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Abstract. The classical approach to investigating polynomial eigenvalue problems is lineariza-
tion, where the polynomial is converted into a larger matrix pencil with the same eigenvalues. For
any polynomial there are infinitely many linearizations with widely varying properties, but in prac-
tice the companion forms are typically used. However, these companion forms are not always entirely
satisfactory, and linearizations with special properties may sometimes be required.

Given a matrix polynomial P , we develop a systematic approach to generating large classes of
linearizations for P . We show how to simply construct two vector spaces of pencils that generalize the
companion forms of P , and prove that almost all of these pencils are linearizations for P . Eigenvectors
of these pencils are shown to be closely related to those of P . A distinguished subspace is then
isolated, and the special properties of these pencils are investigated. These spaces of pencils provide
a convenient arena in which to look for structured linearizations of structured polynomials, as well
as to try to optimize the conditioning of linearizations.
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1. Introduction. Polynomial eigenvalue problems P (λ)x = 0, where P (λ) =∑k
i=0 λ

iAi with real or complex coefficient matrices Ai, form the basis for (among
many other applications) the vibration analysis of buildings, machines, and vehicles
[5], [9], [21], and numerical methods for the solution of these problems are incorporated
into most commercial and noncommercial software packages for structural analysis.

The classical and most widely used approach to solving polynomial eigenvalue
problems is linearization, i.e., the conversion of P (λ)x = 0 into a larger size linear
eigenvalue problem L(λ)z = (λX+Y )z = 0 with the same eigenvalues, so that classical
methods for linear eigenvalue problems can be pressed into service. The linearizations
most commonly commissioned are the companion forms for P (λ), one of which is

L(λ) = λ

⎡⎢⎢⎢⎣
Ak 0 · · · 0

0 In
. . .

...
...

. . .
. . . 0

0 · · · 0 In

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...

0 · · · −In 0

⎤⎥⎥⎥⎦.(1.1)
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Many physical problems lead to matrix polynomials that are structured in some way;
for example, the coefficient matrices may all be symmetric [9], or perhaps alternate
between symmetric and skew-symmetric [15], or even have palindromic structure [12].
Such structure in the matrix polynomial often forces symmetries or constraints on
the spectrum [12], [14], [15], [21] that have physical significance. Numerical methods
(in a finite precision environment) that ignore this structure often destroy these qual-
itatively important spectral symmetries, sometimes even to the point of producing
physically meaningless or uninterpretable results [21].

Unfortunately the companion form linearizations do not reflect any structure that
may be present in the original polynomial, so their use for numerical computation in
such situations may be problematic. It would be preferable if the structural properties
of the polynomial were faithfully reflected in the linearization; a structure-preserving
numerical method that leaves the qualitative properties of the spectrum intact would
then be possible. Examples of such structured linearizations and their concomitant
structure-preserving numerical methods can be found in [14] and [15].

An important issue for any computational problem is its conditioning, i.e., its
sensitivity to small perturbations. It is known that different linearizations for a given
polynomial eigenvalue problem can have very different conditioning [20], [21], so that
numerical methods may produce rather different results for each linearization. It would
clearly be useful to have available a large class of easily constructible linearizations
from which one could always select a linearization guaranteed to be as well-conditioned
as the original problem.

A further issue for linearizations concerns eigenvalues at ∞. Much of the liter-
ature on polynomial eigenvalue problems considers only polynomials whose leading
coefficient matrix Ak is nonsingular (or even the identity), so the issue of infinite
eigenvalues does not even arise. However, there are a number of applications, such
as constraint multibody systems [2], [16], circuit simulation [3], or optical waveguide
design [17], where the leading coefficient is singular. In such cases one must choose a
linearization with care, since not all linearizations properly reflect the Jordan struc-
ture of the eigenvalue ∞ [13]. It has therefore been suggested [4], [10] that only strong
linearizations, which are guaranteed to preserve the structure of infinite eigenvalues,
can safely be used in such circumstances. Having a large class of linearizations that
are known to also be strong linearizations would make this issue of infinite eigenvalues
less of a concern in practice.

The aim of this paper is to show how to systematically generate, for any regular
matrix polynomial P , large classes of linearizations that address these issues. These
linearizations are easy to construct from the data in P , properly handle any infinite
eigenvalues, provide a fertile source of structured linearizations for many types of
structured polynomials [7], [12], and collectively constitute a well-defined arena in
which to look for “optimally” conditioned linearizations [8].

After introducing some basic definitions and notation in section 2, we develop a
natural generalization of the companion forms in section 3. The result is two large
vector spaces of pencils for each matrix polynomial P , termed L1(P ) and L2(P ).
Eigenvectors of any pencil from these associated vector spaces are shown to be sim-
ply related to the eigenvectors of P , thereby deepening the analogy to the companion
forms. While not every pencil in these spaces is a linearization for P , we describe con-
ditions under which these pencils are linearizations in section 4. As a consequence we
can then show that almost every pencil in these spaces is in fact a strong linearization
for P .
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Finally, pencils in L1(P ) ∩ L2(P ) are considered in sections 5 and 6. For a
polynomial P of degree k this intersection, termed DL(P ), is shown to be a subspace
of dimension k. Further properties of these special pencils are derived, including an
elegant characterization of exactly which pencils in DL(P ) are linearizations for P .

Subsequent papers [7], [8], [12] extend this work to the investigation of the con-
ditioning of linearizations in DL(P ) and the construction of structured linearizations
for various types of structured matrix polynomials.

2. Basic definitions and notation. We study n×n matrix polynomials of the
form

P (λ) =
k∑

i=0

λiAi, A0, . . . , Ak ∈ F
n×n, Ak �= 0,(2.1)

where F denotes the field of real or complex numbers and k is the degree of P .
Definition 2.1. If λ ∈ C and nonzero x ∈ C

n satisfy P (λ)x = 0, then x is said
to be a right eigenvector of P corresponding to the (finite) eigenvalue λ.

Following standard usage, we will often abbreviate “right eigenvector” to just
“eigenvector” when there is no ambiguity.

Our main concern is with regular matrix polynomials, i.e., polynomials P (λ) such
that detP (λ) is not identically zero for all λ ∈ C; for such polynomials the finite
eigenvalues are precisely the roots of the scalar polynomial detP (λ). Note, however,
that some of our results also hold for singular matrix polynomials (these are studied
in detail in [13], [18]).

It is also useful to allow ∞ as a possible eigenvalue of P (λ). The technical device
underlying this notion is the correspondence between the eigenvalues of P and those
of the polynomial obtained from P by reversing the order of its coefficient matrices.

Definition 2.2 (Reversal of matrix polynomials). For a matrix polynomial P (λ)
of degree k as in (2.1), the reversal of P (λ) is the polynomial

revP (λ) := λkP (1/λ) =

k∑
i=0

λiAk−i.(2.2)

Note that the nonzero finite eigenvalues of revP are the reciprocals of those of P ;
the next definition shows how in this context we may also sensibly view 0 and ∞ as
reciprocals.

Definition 2.3 (Eigenvalue at ∞). Let P (λ) be a regular matrix polynomial of
degree k ≥ 1. Then P (λ) is said to have an eigenvalue at ∞ with eigenvector x if
revP (λ) has the eigenvalue 0 with eigenvector x. The algebraic, geometric, and partial
multiplicities of the infinite eigenvalue are defined to be the same as the corresponding
multiplicities of the zero eigenvalue of revP (λ).

The classical approach to solving and investigating polynomial eigenvalue prob-
lems P (λ)x = 0 is to first perform a linearization, that is, to transform the given
polynomial into a linear matrix pencil L(λ) = λX+Y with the same eigenvalues, and
then work with this pencil. This transformation of polynomials to pencils is mediated
by unimodular matrix polynomials, i.e., matrix polynomials E(λ) such that detE(λ)
is a nonzero constant, independent of λ.

Definition 2.4 (Linearization [5]). Let P (λ) be an n × n matrix polynomial
of degree k with k ≥ 1. A pencil L(λ) = λX + Y with X,Y ∈ F

kn×kn is called a
linearization of P (λ) if there exist unimodular matrix polynomials E(λ), F (λ) such
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that

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
.

There are many different possibilities for linearizations, but probably the most
important examples in practice have been the so-called companion forms or companion
polynomials [5]. Letting

X1 = X2 = diag(Ak, I(k−1)n),(2.3a)

Y1 =

⎡⎢⎢⎢⎣
Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...
0 · · · −In 0

⎤⎥⎥⎥⎦, and Y2 =

⎡⎢⎢⎢⎣
Ak−1 −In · · · 0

Ak−2 0
. . .

...
...

...
. . . −In

A0 0 · · · 0

⎤⎥⎥⎥⎦,(2.3b)

then C1(λ) = λX1 + Y1 and C2(λ) = λX2 + Y2 are, respectively, called the first and
second companion forms for P (λ) in (2.1).

The notion of linearization in Definition 2.4 has been designed mainly for matrix
polynomials (2.1) with invertible leading coefficient Ak. In this case all the eigenvalues
of P (λ) are finite, and their Jordan structures (i.e., their partial multiplicities) may
be recovered from any linearization [5]. However, the situation is somewhat different
when the leading coefficient of a regular P (λ) is singular, so that ∞ is an eigenvalue
with some multiplicity m > 0. Although the Jordan structures of all the finite eigen-
values of P are still faithfully recovered from any linearization of P , the eigenvalue ∞
is problematic. Consider, for example, the fact that the identity matrix is a lineariza-
tion for any unimodular P (λ). Indeed, in [10] it is shown that any Jordan structure
for the eigenvalue ∞ that is compatible with its algebraic multiplicity m can be re-
alized by some linearization for P . Thus linearization in the sense of Definition 2.4
completely fails to reflect the Jordan structure of infinite eigenvalues.

To overcome this deficiency, a modification of Definition 2.4 was introduced in [4],
and termed strong linearization in [10]. The correspondence between the infinite
eigenvalue of a matrix polynomial P and the eigenvalue zero of revP is the source of
this strengthened definition.

Definition 2.5 (Strong Linearization). Let P (λ) be a matrix polynomial of
degree k with k ≥ 1. If L(λ) is a linearization for P (λ) and revL(λ) is a linearization
for revP (λ), then L(λ) is said to be a strong linearization for P (λ).

For regular polynomials P (λ), the additional property that revL(λ) is a lineariza-
tion for revP (λ) ensures that the Jordan structure of the eigenvalue ∞ is preserved
by strong linearizations. The first and second companion forms of any regular poly-
nomial P have this additional property [4], and thus are always strong linearizations
for P . Most of the pencils we construct in this paper will be shown to be strong
linearizations.

The following notation will be used throughout the paper: I = In is the n × n
identity, R = Rk denotes the k×k reverse identity, and N = Nk is the standard k×k
nilpotent Jordan block, i.e.,

R = Rk =

[
1

. .
.

1

]
, and N = Nk =

⎡⎢⎢⎣
0 1

0
. . .
. . . 1

0

⎤⎥⎥⎦.(2.4)
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The vector
[
λk−1 λk−2 · · · λ 1

]T
of decreasing powers of λ is denoted by Λ. We

will also sometimes use Λ with an argument, so that Λ(r) =
[
rk−1 rk−2 · · · r 1

]T
.

Denoting the Kronecker product by ⊗, the unimodular matrix polynomials

T (λ) =

⎡⎢⎢⎢⎢⎢⎣
1 λ λ2 · · · λk−1

1 λ
. . .

...

1
. . . λ2

. . . λ
1

⎤⎥⎥⎥⎥⎥⎦⊗ I and G(λ) =

⎡⎢⎢⎢⎣
1 λk−1

. . .
...

1 λ
1

⎤⎥⎥⎥⎦⊗ I(2.5)

are used in several places in this paper. Observe that the last block-column of G(λ)
is Λ⊗ I, and that T (λ) may be factored as

T (λ) = G(λ)

⎡⎢⎣ I λI
I

I . . .
I

⎤⎥⎦
⎡⎢⎣ I

I λI
I . . .

I

⎤⎥⎦ · · ·

⎡⎢⎣ I
. . .

I λI

I
I

⎤⎥⎦.(2.6)

3. Vector spaces of “potential” linearizations. The companion forms of a
matrix polynomial P (λ) have several nice properties that make them attractive as
linearizations for P :

• they are immediately constructible from the data in P ,
• eigenvectors of P are easily recovered from eigenvectors of the companion

forms,
• they are always strong linearizations for P .

However, the companion forms have one significant drawback; they usually do not
reflect any structure or eigenvalue symmetry that may be present in the original
polynomial P . One would like to be able to draw on a source of linearizations for
P that allow for the preservation of structure while sharing as many of the useful
properties of companion forms as possible. To this end we introduce vector spaces of
pencils that generalize the two companion forms, and analyze some of the properties
these pencils have in common with the companion forms.

To motivate the definition of these spaces, let us recall the origin of the first
companion form. Imitating the standard procedure for converting a system of higher
order linear differential algebraic equations into a first order system (see [5]), introduce
the variables x1 = λk−1x, x2 = λk−2x, . . . , xk−1 = λx, xk = x, thereby transforming

the n× n polynomial eigenvalue problem P (λ)x = (
∑k

i=0 λ
iAi)x = 0 into

Ak(λx1) + Ak−1x1 + Ak−2x2 + · · · + A1xk−1 + A0xk = 0.

Then, together with the relations between successive variables, this can all be ex-
pressed as the kn× kn linear eigenvalue problem⎛⎜⎜⎜⎝λ

⎡⎢⎢⎢⎣
Ak 0 · · · 0

0 In
. . .

...
...

. . .
. . . 0

0 · · · 0 In

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...
0 · · · −In 0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

︸ ︷︷ ︸
= C1(λ)

⎡⎢⎢⎢⎣
x1

...
xk−1

xk

⎤⎥⎥⎥⎦ = 0.(3.1)
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Conversely, if we start with (3.1), then the last k−1 block rows immediately constrain
any solution of (3.1) to have the form⎡⎢⎢⎢⎣

x1
...

xk−1

xk

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
λk−1x

...
λx
x

⎤⎥⎥⎥⎦ = Λ⊗ x

for some vector x ∈ F
n. Thus to solve (3.1) it is reasonable to restrict attention to

products of the form C1(λ) · (Λ⊗ x). However,

C1(λ) ·
(
Λ⊗ x

)
=

[(
P (λ)x

)T
0 · · · 0

]T
for all x ∈ F

n,(3.2)

and so any solution of (3.1) leads to a solution of the original problem P (λ)x = 0.
Now observe that (3.2) is equivalent to the identity

C1(λ) ·
(
Λ⊗ In

)
= C1(λ)

⎡⎢⎢⎣
λk−1In

...
λIn
In

⎤⎥⎥⎦ =

⎡⎢⎢⎣
P (λ)

0
...
0

⎤⎥⎥⎦ = e1 ⊗ P (λ).(3.3)

Thus to generalize the companion form we consider the set of all kn × kn matrix
pencils L(λ) = λX + Y satisfying the property

L(λ) · (Λ⊗ In) = L(λ)

⎡⎢⎢⎣
λk−1In

...
λIn
In

⎤⎥⎥⎦ =

⎡⎢⎢⎣
v1P (λ)

...
vk−1P (λ)
vkP (λ)

⎤⎥⎥⎦ = v ⊗ P (λ)(3.4)

for some vector v = [v1, . . . , vk]
T ∈ F

k. This set of pencils will be denoted by L1(P ) as
a reminder that it generalizes the first companion form of P . To work with property
(3.4) more effectively we also introduce the notation

VP = {v ⊗ P (λ) : v ∈ F
k}(3.5)

for the set of all possible right-hand sides of (3.4). Thus we have the following defi-
nition.

Definition 3.1. L1(P ) := {L(λ) = λX + Y : X,Y ∈ F
kn×kn, L(λ) · (Λ⊗ In) ∈

VP }.
We will sometimes use the phrase “L(λ) satisfies the right ansatz with vector v”

or “v is the right ansatz vector for L(λ)” when L(λ) ∈ L1(P ) and the vector v in (3.4)
is the focus of attention. We say “right” ansatz here because L(λ) is multiplied on
the right by the block column Λ⊗ In; later we introduce an analogous “left ansatz.”

From the properties of the Kronecker product it is easy to see that VP is a vector
space isomorphic to F

k, and consequently that L1(P ) is also a vector space.
Proposition 3.2. For any polynomial P (λ), L1(P ) is a vector space over F.
Since C1(λ) is always in L1(P ), we see that L1(P ) is a nontrivial vector space for

any matrix polynomial P .
Our next goal is to show that, like the companion forms, pencils in L1(P ) are

easily constructible from the data in P . A consequence of this construction is a char-
acterization of all the pencils in L1(P ) and a calculation of dim L1(P ). To simplify the
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discussion, we introduce the following new operation on block matrices as a convenient
tool for working with products of the form L(λ) · (Λ⊗ In).

Definition 3.3 (Column shifted sum). Let X and Y be block matrices

X =

⎡⎢⎣X11 · · · X1k
...

...
Xk1 · · · Xkk

⎤⎥⎦, Y =

⎡⎢⎣Y11 · · · Y1k
...

...
Yk1 · · · Ykk

⎤⎥⎦
with blocks Xij , Yij ∈ F

n×n. Then the column shifted sum of X and Y is defined to be

X �→Y :=

⎡⎢⎣X11 · · · X1k 0
...

...
...

Xk1 · · · Xkk 0

⎤⎥⎦ +

⎡⎢⎣0 Y11 · · · Y1k
...

...
...

0 Yk1 · · · Ykk

⎤⎥⎦,
where the zero blocks are also n× n.

As an example, for the first companion form C1(λ) = λX1 + Y1 of P (λ) =∑k
i=0 λ

iAi , the column shifted sum X1 �→Y1 is just⎡⎢⎢⎢⎣
Ak 0 · · · 0

0 In
. . .

...
...

. . .
. . . 0

0 · · · 0 In

⎤⎥⎥⎥⎦ �→

⎡⎢⎢⎢⎣
Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...

0 · · · −In 0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Ak Ak−1 · · · A0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤⎥⎥⎥⎦.
Thus, the property C1(λ) · (Λ⊗ In) = e1 ⊗ P (λ) from (3.3) translates in terms of the
column shifted sum into X1 �→Y1 = e1 ⊗ [Ak Ak−1 · · · A0]. In fact, this shifted sum
operation is specifically designed to imitate the product of a pencil L(λ) = λX + Y
with the block column matrix Λ⊗ In, in the sense of the following lemma.

Lemma 3.4. Let P (λ) =
∑k

i=0 λ
iAi be an n× n matrix polynomial, and L(λ) =

λX + Y a kn× kn pencil. Then for v ∈ F
k,

(λX + Y ) · (Λ⊗ In) = v ⊗ P (λ) ⇐⇒ X �→Y = v ⊗ [Ak Ak−1 · · · A0],(3.6)

and so the space L1(P ) may be alternatively characterized as

L1(P ) = {λX + Y : X �→Y = v ⊗ [Ak Ak−1 · · · A0], v ∈ F
k}.(3.7)

The proof follows from a straightforward calculation which is omitted. The col-
umn shifted sum now allows us to directly construct all the pencils in L1(P ).

Theorem 3.5 (Characterization of pencils in L1(P )). Let P (λ) =
∑k

i=0 λ
iAi be

an n× n matrix polynomial, and v ∈ F
k any vector. Then the set of pencils in L1(P )

with right ansatz vector v consists of all L(λ) = λX + Y such that

X =
[ n (k−1)n

v ⊗Ak −W
]

and Y =
[ (k−1)n n

W +
(
v ⊗

[
Ak−1 · · · A1

])
v ⊗A0

]
,

with W ∈ F
kn×(k−1)n chosen arbitrarily.

Proof. Consider the multiplication map M that is implicit in the definition of
L1(P ):

L1(P )
M−→ VP ,

L(λ) �−→ L(λ) (Λ⊗ In).
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Clearly M is linear. To see that M is surjective, let v⊗P (λ) be an arbitrary element
of VP and construct

Xv =
[ n (k−1)n

v ⊗Ak 0
]

and Yv =
[ (k−1)n n

v ⊗
[
Ak−1 · · · A1

]
v ⊗A0

]
.

Then Xv �→Yv = v⊗[Ak Ak−1 · · · A0], so by Lemma 3.4, Lv(λ) := λXv+Yv is an M-
preimage of v⊗P (λ). The set of all M-preimages of v⊗P (λ) is then Lv(λ)+kerM,
so all that remains is to compute kerM. By (3.6), the kernel of M consists of all
pencils λX + Y satisfying X �→Y = 0. The definition of the shifted sum then implies
that X and Y must have the form

X =
[ n (k−1)n

0 −W
]

and Y =
[ (k−1)n n

W 0
]
,

where W ∈ F
kn×(k−1)n is arbitrary. This completes the proof.

Corollary 3.6. dim L1(P ) = k(k − 1)n2 + k .
Proof. Since M is surjective, dim L1(P ) = dim kerM + dimVP = k(k − 1)n2 +

k.
Thus we see that L1(P ) is a relatively large subspace of the full pencil space (with

dimension 2k2n2), yet the pencils in L1(P ) are still easy to construct from the data in
P . The next corollary isolates a special case of Theorem 3.5 that plays an important
role in section 4.

Corollary 3.7. Suppose L(λ) = λX + Y ∈ L1(P ) has right ansatz vector
v = αe1. Then

X =

[
αAk X12

0 −Z

]
and Y =

[
Y11 αA0

Z 0

]
(3.8)

for some Z ∈ F
(k−1)n×(k−1)n.

Note that C1(λ) fits the pattern in Corollary 3.7 with v = e1 and Z = −I(k−1)n.
The second important property of the companion form is the simple relationship

between its eigenvectors and those of the polynomial P that it linearizes. From the
discussion following (3.1) it is evident that every eigenvector of C1(λ) has the form
Λ ⊗ x, where x is an eigenvector of P . Thus eigenvectors of P are recovered simply
by extracting the last n coordinates from eigenvectors of the companion form. Our
next result shows that linearizations in L1(P ) also have this property.

Theorem 3.8 (Eigenvector Recovery Property for L1(P )). Let P (λ) be an n×n
matrix polynomial of degree k, and L(λ) any pencil in L1(P ) with nonzero right ansatz
vector v. Then x ∈ C

n is an eigenvector for P (λ) with finite eigenvalue λ ∈ C if and
only if Λ ⊗ x is an eigenvector for L(λ) with eigenvalue λ. If, in addition, P is
regular and L ∈ L1(P ) is a linearization for P , then every eigenvector of L with finite
eigenvalue λ is of the form Λ⊗ x for some eigenvector x of P .

Proof. The first statement follows immediately from the identity

L(λ)(Λ⊗ x) = L(λ)(Λ⊗ In)(1 ⊗ x) = (v ⊗ P (λ))(1 ⊗ x) = v ⊗ (P (λ)x).

For the second statement, assume that λ ∈ C is a finite eigenvalue of L(λ) with
geometric multiplicity m, and let y ∈ C

kn be any eigenvector of L(λ) associated with
λ. Since L(λ) is a linearization of P (λ), the geometric multiplicity of λ for P (λ) is
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also m. Let x1, . . . , xm be linearly independent eigenvectors of P (λ) associated with
λ, and define yi = Λ⊗ xi for i = 1, . . . ,m. Then y1, . . . , ym are linearly independent
eigenvectors for L(λ) with eigenvalue λ, and so y must be a linear combination of
y1, . . . , ym. Thus y has the form y = Λ⊗ x for some eigenvector x ∈ C

n for P .
A result analogous to Theorem 3.8 is also valid for the eigenvalue ∞. Because

additional arguments are needed, this will be deferred until section 4.
The above development and analysis of the pencil space L1(P ) has a parallel

version in which the starting point is the second companion form C2(λ) = λX2 + Y2,
as in (2.3). The analogue of (3.3) is the identity[

λk−1In · · · λIn In
]
· C2(λ) =

[
P (λ) 0 · · · 0

]
,

expressed more compactly as (ΛT ⊗ In) ·C2(λ) = eT1 ⊗P (λ). This leads us to consider
pencils L(λ) = λX + Y satisfying the “left ansatz”(

ΛT ⊗ In
)
· L(λ) = wT ⊗ P (λ),(3.9)

and to a corresponding vector space L2(P ). The vector w in (3.9) will be referred to
as the “left ansatz vector” for L(λ).

Definition 3.9. With WP = {wT ⊗ P (λ) : w ∈ F
k}, we define

L2(P ) = {L(λ) = λX + Y : X,Y ∈ F
kn×kn,

(
ΛT ⊗ In

)
· L(λ) ∈ WP }.

The analysis of L2(P ) is aided by the introduction of the following block matrix
operation.

Definition 3.10 (Row shifted sum). Let X and Y be block matrices

X =

⎡⎢⎣X11 · · · X1k
...

...
Xk1 · · · Xkk

⎤⎥⎦, Y =

⎡⎢⎣Y11 · · · Y1k
...

...
Yk1 · · · Ykk

⎤⎥⎦
with blocks Xij , Yij ∈ F

n×n. Then the row shifted sum of X and Y is defined to be

X �↓ Y :=

⎡⎢⎢⎢⎣
X11 · · · X1k
...

...
Xk1 · · · Xkk

0 · · · 0

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
0 · · · 0
Y11 · · · Y1k
...

...
Yk1 · · · Ykk

⎤⎥⎥⎥⎦,
where the zero blocks are also n× n.

The following analogue of Lemma 3.4 establishes the correspondence between the
left ansatz and row shifted sums.

Lemma 3.11. Let P (λ) =
∑k

i=0 λ
iAi be an n×n matrix polynomial, and L(λ) =

λX + Y a kn× kn pencil. Then for any w ∈ F
k,

(ΛT ⊗ In) · (λX + Y ) = wT ⊗ P (λ) ⇐⇒ X �↓ Y = wT ⊗

⎡⎣ Ak
...
A0

⎤⎦.(3.10)

Using these tools, one can characterize the pencils in L2(P ) in a manner com-
pletely analogous to Theorem 3.5, and thus conclude that

dim L2(P ) = dim L1(P ) = k(k − 1)n2 + k.(3.11)
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It is also not difficult to establish a stronger relationship between the spaces L1(P )
and L2(P ), which again immediately implies (3.11). Here for a polynomial P (λ) =∑k

i=0 λ
iAi , we use PT to denote the polynomial

∑k
i=0 λ

iAT
i ; by extension, if S is

any set of polynomials, then ST is the set
{
PT : P ∈ S

}
.

Proposition 3.12. L2(P ) = [L1(P
T )]T .

Proof.

L ∈ L1(P
T ) ⇔ L(λ) · (Λ⊗ In) = v ⊗ PT (λ)

⇔
(
ΛT ⊗ In

)
· LT (λ) = vT ⊗ P (λ) ⇔ LT ∈ L2(P ).

The analogue of Theorem 3.8 for pencils in L2(P ) involves left eigenvectors of
P (λ) rather than right eigenvectors. Since the definition of a left eigenvector of a
matrix polynomial does not seem to be completely standardized, we include here the
definition used in this paper.

Definition 3.13 (Left eigenvectors). A left eigenvector of an n × n matrix
polynomial P associated with a finite eigenvalue λ is a nonzero vector y ∈ C

n such
that y∗P (λ) = 0. A left eigenvector for P corresponding to the eigenvalue ∞ is a left
eigenvector for revP associated with the eigenvalue 0.

This definition differs from the one adopted in [5], although it is compatible
with the usual definition for left eigenvectors of a matrix [6], [19]. We have chosen
Definition 3.13 here because it is the one typically used in formulas for condition
numbers of eigenvalues, a topic investigated in [8]. The following result shows that
left eigenvectors of P are easily recovered from linearizations in L2(P ). The proof is
completely analogous to that given for Theorem 3.8.

Theorem 3.14 (Eigenvector Recovery Property for L2(P )). Let P (λ) be an n×n
matrix polynomial of degree k, and L(λ) any pencil in L2(P ) with nonzero left ansatz
vector w. Then y ∈ C

n is a left eigenvector for P (λ) with finite eigenvalue λ ∈ C if
and only if Λ⊗y is a left eigenvector for L(λ) with eigenvalue λ. If, in addition, P is
regular and L ∈ L2(P ) is a linearization for P , then every left eigenvector of L with
finite eigenvalue λ is of the form Λ⊗ y for some left eigenvector y of P .

Just as for Theorem 3.8, there is an analogous result for the eigenvalue ∞ that
can be found in section 4.

In this section we have seen that pencils in L1(P ) and L2(P ) closely resemble the
companion forms, and have eigenvectors that are simply related to those of P . Thus
one can reasonably view L1(P ) and L2(P ) as large classes of “potential” linearizations
for P (λ). So far, though, we have not shown any of these “good candidates” to actually
be linearizations. It is to this question that we turn next.

4. When is a pencil in L1(P ) a linearization? It is clear that not all pencils
in the spaces L1(P ) and L2(P ) are linearizations of P—consider, for example, any
pencil in L1(P ) with right ansatz vector v = 0. In this section we focus on L1(P )
and obtain criteria for deciding whether a pencil from L1(P ) is a linearization for
P or not. We show, for example, that for any given L ∈ L1(P ) there is typically
a condition (specific to L) on the coefficient matrices of P that must be satisfied in
order to guarantee that L is actually a linearization for P . Specific examples of such
“linearization conditions” can be found in section 4.1 and in the tables in section 5.
Analogues of all the results in this section also hold for L2(P ), with very similar
arguments.

We begin with a result concerning the special case of the right ansatz (3.4) con-
sidered in Corollary 3.7. Note that P is not assumed here to be regular.
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Theorem 4.1. Suppose that P (λ) =
∑k

i=0 λ
iAi with Ak �= 0 is an n× n matrix

polynomial, and L(λ) = λX +Y ∈ L1(P ) has nonzero right ansatz vector v = αe1, so
that

L(λ) · (Λ⊗ In) = αe1 ⊗ P (λ).(4.1)

Partition X and Y as in (3.8) so that

L(λ) = λX + Y = λ

[
αAk X12

0 −Z

]
+

[
Y11 αA0

Z 0

]
,(4.2)

where Z ∈ F
(k−1)n×(k−1)n. Then Z nonsingular implies that L(λ) is a strong lin-

earization of P (λ).
Proof. We show first that L(λ) is a linearization of P (λ). Begin the reduction of

L(λ) to diag(P (λ), I(k−1)n) using the unimodular matrix polynomials T (λ) and G(λ)
defined in (2.5). In the product L(λ)G(λ), clearly the first k − 1 block-columns are
the same as those of L(λ); because the last block-column of G(λ) is Λ⊗I, we see from
(4.1) that the last block-column of L(λ)G(λ) is αe1 ⊗ P (λ). Partitioning Z in (4.2)
into block columns [Z1 Z2 · · · Zk−1], where Zi ∈ F

(k−1)n×n, we thus obtain

L(λ)G(λ) =

[
∗ ∗ . . . ∗ ∗
Z1 (Z2 − λZ1) . . . (Zk−1 − λZk−2) −λZk−1

]
G(λ)

=

[
∗ ∗ . . . ∗ αP (λ)

Z1 (Z2 − λZ1) . . . (Zk−1 − λZk−2) 0

]
.

Further transformation by block-column operations yields

L(λ)T (λ) =L(λ)G(λ)

⎡⎢⎣ I λI
I

I . . .
I

⎤⎥⎦
⎡⎢⎣ I

I λI
I . . .

I

⎤⎥⎦· · ·
⎡⎢⎣ I

. . .
I λI

I
I

⎤⎥⎦
︸ ︷︷ ︸

=T (λ)

=

⎡⎣ ∗ αP (λ)

Z 0

⎤⎦.

Scaling and block-column permutations on L(λ)T (λ) show that there exists a uni-
modular matrix polynomial F (λ) such that

L(λ)F (λ) =

[
P (λ) W (λ)

0 Z

]

for some matrix polynomial W (λ). (Note that we have reached this point without
any assumptions about Z.) Now if Z is nonsingular, then L(λ) is a linearization for
P (λ), since [

I −W (λ)Z−1

0 Z−1

]
L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
.

To show that L(λ) is also a strong linearization for P (λ), it remains to show that
revL(λ) = λY + X is a linearization for revP (λ). Now it would be nice if revL(λ)
were a pencil in L1(revP ), but it is not; however, a small modification of revL(λ)
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is in L1(revP ). Observe that λk−1 · Λ(1/λ) = [1, λ, . . . , λk−2, λk−1]T = RkΛ, where
Rk denotes the k × k reverse identity matrix. Thus replacing λ by 1/λ in (4.1) and
multiplying both sides by λk yields

λL(1/λ) ·
(
λk−1Λ(1/λ) ⊗ I

)
= αe1 ⊗ λkP (1/λ),

or equivalently, revL(λ)·
(
(RkΛ)⊗I

)
= αe1⊗revP (λ). Thus, L̂(λ) := revL(λ)·(Rk⊗I)

satisfies

L̂(λ) · (Λ⊗ I) = αe1 ⊗ revP (λ),(4.3)

and so L̂ ∈ L1(revP ). (Observe that L̂(λ) is just revL(λ) = λY + X with the block-

columns of Y and X arranged in reverse order.) Since L̂ and revL are equivalent

pencils, the proof will be complete once we show that λX̂+Ŷ := L̂(λ) is a linearization

for revP (λ). However, X̂ = Y · (Rk ⊗ I) and Ŷ = X · (Rk ⊗ I), and hence from (4.2)
it follows that

X̂ =

[
αA0 X̂12

0 −Ẑ

]
and Ŷ =

[
Ŷ11 αAk

Ẑ 0

]
,

where Ẑ = −Z · (Rk−1⊗ I). Clearly Ẑ is nonsingular if Z is, and so by the part of the

theorem that has already been proved, L̂ (and therefore also revL) is a linearization
for revP (λ).

Remark 4.2. The fact (first proved in [4]) that the first companion form of any
polynomial is always a strong linearization is a special case of Theorem 4.1.

When a matrix polynomial P (λ) is regular, then it is easy to see from Defini-
tion 2.4 that any linearization for P (λ) must also be regular. The next result shows
something rather surprising: when a pencil L is in L1(P ) this minimal necessary con-
dition of regularity is actually sufficient to guarantee that L is a linearization for P .
This result serves to emphasize just how close a pencil is to being a linearization for
P , even a strong linearization for P , once it satisfies the ansatz (3.4).

Theorem 4.3 (Strong Linearization Theorem). Let P (λ) be a regular matrix
polynomial, and let L(λ) ∈ L1(P ). Then the following statements are equivalent:

(i) L(λ) is a linearization for P (λ).
(ii) L(λ) is a regular pencil.
(iii) L(λ) is a strong linearization for P (λ).
Proof. “(i) ⇒ (ii)”: If L(λ) is a linearization for P (λ), then there exist unimodular

matrix polynomials E(λ), F (λ) such that

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
.

Thus the regularity of P (λ) implies the regularity of L(λ).
“(ii) ⇒ (iii)”: Since L(λ) ∈ L1(P ), we know that L(λ) · (Λ ⊗ In) = v ⊗ P (λ)

for some v ∈ F
k. However, L(λ) is regular, and so v is nonzero. Let M ∈ F

k×k

be any nonsingular matrix such that Mv = αe1. Then the regular pencil L̃(λ) :=
(M ⊗ In) · L(λ) is in L1(P ) with right ansatz vector αe1, since

L̃(λ)(Λ⊗ In) = (M ⊗ In)L(λ)(Λ⊗ In) = (M ⊗ In)(v ⊗ P (λ))

= Mv ⊗ P (λ)

= αe1 ⊗ P (λ).
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Hence by Corollary 3.7 the matrices X̃ and Ỹ in L̃(λ) := λX̃ + Ỹ have the forms

X̃ =

n (k−1)n⎡⎢⎢⎣
αAk X̃12

0 −Z̃

⎤⎥⎥⎦
n

(k−1)n
and Ỹ =

(k−1)n n⎡⎢⎢⎣
Ỹ11 αA0

Z̃ 0

⎤⎥⎥⎦
n

(k−1)n
.

Now if Z̃ was singular, there would exist a nonzero vector w ∈ F
(k−1)n such that

wT Z̃ = 0. But this would imply that[
0 wT

]
(λX̃ + Ỹ ) = 0 for all λ ∈ F,

contradicting the regularity of L̃(λ). Thus Z̃ is nonsingular, and so by Theorem 4.1

we know that L̃(λ), and hence also L(λ), is a strong linearization for P (λ).
“(iii) ⇒ (i)” is trivial.
Now recall from Definitions 2.3 and 3.13 that a vector x ∈ C

n is a right (left)
eigenvector for a polynomial P with eigenvalue ∞ if and only if x is a right (left)
eigenvector for revP with eigenvalue 0. Translating statements about infinite eigen-
values to ones about zero eigenvalues allows us to use Theorems 3.8, 3.14, and 4.3 to
extend the eigenvector recovery properties of L1(P ) and L2(P ) to the eigenvalue ∞.

Theorem 4.4 (Eigenvector Recovery at ∞). Let P (λ) be an n× n matrix poly-
nomial of degree k, and L(λ) any pencil in L1(P ) (resp., L2(P )) with nonzero right
(left ) ansatz vector v. Then x ∈ C

n is a right (left ) eigenvector for P (λ) with eigen-
value ∞ if and only if e1 ⊗x is a right (left ) eigenvector for L(λ) with eigenvalue ∞.
If, in addition, P is regular and L ∈ L1(P ) (resp., L2(P )) is a linearization for P ,
then every right (left ) eigenvector of L with eigenvalue ∞ is of the form e1 ⊗ x for
some right (left ) eigenvector x of P with eigenvalue ∞.

Proof. We give the proof only for right eigenvectors of L ∈ L1(P ) here. The
argument for recovery of left eigenvectors of L ∈ L2(P ) is essentially the same, given
the analogues of Theorems 4.1 and 4.3 for L2(P ).

For any L(λ) define L̂(λ) := revL(λ) · (Rk ⊗ I). Then the reasoning used in

Theorem 4.1 to obtain (4.3) shows that L ∈ L1(P ) ⇒ L̂ ∈ L1(revP ), with the same
nonzero right ansatz vector v. By Theorem 3.8 we know that x is a right eigenvector
for revP with eigenvalue 0 if and only if Λ ⊗ x = ek ⊗ x is a right eigenvector for
L̂ with eigenvalue 0. However, ek ⊗ x is a right eigenvector for L̂ if and only if
e1⊗x = (Rk⊗ I)(ek⊗x) is a right eigenvector for revL, both with eigenvalue 0. This
establishes the first part of the theorem.

If P is regular and L ∈ L1(P ) is a linearization for P , then by Theorem 4.3

L̂ ∈ L1(revP ) is a linearization for revP . Theorem 3.8 then implies that every right

eigenvector of L̂ with eigenvalue 0 is of the form ek ⊗x, where x is a right eigenvector
of revP with eigenvalue 0; equivalently every right eigenvector of revL with eigenvalue
0 is of the form e1 ⊗ x for some right eigenvector x of revP with eigenvalue 0. This
establishes the second part of the theorem.

4.1. Linearization conditions. A useful by-product of the proof of Theo-
rem 4.3 is a simple procedure for generating a symbolic “linearization condition”
for any given pencil L ∈ L1(P ), i.e., a necessary and sufficient condition (in terms of
the data in P ) for L to be a linearization for P . We describe this procedure and then
illustrate with some examples.
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Procedure to determine the linearization condition for a pencil in

L1(P ):
(1) Suppose that P (λ) is a regular polynomial and L(λ) = λX + Y ∈ L1(P ) has

nonzero right ansatz vector v ∈ F
k, i.e., L(λ) · (Λ⊗ In) = v ⊗ P (λ).

(2) Select any nonsingular matrix M such that Mv = αe1.
(3) Apply the corresponding block-transformation M ⊗ In to L(λ) to produce

L̃(λ) := (M ⊗ In)L(λ), which must be of the form

L̃(λ) = λX̃ + Ỹ = λ

[
X̃11 X̃12

0 −Z

]
+

[
Ỹ11 Ỹ12

Z 0

]
,(4.4)

where X̃11 and Ỹ12 are n × n. Since only Z is of interest here, it suffices to
form just Ỹ = (M ⊗ In)Y .

(4) Extract detZ �= 0 , the linearization condition for L(λ).

Note that this procedure can readily be implemented as a numerical algorithm to check
if a pencil in L1(P ) is a linearization: choose M to be unitary, e.g., a Householder
reflector, then use a rank revealing factorization such as the QR-decomposition with
column pivoting or the singular value decomposition to check if Z is nonsingular.

Example 4.5. Consider the general quadratic polynomial P (λ) = λ2A + λB + C
(assumed to be regular ) and the following pencils in L1(P ):

L1(λ) = λ

[
A B + C
A 2B −A

]
+

[
−C C

A−B C

]
, L2(λ) = λ

[
0 −B
A B − C

]
+

[
B 0
C C

]
.

Since [
A B + C
A 2B −A

]
�→

[
−C C

A−B C

]
=

[
A B C
A B C

]
,

we have L1(λ) ∈ L1(P ) with right ansatz vector v =
[

1 1
]T

. Subtracting the first
entry from the second reduces v to e1, and the corresponding block-row-operation on
Y yields

Ỹ =

[
−C C

A−B + C 0

]
.

Hence Z = A − B + C, and det(A − B + C) = detP (−1) �= 0 is the linearization
condition. Thus L1(λ) is a linearization for P if and only if λ = −1 is not an eigenvalue
of P . On the other hand, for L2(λ) we have[

0 −B
A B − C

]
�→

[
B 0
C C

]
=

[
0 0 0
A B C

]
,

and so L2(λ) ∈ L1(P ) with v = [0 1]T . Permuting the entries of v gives e1, and
applying the analogous block-row-permutation to Y yields

Ỹ =

[
C C
B 0

]
.

Thus Z = Ỹ21 = B, and so detB �= 0 is the linearization condition for L2(λ).
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The next example shows that the linearization condition for a pencil in L1(P )
may depend on some nonlinear combination of the data in P , and thus its meaning
may not be so easy to interpret.

Example 4.6. Consider the general cubic polynomial P (λ) = λ3A+λ2B+λC+D
(again assumed to be regular ) and the pencil

L3(λ) = λX + Y = λ

⎡⎣ A 0 2C
−2A −B − C D − 4C

0 A −I

⎤⎦ +

⎡⎣ B −C D
C −B 2C −D −2D
−A I 0

⎤⎦
in L1(P ). Since X �→Y =

[
1 −2 0

]T⊗[A B C D
]
, we have v =

[
1 −2 0

]T
.

Adding twice the first block-row of Y to the second block-row of Y gives

Z =

[
B + C −D
−A I

]
,

and hence the linearization condition detZ = det(B +C −DA) �= 0. (Recall that for
n × n blocks W,X, Y, Z with Y Z = ZY , we have det [W X

Y Z ] = det(WZ −XY ). See
[11]. )

We have seen in this section that each pencil in L1(P ) has its own particular
condition on the coefficient matrices of P that must be satisfied in order for the
pencil to be a linearization for P . From this point of view it seems conceivable that
there could be polynomials P for which very few of the pencils in L1(P ) are actually
linearizations for P . However, the following result shows that this never happens;
when P is regular the “bad” pencils in L1(P ) always form a very sparse subset of
L1(P ).

Theorem 4.7 (Linearizations Are Generic in L1(P )). For any regular n × n
matrix polynomial P (λ) of degree k, almost every pencil in L1(P ) is a linearization
for P (λ). (Here by “almost every” we mean for all but a closed, nowhere dense set of
measure zero in L1(P ). )

Proof. Let d = dim L1(P ) = k + (k − 1)kn2, and let L1(λ), L2(λ), . . . , Ld(λ) be
any fixed basis for L1(P ). Since any L(λ) ∈ L1(P ) can be uniquely expressed as a
linear combination

L(λ) = β1L1(λ) + β2L2(λ) + · · · + βdLd(λ),

we can view detL(λ) as a polynomial in λ whose coefficients c0, c1, c2, . . . , ckn are each
polynomial functions of β1, . . . , βd, that is, ci = ci(β1, . . . , βd).

Now by Theorem 4.3 we know that L(λ) ∈ L1(P ) fails to be a linearization for
P (λ) if and only if detL(λ) ≡ 0, equivalently if all the coefficients ci are zero. Thus
the subset of pencils in L1(P ) that are not linearizations for P (λ) can be characterized
as the common zero set Z of the polynomials

{
ci(β1, β2, . . . , βd) : 0 ≤ i ≤ kn

}
, i.e.,

as an algebraic subset of F
d.

Since proper algebraic subsets of F
d are well known to be closed, nowhere dense

subsets of measure zero, the proof will be complete once we show that Z is a proper
subset of F

d, or equivalently, that there is a pencil in L1(P ) that is a linearization for
P . But this is immediate: the first companion form C1(λ) for P (λ) is in L1(P ) and
is always a linearization for P (see [5] or Remark 4.2).

Although L1(P ) and L2(P ) contain a large supply of linearizations for P , there do
exist simple linearizations for P that are neither in L1(P ) nor in L2(P ). We illustrate
this with a recent example from [1].
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Example 4.8. For the cubic matrix polynomial P (λ) = λ3A3 +λ2A2 +λA1 +A0,
the pencil

L(λ) = λ

⎡⎣ 0 A3 0
I A2 0
0 0 I

⎤⎦ +

⎡⎣ −I 0 0
0 A1 A0

0 −I 0

⎤⎦
is shown in [1] to be a linearization for P . Using shifted sums, it is easy to see that
L(λ) is in neither L1(P ) nor L2(P ).

4.2. Another view of L1(P ) and L2(P ). In section 3 we defined the pencil
space L1(P ) by generalizing one particular property of the first companion form C1(λ)
of P . A different connection between L1(P ) and C1(λ) can be established, which gives
an alternative insight into why the pencils in L1(P ) retain so many of the attractive
features of C1(λ). Using the first three steps of the procedure in section 4.1, together
with the characterization of L1(P )-pencils given in Theorem 3.5 and Corollary 3.7,
one can show that any L(λ) ∈ L1(P ) can be factored (non-uniquely) in the form

L(λ) = (K ⊗ In)

[
αIn U

0 −Z

]
C1(λ),(4.5)

where Z ∈ F
(k−1)n×(k−1)n is the same as the block Z in Corollary 3.7 and (4.4), and

K ∈ F
k×k is nonsingular. Note that the scalar α ∈ F is zero if and only if the right

ansatz vector v of L(λ) is zero. This factorization gives another reason why the right
eigenvectors of pencils in L1(P ) have the same Kronecker product structure as those
of C1(λ), and why pencils in L1(P ) are either strong linearizations of P (like C1(λ))
or singular pencils, depending on the nonsingularity or singularity of the block Z and
the scalar α.

In a completely analogous fashion one can factor any L(λ) ∈ L2(P ) as

L(λ) = C2(λ)

[
βIn 0

T −V

]
(H ⊗ In),(4.6)

thus providing a different insight into the left eigenvector structure of pencils in L2(P ),
and the fact that almost all pencils in L2(P ) are strong linearizations for P (like
C2(λ)).

On the other hand, certain aspects of L1(P ) and L2(P ) are less apparent from
the point of view of these factorizations. For example, the fact that L1(P ) and L2(P )
are vector spaces is no longer so obvious. In addition, the criterion for a pencil to
be an element of L1(P ) or L2(P ) is now implicit rather than explicit and is therefore
rather harder to verify.

We are also interested in the possibility of the existence of pencils that are si-
multaneously in L1(P ) and L2(P ). The factored forms (4.5) and (4.6) might make
it seem rather unlikely that there could be any nontrivial pencils in this intersection.
However, in the next section we will see (using shifted sums) that this is an erroneous
impression.

Finally, it is worth pointing out that the ansatz equations (3.4) and (3.9) enjoy
the advantage of being identities in the variable λ, and so can be treated analytically
as well as algebraically. This property is exploited in the analysis of the conditioning
of eigenvalues of linearizations [8].
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5. Double ansatz spaces. So far we have constructed two large vector spaces
of pencils L1(P ) and L2(P ) for any given matrix polynomial P (λ) and shown that
when P is regular, almost all of these pencils are linearizations for P . Indeed, these
spaces are so large that for any choice of (right or left) ansatz vector there are many
degrees of freedom available for choosing a potential linearization in L1(P ) or L2(P )
with the given ansatz vector (see Theorem 3.5). This suggests that it might be
possible to identify special subspaces of pencils in L1(P ) or L2(P ) with additional
useful properties.

Recall that one of the key advantages of linearizations in L1(P ) is that right
eigenvectors of P are easily recovered from right eigenvectors of the linearization.
L2(P ) offers a similar advantage for recovery of left eigenvectors. Thus it seems
natural to consider pencils in the intersection of L1(P ) and L2(P ); for these pencils
we can simply relate both the right and left eigenvectors of the pencil to those of the
original polynomial P . This simultaneous eigenvector recovery property is particularly
important in the investigation of the conditioning of linearizations [8]. Therefore we
make the following definition.

Definition 5.1 (Double ansatz spaces). For any n× n matrix polynomial P of
degree k, the double ansatz space of P is

DL(P ) := L1(P ) ∩ L2(P ),

i.e., the set of kn× kn pencils L(λ) that simultaneously satisfy

a “right ansatz” L(λ) · (Λ⊗ I) = v ⊗ P (λ) for some v ∈ F
k,(5.1)

and a “left ansatz” (ΛT ⊗ I) · L(λ) = wT ⊗ P (λ) for some w ∈ F
k.(5.2)

The rest of this paper is devoted to developing some of the basic properties of
DL(P )-spaces, additional aspects of which are explored in [7], [8], [12]. In this section
we characterize DL(P ) and show how all the pencils in DL(P ) may be constructed.
In section 6 we reconsider the “linearization condition” discussed in section 4. As
illustrated by Example 4.6, the intrinsic meaning of this condition can sometimes be
rather obscure. However, we will see that for pencils in DL(P ) this condition can
always be expressed in a way that makes its meaning transparent.

A priori, the right and left ansatz vectors of a pencil in DL(P ) may be any pair
v, w ∈ F

k. However, it turns out that only pairs with v = w can ever be realized
by a DL(P )-pencil. To show this, we first need to determine when the equations
X �→Y = S and X �↓ Y = T can be solved simultaneously for X and Y .

Proposition 5.2. Let S = [Sij ] and T = [Tji] be block matrices of size kn ×
(k + 1)n and (k + 1)n × kn, respectively, where Sij , Tji ∈ F

n×n for i = 1, . . . , k and
j = 1, . . . , k + 1. Then there exist block k × k matrices X = [Xij ], Y = [Yij ] with
blocks Xij , Yij ∈ F

n×n for i, j = 1, . . . , k such that

X �→Y = S and X �↓ Y = T(5.3)

if and only if for j = 1, . . . , k the blocks of S and T satisfy the compatibility conditions

Tjj +

j−1∑
μ=1

(Tμ,2j−μ − Sμ,2j−μ) = Sjj +

j−1∑
μ=1

(S2j−μ,μ − T2j−μ,μ)(5.4)

and

j∑
μ=1

(Sμ,2j+1−μ − Tμ,2j+1−μ) =

j∑
μ=1

(T2j+1−μ,μ − S2j+1−μ,μ).(5.5)
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(Here, Sν,η = 0 = Tη,ν whenever (ν, η) �∈ {1, . . . , k} × {1, . . . , k + 1}.) If (5.3) has a
solution, then X and Y are uniquely determined by the formulas

Xij = Tij +

i−1∑
μ=1

(Tμ,j+i−μ − Sμ,j+i−μ), Yij =

i∑
μ=1

(Sμ,j+i+1−μ − Tμ,j+i+1−μ),(5.6)

Xji = Sji +

i−1∑
μ=1

(Sj+i−μ,μ − Tj+i−μ,μ), Yji =

i∑
μ=1

(Tj+i+1−μ,μ − Sj+i+1−μ,μ),(5.7)

for i, j = 1, . . . , k and j ≥ i.
Proof. Due to its technical nature, the proof is provided in Appendix A.
We are now in a position to show not only that any DL(P )-pencil has its right

ansatz vector equal to its left ansatz vector, but also that every v ∈ F
k is actually

realized as the ansatz vector of a pencil in DL(P ), indeed of a unique pencil in DL(P ).
Note that this result does not require any regularity assumption on P .

Theorem 5.3. Let P (λ) =
∑k

i=0 λ
iAi be a matrix polynomial with coefficients

in F
n×n and Ak �= 0. Then for vectors v = (v1, . . . , vk)

T and w = (w1, . . . , wk)
T in

F
k there exists a kn× kn matrix pencil L(λ) = λX + Y that simultaneously satisfies

L(λ) · (Λ⊗ I) = v ⊗ P (λ) and (ΛT ⊗ I) · L(λ) = wT ⊗ P (λ)(5.8)

if and only if v = w. In this case, if X = [Xij ] and Y = [Yij ] are written as block
matrices with n× n blocks Xij and Yij, then X and Y are uniquely determined by v.
In particular, setting v0 := 0, vμ := 0, and Aμ := 0 ∈ F

n×n for μ < 0 or μ > k, the
blocks of X and Y satisfy the formulas

Xij = vmax(i,j)Ak+1−min(i,j) +

min(i−1,j−1)∑
μ=1

(vj+i−μAk+1−μ − vμAk+1−j−i+μ),(5.9)

Yij =

min(i,j)∑
μ=1

(vμAk−j−i+μ − vj+i+1−μAk+1−μ), i, j = 1, . . . , k.(5.10)

Proof. See Appendix B for the proof.
In light of the results in Theorem 5.3, we no longer need to refer separately to the

right and left ansatz vectors of a pencil in DL(P ). It suffices to say the ansatz vector
v of L ∈ DL(P ), and it is to be understood that v plays both roles.

We can also concisely summarize the result of Theorem 5.3 in a slightly different
way. Viewing DL(P ) as a special subspace of L1(P ), consider the multiplication map
M (introduced in the proof of Theorem 3.5) restricted to the subspace DL(P ). Then
the following is an immediate corollary of Theorem 5.3.

Corollary 5.4. For any polynomial P , the map DL(P )
M−→ VP is an isomor-

phism.
Thus once an ansatz vector v has been chosen, a pencil from DL(P ) is uniquely

determined and can be computed using the formulas of Theorem 5.3.
Another significant property of DL(P ) is worth mentioning here. A matrix poly-

nomial is symmetric when all its coefficient matrices are symmetric. For symmetric P ,
a simple argument shows that every pencil in DL(P ) is also symmetric: L ∈ DL(P )
with ansatz vector v implies that LT is also in DL(P ) with the same ansatz vector v,
and then L = LT follows from the uniqueness statement of Theorem 5.3.



VECTOR SPACES OF LINEARIZATIONS 989

Table 1

Some pencils in DL(P ) for the general quadratic P (λ) = λ2A+λB+C. Linearization condition
found using procedure in section 4.1.

v L(λ) ∈ DL(P ) for given v Linearization condition

[
1
0

]
λ

[
A 0
0 −C

]
+

[
B C
C 0

]
det(C) �= 0

[
0
1

]
λ

[
0 A
A B

]
+

[
−A 0
0 C

]
det(A) �= 0

[
1
1

]
λ

[
A A
A B − C

]
+

[
B −A C

C C

]
det(A−B + C) = det[P (−1)] �= 0

[
α
β

]
λ

[
αA βA
βA βB − αC

]
+

[
αB − βA αC

αC βC

]
det(β2A− αβB + α2C) �= 0 ;

equivalently, det
[
P (− β

α
)
]
�= 0

Table 2

Some pencils in DL(P ) for the general cubic P (λ) = λ3A + λ2B + λC + D. Linearization
condition found using procedure in section 4.1.

v L(λ) ∈ DL(P ) for given v Linearization condition

⎡⎣1
0
0

⎤⎦ λ

⎡⎣A 0 0
0 −C −D
0 −D 0

⎤⎦ +

⎡⎣B C D
C D 0
D 0 0

⎤⎦ detD �= 0

⎡⎣0
1
0

⎤⎦ λ

⎡⎣0 A 0
A B 0
0 0 −D

⎤⎦ +

⎡⎣−A 0 0
0 C D
0 D 0

⎤⎦ detA · detD �= 0

⎡⎣0
0
1

⎤⎦ λ

⎡⎣0 0 A
0 A B
A B C

⎤⎦ +

⎡⎣ 0 −A 0
−A −B 0
0 0 D

⎤⎦ detA �= 0

⎡⎣ 1
0
−1

⎤⎦ λ

⎡⎣ A 0 −A
0 −A− C −B −D

−A −B −D −C

⎤⎦ +

⎡⎣ B A + C D
A + C B + D 0

D 0 −D

⎤⎦ det
[
A+C B+D
B+D A+C

]
�= 0

⎡⎣1
1
1

⎤⎦ λ

⎡⎣A A A
A A + B − C B −D
A B −D C −D

⎤⎦ +

⎡⎣B −A C −A D
C −A C + D −B D

D D D

⎤⎦ det
[

C−B A−B+D
A−B+D A−C+D

]
�= 0

Examples of pencils in DL(P ) for k = 2 and k = 3 may be found in Tables 1
and 2. Using shifted sums, one easily verifies that these examples are indeed in both
L1(P ) and L2(P ), with the same right and left ansatz vector v. Note that if A, B,
C, and D are symmetric, then so are all the pencils in these examples. Symmetric
linearizations are studied in more detail in [7].

Perhaps the most striking property of the space DL(P ) is that the linearization
condition for each pencil in DL(P ) can be directly linked to its ansatz vector v, as
will be seen in the next section.



990 D. S. MACKEY, N. MACKEY, C. MEHL, AND V. MEHRMANN

6. The eigenvalue exclusion theorem. We now establish a connection be-
tween the linearization condition of any pencil L ∈ DL(P ) and the ansatz vector v
that defines L. For example, consider the cubic polynomial P (λ) = λ3A+λ2B+λC+D
and the pencil

L(λ) = λ

⎡⎣ A 0 −A
0 −A− C −B −D

−A −B −D −C

⎤⎦ +

⎡⎣ B A + C D
A + C B + D 0
D 0 −D

⎤⎦
in DL(P ) with ansatz vector v =

[
1 0 −1

]T
. Using the procedure in section 4.1,

one easily finds that

det

[
A + C B + D
B + D A + C

]
�= 0(6.1)

is the linearization condition for L(λ). (See also Table 2.) Now it is not immediately
clear what the meaning of this condition is, or even whether it has any intrinsic
meaning at all. However, the identity[

0 I
I I

] [
A + C B + D
B + D A + C

] [
I 0
−I I

]
=

[
−A + B − C + D A + C

0 A + B + C + D

]
=

[
P (−1) A + C

0 P (+1)

]
shows that condition (6.1) is equivalent to saying that neither −1 nor +1 is an eigen-
value of the matrix polynomial P (λ). Thus in this example we can reinterpret the
linearization condition from section 4.1 as an “eigenvalue exclusion” condition.

Why do these particular eigenvalues need to be excluded? And what role, if any,

does the ansatz vector v =
[
1 0 − 1

]T
play here? Observe that if we interpret

the components of v as the coefficients of a scalar polynomial, then we obtain x2 − 1,
whose roots are exactly the eigenvalues that have to be excluded in order to guarantee
that L(λ) is a linearization for P (λ). The goal of this section is to show that this is
not merely a coincidence, but rather an instance of a general phenomenon described
by the “eigenvalue exclusion theorem.”

The main technical result needed to prove this theorem is an explicit formula
for the determinant of a pencil L(λ) in DL(P ). To aid in the development of this
formula we first introduce some notation to be used throughout this section. As before,
P (λ) =

∑k
i=0 λ

iAi is an n×n matrix polynomial with nonzero leading coefficient Ak.
The pencil L(λ) ∈ DL(P ) under consideration has ansatz vector v = [v1, v2, . . . , vk]

T ,
with an associated scalar polynomial defined as follows.

Definition 6.1 (v-polynomial). With a vector v = [v1, v2, . . . , vk]
T ∈ F

k asso-
ciate the scalar polynomial

p(x ; v) = v1x
k−1 + v2x

k−2 + · · · + vk−1x + vk,

referred to as the “ v-polynomial” of the vector v. We adopt the convention that
p(x ; v) has a root at ∞ whenever v1 = 0.

We also need to introduce the notion of the “Horner shifts” of a polynomial.
Definition 6.2 (Horner shifts). For any polynomial p(x) = anx

n + an−1x
n−1 +

· · · + a1x + a0 and 0 ≤ � ≤ n , the “ degree � Horner shift of p(x)” is p�(x) :=
anx

� + an−1x
�−1 + · · · + an−�+1x + an−� .
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Remark 6.3. The polynomials in Definition 6.2 satisfy the recurrence relation

p0(x) = an,

p�+1(x) = xp�(x) + an−�−1 for 0 ≤ � ≤ n− 1,

pn(x) = p(x),

and are precisely the polynomials appearing in Horner’s method for evaluating the
polynomial p(x).

We have seen in Theorem 5.3 that L(λ) ∈ DL(P ) is uniquely determined by the
vector v and the polynomial P , so it is not surprising that one can also specify the
columns of L(λ) in terms of this data. This is done in the next lemma, where a
block-column–wise description of L(λ) is given. In this description we make extensive
use of the standard k × k nilpotent Jordan block N from (2.4) in the matrix N ⊗ I,
employed here as a block-shift operator.

Lemma 6.4 (Block-column structure of pencils in DL(P )). Suppose that L(λ) =
λX + Y is in DL(P ) with ansatz vector v. Partition X and Y as

X =
[
X1 X2 · · · Xk

]
and Y =

[
Y1 · · · Yk−1 Yk

]
,

where X�, Y� ∈ F
nk×n, � = 1, . . . , k. Then with Y0 := 0, the block-columns Y� satisfy

the recurrence

Y� = (N ⊗ I)(Y�−1 − v ⊗Ak−�+1) + v�

⎡⎢⎣Ak−1
...
A0

⎤⎥⎦, 1 ≤ � ≤ k − 1,(6.2)

Yk = v ⊗A0.(6.3)

The block-columns of X are determined by X� = −Y�−1 +v⊗Ak−�+1 for 1 ≤ � ≤ k,
and the pencil L(λ) has the columnwise description

L(λ) =

[
Y1 Y2 − λY1 · · · Yk−1 − λYk−2 v ⊗A0 − λYk−1

+λv ⊗Ak +λv ⊗Ak−1 +λv ⊗A2 +λv ⊗A1

]
.(6.4)

Proof. Let Y0 = [Yi0] := 0, X� = [Xi�], and Y� = [Yi�] for n×n blocks Yi0, Xi�, Yi�,
where i = 1, . . . , k. Then we obtain from (5.10) for 1 ≤ i < � ≤ k − 1 that

Yi� =

i∑
μ=1

(vμAk−�−i+μ − v�+i+1−μAk+1−μ)

=

i+1∑
μ=1

(vμAk−�−i+μ − v�+i+1−μAk+1−μ) − vi+1Ak+1−� + v�Ak−i

= Yi+1,�−1 − vi+1Ak+1−� + v�Ak−i.

Analogously, we obtain for 1 ≤ � ≤ i ≤ k − 1 that

Yi� =

�∑
μ=1

(vμAk−�−i+μ − v�+i+1−μAk+1−μ)

=

�−1∑
μ=1

(vμAk−�−i+μ − v�+i+1−μAk+1−μ) + v�Ak−i − vi+1Ak+1−�

= Yi+1,�−1 − vi+1Ak+1−� + v�Ak−i.
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Since formula (5.10) also implies Yk� = v�A0, we obtain

Y� =

⎡⎢⎢⎣
Y1�
...

Yk−1,�

Yk�

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Y2,�−1

...
Yk,�−1

0

⎤⎥⎥⎦−

⎡⎢⎢⎣
v2Ak−�+1

...
vkAk−�+1

0

⎤⎥⎥⎦ +

⎡⎢⎢⎣
v�Ak

...
v�A1

v�A0

⎤⎥⎥⎦

= (N ⊗ I)(Y�−1 − v ⊗Ak−�+1) + v�

⎡⎢⎣Ak−1
...
A0

⎤⎥⎦
for � = 1, . . . , k−1. Noting that (3.6) implies Yk = v⊗A0 and X�+Y�−1 = v⊗Ak−�+1

for � = 1, . . . , k, we immediately obtain (6.4).
Using (6.2), we can now develop a concise formula describing the action of the

block-row ΛT (x)⊗I on the block-column Y� , where x is a scalar variable taking values
in C and ΛT (x) :=

[
xk−1 xk−2 . . . x 1

]
. This formula will be used repeatedly

and plays a central role in the proof of Theorem 6.6. (Note that ΛT (x)v is the same
as the scalar v-polynomial p(x ; v).)

Lemma 6.5. Suppose that L(λ) ∈ DL(P ) with ansatz vector v, and p(x ; v) is the
v-polynomial of v. Let Y� denote the �th block column of Y in L(λ) = λX +Y , where
1 ≤ � ≤ k − 1. Then(

ΛT (x) ⊗ I
)
Y� = p�−1(x ; v)P (x) − x p(x ; v)P�−1(x),(6.5)

where p�−1(x ; v) and P�−1(λ) are the degree �− 1 Horner shifts of p(x ; v) and P (λ),
respectively.

Proof. The proof will proceed by induction on � . First note that for the k × k
nilpotent Jordan block N , it is easy to check that ΛT (x)N =

[
0 xk−1 · · · x

]
=

xΛT (x) − xkeT1 .

� = 1 : Using (6.2), we have

(
ΛT (x) ⊗ I

)
Y1 =

(
ΛT (x) ⊗ I

)⎛⎜⎝v1

⎡⎢⎣Ak−1
...
A0

⎤⎥⎦− (N ⊗ I)(v ⊗Ak)

⎞⎟⎠.

Simplifying this gives(
ΛT (x) ⊗ I

)
Y1 = v1

(
P (x) − xkAk

)
−
(
ΛT (x)N ⊗ I

)
(v ⊗Ak)

= v1P (x) − v1x
kAk −

((
xΛT (x) − xkeT1

)
v ⊗Ak

)
= p0(x ; v)P (x) − v1x

kAk −
(
xΛT (x)v

)
Ak +

(
xkeT1 v

)
Ak

= p0(x ; v)P (x) − v1x
kAk − x p(x ; v)Ak + v1x

kAk

= p0(x ; v)P (x) − x p(x ; v)P0(x),

which establishes (6.5) for � = 1. The induction hypothesis is now the following:(
ΛT (x) ⊗ I

)
Y�−1 = p�−2(x ; v)P (x) − x p(x ; v)P�−2(x).(6.6)
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� − 1 ⇒ � : Starting again with (6.2), we have

(
ΛT (x) ⊗ I

)
Y� =

(
ΛT (x) ⊗ I

)⎛⎜⎝(N ⊗ I)(Y�−1 − v ⊗Ak−�+1) + v�

⎡⎢⎣Ak−1
...
A0

⎤⎥⎦
⎞⎟⎠

=
(
ΛT (x)N ⊗ I

)
(Y�−1 − v ⊗Ak−�+1) + v�

(
ΛT (x) ⊗ I

)⎡⎢⎣Ak−1
...
A0

⎤⎥⎦
=

((
xΛT (x) − xkeT1

)
⊗ I

)
(Y�−1 − v ⊗Ak−�+1) + v�

(
P (x) − xkAk

)
= x

(
ΛT (x) ⊗ I

)
Y�−1 − xk

(
eT1 ⊗ I

)
Y�−1 −

(
xΛT (x)v

)
Ak−�+1

+ v1x
kAk−�+1 + v� P (x) − v� x

kAk.

Note that
(
eT1 ⊗I

)
Y�−1 is the topmost block in Y�−1 and is equal to v1Ak−�+1−v�Ak,

by (5.10). Finally, invoking the induction hypothesis (6.6) gives(
ΛT (x) ⊗ I

)
Y� = x p�−2(x ; v)P (x) − x2 p(x ; v)P�−2(x) − v1x

kAk−�+1 + v� x
kAk

− x p(x ; v)Ak−�+1 + v1x
kAk−�+1 + v� P (x) − v� x

kAk

= (x p�−2(x ; v) + v�)P (x) − x p(x ; v) (xP�−2(x) + Ak−�+1)

= p�−1(x ; v)P (x) − x p(x ; v)P�−1(x).

This completes the proof.
Theorem 6.6 (Determinant formula for pencils in DL(P )). Suppose that L(λ)

is in DL(P ) with nonzero ansatz vector v = [v1, v2, . . . , vk]
T . Assume that v has m

leading zeroes with 0 ≤ m ≤ k − 1, so that v1 = v2 = · · · = vm = 0, vm+1 �= 0 is
the first nonzero coefficient of p(x ; v), and p(x ; v) has k −m − 1 finite roots in C,
counted with multiplicities, denoted here by r1, r2, . . . , rk−m−1. Then we have

(6.7)

detL(λ) =

⎧⎨⎩(−1)n·� k
2 �(v1)

kn det
(
P (r1)P (r2) · · ·P (rk−1)

)
detP (λ) if m = 0,

(−1)s(vm+1)
kn(detAk)

m det
(
P (r1) · · ·P (rk−m−1)

)
detP (λ) if m > 0,

where s = n
(
m +

⌊
m
2

⌋
+
⌊
k−m

2

⌋)
.

Proof. The proof proceeds in three parts.
Part 1. We first consider the case when m = 0 (i.e., v1 �= 0) and p(x ; v) has

k − 1 distinct finite roots. The strategy of the proof is to reduce L(λ) by a sequence
of equivalence transformations to a point where the determinant can just be read off.

We begin the reduction process by right-multiplying L(λ) by the block-Toeplitz
matrix T (λ). Recall that T (λ) and G(λ) denote the unimodular matrix polynomials
defined in (2.5), and are related to each other via the factorization in (2.6). Using
(6.4) for the description of L(λ), an argument very similar to the one used in the
proof of Theorem 4.1 yields the block-column–wise description

L(λ)G(λ) =

[
Y1 Y2 − λY1 · · · Yk−1 − λYk−2 v ⊗ P (λ)
+λv ⊗Ak +λ v ⊗Ak−1 +λ v ⊗A2

]
,

and hence

(6.8)

L(λ)T (λ) =

[
Y1 Y2 · · · Yk−1 v ⊗ P (λ)
+λv ⊗ P0(λ) +λv ⊗ P1(λ) +λv ⊗ Pk−2(λ)

]
.
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Next we left-multiply by a constant (nonsingular) “Vandermonde-like” matrix M ,
built block-row–wise from ΛT (x) := [xk−1 xk−2 · · · x 1] evaluated at each of the roots
of p(x ; v),

M :=

⎡⎢⎢⎢⎢⎢⎣
eT1

ΛT (r1)
ΛT (r2)

...
ΛT (rk−1)

⎤⎥⎥⎥⎥⎥⎦⊗ I =

⎡⎢⎢⎢⎢⎢⎣
1 0 · · · 0 0

rk−1
1 rk−2

1 · · · r1 1

rk−1
2 rk−2

2 · · · r2 1
...

... · · ·
...

...

rk−1
k−1 rk−2

k−1 · · · rk−1 1

⎤⎥⎥⎥⎥⎥⎦⊗ I.(6.9)

Using Lemma 6.5 and the fact that ΛT (rj)v = p(rj ; v), we obtain that(
ΛT (rj) ⊗ I

)
(Y� + λv ⊗ P�−1(λ))

= p�−1(rj ; v)P (rj) − rj p(rj ; v)P�−1(rj) + λ p(rj ; v)P�−1(λ).

Since r1, . . . , rk−1 are the roots of p(x ; v), the product ML(λ)T (λ) simplifies to⎡⎢⎢⎢⎢⎢⎢⎣
∗ ∗ · · · ∗ v1P (λ)

p0(r1 ; v)P (r1) p1(r1 ; v)P (r1) · · · pk−2(r1 ; v)P (r1) 0
p0(r2 ; v)P (r2) p1(r2 ; v)P (r2) · · · pk−2(r2 ; v)P (r2) 0

...
...

. . .
...

...
p0(rk−1 ; v)P (rk−1) p1(rk−1 ; v)P (rk−1) · · · pk−2(rk−1 ; v)P (rk−1) 0

⎤⎥⎥⎥⎥⎥⎥⎦.

This matrix now factors into⎡⎢⎢⎢⎢⎣
I

P (r1)
. . .

P (rk−1)

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

=:W

⎡⎢⎢⎢⎢⎣
∗ · · · ∗ v1P (λ)

p0(r1 ; v)I · · · pk−2(r1 ; v)I 0
...

. . .
...

...
p0(rk−1 ; v)I · · · pk−2(rk−1 ; v)I 0

⎤⎥⎥⎥⎥⎦,

and after reversing the order of the block-columns using R⊗ I, we have

ML(λ)T (λ)(R⊗ I) = W

⎡⎢⎢⎢⎣
v1P (λ) ∗

0
... V ⊗ I
0

⎤⎥⎥⎥⎦,(6.10)

where

V =

⎡⎢⎣ pk−2(r1 ; v) · · · p1(r1 ; v) p0(r1 ; v)
...

...
...

...
pk−2(rk−1 ; v) · · · p1(rk−1 ; v) p0(rk−1 ; v)

⎤⎥⎦

=

⎡⎢⎣ (v1r
k−2
1 + · · · + vk−2r1 + vk−1) · · · (v1r1 + v2) v1

...
...

...
...

(v1r
k−2
k−1 + · · · + vk−2rk−1 + vk−1) · · · (v1rk−1 + v2) v1

⎤⎥⎦.
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All that remains is to observe that V can be reduced by (det = +1) column operations
to

v1 ·

⎡⎢⎣ rk−2
1 rk−3

1 · · · r1 1
...

...
...

...
...

rk−2
k−1 rk−3

k−1 · · · rk−1 1

⎤⎥⎦,(6.11)

so det(V ⊗I) = v
(k−1)n
1 detM . Taking determinants on both sides of (6.10) now gives

detM · detL(λ) · detT (λ) · det(R⊗ I)

= det (P (r1)P (r2) · · ·P (rk−1)) · det (v1P (λ)) · det(V ⊗ I).

Since

det(R⊗ I) = det(Rk ⊗ In) = (detRk)
n(det In)k = (−1)n·� k

2 �(6.12)

and detT (λ) = +1, this simplifies to the desired result

detL(λ) = (−1)n·� k
2 �(v1)

kn det (P (r1)P (r2) · · ·P (rk−1)) detP (λ).(6.13)

This completes the argument for the case when m = 0 and the k − 1 roots of p(x ; v)
are all distinct.

Part 2. We now describe how to modify this argument to handle m > 0, i.e.,
the first nonzero coefficient of p(x ; v) is vm+1. We will continue to assume that the
k −m− 1 finite roots of p(x ; v) are all distinct.

We start out the same way as before, postmultiplying L(λ) by T (λ) to get (6.8).
But then, instead of M in (6.9), we use all available finite roots of p(x ; v) to define
the following modified version of M :

M̂ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

eT1
...

eTm+1

ΛT (r1)
...

ΛT (rk−m−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ In =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Im+1 0

rk−1
1 rk−2

1 · · · r1 1
...

...
...

...
...

rk−1
k−m−1 rk−2

k−m−1 · · · rk−m−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ In.(6.14)

Now simplify the product M̂L(λ)T (λ) using Lemma 6.5 and ΛT (r�)v = p(r� ; v) = 0
as before, as well as the fact that v1 = v2 = · · · = vm = 0, which implies that
p0(x ; v), p1(x ; v), . . . , pm−1(x ; v) are all zero polynomials. Then we obtain
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M̂L(λ)T (λ)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

∗
...
0

∗ · · · ∗ vm+1P (λ)

p0(r1 ; v)P (r1) · · · pk−2(r1 ; v)P (r1) 0
...

...
...

...
p0(rk−m−1 ; v)P (rk−m−1) · · · pk−2(rk−m−1 ; v)P (rk−m−1) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

B ∗
...
0

∗ ∗ · · · ∗ vm+1P (λ)

pm(r1 ; v)P (r1) · · · pk−2(r1 ; v)P (r1) 0

0
...

...
...

...
pm(rk−m−1 ; v)P (rk−m−1) · · · pk−2(rk−m−1 ; v)P (rk−m−1) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

mn (k−m−1)n n

where the mn ×mn block B can also be seen to have some further structure. First
note that because of the structure of M̂ , the block B in M̂L(λ)T (λ) is exactly the
same as the corresponding block in L(λ)T (λ) in (6.8), which is just the first mn rows
of [

Y1 Y2 · · · Ym

+λv ⊗ P0(λ) +λv ⊗ P1(λ) +λv ⊗ Pm−1(λ)

]
.

But because v1 = v2 = · · · = vm = 0, the terms λv ⊗ Pi(λ) make no contribution to
these first mn rows. So B is the same as the first mn rows of

[Y1|Y2| · · · |Ym].

Using the recurrence (6.2) from Lemma 6.4 with 1 ≤ � ≤ m, we can now show that B is
actually block anti-triangular. When � = 1 we have Y1 = −Nv⊗Ak. Since the first m
entries of Nv are [v2, v3, . . . , vm+1]

T = [0, 0, . . . , vm+1]
T , we see that the first block-

column of B is [0, . . . , 0,−vm+1A
T
k ]T . With � = 2 we have Y2 = (N⊗I)Y1−Nv⊗Ak−1,

whose first mn rows are⎡⎢⎢⎢⎢⎣
0
...
0

−vm+1Ak

∗

⎤⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎣
0
...
0
0

−vm+1Ak−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0
...
0

−vm+1Ak

∗

⎤⎥⎥⎥⎥⎦.

By induction, we then see that the first mn rows of Y� for 1 ≤ � ≤ m look like[
0, . . . , 0, −vm+1A

T
k , ∗, . . . , ∗

]T
,
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with m− � leading blocks of zeroes. Thus B has the block anti-triangular form

B = −vm+1 ·

⎡⎢⎢⎢⎣
0 · · · 0 Ak
... . .

.
. .

. ∗
0 Ak . .

. ...
Ak ∗ · · · ∗

⎤⎥⎥⎥⎦,
and so M̂L(λ)T (λ) is equal to⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −vm+1Ak 0

. .
. ∗

...
−vm+1Ak ∗ 0

∗ ∗ · · · ∗ vm+1P (λ)

pm (r1 ; v)P (r1) · · · pk−2 (r1 ; v)P (r1) 0

0
...

...
...

...
pm (rk−m−1 ; v)P (rk−m−1) · · · pk−2 (rk−m−1 ; v)P (rk−m−1) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Performing some block-column permutations gives us

(6.15)

M̂L(λ)T (λ) ((Rm ⊕Rk−m) ⊗ In)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−vm+1Ak 0 0
. . .

... ∗
∗ −vm+1Ak 0

∗ vm+1P (λ) ∗ · · · ∗
0 pk−2 (r1 ; v)P (r1) · · · pm (r1 ; v)P (r1)

0
...

...
...

...
0 pk−2 (rk−m−1 ; v)P (rk−m−1) · · · pm (rk−m−1 ; v)P (rk−m−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which after factoring becomes⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−vm+1Im) ⊗ In 0 0

0 vm+1In 0

0 0 Ŵ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ak 0
. . . 0 ∗

∗ Ak

0 P (λ) ∗

0 0 V̂ ⊗ In

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(6.16)

where Ŵ = diag(P (r1), . . . , P (rk−m−1)) and

V̂ =

⎡⎢⎣ pk−2(r1 ; v) · · · pm(r1 ; v)
...

...
...

pk−2(rk−m−1 ; v) · · · pm(rk−m−1 ; v)

⎤⎥⎦

=

⎡⎢⎣ (vm+1r
k−m−2
1 + · · · + vk−1) · · · (vm+1r1 + vm+2) vm+1

...
...

...
...

(vm+1r
k−m−2
k−m−1 + · · · + vk−1) · · · (vm+1rk−m−1 + vm+2) vm+1

⎤⎥⎦.
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Since vm+1 �= 0, this (k−m−1)× (k−m−1) matrix V̂ can be reduced by (det = +1)
column operations in a manner analogous to the reduction of V in (6.11), so we see
that

det(V̂ ⊗ In) = (vm+1)
(k−m−1)n det M̂ .(6.17)

Now taking determinants on both sides of (6.15) and using the factorization (6.16)
gives

det M̂ · detL(λ) · detT (λ) · det(Rm ⊗ In) · det(Rk−m ⊗ In)

= det (P (r1)P (r2) · · ·P (rk−m−1)) ·det(−vm+1Ak)
m ·det (vm+1P (λ)) ·det(V̂⊗In).

Canceling det M̂ on both sides using (6.17), and using detT (λ) = +1 together with
the fact that det(R⊗ I) is its own inverse, we get

detL(λ) = det (P (r1)P (r2) · · ·P (rk−m−1)) · (−1)mn · (vm+1)
kn · (detAk)

m

·detP (λ) · det(Rm ⊗ In) · det(Rk−m ⊗ In).

Finally, substituting det(Rm ⊗ In) = (−1)n·�m
2 � and det(Rk−m ⊗ In) = (−1)n·�

k−m
2 �

from (6.12) yields the desired formula (6.7). Note that this is consistent with formula
(6.13) derived for the m = 0 case, as long as we interpret the term (detAk)

m to be
equal to +1 whenever m = 0, regardless of whether detAk is zero or nonzero.

Part 3. Now that we know that (6.7) holds for any v ∈ F
k such that the corres-

ponding p(x ; v) has distinct finite roots, we can leverage this result to the general
case by a continuity argument. For every fixed m and fixed polynomial P (λ), the
formula on the right-hand side of (6.7) is clearly a continuous function of the leading
coefficient vm+1 and the roots r1, r2, . . . , rk−m−1 of p(x ; v), and is defined for all lists
in the set D =

{
(vm+1, r1, r2, . . . , rk−m−1) : vm+1 �= 0

}
, regardless of whether the

numbers r1, r2, . . . , rk−m−1 are distinct or not.
The left-hand side of (6.7) can also be viewed as a function defined and continuous

for all lists in D. To see this, first observe that the map

(vm+1, r1, r2, . . . , rk−m−1) �→ (vm+1, vm+2, . . . , vk)

taking the leading coefficient and roots of the polynomial p(x ; v) to the coefficients of
the same polynomial p(x ; v) is defined and continuous on D, as well as being surjec-
tive. Next note that because of the isomorphism in Corollary 5.4, the unique pencil
L(λ) ∈ DL(P ) corresponding to v = (0, 0, . . . , 0, vm+1, . . . , vk)

T can be expressed as a
linear combination

L(λ) = vm+1Lm+1(λ) + · · · + vkLk(λ)

of the fixed pencils Li(λ) corresponding to v = ei. Thus detL(λ) is a continuous
function of (vm+1, vm+2, . . . , vk), and hence also of (vm+1, r1, r2, . . . , rk−m−1).

In summary, the two sides of (6.7) are continuous functions defined on the same
domain D and have been shown to be equal on a dense subset{

(vm+1, r1, r2, . . . , rk−m−1) : vm+1 �= 0 and r1, r2, . . . , rk−m−1 are distinct
}

of D. Therefore by continuity the two sides of (6.7) must be equal on all of D. Since
this argument holds for each m with 0 ≤ m ≤ k − 1, the desired result is established
for all nonzero v ∈ F

k.
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We now have all the ingredients needed to prove the main result of this section.
Keep in mind our convention that the “roots of p(x ; v)” includes a root at ∞ whenever
v1 = 0.

Theorem 6.7 (Eigenvalue Exclusion Theorem). Suppose that P (λ) is a regular
matrix polynomial and L(λ) is in DL(P ) with nonzero ansatz vector v. Then L(λ)
is a linearization for P (λ) if and only if no root of the v-polynomial p(x ; v) is an
eigenvalue of P (λ). (Note that this statement includes ∞ as one of the possible roots
of p(x ; v) or possible eigenvalues of P (λ).)

Proof. By Theorem 4.3, L(λ) is a linearization for P (λ) if and only if L(λ) is
regular. However, from the determinant formula (6.7) it follows that L(λ) is regular
if and only if no root of p(x ; v) is an eigenvalue of P (λ).

Using Theorem 6.7, we can now show that almost every pencil in DL(P ) is a
linearization for P . Although the same property was proved in Theorem 4.7 for
pencils in L1(P ), the result for DL(P ) is not a consequence of Theorem 4.7, since
DL(P ) is itself a closed, nowhere dense subset of measure zero in L1(P ). Neither can
the proof of Theorem 4.7 be directly generalized in any simple way; hence the need
for a different argument in the following result.

Theorem 6.8 (Linearizations Are Generic in DL(P )). For any regular matrix
polynomial P (λ), pencils in DL(P ) are linearizations of P (λ) for almost all v ∈ F

k.
(Here “almost all” means for all but a closed, nowhere dense set of measure zero in
F
k. )

Proof. Recall that the resultant [22] res(f, g) of two polynomials f(x) and g(x) is
a polynomial in the coefficients of f and g with the property that res(f, g) = 0 if and
only if f(x) and g(x) have a common (finite) root. Now consider res(p(x ; v),detP (x)),
which, because P (λ) is fixed, can be viewed as a polynomial r(v1, v2, . . . , vk) in the
components of v ∈ F

k. The zero set Z(r) =
{
v ∈ F

k : r(v1, v2, . . . , vk) = 0
}

, then,
is exactly the set of v ∈ F

k for which some finite root of p(x ; v) is an eigenvalue of
P (λ), together with the point v = 0. Recall that by our convention the v-polynomial
p(x ; v) has ∞ as a root exactly for v ∈ F

k lying in the hyperplane v1 = 0. Thus
by Theorem 6.7 the set of vectors v ∈ F

k for which the corresponding pencil L(λ) ∈
DL(P ) is not a linearization of P (λ) is either the proper algebraic set Z(r) or the
union of two proper algebraic sets, Z(r) and the hyperplane v1 = 0. However, the
union of any finite number of proper algebraic sets is always a closed, nowhere dense
set of measure zero in F

k.
How far can the eigenvalue exclusion theorem be extended from DL(P )-pencils to

other pencils in L1(P )? Let us say that a pencil L ∈ L1(P ) with right ansatz vector
v has the eigenvalue exclusion property if the statement “no root of the v-polynomial
p(x ; v) is an eigenvalue of P (λ)” is equivalent to the linearization condition for L.
That there are pencils in L1(P ) with the eigenvalue exclusion property that are not
in DL(P ) is shown by the pencil L1(λ) in Example 4.5. The following variation of
Example 4.6, though, is easily shown not to have the eigenvalue exclusion property.

Example 6.9. For the general cubic polynomial P (λ) = λ3A + λ2B + λC + D
consider the pencil

L(λ) = λX + Y = λ

⎡⎣ A 0 2C
−2A −B − C A− 4C

0 A 0

⎤⎦ +

⎡⎣ B −C D
C −B 2C −A −2D
−A 0 0

⎤⎦
that is in L1(P ) but not in DL(P ). Since X �→Y =

[
1 −2 0

]T ⊗
[
A B C D

]
,

the right ansatz vector is v =
[
1 −2 0

]T
with v-polynomial p(x ; v) = x2 − 2x and
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roots 0 and 2. On the other hand, applying the procedure described in section 4.1
gives

Z =

[
B + C −A
−A 0

]
,

and hence the linearization condition detZ = det(−A2) �= 0, equivalently detA �= 0.
Thus L(λ) is a linearization for P (λ) if and only if ∞ is not an eigenvalue of P (λ).
In this example, then, the roots of the v-polynomial do not correctly predict the
linearization condition for L.

The first companion form of a polynomial P is another example where the eigen-
value exclusion property is easily seen not to hold. Characterizing the set of pencils
in L1(P ) for which the eigenvalue exclusion property does hold is an open problem.

7. Concluding remarks. By generalizing the first and second companion form
linearizations for a matrix polynomial P (λ), we have introduced two large vector
spaces of pencils, L1(P ) and L2(P ), which serve as sources of potential linearizations
for P (λ). The mild hypothesis that P (λ) is regular makes almost every pencil in these
spaces a linearization for P (λ).

A number of properties enjoyed by the companion forms extend to the lineariza-
tions in L1(P ) and L2(P ): they are strong linearizations, are readily constructed from
the coefficient matrices of P (λ), and have eigenvectors that reveal those of P (λ). Fur-
thermore, a simple procedure can be used to test when a pencil in L1(P ) or L2(P ) is
a linearization of P (λ).

The intersection of L1(P ) and L2(P ), denoted by DL(P ), is of particular signifi-
cance. Pencils in L1(P ) reveal only right eigenvectors of P (λ), while those in L2(P )
lead to left eigenvectors of P (λ). Pencils in DL(P ) therefore simultaneously reveal
right as well as left eigenvectors of P . An isomorphism between DL(P ) and F

k al-
lows the association of a unique scalar polynomial of degree k − 1 to each pencil in
DL(P ). Linearizations in DL(P ) can then be characterized by an eigenvalue exclusion
property—a pencil in this distinguished subspace is a linearization precisely when no
root of its associated scalar polynomial is an eigenvalue of P .

As remarked earlier, the first and second companion form linearizations have a
significant drawback—they usually do not reflect any structure that may be present in
P (λ). Different linearizations can also exhibit very different conditioning. By system-
atizing the construction of large classes of linearizations that generalize the companion
forms, we have provided a rich arena in which linearizations with additional properties
like structure preservation or improved conditioning can be found. This is the subject
of the work in [7], [8], [12].

Appendix A. Proof of Proposition 5.2.
Proof. “⇒”: Assume that (5.3) holds. First, we show by induction on k that the

formulas (5.6)–(5.7) hold.

k = 1 : In this case, we have

X �→Y = S =
[
S11 S12

]
, X �↓ Y = T =

[
T11

T21

]
and hence X = S11 = T11 and Y = S12 = T21, which coincides with (5.6)–(5.7).

k − 1 ⇒ k : By the definition of the column and row shifted sums, (5.3) implies

Yik = Si,k+1 and Yki = Tk+1,i(A.1)
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as well as Xji + Yj,i−1 = Sji and Xij + Yi−1,j = Tij for j = 1, . . . , k and i = 2, . . . , k,
which together with (A.1) gives

Xki = Ski − Tk+1,i−1 and Xik = Tik − Si−1,k+1(A.2)

for i = 1, . . . , k. (Remember that S0,k+1 = 0 = Tk+1,0 by convention.) In order to be
able to use the induction hypothesis, let us partition X and Y as

X =

⎡⎢⎢⎢⎢⎣
X1k

X̃
...

Xk−1,k

Xk1 . . . Xk,k−1 Xkk

⎤⎥⎥⎥⎥⎦, Y =

⎡⎢⎢⎢⎢⎣
Y1k

Ỹ
...

Yk−1,k

Yk1 . . . Yk,k−1 Ykk

⎤⎥⎥⎥⎥⎦,

with (n− 1)k × (n− 1)k matrices X̃ and Ỹ . Then we obtain

X̃ �→Ỹ =

⎡⎢⎢⎢⎣
S11 . . . S1,k−1 S1k −X1k

S21 . . . S2,k−1 S2k −X2k

...
. . .

...
...

Sk−1,1 . . . Sk−1,k−1 Sk−1,k −Xk−1,k

⎤⎥⎥⎥⎦(A.3)

=

⎡⎢⎢⎢⎣
S11 . . . S1,k−1 S1k − T1k

S21 . . . S2,k−1 S2k − T2k + S1,k+1

...
. . .

...
...

Sk−1,1 . . . Sk−1,k−1 Sk−1,k − Tk−1,k + Sk−2,k+1

⎤⎥⎥⎥⎦ =: S̃.(A.4)

Analogously,

(A.5)

X̃ �↓ Ỹ =

⎡⎢⎢⎢⎣
T11 T12 . . . T1,k−1

...
...

. . .
...

Tk−1,1 Tk−1,2 . . . Tk−1,k−1

Tk1 − Sk1 Tk2 − Sk2 + Tk+1,1 . . . Tk,k−1 − Sk,k−1 + Tk+1,k−2

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

=: T̃

.

Writing S̃ = [S̃ij ] and T̃ = [T̃ij ] with n × n blocks S̃ij , T̃ij and using the induction

hypothesis for X̃ = [Xij ] and Ỹ = [Yij ], we then obtain for i, j = 1, . . . , k − 1 and
j ≥ i that

Xij = T̃ij +

i−1∑
μ=1

(T̃μ,j+i−μ − S̃μ,j+i−μ), Yij =

i∑
μ=1

(S̃μ,j+i+1−μ − T̃μ,j+i+1−μ),(A.6)

Xji = S̃ji +

i−1∑
μ=1

(S̃j+i−μ,μ − T̃j+i−μ,μ), Yji =

i∑
μ=1

(T̃j+i+1−μ,μ − S̃j+i+1−μ,μ),(A.7)

where S̃νη = 0 = T̃ην whenever (ν, η) �∈ {1, . . . , k − 1} × {1, . . . , k}. We claim that
together with (A.1) and (A.2), the formulas (A.6)–(A.7) coincide with the formu-
las (5.6)–(5.7). We show this in detail for the first formula in (5.6); for the other
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formulas there is a similar proof that is omitted. If j + i ≤ k, then the block forms of
S̃ and T̃ given in (A.4) and (A.5) immediately yield

Xij = T̃ij +

i−1∑
μ=1

(T̃μ,j+i−μ − S̃μ,j+i−μ) = Tij +

i−1∑
μ=1

(Tμ,j+i−μ − Sμ,j+i−μ).

If j + i > k and i, j < k, then j + i−m = k for some m ≥ 1 ; using Sνη = 0 = Tην for
(ν, η) �∈ {1, . . . , k} × {1, . . . , k + 1}, we obtain

Xij = T̃ij +

i−1∑
μ=1

(T̃μ,j+i−μ − S̃μ,j+i−μ)

= T̃ij +

i−1∑
μ=m+1

(T̃μ,j+i−μ − S̃μ,j+i−μ) − S̃mk

= Tij +

i−1∑
μ=m+1

(Tμ,j+i−μ − Sμ,j+i−μ) − Smk + Tmk − Sm−1,k+1

= Tij +

i−1∑
μ=1

(Tμ,j+i−μ − Sμ,j+i−μ).

Finally, for i = k or j = k the statement follows immediately from (A.1) or (A.2).
This concludes the inductive proof of the formulas (5.6)–(5.7). In particular, this
implies that X and Y are uniquely determined by S and T . Note that Xii and Yii

now satisfy two distinct formulas for i = 1, . . . , n. Since both right-hand sides in the
formulas (5.6)–(5.7) must be equal in this case, we directly obtain (5.4) and (5.5).

“⇐”: We have to show the existence of block-matrices X = [Xij ] and Y = [Yij ]
such that X �→Y = S and X �↓ Y = T . Define Xij and Yij by the formulas (5.6)–(5.7).
Because of (5.4) and (5.5), X and Y are well defined. We will now show in detail
that X �→Y = S. (The proof of X �↓ Y = T is similar and will be omitted.) Indeed,
formulas (5.6)–(5.7) imply Xj1 = Sj1 and Yik = Sik for i, j = 1, . . . , k. Moreover, we
obtain for i = 1, . . . , k and j = 2, . . . , k that

Xij + Yi,j−1 = Tij +

i−1∑
μ=1

(Tμ,j+i−μ − Sμ,j+i−μ) +

i∑
μ=1

(Sμ,j+i−μ − Tμ,j+i−μ)

= Tij + Sij − Tij = Sij

if j − 1 ≥ i, and that

Xij + Yi,j−1 = Sij +

j−1∑
μ=1

(Sj+i−μ,μ − Tj+i−μ,μ) +

j−1∑
μ=1

(Tj+i−μ,μ − Sj+i−μ,μ) = Sij

if j − 1 < i. This shows X �→Y = S and concludes the proof.

Appendix B. Proof of Theorem 5.3.
Proof. Note that (5.8) is equivalent to X �→Y = S and X �↓ Y = T , where

S = (Sij) and T = (Tji) are block k × k matrices such that

Sij = viAk+1−j , Tji = wiAk+1−j , i = 1, . . . , k, j = 1, . . . , k + 1.(B.1)
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Then by Proposition 5.2, X and Y satisfying (5.8) exist if and only if

wjAk+1−j +

j−1∑
μ=1

(
w2j−μAk+1−μ − vμAk+1−2j+μ

)
(B.2)

= vjAk+1−j +

j−1∑
μ=1

(
v2j−μAk+1−μ − wμAk+1−2j+μ

)
and

j∑
μ=1

(
vμAk−2j+μ − w2j+1−μAk+1−μ

)
=

j∑
μ=1

(
wμAk−2j+μ − v2j+1−μAk+1−μ

)
(B.3)

for j = 1, . . . , k. (Here v0 := w0 := 0, and for μ < 0 or μ > k, vμ := wμ := 0 and
Aμ := 0 ∈ F

n×n.) Hence, it is sufficient to prove the statement

v = w ⇐⇒ (B.2) and (B.3) are satisfied.

“⇒”: If v = w, then (B.2) and (B.3) are obviously true.
“⇐”: We show vm = wm for m = 1, . . . , k by induction on m.
m = 1 : (B.2) for j = 1 yields v1Ak = w1Ak. Since Ak �= 0, this implies

v1 = w1.

m = 2 : (B.3) for j = 1 yields v1Ak−1−w2Ak = w1Ak−1−v2Ak. Since v1 = w1

and Ak �= 0, this implies v2 = w2.

m− 1 ⇒ m : Assume first that m is odd, so that m = 2j − 1 for some j ≥ 2.
Since by the induction hypothesis we have vi = wi for i = 1, . . . , 2j − 2, we obtain
from (B.2) that w2j−1Ak = v2j−1Ak. This implies w2j−1 = v2j−1 because Ak �= 0.
Next assume that m is even, i.e., m = 2j for some j ≥ 2. Again, since vi = wi for i =
1, . . . , 2j − 1 by the induction hypothesis, we obtain from (B.3) that w2jAk = v2jAk.
This implies w2j = v2j because Ak �= 0.

This concludes the induction. Hence we have v = w.
The uniqueness of X and Y and the formulas (5.9) and (5.10) follow directly from

Proposition 5.2, the formulas (5.6) and (5.7), and (B.1).
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