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ABSTRACT

We propose a variational approach which combines automatic segmentation and medial structure extraction in a
single computationally efficient algorithm. In this paper, we apply our approach to the analysis of vessels in 2D
X-ray angiography and 3D X-ray rotational angiography of the brain. Other variational methods proposed in
the literature encode the medial structure of vessel trees as a skeleton with associated vessel radii. In contrast,
our method provides a dense smooth level set map which sign provides the segmentation. The ridges of this map
define the segmented regions skeleton. The differential structure of the smooth map (in particular the Hessian)
allows the discrimination between tubular and other structures. In 3D, both circular and non-circular tubular
cross-sections and tubular branching can be handled conveniently. This algorithm allows accurate segmentation
of complex vessel structures. It also provides key tools for extracting anatomically labeled vessel tree graphs and
for dealing with challenging issues like kissing vessel discrimination and separation of entangled 3D vessel trees.

Keywords: Variational Techniques, Finite Elements, Medial Structure, Vessel Tree Segmentation

1. INTRODUCTION AND SUMMARY

A variational formulation of bi-phasic medical image segmentation problems is proposed. The segmentation is
obtained in the form of a signed level set map which is positive inside the object region to extract (foreground) and
negative in the remaining image domain (background). In the proposed mathematical setting, one minimizes an
objective functional which includes a data fidelity term together with a level-set smoothness term. The fidelity
energy term penalizes non-zero level set values at Canny edge locations as well as discrepancies between the
level set gradient unit norm and the Canny edge unit normal vector. The smoothness term is a non-negative
semi-norm which penalizes spatial changes in the level set gradient. In general, the resulting smooth level set
map involves ridges, valleys as well as local extrema and saddle points. These serve to characterize the medial
structure of the segmented region. In particular, the ridge crest locus1 may define the skeleton of the region. The
corresponding Hessian eigenvalues signatures provide the class of regions involved (e.g. in the 3D case blob-like,
tube like or slab-like etc.). In this paper, our approach is applied to the automatic segmentation and extraction
of vessel tree structures in 2D X-ray angiography images and in 3D X-ray rotational brain vessel images.

2. METHODS

2.1 Extraction of the medial structure

In essence, the proposed algorithm starts with a gray level image as illustrated by the circular ring in the toy
example of Fig. 1.a. The Canny edges2 are extracted keeping only the gradients which are maximal along their
direction (See Fig. 1.b). Both the gradient moduli |∇I| and the gradient orientation unit vectors u = ∇I/|∇I|
are recorded for later use. One then seeks a level set function ϕ(x) of the position x in the image which minimizes
the energy

E(ϕ) =
∑

x

ρ(x)
(
ϕ2 + σ2 ‖∇ϕ− u‖2

)
+ λ.Reg(ϕ) (1)
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Figure 1. 2D synthetic image illustration: (a) ring data image, (b) ρ = |∇I| of Canny Edges, (c) ϕ(x) level-set map, (d)
ϕ(x) profile versus distance along the dotted line. Note the parabolic shape of the profile for positive ϕ values ϕ(x) > 0

where σ is a scaling factor (e.g. σ = 1); ρ(x) is a data fidelity edgeness-weight, which is non-zero only at the
positions x of the Canny edges and is a function of the modulus |∇I| of the gradient of data image I(x). In
practice, we focus on compact objects and wish to extract and characterize their medial structures, so Canny
edges are further paired in such a way as to reduce the influence of edges which are incompatible with the size
range or with the contrast of the objects one wishes to segment (see Sect. 2.2).

The role of the first summation term in Eq.1 is clearly to cause ϕ to approach 0 near Canny edges with its
gradient vector ∇ϕ approaching the Canny edge unit vector u. The second term of the above energy expression
Reg(ϕ) is a functional which imposes smoothness of ϕ and λ is a positive constant for tuning the relative roles of
fidelity (first term) and regularity (second term). Reg(ϕ) penalizes partial derivatives of ϕ of order higher than
a given order p. The use of such smoothness constraints has been advocated in a seminal book by Blake and
Zisserman3 for image segmentation applications. Their thin membrane model makes use of Reg(ϕ) =

∫
Ω ‖∇ϕ‖2

where Ω stands for the image domain; this penalizes partial derivatives of order higher than p = 0 i.e. any
non-constant ϕ. In their thin plate model, Reg(ϕ) =

∫
Ω ‖∇∇ϕ‖2 where ‖∇∇ϕ‖2 is the Frobenius norm of the

Hessian of ϕ thus penalizing partial derivatives of order higher than p = 1 i.e. any non-affine ϕ.

In this article, we propose a Partition of Unity Finite Element (PUFEM) multi-resolution pyramid4 to
represent the level set ϕ as a windowed combination of first or second order polynomials, and to make use of a
native regularity semi-norm for Reg(ϕ). This regularity term has a long range smoothing effect similar to that
of the thin-plate energy as explained in Appendix D. The PUFEM representation has been proposed and deeply
studied by Babuška and Melenk5, 6 for solving diverse partial differential equations. In addition to computational
efficiency, this approach does not have difficulties with the boundary of the image domain Ω as is the case with
finite difference approaches which imply the use of natural boundary conditions which can be rather tricky
when dealing with an elliptic PDE.7 Furthermore, the non-zero Canny-edge weights ρ(x) appearing in Eq.1 do
not represent a continuous function. Again, this can be very conveniently handled within our approach. More
technical details are outlined in Appendices A to D.

On Fig. 1, the energy Reg(ϕ) penalizes all partial derivatives higher than p = 2; i.e. it could identically
vanish only if ϕ was a multivariate polynomial of order equal or less than 2. The computed ϕ map is as shown
in Fig. 1.(c). The profile of ϕ taken along the dotted line of Fig. 1.(c) is depicted in Fig. 1.(d). This profile
shows an almost perfect parabolic variation inside the ring region (in which ϕ(x) > 0). The maxima of ϕ(x)
along the ring radii occur on the mid circle of the ring (which is also the ridge locus in this case). The zero
crossings ϕ(x) = 0 coincide with the Canny edges and the corresponding level-set gradient modulus ‖∇ϕ‖ is
near unity (except for a scaling factor in Fig. 1.(d)). A similar parabolic behavior is more generally observed in
real situations for vessels with slowly varying cross-sections in 2D and 3D (as well as for uniform width slabs in
3D).

2.2 Edge-pair scoring and computation of edgeness weights

In this article, we focus on compact objects and wish to extract and characterize their medial structures. To
do so, we start by extracting Canny Edges. It is essential to eliminate edges that do not belong to a compact
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Figure 2. Examples with 2D X-ray images showing the raw image (first column), the resulting medialness map (second
column) and the zero-level of the medialness map as yellow contours. (a-c) Coronary Angiography (image size 492×512),
(d-f) Iliac Angiogram (image size 1360 × 1025), (g-i) Iliac Angiogram (image size 528× 474).

object. We therefore attribute a score to an edge which depends on how well it can be paired with another edge
so that the edge pair represent respectively the entry and exit from the compact object. We also must ensure
the segmentation of objects with given contrast signature (i.e. either bright relative to darker background or
else dark relative to a brighter background). To do so, we systematically scan the whole image on a set of dense
scanlines parallel to the main image axes as well as the main diagonals. Each pixel or voxel simultaneously
belongs to all those scanlines. There are 4 such sets in 2D and 13 in 3D. For each scanline, the Canny edge
gradients are projected in the scan-direction, resulting in a sparse profile of projected gradient values. Along
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(a) (b)

(c) (d)

Figure 3. Effect of changing the smoothing weight on Coronary Image for the medialness and the centerline. (a) Medialness
with λ = 20, (b) Corresponding centerlines ,(c) Medialness with λ = 150, (d) Corresponding centerlines.

each such line we pair the projected gradients (+/- or -/+) in a manner which is compatible with the object
contrast we are looking for. In doing so, we only keep pairs with ratios of projected gradient magnitudes which
are within prescribed bounds (typically between 1/4 and 4) and separated by less than a predefined maximal
distance. Projected gradients of smaller magnitudes must be eliminated if they occur between any two paired
gradients. Moreover, a projected gradient may be paired with no more than another one. Each member of a pair
is attributed a pairing score equal to the minimum of their projected gradient magnitudes. This process yields
a profile of non-negative pairing-scores for each scanline.
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(a) (b)
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Figure 4. Effect of changing the smoothing weight on Iliac Image (1) for the medialness and the centerline. (a) Medialness
with λ = 20, (b) Corresponding centerlines ,(c) Medialness with λ = 150, (d) Corresponding centerlines.

An edge-score map is then constituted by taking the maximum of the edge-pairing scores of the different
concurrent scanline profiles. This procedure bears some similarity with the maximal gradient flux procedure
proposed by Lesage et al.8 Both their approach and ours make use of a pairing procedure to establish a score,
the chief difference is that we attribute the resulting score to an an edgeness map whereas Lesage et al. attribute
the score to candidate circular contours of vessel cross-sections. In order to reduce the effect of noise, we found
it useful to define the edgeness-weights map ρ(x) as a power ν of edge-score which may be adjusted according
to the application between ν = 1 to ν = 3.

3. RESULTS

Figure 2 shows results obtained for 2D X-ray angiography images with p = 2, ν = 1 and h = 4 pixel-units at
the finest level of our FEM pyramid. The regularization parameter λ was set at λ = 20 to provide a moderate
smoothing action. The roles of these parameters are as explained in Appendices REF. Subfigures (a) show the
original raw images, (b) the resulting signed medialness maps (zero level is the mid-gray tone) and, in (c), the
zero-levels of medialness are displayed as color contours. As discussed in Sect. 2.2, the Canny edges are paired
in such a way that ribbon-like structures with wrong contrast (bright) are discarded. Edge pairs which are
manifestly not part of a compact object are excluded. In this way, the great majority of vessel sections with a
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Figure 5. Effect of changing the smoothing weight on Iliac Image (2) for the medialness and the centerline. (a) Medialness
with λ = 20, (b) Corresponding centerlines ,(c) Medialness with λ = 150, (d) Corresponding centerlines.

not too faint dark contrast and a width larger than one pixel and less than 100 pixels are correctly and accurately
delineated.

Figures(3,4,5) show the effect of altering parameters that may have an effect on the degree of smoothing and
on the suppression of weakly contrasted details. The upper subfigures (a) and (b) are obtained with λ = 20, ν = 1
as before but the lower subfigures (c) and (d) are obtained with a much larger regularization weight λ = 150
and with an edgeness exponent ν = 3 meant to reduce the influence of the edges having a faint contrast. The
left column subfigures (a) and (c) are medialness maps whereas the right column subfigures show ridge paths
super-imposed on the original images. It can be seen that the effect of enhanced smoothing is to considerably
reduce the effect of faintly contrasted vessels together with the suppression of background noise structures. The
effect is also to regularize the medialness map appearance and to produce smoother zero-level contours which,
however, remain very close to the image edges. The corresponding ridge paths have been tracked using a tree
extracting procedure that avoids closed path cycles (this is the main reason why some vessel centerlines are
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(a) (b) (c)
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Figure 6. Two examples with 3D X-ray Rotational Angiographies. The raw data ((a) and (d)) has been segmented with
the methods described in Sect. 2. (b) and (e) show the zero-level set of the medialness as a 2D surface and the centerlines
extracted according to Sect.3. The centerlines extraction can be extended beyond the segmentation boundaries to recover
non-connected branches, as shown in (c) and (f).

partly missed in the shown paths).

Unlike approaches based on a multi-scale Hessian analysis, our approach is insensitive to the effect of isolated
edges (e.g. the diaphragm in Fig. 3.(a) and the image intensifier borders in Fig.5.(a) clearly do not contribute
to the medialness map). The medialness ridge paths can be seen to follow closely the vessel centerlines. Work
is ongoing to find the best strategy for vessel-branch tracking and labeling in 2D (which is harder than in 3D
because of the occurrence of vessel projection overlaps). It is also clear that, even with a perfect medialness
extractor, a fine resolution path will track spurious and noise ridges thus necessitating suitable post-processing
path-cleaning procedure. This could be done by making use of features related to medialness height fluctuations
or to variations of the input image contrast along a path in order to classify candidate paths as true-vessels or
related to structural or random noise.

Fig. 6 shows results obtained for 3D X-ray rotational angiography of brain vessels (image size 256x256x256)
with p = 2, ν = 2 and h = 4 pixel-units at the finest level of our FEM pyramid. The regularization parameter
λ was set at λ = 10 to provide a moderate smoothing action. The left image in Fig. 6 shows a rendering of the
zero-level of the level set obtained for the segmentation of vessels. The raw data are shown in the viewer in the
right image. The corresponding intersection of this zero-level with the orthogonal viewing planes is shown as
colored contours. An aneurysm with its connected vessels is extracted in this way (smallest vessel size segmented
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is 2-voxels wide). Here again, the medialness map is computed and the corresponding candidate skeleton points
extracted and tracked.

In 3D, we define a vessel-ridge or skeleton point x as a point where the medialness ϕ has a strong local
maximum in a planar cross-section with unit normal vector un; let (ηp < 0) be the maximum oriented second
derivative of ϕ in this plane and ηn the second derivative in the un direction. The candidate skeleton point is
retained provided ηn is greater (less negative) than ηp. It is sufficient to do the selection by examining the discrete
local 3× 3× 3 neighborhood of any point x. There are 13 possible normal directions un to examine. Each such
candidate skeleton point may then be further characterized by the corresponding Hessian tensor. Computation
times for the whole procedure are quite reasonable (when sampling down to 128x128x128 resolution, about 15
second on a single core PC processor, 120 seconds for the full 256x256x256 volumes - with a non optimized
implementation).

4. CONCLUSIONS

We proposed an approach for combining segmentation and medial structure analysis of medical images in a
single computationally efficient algorithm. In this paper, we presented applications to vessel tree analysis in 2D
and 3D images. Accurate contouring was demonstrated for a wide range of vessel sizes (including connected
objects such as aneurysms). The resulting medialness maps provide dense and accurate information on the
segmented structures and in particular the medialness ridge provides accurate information on object shape,size
and orientation. Work is ongoing to exploit those results for the extraction of semantically labeled trees and for
disentangling 2D and 3D vessel trees.

APPENDIX A. FINITE ELEMENT REPRESENTATION OF LEVEL SET MAP ϕ

Let Ω ⊂ Rd be a rectangular image domain of dimension d = 2 or 3 over which a set of nodes is regularly
distributed. To any node m, we associate a compact sub-domain Ωm ⊂ Rd, and a non-negative window function
ψ(m)(x) which vanishes outside Ωm. A Partition of Unity of the domain Ω means that:

Ω ⊂
⋃

m

Ωm and ∀x ∈ Ω ,
∑

m

ψ(m)(x) = 1 (2)

The level ϕ(x) map is expressed as a blending of local polynomials in the form:

ϕ(x) =
∑

m

ψ(m)(x)θ(m)(x) (3)

where each local polynomial θ(m)(x) is expanded on a local basis
{
v
(m)
r

}
as:

θ(m)(x) =
∑

r

a(m)
r v(m)

r (x) (4)

where the a
(m)
r are the scalar coefficients of the expansion in terms of local basis polynomials v

(m)
r (x) of degree

less or equal than a preset degree p. For any point x ∈ Ω, there are at most M window functions for which
ψ(m)(x) �= 0. For the sake of computational efficiency, we choose nodes distributed over a regular rectangular
array with inter-node spacing h along each of the coordinate axes (i = 1, ..., d). In our implementation, we have
M = 2d. Within a window m, the coordinates xi of a point x are replaced by normalized local coordinates

ζ
(n)
i = (xi − ξ

(m)
i )/h for which the window center coordinates ξ

(m)
i are taken as origin. Each window function

ψ(m)(x) is expressed as a product:

ψ(m)(x) =

d∏

i=1

P
(∣∣∣ζ(m)

i

∣∣∣
)

(5)

The function P (ζ) for ζ ∈ [0, 1] is taken as a polynomial of degree 2p+1 with vanishing derivatives of order 1 to p
at ζ = 0 and ζ = 1 and such that P (0) = 1 and P (1) = 0. It can be easily seen that, for any non negative integer
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p, there exits a unique such polynomial and that P (ζ) +P (1− ζ) = 1. Defining the window functions from Eq.5
is advantageous because they are simple to compute and they automatically satisfy the normalization condition∑

m ψ(m)(x) = 1 with M = 2d non-vanishing windows for any x. Moreover, the window function ψ(m)(ξ(m)) of

Eq.5 has useful flatness properties which derive from the choice of the factors P (ζ). At the center x = ξ(m) of

the window, ψ(m)(ξ(m)) = 1 and all its multivariate partial derivatives of order equal or less than p are equal to

zero. The basis polynomials v
(m)
r (x) associated with node m are monomials of all degrees up to a maximum p,

for example, for p = 2 and d = 2, there are six such monomials (r = 1 to 6) defined by

{1, ζ(m)
1 , ζ

(m)
2 , (ζ

(m)
1 )2, ζ

(m)
1 ζ

(m)
2 , (ζ

(m)
2 )2}. In general, there are N = (p + d)!/(p!d!) such monomials of degree

less or equal than p for domain dimension d. Thus each window node m is associated with a local polynomial

θ(m)(x) defined by the N -dimensional coefficient vector {a(m)
r |r ∈ [0, N − 1]}. By convention, v

(m)
r (x) and a

(m)
r

are ordered in non descending degree starting with the coefficient a
(m)
0 of the zero-degree monomial v

(m)
0 ≡ 1 for

r = 0.

APPENDIX B. LOCAL POLYNOMIAL SOLUTION WITHIN A NODAL WINDOW

Making use of PUFEM strategy,4–6 we replace the data attachment part
∑

x ρ
(
ϕ2 + σ2 ‖∇ϕ− u‖2

)
of the

energy in Eq.1 by an upper bound in the form
∑

m F (m) where F (m) is the windowed data attachment quadratic
energy in node m

F (m)(θ(m)) =
∑

x

ρψ(m)

(
(θ(m))2 + σ2

∥∥∥∇θ(m) − u
∥∥∥
2
)
. (6)

By substituting the expression of Eq.4 for θ(m) in the above equation, we get F (m) as a function of the coefficients

a
(m)
r

F (m)(a(m)
r ) =

∑

r,s

M (m)
r,s a

(m)
r a(m)

s − 2
∑

r

G(m)
r a(m)

r (7)

where

M (m)
r,s =

∑

x

ρψ(m)

(
v(m)
r .v(m)

s +
(σ
h

)2 ∑

i

(
∂iv

(m)
r .∂iv

(m)
s

))
(8)

G(m)
r =

∑

x

ρψ(m)

(
σ2

h

∑

i

(∂iv
(m)
r .ui)

)
(9)

where it is recalled that h is the inter-node distance, i is the index of coordinate xi and ∂i stands for the
partial derivative operator ∂

∂xi
and ui the i

th component of the Canny Edge unit normal vector. The nodal data

attachment energy F (m) can now be rewritten in matrix notation

F (m)(X(m)) =
(
X(m)

)T

M (m)X(m) − 2
(
G(m)

)T

X(m) (10)

where X(m) is the column vector of coefficients {a(m)
r |r ∈ [0, N − 1]} while the N × N matrix M (m) and the

N vector G(m) have components defined above in Eqs.8 and 9 respectively. A local solution of the variational
problem can now be determined by minimizing the above quadratic form of Eq.10 i.e. by solving the the linear
system M (m)X(m) = G(m). In practice, we add a very small Tikhonov term (typically 10−5tr(M (m))) to the
diagonal entries of matrixM (m) which will ensure that the resulting symmetric matrix is positive definite (hence
non-singular). This will always work unless ρ is identically zero within the support of windowm. Let the solution
for the local window m be Y (m). The local energy F (m) can now be rewritten by completing the quadratic form
so that it will facilitate its integration in the global energy minimization scheme involving regularization as
discussed in the next section.

F (m)(X(m)) =
(
X(m) − Y (m)

)T

M (m)
(
X(m) − Y (m)

)
+ C(m) (11)
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where the scalar C(m) does not depend on X(m). The quadratic part of this expression is an anisotropic L2

norm of the difference vector X(m)−Y (m). When experimenting with the global optimization scheme practically
identical results at convergence are obtained by replacing matrix M (m) by the scalar μ(m) equal to the mean
value of the diagonal elements i.e. μ(m) = tr(M (m))/N . The above expression for F (m) now simplifies to

F (m) = μ(m)
∥∥X(m) − Y (m)

∥∥2
. The final nodal coefficient vectors X(m) will be determined by optimizing the

total energy of Eq.1. The nodes for which μ(m) is very small will have almost no influence on the global optimum
of the coefficient vector X(m). In the particular case where ρ is identically zero within the window, μ(m) = 0
but this can be easily detected early on so that further computations within the corresponding window may be
skipped and a zero weight μ(m) = 0 attributed to the node. In general, μ(m) are data attachment weights playing
a role, at nodal level, similar to the role that the edgeness weights ρ(x) play at pixel or voxel level.

APPENDIX C. INTRODUCING THE NON-CONFORMITY REGULARIZATION
ENERGY

This is the natural regularization energy of our FEM representation. We define it as a sum over all pairs of nodes
m,n which have non empty overlap of their window support i.e. Ωm,n ≡ {x|ψ(m)(x)ψ(n)(x) > 0} is not empty

Reg(ϕ) =
∑

m<n

∫

Ωm,n

ψ(m)(x)ψ(n)(x)
(
θ(n)(x)− θ(m)(x)

)2

(12)

which is manifestly a quadratic semi-norm vanishing if and only if all windows have identical local polynomials
θ(m)(x) of degree p and by virtue of the partition of unity property, ϕ(x) would then be equal to the same
polynomial. The contribution NC(m,n) of any overlapping pair of windows can readily be expressed as a

quadratic function of their coefficients {a(m)
r |r ∈ [0, N − 1]} and {a(n)r |r ∈ [0, N − 1]} in the form

NC(m,n)(X(m), X(n)) =
∑

r,s

Km,n
r,s a(m)

r a(m)
s − 2.

∑

r,s

Cm,n
r,s a(m)

r a(n)s +
∑

r,s

Lm,n
r,s a(n)r a(n)s

= a(m)TKm,na(m) − 2a(m)TCm,na(n) + a(n)
T
Lm,na(n) (13)

where the entries of the matrices Km,n, Cm,n and Lm,n are:

Km,n
r,s =

∫

Ωm,n

ψ(m)(x)ψ(n)(x)v(m)
r (x).v(m)

s (x) (14)

Cm,n
r,s =

∫

Ωm,n

ψ(m)(x)ψ(n)(x)v(m)
r (x).v(n)s (x) (15)

Lm,n
r,s =

∫

Ωm,n

ψ(m)(x)ψ(n)(x)v(n)r (x).v(n)s (x) (16)

All the above square matrix entries are readily evaluated analytically because they depend on integrals of di-
mensionally separable polynomials over a rectangular domain.

We can now put together the overall energy to optimize in our FEM model:

E(X) =
∑

m

μ(m)
∥∥∥X(m) − Y (m)

∥∥∥
2

+ λ.
∑

m,n

NC(m,n)(X(m), X(n)) (17)

We use the conjugate gradient algorithm9 to find the set of node coefficient vectors X(m) which minimize E.
We can see that the nodal weight μ(m) introduced in the previous section define the confidence to give to a
local solution Y (m). When the number of nodes is large, total convergence of the conjugate gradient would
require a large number of iterations (equal to the number of unknowns). To alleviate this problem, we make use
of a PUFEM multi-resolution dyadic pyramid4 with its prolongation operator allowing to accurately reproduce
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the map φ(x) obtained from a coarse PUFEM level with inter-node separation 2h to a finer level with inter-
node separation h. We therefore start at a coarse level (with a corresponding coarse scale image) for which
minimization can be fast and then use the prolongation operator to initialize the algorithm at the next finer
PUFEM level and image scale and proceed likewise up the finest level and scale of the pyramid.
The nodal data attachment weights μ(m) are dependent on the dynamic range of the raw image. The smoothness
weight λ must be adjusted accordingly. A convenient way for doing this is just to normalize, at each level and

scale, the μ(m) weights by a soft-peak value μ(peak) defined by μ(peak) =
∑

m

(
μ(m)

)2
/
∑

m

(
μ(m)

)
. It is important

to note that in our approach, the local optimization step of Appendix B which is needed to compute μ(m) and
Y (m) is not iterative and is just done once for each level and and scale. Only the minimization of the node-
wise discretized energy defined by Eq.17 requires conjugate gradient iterations. It must be recalled that these
iterations have moderate computational cost because there are, in general, much fewer nodes than elements in
the images.

APPENDIX D. RELATION BETWEEN THE PROPOSED SMOOTHNESS ENERGY
WITH POPULAR DIFFERENTIAL SMOOTHNESS ENERGIES

It is interesting to analyze the long range (low spatial frequency) smoothing effect of our FEM native regu-
larization energy defined in Eq.12. To do this, we note that, by virtue of the flatness property of the window
functions ψ(m)(x) when x coincides with the centroid of node m ξ(m) (see Appendix A), the value of ϕ(x) and its
multivariate partial derivatives of order less or equal to p are equal to those of the local polynomial θ(m)(x). The

corresponding partial derivatives of θ(m)(x) are in turn linearly related to the coefficients a
(m)
r . We use for ϕ(x)

a test function and express it in a Taylor expansion around any node centroid ξ(m) up to an order larger than

p, the coefficients a
(m)
r of this nodes as well as those a

(n)
r of all neighboring nodes having a non empty overlap

sub-domain Ωm,n can be expressed in terms of ϕ values and its partial derivatives at ξ(m). We can now evaluate
the nonconformity energy contribution of the sub-domain Ωm by making use of Eqs.(13-16) as a non-negative

quadratic function (by construction) of the partial derivatives of ϕ at ξ(m) which can be written as a sum of
terms of the form

C(α,δ).h
d+|α|+|δ| (Dαϕ)(m)

(
Dδϕ

)
(m)

(18)

where (Dαϕ)(m) stands for the multivariate partial derivative of ϕ at ξ(m) for the multiplicity vector α =

(α1, ..., αd) and |α| = ∑d
i=1 αi i.e.

Dαϕ ≡ ∂|α|ϕ
∂xα1

1 ...∂xαd

d

(19)

likewise for Dδϕ. Each such term involves a power d+ |α|+ |δ| of the inter-node separation h that depends on
the sum of differentiation orders of the term’s factors. As expected, no partial derivative of order less or equal
than p appears in the result. The expansion corresponding to Reg(ϕ) can be deduced by taking a sum over all
sub-domain Ωm contributions. Retaining only the lowest power of h in the expansion yields in 2D for p = 1
(d = 3, p = 1) the expression

E2
∼=

∑

m

γh6

((
∂2ϕ

∂x21

)2

+

(
∂2ϕ

∂x22

)2

+ β

(
∂2ϕ

∂x1∂x2

)2
)

m

(20)

and in 3D (d = 3, p = 1)

E3
∼=

∑

m

γh7

((
∂2ϕ

∂x21

)2

+

(
∂2ϕ

∂x22

)2

+

(
∂2ϕ

∂x23

)2

+ β

(
∂2ϕ

∂x1∂x2

)2

+ β

(
∂2ϕ

∂x1∂x3

)2

+ β

(
∂2ϕ

∂x2∂x3

)2
)

m

(21)

where γ = 0.002183 and β = 4.0675. The above analysis leading to the discrete integrals over the FEM domain
(20,21) provides some insight on similarities between our native FEM regularization energy with the very popular

thin-plate smoothness energy3
∫
Ω

{∑
i

(
∂2ϕ
∂x2

i

)2

+ 2
∑

i<j

(
∂2ϕ

∂xi∂xj

)2
}
.
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Retaining the lowest power of h makes sense in particular within the coarse to fine FEM setting that we use
(recall that h is halved when going from an FEM level to the next finer). Also, note that the full expansion
of Reg(ϕ) can be expressed in Fourier domain in which case, the terms involving a factor hd+k in the above

expansion with k > 0 will involve spatial frequency factors in the form
∏d

i=1 ω
βi

i where βi ≥ 0 for all i with a

total degree
∑d

i=1 βi = k. Therefore, the long-range smoothing will be dictated by the lowest degree terms in
this ωi expansion which correspond to the lowest power of h (i.e. hd+2p+2).
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