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A Continuous-speech Interface 
to a Decision Support System: 
II. An Evaluation Using a 
Wizard-of-Oz Experimental 
Paradigm 

Abstract Objective: Evaluate the performance of a continuous-speech interface to a 
decision support system. 

Design: The authors performed a prospective evaluation of a speech interface that matches 
unconstrained utterances of physicians with controlled-vocabulary terms from Quick Medical 
Reference (QMR). The performance of the speech interface was assessed in two stages: in the real- 
time experiment, physician subjects viewed audiovisual stimuli intended to evoke clinical findings, 
spoke a description of each finding into the speech interface, and then chose from a list generated 
by the interface the QMR term that most closely matched the finding. Subjects believed that the 
speech recognizer decoded their utterances; in reality, a hidden experimenter typed utterances into 
the interface (Wizard-of-Oz experimental design). Later, the authors replayed the same utterances 
through the speech recognizer and measured how accurately utterances matched with appropriate 
QMR terms using the results of the real-time experiment as the “gold standard.” 

Measurements: The authors measured how accurately the speech-recognition system converted 
input utterances to text strings (recognition accuracy) and how accurately the speech interface 
matched input utterances to appropriate QMR terms (semantic accuracy). 

Results: Overall recognition accuracy was less than 50%. However, using language-processing 
techniques that match keywords in recognized utterances to keywords in QMR terms, the semantic 
accuracy of the system was 81%. 

Conclusions: Reasonable semantic accuracy was attained when language-processing techniques were 
used to accommodate for speech misrecognition. In addition, the Wizard-of-Oz experimental design 
offered many advantages for this evaluation. The authors believe that this technique may be useful 
to future evaluators of speech-input systems. 

n J Am Med Informatics Assoc. 1995;2:46-57. 

The evaluation of medical computer systems is a dif- and thus prone to observational bias. In addition, 
ficult but important task. l-4 The evaluation of user there are often many interface elements to study and 
interfaces is especially difficult, because measure- those elements are frequently interdependent. Fi- 
ments of interface characteristics are often subjective nally, standards by which to compare new interface 
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components do not exist. Therefore, evaluators face 
at least three challenges when designing evaluation 
studies: 1) to control as many nonessential variables 
as possible and thus allow careful study of important 
variables; 2) to design experiments that separate the 
system’s components so that they can be studied 
both individually and together; and 3) to design ex- 
periments that have an ideal standard against which 
to measure system performance. 

In this article, we report the evaluation of a speech 
interface developed in our laboratory.5,6 This inter- 
face facilitates entry of clinical findings into the de- 
cision support system Quick Medical Reference 
(QMR)*7 by matching the spoken language of phy- 
sicians with the controlled vocabulary of the decision 
support system. The interface uses a commercially 
available speech-recognition system to produce text 
strings from utterances and then a concept-matching 
approach to match text strings with QMR terms. 

We conducted a Wizard-of:Oz experiment to assess 
the performance of the speech interface. Users in- 
teracted with the system as if they were controlling 
the interface with speech, while instead a hidden 
experimenter (the “wizard”) typed every utterance 
into the interface. This experimental design had two 
purposes: 1) to measure the system’s components 
both together and separately, and 2) to establish “gold 
standards”-approximations of ideal performance. 
These “gold standard” measurements could then be 
used as the basis for determining the accuracy of the 
system’s speech-recognition and concept-matching 
components. 

Background 

Below we describe methods that have been used to 
evaluate speech interfaces, and we review how the 
Wizard-of-Oz paradigm has been used to design 
speech systems. We also describe the architecture of 
the speech-recognition interface to QMR. 

Evaluation Techniques for Speech Interfaces 

Speech-recognition interfaces have been evaluated 
along several dimensions. Some evaluations focus on 
comparisons between speech input and other input 
modalities,8,9 while others focus on the quality of the 
speech recognition and the contribution of speech 
recognition to the accomplishment of an application 
task.10-12 

*Quick Medical Reference and QMR are registered trademarks of 
the University of Pittsburgh. 

Comparisons of speech interfaces with other input 
modalities focus primarily on task-completion time- 
i.e., how long it takes a user to complete a task using 
speech versus using a standard input modality such 
as a keyboard or a pointing device.8,9 Task-comple- 
tion time includes such factors as the response time 
of the speech-recognition equipment and the time 
users spend correcting errors of the speech recog- 
nizer. Although useful for comparison with other 
input modalities, this method of evaluation does not 
directly measure the quality of the speech recognition 
or the contribution of speech recognition to the ap- 
plication task. 

The more traditional method of evaluating speech- 
recognition systems is to measure 1) how accurately 
the speech recognizer converts input utterances to 
text strings (recognition accuracy), and 2) how accu- 
rately the speech application translates input utter- 
ances to appropriate actions (semantic accuracy). 
Recognition accuracy measures the raw capability of 
the speech-recognition equipment, while semantic 
accuracy measures how well speech input supports 
application tasks. The relative importance of each 
of these measures depends on the application stud- 
ied. If the output of the speech recognizer is not 
displayed to the user but instead is used by the ap- 
plication to perform a task, then the semantic accu- 
racy is a more important measure of the system’s 
performance. 

On the other hand, if the user takes action based on 
the exact output of the speech recognizer, then the 
recognition accuracy may be the more important 
measure. The difference between the semantic ac- 
curacy and the recognition accuracy shows the con- 
tribution of higher-level application components, such 
as language-processing routines, that speech systems 
employ to overcome poor recognition accuracy. 

Wizard-of-Oz Experiments for Design 
of Speech Interfaces 

Wizard-of-Oz experiments have been used primarily 
to help in the design of speech-recognition sys- 
tems.13-15 The experimental setting requires that two 
computer terminals in physically distinct locations be 
linked to the same central processing unit and thus 
show the same view. Sitting at one terminal, the 
subject uses natural language to give commands to 
the system. Unseen by the subject, an experimenter 
sitting at the other terminal interprets the subject’s 
requests and translates them into commands that the 
system can understand. The subject is therefore given 
the impression that the system can understand nat- 
ural language. 
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The main purpose for these Wizard-of-Oz experi- 
ments has been to understand how users would speak 
to a computer that recognizes spoken input. For in- 
stance, Gould et al.14 used the Wizard-of-Oz para- 
digm to study how users would interact with a “lis- 
tening typewriter,” while Issacs et al.15 performed a 
Wizard-of-Oz experiment to study how users would 
enter data into a medical decision support system. 
The results of these experiments helped the devel- 
opers understand the general functional require- 
ments for speech systems in these domains, as well 
as how to handle specific problems, such as how to 
correct for misrecognized input. 

In .contrast to these previous studies, we used the 
Wizard-of-Oz paradigm not for the design of a speech- 
recognition interface but for the evaluation of a speech- 
recognition system’s performance. Coutaz et al.16 have 
suggested using this paradigm for similar evaluation 
experiments. 

The Continuous-speech Interface to QMR 

The program that we evaluated consists of two main 
components: a speech-recognition system, which 
converts audio signals into text strings, and a concept 
matcher, which matches the recognized text string 
with QMR terms. The speech-recognition system is 
composed of two subcomponents: off-the-shelf hard- 
ware and software from Speech Systems, Inc. and 
developer-created grammar that defined legal sen- 
tences for the domain. Further details of the system 
design are presented in the companion article in this 
issue.5 

The physician follows three steps when using the 
continuous-speech interface. First, the physician se- 
lects a body part corresponding to the location of the 
clinical finding (e.g., abdomen). Second, the physi- 
cian speaks the finding into the microphone. The 
speech recognizer first decodes the audio signal into 
a stream of subphonemes and then generates a text 
string using both a built-in dictionary and a devel- 
oper-supplied grammar. The concept matcher then 
extracts keywords from the recognized text string and 
compares those keywords with keywords extracted 
from QMR terms. The program displays the result 
of the matching as a rank-ordered list of QMR terms. 
Third, the physician selects the term that most closely 
matches the intended finding. 

In this experiment, we studied how the system per- 
formed with two types of grammars: 1) grammars 
generated manually by a developer who had medical 
training, and 2) grammars generated programmati- 
cally from a set of general language rules. We studied 
different methods for creating grammars to under- 

stand which grammar would support better recog- 
nition and semantic accuracy. 

Design Considerations 

An ideal strategy for evaluating a speech interface 
would be to place a fully functioning system in a 
real-world environment and study the use, perfor- 
mance, and perceived value of the system during 
normal work flow, as well as the impact of the system 
on patient care and outcomes.* However, for re- 
search prototypes this is impractical because such 
prototypes are not sufficiently developed to be read- 
ily adopted in normal work flow. Therefore, we set 
out to evaluate the speech interface in a simulated 
but realistic setting. In the design of the evaluation, 
we faced several major problems: 1) how to elicit 
natural speech from physicians without biasing what 
they said; 2) how to measure overall system accuracy, 
as well as the accuracy of the ‘individual system com- 
ponents; 3) how to establish standards by which the 
accuracy of the system components could be mea- 
sured; and 4) how best to compare the two gram- 
mars. 

Eliciting Expressions from Subjects without 
Introducing Bias 

To evaluate how well the continuous-speech interface 
might perform in a real-world setting, we first needed 
to elicit from physicians unbiased, natural-language 
expressions. One method for eliciting such expres- 
sions would be to have physicians examine patients 
with abnormal clinical findings and then ask the phy- 
sicians to speak those findings into the interface. This 
method would mirror closely how the system would 
be used in clinical practice. The disadvantage of this 
method is the time, cost, and complexity associated 
with standardizing the experimental setup and re- 
cruiting patients and physician subjects. 

Another method for eliciting expressions would be 
to give physicians findings from dictated progress 
notes and ask them to speak a description of the 
findings into the interface using their own words. 
This method would elicit expressions in an efficient 
manner and simplify the experimental setup. How- 
ever, presenting text descriptions to physicians could 
potentially bias them toward speaking words and 
phrases from the text descriptions. 

A final method for eliciting expressions would be to 
use audiovisual stimuli. For instance, we could evoke 
the finding right lower quadrant tenderness using a dia- 
gram of the abdomen with the right lower quadrant 

highlighted and the sound “ouch!,” which would 
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play when the user touched the highlighted area. 
Presenting audiovisual stimuli would allow physi- 
cians to form a clinical concept in their minds without 
verbal bias and then to describe the concept to the 
interface in their natural language. The disadvantage 
of this approach is the difficulty of assembling mul- 
timedia material that would reproducibly elicit a clin- 
ical finding. 

Studying Overall and Component Accuracy 

We wished to measure the semantic accuracy of the 
speech interface and understand the relative contri- 
butions of the speech-recognition and concept- 
matching components. To do this, our experimental 
design should allow measurement of the system’s 
components both separately and together. Especially 
difficult would be measuring the accuracy of the con- 
cept matcher alone. Normally, concept-matching ac- 
curacy would be measured by how well input utter- 
ances matched with QMR terms. However, if poor 
speech recognition distorted the input utterance be- 
fore it reached the concept matcher, then the mea- 

surement of concept-matching accuracy would also 
be distorted. Therefore, our experimental design re- 
quired that in the real-time experiment the concept 
matcher receive undistorted input, such as a human 
transcription of each utterance. 

Establishing “Gold Standards” 

To measure the accuracy of the speech-interface pro- 
gram and its components, we needed to establish 
“gold standards.” Particularly difficult was establish- 
ing the “gold standard” for concept matching. The 
main difficulty was deciding who should judge how 
well an utterance matched with the chosen QMR 
term. For instance, how well does the utterance “right 
lower quadrant pain” match with the QMR term ab- 
domen tenderness right lower quadrant? One option would 
be to assemble a panel of physicians to review pairs 
of input utterances and vocabulary terms and to judge 
their semantic proximity. The advantage of this ap- 
proach would be that the standards for judging prox- 
imity would be applied uniformly across all experi- 
mental subjects and all utterance-term pairs. The 

Figure 1 Overview of the evaluation experiment. During 
the real-time experiment (area outside the shaded rectan- 
gle), the subject’s utterance was processed in parallel by a 
hidden experimenter and the speech-recognition system: 
the experimenter transcribed the utterance into the inter- 
face, and the speech-recognition system decoded the ut- 
terance to a subphoneme stream and stored the stream on 
disk. The transcribed utterance was processed by the con- 
cept matcher and generated a ranked list of Quick Medical 
Reference (QMR) terms; the subject then chose the closest 
matching term and identified how close it matched to the 
utterance. At a later time (area inside the shaded rectangle), 
the stored subphoneme streams were further processed by 
the speech recognizer twice, once using manually gener- 
ated grammars and then using programmatically generated 
grammars. Each resulting recognized text string was pro- 
cessed by the concept matcher and generated a ranked list 
of QMR terms. The semantic accuracy of the speech in- 
terface was measured by observing whether the QMR term 
chosen in the real-time experiment (the “gold standard”) 
appeared on the list when the utterance was run through 
both the speech recognizer and the concept matcher. 

Stimulus 

Live I 

Concept Matcher 

Best-Matching 
QMR Term 
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disadvantage of this method is that experts would 
lack contextual information that might help them es- 
timate the intentions of subjects. 

Another way to judge the semantic proximity of ut- 
terance-term pairs would be to ask experimental 
subjects to judge the degree to which their own input 
utterances matched with a QMR term. This method 
would be efficient and would allow users of the sys- 
tem to judge for themselves the accuracy of the 
matching. The disadvantage of this approach is in- 
terrater variability: subjects given the same utter- 
ance-term pair might have considerably different 
thoughts on how well the utterance matched with 
the controlled-vocabulary term. 

Comparing the Grammars 

To compare how the manually generated and pro- 
grammatically generated grammars differed in their 
support of speech recognition, we needed to measure 
speech recognition using similar or identical inputs. 
One approach would be to ask physicians to speak 
the same phrase into the computer twice; the first 
utterance could be processed with one grammar and 
the second utterance with the other grammar. The 
disadvantage of this approach is that although the 
two utterances would contain identical words and 
word orders, they would likely contain different vol- 
umes, pauses, and inflections. 

A more desirable strategy would be to compare the 
grammars using identical inputs. However, because 
our speech-recognition system could not process in 
parallel one utterance with two grammars, we needed 

a way to store utterances without degrading their 
acoustic quality and later process them serially using 
each grammar. Since the speech-recognition’ system 
decodes audio signals to a stream of subphonemes 
before generating a text string using a grammar, we 
could store the subphoneme stream during the real- 
time experiment and later generate phrases using 
each grammar. 

Experimental Design 

We used audiovisual stimuli and a Wizard-of-Oz ex- 
perimental design to meet the requirements outlined 
above. An overview of the experiment is shown in 
Figure 1. We presented 20 audiovisual stimuli that 
represented QMR findings to 20 physician subjects 
and asked the physicians to speak those findings into 
the interface using their own words. During the real- 
time running of the experiment, subjects entered 
clinical findings using spoken phrases and then chose 
the QMR term that best matched the intended find- 
ing. Users believed that the list of QMR terms was 
generated by the speech-interface program when, in 
fact, the list was generated by a hidden experimenter 
typing the utterance into the concept matcher. This 
design allowed the concept matcher to receive as 
input not the output from the speech recognizer but 
instead a human transcription of the utterance. Thus, 
we could measure the accuracy of concept matching 
without contamination from speech misrecognition. 

Later, we analyzed the accuracy of the entire system 
by processing the utterances made during the ex- 
periment twice, once using manually generated 

Figure 2 Example of 
a stimulus used to evoke 
the clinical concept rep- 
resented by the Quick 
Medical Reference 
(QMR) term heart mur- 
mur systolic ejection sec- 
ond right interspace. The 
stimulus shows a steth- 
oscope placed on a pa- 
tient’s chest and a rep- 
resentation of the 
cardiac cycle with a dia- 
mond-shaped murmur. 
Clicking the “Play 
sound” button pro- 
duces an audio clip of 
a systolic murmur. The 
“Specific” icon signals 
the subject to “be as 
specific as you can” 
when describing the 
finding. 
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grammars and then using programmatically gener- 
ated grammars. This method allowed us to measure 
how well the interface would have performed had 
we used the speech recognizer and a particular gram- 
mar in the real-time experiment. 

Subjects 

We used an invitation letter distributed by electronic 
mail and word of mouth to recruit 20 physicians from 
our medical center. Subjects were eligible to partici- 
pate if they had completed medical school and in- 
ternship, had no detailed knowledge of QMR or 
speech-recognition technology, and used English as 
a first language. 

Warm-up 

Although the continuous-speech recognition system 
was speaker-independent (i.e., it was capable of rec- 
ognizing speech from different users without train- 
ing), it did require a warm-up period to make ad- 
justments for the volume of each speaker’s voice. A 
warm-up period was also necessary to teach subjects 
how to use the speech apparatus: how to activate the 
speech-recognition system by pressing a button and 
coordinate this with speaking into a head-mounted 
microphone. Lastly, the warm-up period was nec- 
essary to give subjects confidence that the computer 
could recognize their utterances. 

Because we did not want to bias what the subjects 
would say during the experiment, we had the sub- 
jects speak nonmedical phrases during the warm-up 
period. One of us (CDL) created a small speech ap- 
plication that recognized lines from a familiar chil- 
dren’s book. The application recognized only a small 
number of phrases and thus had recognition accuracy 
approaching 100%. Subjects spoke supplied phrases 
into the application and observed near-instantaneous 
output from the speech recognizer. Subjects could 
use this feedback to confirm that a phrase was rec- 
ognized or to reenter an utterance if it was misrec- 
ognized. Once subjects had gained confidence with 
the speech apparatus and the speech recognizer was 
consistently recognizing their utterances, we termi- 
nated the warm-up. The average warm-up time was 
five minutes. 

Presentation of Audiovisual Stimuli 

To minimize bias that might be introduced by textual 
material, we presented to subjects clinical findings 
that were represented predominantly by diagrams, 
images, and sounds. Stimuli were designed to evoke 
from physicians abnormal physical examination find- 
ings that are represented in the QMR knowledge 

Table 1 n 

Characteristics of the Subjects of This Study 

Characteristic 

Mean length of time since graduation 
from medical school 

Value 

7.95 years 

Male 

Completed residency 

Medical specialty 

(17120) 85% 

(18120) 90% 

Internal medicine 
Surgery 
Radiology 
Emergency medicine 
Internship only 

(15120) 75% 
(2120) 10% 
(l/20) 5% 
(l/20) 5% 
(1/20) 5% 

base. To eliminate bias due to learning and fatigue, 
the stimulus material was presented to each subject 
in random order. 

One of us (JCW), who had no knowledge of the 
speech interface or how the grammars were created, 
developed the stimulus material.17 He was first given 
a list of all the QMR terms describing abnormal phys- 
ical findings localized in the neck, back, breast, heart, 
chest, abdomen, and vasculature. Only QMR terms 
that contained at least one word found in the speech 
system’s dictionary were included. The designer ran- 
domized these 116 terms and, starting with the first, 
selected 20 terms he considered most feasible to com- 
municate using diagrams, images, and sounds. He 
rejected 17 QMR terms that he believed could not be 
communicated reliably, such as abdomen flank heavy, 
or neck muscle flaccid. 

The designer assembled the audiovisual stimuli using 
both images from books about physical examination, 
medical atlases, and slide collections and clips from 
audio libraries (Fig. 2). When no suitable image or 
audio clip was available, the designer diagrammed 
the location of the abnormal physical finding using 
a graphics program. Most diagrams consisted of a 
body chart with the abnormality outlined or shaded. 

Six pilot physician subjects, who were not subjects 
in the main experiment, reviewed the test stimuli 
and were asked to name the clinical finding. Stimuli 
that evoked too many different findings were im- 
proved by altering or adding diagrams, images, or 
audio. In 14 of the 20 findings, pilot subjects found 
it difficult to gauge what level of detail was por- 
trayed. For instance, a diagram showing splenomegaly 
moderate might be described as an abdominal mass, 
a left upper quadrant mass, or splenomegaly. Icons 
were added to denote “be as specific as you can“ or 
“this is a general finding.” 
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Pilot studies showed that only four physical findings 
could be evoked reliably by visual stimuli alone, while 
another six findings required both visual and audi- 
tory stimuli. For the remaining findings, text was 
added to describe either a typical patient in whom 
the finding might be observed (e.g., for splenomegaly 
moderate: “Diagnosis: chronic malaria”) or a proce- 
dure that would elicit that finding (e.g., “Procedure: 
palpation”). When text was added to the stimulus 
material, the designer used few words and was care- 
ful not to name the abnormality or the anatomic site.17 

Measurement of Speech-recognition 
and Concept-matching Accuracy 

Below we describe how we measured the accuracy 
of concept matching alone, of speech recognition alone, 
and of speech recognition and concept matching to- 
gether. 

Concept-matching accuracy. During the real-time ex- 
periment, the concept matcher received as input a 
human transcription of the utterance, not the output 
from the speech recognizer. If we assumed that the 
human transcription of the utterance was highly ac- 
curate, then we could measure the accuracy of the 
concept matcher alone by asking subjects to judge 
the degree of correspondence between their utter- 
ances and the QMR terms that they chose. Subjects 
could grade the match between utterance and con- 
trolled-vocabulary term as “exact,” “general, but not 
exact,” or “not a match.” 

Because the human experimenter could have made 
errors transcribing utterances, we listened to audio 
tapes recorded during the experiment and analyzed 
transcription errors. We observed how many tran- 
scriptions contained errors and whether the errors 

25 

20 - 

15- 

10 - 

5' 

0' 
012 3 4 5 6 7 0 9 10 11 12 13 14 

Utterance Length (# of Words) 

F i gure 3 Frequency distribution of utterance length. 

were misspellings or were word substitutions, dele- 
tions, or insertions. To understand whether tran- 
scription errors distorted the output of the concept 
matcher, we also observed whether errors altered the 
set of terms on the QMR list. 

Speech-recognition accuracy. We measured speech- 
recognition accuracy by comparing the output of the 
speech-recognition system with the human transcrip- 
tion of the utterance. There were several ways we 
could have calculated speech-recognition accuracy. 
In general, we should give a positive score for words 
appearing in both the transcribed and the recognized 
phrases and a negative score for words that are in- 
serted, deleted, or substituted in the recognized 
phrase. The most common approach for evaluating 
accuracy is to align the recognized string against the 
transcribed utterance using a dynamic programming 
algorithm and then count the words that are correct, 
substitutions, deletions, and insertions. The recog- 
nition accuracy can then be calculated using a for- 
mula. 18 

For our evaluation, we used a modification of this 
approach. First, we eliminated from the transcribed 
and recognized phrases all stop words (e.g., the, an, 
of) because we wished to focus on recognition ac- 
curacy of keywords. We then used the following for- 
mula to calculate the recognition accuracy from the 
transcribed and recognized phrases: 

Recognition accuracy (%) = 
Number of words in common x l00, 

Number of unique words 

In this formula, the numerator shows the number of 
words appearing in both phrases (the intersection), 
while the denominator shows the number of unique 
words in the two phrases combined (the union). If 
the transcribed and recognized phrases are exactly 
the same (e.g., both are “right lower quadrant ten- 
derness”), the numerator and denominator will be 
equal and the recognition accuracy will be 100%. If 
the recognized phrase contains insertions, deletions, 
or substitutions, the numerator will be small relative 
to the denominator and the recognition accuracy will 
be lower. For instance, if the transcribed utterance 
were “liver tenderness” and the recognized text string 
were “severe tenderness,” there would be one word 
in common and three unique words. Therefore, the 
recognition accuracy would be 33%. 

We chose this formula for computing recognition ac- 
curacy because of its simplicity. In addition, we had 
observed that an equivalent form of this formula, the 
Hooper equation, 19 has been used extensively in the 
literature to measure the degree of similarity between 
index terms assigned by different indexers. 
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Accuracy of speech recognition and concept matching 
together. We measured how well the interface pro- 
gram would have worked had we used speech rec- 
ognition in real-time. We processed the subphoneme 
stream from each utterance with a particular gram- 
mar, and ran the resulting recognized text string 
through the concept matcher to create a ranked list 
of QMR terms. We measured semantic accuracy by 
observing whether the QMR term that the subject 
had chosen during the experiment (the “gold stan- 
dard”) appeared on the list of terms generated when 
the utterance was run through both the speech recog- 
nizer and the concept matcher. 

Results 

Subjects 

Characteristics of the 20 subjects are shown in Table 
1. All subjects were native English speakers; two 
were from English-speaking countries outside the 
United States. 

Utterance Characteristics 

With 20 subjects each speaking 20 utterances, we had 
a total of 400 utterances for analysis. Utterance length 
ranged from 1 to 13 words, with a mean of 4.39 words 
(Fig. 3). A typical one-word utterance was “brady- 
cardia” and a representative long utterance was “a 
two out of six systolic murmur in the right upper 
sternal border.” Analysis of variance showed that 
subjects differed significantly in the number of words 
they used to describe a clinical finding (F = 9.624, 
p < 0.0001). However, we found no significant cor- 
relation between utterance length and gender, spe- 
cialty, or years since graduation from medical school. 

Concept-matching Accuracy 

Of the 400 utterance-term matches generated in the 
experiment, subjects judged 261 (65%) to be exact, 
96 (24%) to be general, but not exact, and 43 (11%) 
to be not a match. Combining exact and general 
matches, 89% of the utterances in the experiment 
matched to a QMR term in at least a general way. 
Table 2 shows examples of matches that were clas- 
sified in the three different categories. We found no 
correlation between the degree of matching and the 
subject’s gender, specialty, or years since graduation 
from medical school, nor between the degree of match 
and the order in which the clinical finding was pre- 
sented. 

Most matching errors occurred with just a few of the 
QMR terms. For example, of utterance-term pairs 
that subjects judged as not a match, 34 of 43 (79%) 

Table 2 n 

Examples of How Subjects Rated the Match 
between Their Utterances and the Quick Medical 
Reference (QMR) Terms That They Chose 

Degree of Match Utterance QMR Term Chosen 

Exact “Right lower Abdomen tenderness 
quadrant ten- right lower quad- 
derness” rant 

General, but not “Right-sided neck Artery carotid systolic 
exact bruit” bruit 

Not a match “Massive ascites” None* 

*QMR terms from which subjects could choose were 1) spleno- 
megaly massive, 2) splenomegaly moderate, and 3) liver enlarged 
moderate. 

were produced by 4 of 20 QMR findings. Of these 
findings, one (breast gynecomastia) accounted for 12 of 
43 (28%) of the errors because the crucial keyword 
“gynecomastia” was accidentally omitted from the 
dictionary used by the interface program. Although 
the speech recognizer correctly recognized the word 
gynecomastia, the concept matcher did not match 
the word with the QMR term. The other findings 
caused errors for two reasons: 1) there was ambiguity 
in either the stimulus material that represented the 
findings or the QMR term for which the stimulus 
material was created, or 2) keywords extracted from 
the recognized string did not point to synonyms that 
would allow matching with the appropriate QMR 
term. 

Ambiguity of either the stimulus material or the QMR 
term accounted for 17 of 43 errors (40%). For instance, 
the stimulus for abdominal flank bulging bilaterally gen- 
erated utterances that included “protuberant abdo- 
men, ” “bloated abdomen, ” “distended abdomen,” 
“ascites,” and “abdominal birthmark.” Even though 
the intended QMR term appeared on the list in 15 
of 20 cases, only six subjects chose this QMR term 
as the closest match. In addition, only one of these 
six subjects rated the degree of match as exact. Fur- 
ther analysis of the errors generated by the stimulus 
material is presented elsewhere.” 

Lack of appropriate synonym pointers was the cause 
for the remaining 14 errors (38%). For instance, ut- 
terances such as “physical examination shows a large 
liver” and “enlarged liver” did not match with the 
QMR term hepatomegaly because the canonical form 
for liver did not include pointers to hepatomegaly. 

To understand how transcription errors may have 
distorted the output of the concept matcher and af- 
fected its accuracy, we compared the experimenter’s 
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Table 3 n Speech-recognition Accuracy 

Recognition Accuracy, Semantic Accuracy, and 
Quick Medical Record (QMR) List Length for the 
Two Grammars 

Grammar 

Manually gener- 
ated 

Recognition Semantic Mean QMR 
Accuracy Accuracy List Length 

+SEM (%) (%) + SEM 

47 + 1.7* 81t 8.44 +2 0.341 

Programmatically 
generated 

39 + 1.8 74 10.89 + 0.360 

*t-test, p < 0.0001. 
tx2, p < 0.0001. 
t-test, p < 0.0001. 

We computed the overall recognition accuracy sup- 
ported by each grammar by averaging the recognition 
accuracy for each of 400 utterances. We compared 
the overall accuracy of the two grammars and applied 
the paired t-test to gauge statistical significance. As 
the second column of Table 3 demonstrates, the rec- 
ognition accuracy of the manually generated gram- 
mars was superior to the recognition accuracy of the 
programmatically generated grammars (p < 0.0001). 
Table 4 shows how a sample of input utterances was 
misrecognized by the two grammars. 

Accuracy of Speech Recognition and Concept 
Matching Together 

Table 4 n 

Examples of Speech-recognition Errors 

Grammar Used by Speech Recognizer 

Manually Programmatically 
Utterance Generated Generated 

“He has a crescendo A harsh grade He has a second in 
decrescendo dia- one decres- the decrescendo is 
stolic murmur” cendo systolic heart murmur 

murmur 

“There is a hernia- 
lion around the 
umbilicus” 

There is a her- 
nia under a 
umbilicus 

There is lump at a 
right in a abdomi- 
nal left 

“Right upper quad- Around a upper There is a right upper 
rant tenderness” quadrant ten- quadrant of a ten- 

derness is derness 

transcriptions with audio recordings. Thirteen per- 
cent (52) of the 400 transcriptions contained errors. 
Single-word misspellings accounted for 21 (40%) of 
the transcription errors and single-word substitutions 
(e.g., “left” typed instead of “right”) accounted for 
12 (23%) of the errors. The remaining 19 errors (37%) 
were caused by the omission of words in the tran- 
scription. For instance, the experimenter omitted the 
word “ejection” when he transcribed the utterance 
“systolic ejection murmur in the right intercostal 
space.“ 

We measured the semantic accuracy of the interface 
program by processing utterances through both the 
speech recognizer and the concept matcher. We ob- 
served whether the “gold standard” QMR term-the 
term that the subject had both chosen during the 
experiment and rated as at least a general match- 
appeared on the ranked list of terms generated by 
the speech recognizer and the concept matcher. As 
shown in the third column of Table 3, the interface 
program using speech recognition would have gen- 
erated a list that included the “gold standard” QMR 
term more than 70% of the time. Manually generated 
grammars supported the matching process signifi- 
cantly better than did the programmatically gener- 
ated grammars (x2, p < 0.0001). Concept matching 
performed on utterances processed by the speech 
recognizer using manually generated grammars 
achieved accuracy of 81%, while concept matching 
performed on transcribed utterances achieved accu- 
racy of 89%. 

To see whether the transcription errors distorted the 
output of the concept matcher, we observed whether 
the true utterance would have generated a different 
QMR list than did the transcribed utterance. Sur- 
prisingly, only one mistranscription caused a change 
in content of the QMR list. The most likely expla- 
nation for this low true error rate is that most tran- 
scription errors occurred with nonkeywords. Since 
the concept matcher performs keyword matching, it 
was unaffected by nonkeyword errors. 

One potential explanation for the different perfor- 
mances of the two grammars is that utterances pro- 
cessed with one grammar could have generated more 
QMR terms to choose from than utterances processed 
with the other grammar. This would increase the 
probability that the “gold standard” QMR term ap- 
peared on the list. To investigate this possibility, we 
measured the number of QMR findings generated by 
each utterance. The last column of Table 3 shows 
that the programmatically generated grammars pro- 
duced lists of QMR terms that were 2.45 findings 
longer, on average, than the lists produced by the 
manually generated grammars. This difference was 
highly significant (paired t-test, p < 0.0001). Human 
transcription of the utterance produced a list length 
of 8.53 + 0.334 findings, which was not significantly 
different from that of the manually generated gram- 
mars. When comparing the two grammars, the man- 
ually generated grammars supported better matching 
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of utterances to QMR terms yet generated shorter 
lists of terms. 

Discussion 

This evaluation experiment using the Wizard-of-Oz 
paradigm yielded several interesting results. Al- 
though recognition accuracy alone was poor, the ad- 
dition of concept matching boosted the system’s se- 
mantic accuracy to 81% when manually generated 
grammars were used. This compared favorably with 
the 89% accuracy of concept matching alone, which 
did not depend on speech recognition. The 8% dif- 
ference between the accuracy of the concept matcher 
with and without speech recognition shows the pen- 
alty that resulted from using speech input as opposed 
to keyword input. 

These results should be interpreted in context. First, 
because we found significant differences in the rec- 
ognition accuracy of the two grammars, it is possible 
that more accurate grammars could be created and 
could further improve semantic ‘accuracy. Second, 
simple errors made by the concept matcher lowered 
the semantic accuracy for the entire system. If the 
concept matcher had had the word “gynecomastia” 
in its dictionary and had had a richer set of synonym 
pointers, it could have produced an exact or a general 
match for 96% of the utterances. This improvement 
in concept-matching accuracy would likely improve 
the semantic accuracy of the entire system. 

On the other hand, if this speech interface were used 
in a real-world setting, it would likely have semantic 
accuracy that would be lower than that found in our 
experimental setting. The reason is that we created 
stimulus material to elicit clinical findings that were 
represented in the QMR vocabulary. 

Thus, if our stimulus material and interface program 
had performed perfectly, we could have achieved 
100% semantic accuracy. However, in a real-world 
setting, clinicians may wish to enter findings that do 
not exist in the controlled vocabulary. Thus, the up- 
per limits of semantic accuracy will be determined 
by the expressivity of the controlled vocabulary, not 
by the speech-interface program. 

It is debatable how accurate a speech system should 
be before it can be adopted in clinical practice. If 
accuracy is paramount to the success of a medical 
application, then semantic accuracy will need to be 
higher than we were able to achieve. However, if 
suboptimal accuracy is balanced by desirable attri- 
butes of speech input such as familiarity, ease of use, 
and expressivity, then our results might be accept- 
able. In our evaluation, we did not measure formally 

the value that users placed on using speech as op- 
posed to typing or to manipulating a pointing device 
because subjects did not actually use the speech rec- 
ognizer in the real-time experiment. Informally, how- 
ever, a majority of subjects said that if our speech 
interface were faster (not aware that a hidden ex- 
perimenter was actually manipulating the interface), 
they would prefer to use a speech interface for en- 
tering medical terms. Future experiments should for- 
mally evaluate the subjective benefits of using speech 
input so that these benefits can be compared with 
any performance penalty produced by speech mis- 
recognition. 

Other observations from this experiment were that 
it was feasible to use the Wizard-of-Oz paradigm for 
evaluating a speech-input system and that this ex- 
perimental design provided an excellent way to mea- 
sure a system’s components, as well as to elicit stan- 
dards by which the performance of the components 
could be measured. 

The feasibility of Wizard-of-Oz experiments for the 
design of speech interfaces has been demonstrated 
by others. 13-15 However, to our knowledge, the fea- 
sibility of this experimental technique for the evalu- 
ation of a speech interface has never been demon- 
strated. The main concern regarding feasibility was 
whether physician subjects would believe that they 
were interacting solely with a computer and would 
speak to our interface as they would speak to any 
computer program in the clinical setting. The warm- 
up task (speaking simple phrases into the speech 
recognizer and observing the near-instantaneous out- 
put of the recognizer) seemed to convince subjects 
that they were interacting directly with a computer. 

Later, when a hidden experimenter replaced the 
speech recognizer as the decoder of utterances, sub- 
jects experienced a brief delay while an utterance was 
being transcribed, but did not seem to suspect the 
cause of the delay. Therefore, we believe that sub- 
jects’ utterances were representative of phrases that 
physicians would speak to a speech interface in a 
clinical setting. 

Beyond feasibility, we believe that the Wizard-of-Oz 
technique has advantages as an evaluation strategy 
for speech interfaces because this technique allows 
analysis of different system configurations from one 
experiment. This technique allowed us to perform 
three different experiments: 1) how utterances tran- 
scribed by an experimenter match with QMR terms, 
2) how utterances run through a speech system with 
manually generated grammars match with QMR terms, 
and 3) how utterances run through a speech system 
with programmatically generated grammars match 
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with QMR terms. We were able to measure overall 
system accuracy, as well as the contribution of each 
component, by transcribing utterances in the real- 
time experiment and later processing them with the 
speech recognizer and different grammars. In addi- 
tion, because we compared the configurations on the 
same input, we were able to eliminate some potential 
confounding variables and thus study the target var- 
iables more accurately. 

Another advantage of the Wizard-of-Oz technique is 
that it allows the experimenter to establish “gold 
standards” and then use those standards to measure 
the accuracy of the system’s components. In this study, 
for instance, the real-time experiment characterized 
how subjects would react when their utterances were 
transcribed by an experimenter. Later, utterances run 
through the two grammars could be judged against 
this standard. The benefit of establishing ideal per- 
formance in the real-time experiment is that ideal 
performance becomes the benchmark for measuring 
semantic accuracy. Once the ideal action is known, 
the semantic accuracy of other system configurations 
can be measured by comparison with that ideal ac- 
tion. 

The Wizard-of-Oz technique is not without its draw- 
backs, however. Although the technique can simu- 
late the running of several experiments during one 
evaluation study, the technique is not the same as 
running several experiments serially. For instance, 
we assumed that the QMR term that a subject chose 
during the real-time experiment would be the term 
he or she would have chosen if his or her utterance 
had been run through the speech recognizer during 
the real-time experiment. This assumption might be 
valid if the list of QMR terms generated by speech 
recognition was a subset of the list generated by 
perfect recognition. However, because of misrecog- 
nition, terms appeared on the list that did not appear 
during the real-time experiment. Therefore, we could 
only guess what term the subject would have chosen 
in this situation; we assumed that he or she would 
have picked the same term that he or she chose in 
the real-time experiment, but we have no way to 
verify this assumption. 

Another potential problem with this evaluation par- 
adigm is the reliance on real-time human transcrip- 
tions of utterances for establishing “gold standards” 
for semantic accuracy. If the transcriptions contain 
many errors, then input to the system components 
will be distorted just as speech recognition might 
distort the input. Fortunately, in our experiment, only 
one mistranscription affected the output of the sys- 
tem. However, more significant penalties are possible 

if this technique is used for other evaluation exper- 
iments. Although we acknowledge. these weaknesses 
in the experimental design, we believe that the ben- 
efits of this design, particularly the ability to compare 
different configurations on the same input, outweigh 
the limitations. 

We evaluated a speech interface to a decision support 
system using a technique that has. been used for 
design of speech systems but not for evaluation of 
speech systems. ‘Using this design, we found that 
speech misrecognition imposed a 8% penalty on the 
semantic accuracy of our system. In addition, man- 
ually generated grammars supported better recog- 
nition for this limited domain. We also found that 
the Wizard-of-Oz experimental design offered many 
advantages for the evaluation of this interface and 
we believe that this technique may be useful to future 
evaluations of speech-input systems. 
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