BLSA neuroimaging project. Herein, we used data from 20 healthy participants (12 

M/8 F, 60-85 y/o at baseline). Each subject was studied annually for eight years. We used 

T1-weighted MRI data (1.5T, GE Medical Systems, SPGR, 0.9375×0.9375×1.5 mm, 

256×256×124 field of view) and PET data ([15O], GE 4096+ scanner, 15 slices of 6.5mm 

thickness, 60s) from the baseline (year 1) and last (year 9) visits. The data were 

preprocessed with SPM 5 (http://www.fil.ion.ucl.ac.uk/spm/software/spm5). The structure 

scans were normalized to MNI-space, segmented and smoothed (12 mm Gaussian kernel) to 

obtain smooth gray matter structure images. PET images were normalized, smoothed (12 

mm Gaussian kernel) to MNI-space, and calibrated for global blood flow measurements. 

The smoothed gray matter structure images were regressed on the PET data using nonrobust 

BPM and robust BPM to explore the potential for gray matter changes to explain changes in 

PET activation levels. Differences between estimated model fits and significance levels 

were plotted.

4. RESULTS

Figure 3 shows the GUI and the flowchart we incorporated in BPM. If the user selects robust 

regression, we use iteratively reweighted least squares method to do M-estimates, and 

compute robust variance in the GLM model. Other methods remain the same as the original 

BPM package.

The results from robust BPM are shown in Figure 4, in comparison to the original BPM 

method. This model uses one of main modality images and one of the regressor images that 

shifted to create an outlier. The estimated parameter value is the same when there are no 

outliers. It shows that the original BPM results in the wrong estimation of the model when 

outliers are present. For the statistical inference, the test map has threshold at p = 0.0001 and 

we can see clearly that almost all voxels inside the designed spherical region have 

significance while the voxels outside the region do not show significance.

In the results of empirical data, significant effects for each contrast were based on 

uncorrected p value thresholded at 0.001. We overlap one brain image and the positive T-

tests map to see the differences between nonrobust BPM and robust BPM. To evaluate the 

differences, we enlarged the area and plotted the data set for one voxel, illustrating clear that 

the robust BPM solution correctly discounted outliers while the nonrobust BPM did not.
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5. CONCLUSIONS

In this study, we incorporated robust regression (M-estimates) into BPM to replace ordinary 

Least Squares estimates, and used robust variance to perform a robust hypothesis test. The 

results of the single voxel model show that the estimated parameters and statistical inference 

are not affected by outliers. Based on the simulation data, we can see that the robust 

regression is effective, as well as the robust inference. Therefore, this statistical method can 

be applied to the BPM tool box to create a robust BPM module.

The robust BPM tolerates outliers by using robust regression, which makes the tool more 

reliable. In practical use, the assessment of structure-function relationships will likely 

involve the presence of outliers. The results provided here demonstrate that robust BPM is 

successful in the presence or absence of outliers. The improvement in BPM solves the 

problem causing by outliers and provides a reliable way to quantify predictions of the 

relationship between structure and function of human brain.
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Figure 1. 
Impact of outliers in BPM. (A) is one of the regressor images without outliers. The main 

modality images are: Y = 3X inside a spherical region, Y = constant outside the region. (B) 

is the Beta estimation when there are no outliers. (C) is the significant results when there are 

no outliers, (D) is the shifted regressor image, the center cube shifts to another region. The 

center cube of the paired main modality image shifts to the same region. (E) is the estimated 

Beta from original BPM when there are outliers. (F) is the significant results from original 

BPM when there are outliers.
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Figure 2. 
Robust regression in one voxel. The model is y = βx + η. Null hypothesis is H0: β = 0. (A) 

shows the histogram of estimated Beta and p value from ordinary least squares estimates and 

robust estimates when β = 2 and there are no outliers. All β estimations are around 2, and p 

values are significant. (B) shows the histogram of estimated β and p value when β = 0 and 

there are no outliers. All β estimations are around 0, and p values are not significant. (C) 

shows the histogram of estimated β and p value when β = 2, and there are outliers. (D) 

shows the histogram of estimated β and p value when β = 0 and there are outliers.
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Figure 3. 
Modified parts in BPM. (A) is the GUI in BPM analysis, where we added a choice between 

robust regression and least squares estimates. B shows the flowchart of the program where 

we incorporated robust regression.
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Figure 4. 
Results from robust BPM with outliers. (A) is the estimated β from original BPM. (B) is the 

significant results from original BPM. (C) shows the estimated β from robust BPM, it is 

exactly the ideal β. (D) is the significant results from robust BPM, though it is not exactly 

the same as the results when there are no outliers in original BPM, we can see significance 

inside the spherical region, and less significance outside the region.
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Figure 5. 
Regression of empirical Data. Gray matter structure data of twenty participants from year 1 

and year 9 (40 images) were regressed on the PET data. The two plots are the data for one 

voxel. The x axis shows the value of Gray matter structure data and the y axis shows the 

value of PET data. The red line is the fit of the non robust regression while the green line is 

the fit of the robust regression.
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