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Abstract

The subject of the paper is the mesh independent convergence of the preconditioned
conjugate gradient method for nonsymmetric elliptic problems. The approach of equivalent
operators is involved, in which one uses the discretization of another suitable elliptic operator
as preconditioning matrix. By introducing the notion of compact-equivalent operators, it is
proved that for a wide class of elliptic problems the superlinear convergence of the obtained
PCGM is mesh independent under FEM discretizations, that is, the rate of superlinear
convergence is given in the form of a sequence which is mesh independent and is determined
only by the elliptic operators.
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1 Introduction

The conjugate gradient method is a widespread way of solving large linear algebraic systems, such
as those arising from discretized elliptic problems, in particular when combined with a suitable
preconditioning. Since its first presentation in [19] the convergence of the CGM has been well
established, as summarized in [2]. The convergence theory of the CGM often involves linear
operators in Hilbert space, see various both classical and recent results [12, 13, 18, 24, 27, 28]
and the authors’ papers [4, 5, 6]. A basic reason to use Hilbert space theory is to derive mesh
independence of the convergence estimates, by which it can be shown that the preconditioned
CGM can be competitive with multigrid methods [12].

The theory of equivalent operators in Hilbert space has proved an efficient clear framework
for the convergence study of the preconditioned CGM for elliptic problems [12, 16, 23]. Thereby
one uses the discretization of a suitable linear elliptic operator as preconditioning matrix, see
also [8, 10, 28]. As a main result, mesh independence of linear convergence rates is rigorously
characterized in [12, 23]. We note that in [16], for proper boundary conditions, when the pre-
conditioned operator is a compact perturbation of the identity then convergence is expected to
be faster than any linear rate.

Our goal is to complete the above results by showing that for a class of elliptic problems,
the superlinear convergence of the PCGM is mesh independent under FEM discretizations.
This means that a bound on the rate of superlinear convergence is given in the form of a
sequence which is mesh independent and is determined only by the elliptic operators. To describe
the suitable class of problems, we introduce the notion of compact-equivalent operators which
expresses that preconditioning one of them with the other yields a compact perturbation of
the identity. This notion and the convergence result give a refinement of the case of equivalent
operators: roughly speaking, if the two operators (the original and preconditioner) are equivalent
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then the corresponding PCGM provides mesh independent linear convergence, whereas if the
two operators are compact-equivalent then the PCGM provides mesh independent superlinear
convergence.

Our present results are extensions of the earlier ones [6, 22], where such mesh independence
was proved for the GCG-LS method for elliptic Dirichlet problems, however, with severe restric-
tions: except some special cases, both the original and preconditioning operators had to contain
constant coefficients. Now we show that two elliptic operators, with homogeneous Dirichlet con-
ditions on the same portion of the boundary, are compact-equivalent if and only if their principal
parts coincide up to a constant factor. Within this class, the proof of the mesh independence
result then contains no restrictions except standard smoothness and coercivity assumptions on
the operators.

The paper is organized as follows: the required background is given in Section 2, compact-
equivalent operators are introduced and characterized in Section 3, and the mesh independence
result is proved in Section 4.

2 Background

2.1 Conjugate gradient algorithms

Let us consider a linear system
Bu = f (1)

with a given nonsingular matrix B ∈ Rn×n, f ∈ Rn and solution u. Let 〈., .〉 be a given inner
product on Rn and, denoting by B∗ the adjoint of B w.r.t. this inner product, assume that
B + B∗ > 0, i.e., is positive definite.

If B is self-adjoint, then the standard CGM reads as follows [2, 27]: let u0 ∈ Rn be arbitrary,
d0 := Bu0 − f ; for given uk and dk, with r̂k := Buk − f , we let

uk+1 = uk − αkdk, where αk =
〈r̂k, dk〉
〈Bdk, dk〉 ; dk+1 = r̂k+1 + βkdk, where βk =

‖r̂k+1‖2

‖r̂k‖2
. (2)

Then, using the error vector ek = uk−u and its energy norm ‖ek‖B = 〈Bek, ek〉1/2, respectively,
and with the decomposition B = I+C (where I is the identity matrix), the following celebrated
estimate holds [2, 27]:

(‖ek‖B

‖e0‖B

)1/k

≤ 2
k
‖B−1‖

k∑

j=1

|λj(C)| (k = 1, 2, ..., n), (3)

which shows superlinear convergence if the eigenvalues |λ1(C)| ≥ |λ2(C)| ≥ ... approach zero.
Since this result is basic for the whole paper, and for completeness, we present a derivation

of (3) following [2]. The optimality of the CGM implies

‖ek‖B

‖e0‖B
≤ min

Pk∈π1
k

max
λ∈σ(B)}

|Pk(λ)|

where π1
k denotes the set of polynomials Pk of degree k with Pk(0) = 1. Let λj := λj(B)

and µj := λj(C) (= λj − 1). Then the polynomials Pk(λ) :=
k∏

j=1

(
1− λ

λj

)
satisfy Pk(λi) = 0
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(i = 1, .., k) and

max
λ∈σ(B)}

|Pk(λ)| = max
i≥k+1

k∏

j=1

∣∣∣1− λi

λj

∣∣∣ = max
i≥k+1

k∏

j=1

|µj − µi|
|1 + µj | ≤ max

i≥k+1

k∏

j=1

2|µj |
|1 + µj | ,

hence, using the arithmetic-geometric inequality,

max
λ∈σ(B)}

|Pk(λ)|1/k ≤ 2
k

k∑

j=1

|µj |
|1 + µj | ≤

2
k

(sup
1
|λj |)

k∑

j=1

|µj |

which yields (3).
For nonsymmetric B, several CG algorithms exist (see e.g. [2, 11]). The GCG-LS method

[1, 2] is defined directly for the equation (1) and produces a similar estimate as (3) if B is
normal. Mesh independent bounds in [6, 22] for (3) for some elliptic problems have been given
using the GCG-LS method. Alternatively, one can consider the normal equation and apply a
symmetric CG algorithm, which we will do in this paper. For clearness, let us hereby consider
a nonsymmetric linear system

Au = b (4)

with given A ∈ Rn×n, b ∈ Rn, such that

A + A∗ > 0. (5)

Let us apply the iteration (2) for equation A∗Au = A∗b, i.e. with B = A∗A and f = A∗b. Then,
with notations sk = r̂k and rk = A−T r̂k, we obtain the following algorithmic form: let u0 ∈ Rn

be arbitrary, r0 := Au0 − b, s0 := d0 := A∗r0; for given dk, uk, rk and sk, we let




zk = Adk,

αk =
〈rk, zk〉
‖zk‖2

, uk+1 = uk − αkdk , rk+1 = rk − αkzk ;

sk+1 = A∗rk+1,

βk =
‖sk+1‖2

‖sk‖2
, dk+1 = sk+1 + βkdk.

(6)

Let us consider the decomposition
A = I + K.

Then, using the relations B = I + (K∗ + K + K∗K), ‖ek‖B = ‖Aek‖ = ‖rk‖ and ‖B−1‖ ≤ ν−1

where ν := minx∈Rn
‖Ax‖2
‖x‖2 , estimate (3) can be reformulated as

(‖rk‖
‖r0‖

)1/k

≤ 2
kν

k∑

i=1

(
|λi(K∗ + K)|+ λi(K∗K)

)
(k = 1, 2, ..., n). (7)

The goal of this paper is to derive a mesh independent bound for (7) when (4) comes from
a preconditioned discretized elliptic PDE using suitable equivalent operators.
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2.2 Singular values of compact operators

Let H be a real Hilbert space. We shall consider compact operators, i.e., operators C such that
the image (Cvi) of any bounded sequence (vi) contains a convergent subsequence.

Definition 2.1 (i) We call λi(F ) (i = 1, 2, . . .) the ordered eigenvalues of a compact self-
adjoint linear operator F in H if each of them is repeated as many times as its multiplicity and
|λ1(F )| ≥ |λ2(F )| ≥ ...

(ii) The singular values of a compact operator C in H are

si(C) := λi(C∗C)1/2, (i = 1, 2, . . .)

where λi(C∗C) are the ordered eigenvalues of C∗C. In particular, if C is self-adjoint then
si(C) = |λi(C)|.

Some useful properties of compact operators are listed below:

Proposition 2.1 Let C be a compact operator in H. Then

(a) for any k ∈ N+ and any orthonormal vectors u1, ..., uk ∈ H,

k∑

i=1

|〈Cui, ui〉| ≤
k∑

i=1

si(C) .

(b) If B is bounded linear operator in H, then

si(BC) ≤ ‖B‖ si(C) (i = 1, 2, . . .).

(c) (Variational characterization of the eigenvalues). If C is also self-adjoint, then

|λi(C)| = min
Hi−1⊂H

max
u⊥Hi−1

u 6=0

|〈Cu, u〉|
‖u‖2

,

where Hi−1 stands for an arbitrary (i− 1)-dimensional subspace.

(d) If a sequence (ui) ⊂ H satisfies 〈ui, uj〉 = 〈Cui, uj〉 = 0 (i 6= j), then

inf
i
|〈Cui, ui〉|/‖ui‖2 = 0.

Proof. Statements (a) and (b) are the consequences of [14, Chap. VI, Corollary 3.3
and Proposition 1.3, resp.], for statement (c) see [15, Theorem III.9.1]. To prove (d), assume
the contrary that the infimum equals δ > 0. We may assume that 〈Cui, ui〉 has constant sign
(otherwise we consider such a subsequence only). Then the orthonormal sequence vi := ui/‖ui‖
satisfies for all i 6= j

2δ ≤ |〈Cvi, vi〉+ 〈Cvj , vj〉| = |〈C(vi − vj), vi − vj〉| ≤ ‖C(vi − vj)‖ ‖vi − vj‖ =
√

2‖C(vi − vj)‖,

hence the image (Cvi) of the bounded sequence (vi) contains no convergent subsequence, i.e. C
is not compact.
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3 Compact-equivalent operators in Hilbert space

In this section we introduce and characterize compact-equivalent operators. Roughly speaking,
the compact-equivalence of the unbounded operators N and L expresses that N−1L is a compact
perturbation of constant times the identity. To avoid difficulties with domains and ranges, our
definition will use a weak form of the operators in a suitable energy space HS . In particular, no
regularity is required in the case of elliptic operators.

The fact that a compact perturbation of constant times identity is a bounded operator
implies that compact-equivalent operators are equivalent in the sense of [12]. Hence, when we
characterize compact-equivalent elliptic operators (under standard smoothness and coercivity
assumptions), we can a priori assume that they have homogeneous Dirichlet conditions on the
same portion of the boundary [23]. Within this class, compact-equivalence will hold if and only
if the principal parts of the operators coincide up to some constant.

3.1 Basic definitions

In what follows, let H be a real Hilbert space. Let S be a (generally unbounded) linear symmetric
operator in H which is coercive, i.e., there exists p > 0 such that 〈Su, u〉 ≥ p‖u‖2 (u ∈ D(S)).
Then the energy space HS is the completion of D(S) under the inner product 〈u, v〉S = 〈Su, v〉,
and the coercivity implies HS ⊂ H. The corresponding S-norm is denoted by ‖u‖S , and the
space of bounded linear operators on HS by B(HS).

Definition 3.1 Let S be a linear symmetric coercive operator in H. We say that a linear
operator L in H is S-bounded and S-coercive, and write L ∈ BCS(H), if the following properties
hold:

(i) D(L) ⊂ HS and D(L) is dense in HS in the S-norm;

(ii) there exists M > 0 such that

|〈Lu, v〉| ≤ M‖u‖S‖v‖S (u, v ∈ D(L));

(iii) there exists m > 0 such that

〈Lu, u〉 ≥ m‖u‖2
S (u ∈ D(L)).

Definition 3.2 For any L ∈ BCS(H), let LS ∈ B(HS) be defined by

〈LSu, v〉S = 〈Lu, v〉 (u, v ∈ D(L)).

Remark 3.1 (a) The above definition makes sense since LS is the bounded linear operator on
HS that represents the unique extension to HS of the densely defined S-bounded bilinear
form u, v 7→ 〈Lu, v〉.

(b) LS is coercive on HS .

(c) If in particular R(L) ⊂ R(S) (where R(. ) denotes the range), then LS |D(L) = S−1L.

Remark 3.2 Definition 3.2 uses the idea of weak form of operators from [23]. Namely, if HS is
a subspace of H1(Ω) consisting of functions vanishing on a fixed portion of the boundary, then
LS coincides with the weak operator Lw using (2.15) in [23].
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Now let us consider an operator equation

Lu = g (8)

where L ∈ BCS(H) and g ∈ H.

Definition 3.3 We call u ∈ HS the weak solution of equation (8) if

〈LSu, v〉S = 〈g, v〉 (v ∈ HS). (9)

Remark 3.3 (a) For all g ∈ H the weak solution of (8) exists and is unique. This follows
in the usual way from the Lax-Milgram theorem, since v 7→ 〈g, v〉 is a bounded linear
functional on HS by the coercivity of S.

(b) If u ∈ D(L), then u satisfies (8) (i.e. it is a strong solution) if and only if it is a weak
solution.

3.2 Compact-equivalent operators

Definition 3.4 Let L and N be S-bounded and S-coercive operators in H. We call L and N
compact-equivalent in HS if

LS = µNS + QS (10)

for some constant µ > 0 and compact operator QS ∈ B(HS).

Remark 3.4 (i) It follows in a straightforward way that the property compact-equivalence is
an equivalence relation.

(ii) In the special case R(L) ⊂ R(N), compact-equivalence of L and N means that N−1L is
a compact perturbation of constant times the identity in the space HS . Indeed, it is easy to see
that here N−1L = N−1

S LS |D(L), and by definition the latter is the perturbation of µI with the
operator N−1

S QS |D(L), which is compact since N−1
S is bounded. (In the general case the ’weakly

preconditioned’ form N−1
S LS is also a compact perturbation.)

Now we characterize compact-equivalence for elliptic operators. Let H = L2(Ω) and let us
define the operators

N1u ≡ −div (A1∇u) + b1 · ∇u + c1u for u|ΓD
= 0, ∂u

∂νA1
+ α1u|ΓN

= 0,

N2u ≡ −div (A2∇u) + b2 · ∇u + c2u for u|ΓD
= 0, ∂u

∂νA2
+ α2u|ΓN

= 0

where ∂u
∂νAi

= Ai ν ·∇u denotes the weighted normal derivative. (The formal domain of Ni to be

used in Definition 3.2 consists of those u ∈ H2(Ω) that satisfy the above boundary conditions,
however, this is nowhere used elsewhere.) The following properties hold, where i = 1, 2:

Assumptions 3.2

(i) Ω ⊂ Rd is a bounded piecewise C1 domain; ΓD, ΓN are disjoint open measurable subparts
of ∂Ω such that ∂Ω = ΓD ∪ ΓN ;

(ii) Ai ∈ C1(Ω,Rd×d) and for all x ∈ Ω the matrix Ai(x) is symmetric; bi ∈ C1(Ω)d, ci ∈
L∞(Ω), αi ∈ L∞(ΓN );
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(iii) we have the coercivity properties min
λ∈σ(Ai(x))

λ ≥ p > 0 with p independent of x, ĉi :=

ci − 1
2 div bi ≥ 0 in Ω and α̂i := αi + 1

2 (bi · ν) ≥ 0 on ΓN ;

(iv) either ΓD 6= ∅, or ĉi or α̂i has a positive lower bound.

For the study of such operators we define the space

H1
D(Ω) := {u ∈ H1(Ω) : u|ΓD

= 0} with 〈u, v〉S :=
∫

Ω
(G ∇u · ∇v + huv) +

∫

ΓN

βuv dσ (11)

where G has the same properties as Ai above in (ii)-(iii), and h ∈ L∞(Ω), h ≥ 0 if ΓD 6= ∅ and
h ≥ δ0 > 0 if ΓD = ∅, further, β ∈ L∞(ΓN ) and β ≥ 0. Then H1

D(Ω) is the energy space HS

of the operator Su := −div (G∇u) + hu on D(S) := {u ∈ H2(Ω) : u|ΓD
= 0, ∂u

∂νG |ΓN
= 0}. It

is easy to check the properties in Definition 3.1 from the above assumptions, which means that
N1, N2 ∈ CS(L2(Ω)).

Proposition 3.1 The elliptic operators N1 and N2 are compact-equivalent in H1
D(Ω) if and

only if their principal parts coincide up to some constant µ > 0, i.e. A1 = µA2.

Proof. We have for all u, v ∈ H1
D(Ω)

〈(Ni)Su, v〉S =
∫

Ω

(
Ai ∇u · ∇v + (bi · ∇u)v + ciuv

)
dx +

∫

ΓN

αiuv dσ .

Hence
(N1)S − µ(N2)S = JS + QS

where, using notations b := b1 − µb2, c := c1 − µc2 and α := α1 − µα2, we have

〈JSu, v〉S =
∫

Ω
(A1 − µA2) ∇u · ∇v and 〈QSu, v〉S =

∫

Ω

(
(b · ∇u)v + cuv

)
dx +

∫

ΓN

αuv dσ .

(12)
Here QS is compact, which is known [16] when N1 and N2 have the same boundary conditions.

Otherwise we use the equality
∫

Ω
(b · ∇u)v dx = −

∫

Ω
u(b · ∇v) dx−

∫

Ω
(div b)uv dx +

∫

ΓN

(b · ν) uv dσ (u, v ∈ H1
D(Ω)) (13)

whence, using notations c̃ := c− div b and α̃ := α + b · ν,

‖QSu‖S = sup
v∈H1

D
(Ω)

‖v‖S=1

|〈QSu, v〉S | = sup
v∈H1

D
(Ω)

‖v‖S=1

∣∣∣∣−
∫

Ω
u(b · ∇v) dx +

∫

Ω
c̃uv dx +

∫

ΓN

α̃ uv dσ

∣∣∣∣ .

Using the embedding estimates

‖v‖L2(Ω) ≤ CΩ‖v‖S , ‖v‖L2(ΓN ) ≤ CΓN
‖v‖S (v ∈ H1

D(Ω)) (14)

(where CΩ, CΓN
> 0) and ‖∇v‖L2(Ω) ≤ p−1/2‖v‖S , and letting K1 := p−1/2‖b‖L∞(Ω)+CΩ‖c̃‖L∞(Ω),

K2 := CΓN
‖α̃‖L∞(ΓN ), we obtain

‖QSu‖S ≤ K1‖u‖L2(Ω) + K2‖u‖L2(ΓN ) (15)

whence QS is compact.

7



It remains to prove that if A1 6= µA2 then JS is not compact. Using Proposition 2.1 (d), it
suffices to find a sequence (ui) ⊂ H1

0 (Ω) ⊂ H1
D(Ω) satisfying

〈ui, uj〉S = 〈JSui, uj〉S = 0 (i 6= j), (16)

inf
i
|〈JSui, ui〉S |/‖ui‖2

S = δ > 0. (17)

Let A := A1 − µA2. Since A is not identically zero, there is x0 ∈ Ω such that A0 := A(x0) 6= 0.

Here A0 is symmetric, hence there is u0 ∈ H1
0 (Ω) such that

∫

Ω
A0 ∇u0 · ∇u0 6= 0. Let

ε :=
∣∣∣
∫

Ω
A0 ∇u0 · ∇u0

∣∣∣/
(∫

Ω
|∇u0|2

)
, Ωε/2 := {x ∈ Ω : ‖A(x)−A0‖ < ε/2}

which is an open set since A is continuous. Fix z′ ∈ Ω, and for any z ∈ Ω and R > 0 let
Ωz,R := {x ∈ Rd : z′+R(x−z) ∈ Ω}. Let zi ∈ Ω, Ri > 0 (i ∈ N+) such that Ωi := Ωzi,Ri ⊂ Ωε/2

and Ωi are pairwise disjoint sets. We define ui ∈ H1
0 (Ω) by ui(x) := u0(z′+Ri(x−zi)) for x ∈ Ωi

and ui(x) := 0 for x ∈ Ω \ Ωi. Since suppui = Ωi are disjoint, (16) is satisfied. Further, using
the fact Ωi ⊂ Ωε/2 and a linear transformation Ωi → Ω in the integral, we obtain

|〈JSui, ui〉S |∫
Ωi
|∇ui|2 =

∣∣∣
∫
Ωi

A ∇ui · ∇ui

∣∣∣
∫
Ωi
|∇ui|2 ≥

∣∣∣
∫
Ωi

A0 ∇ui · ∇ui

∣∣∣
∫
Ωi
|∇ui|2 − ε

2
=

∣∣∣
∫
Ω A0 ∇u0 · ∇u0

∣∣∣
∫
Ω |∇u0|2 − ε

2
=

ε

2
.

Since for u ∈ H1
0 (Ω) have ‖u‖2

S ≤ C · ∫Ω |∇u|2, the above estimate yields (17) with δ = ε
2C > 0.

4 Compact-equivalent preconditioning and mesh independent
superlinear convergence rates

We prove the mesh independent convergence results for the PCGM in four stages. First we
consider symmetric preconditioning operators, which is more straightforward to handle. Then,
by suitable modifications of the proof, we turn to arbitrary preconditioning operators (in the
studied coercive framework) where the general result is obtained. In both the symmetric and
nonsymmetric cases we first consider an abstract Hilbert space level, then derive the correspond-
ing estimates for elliptic problems.

The distinction between the symmetric and nonsymmetric preconditioners also reflects that
the symmetric ones are in general much more relevant in practice. For nonsymmetric precondi-
tioners our result has mostly a theoretical interest for its generality, nevertheless, some practical
examples will be given here as well.

For simplicity we will consider compact-equivalence with µ = 1 in (10), which is clearly
no restriction, since if a preconditioner NS satisfies LS = µNS + QS then we can consider the
preconditioner µNS instead.

4.1 The abstract operator equation and its discretization

Let us consider the operator equation
Lu = g (18)

where L ∈ BCS(H) and g ∈ H, and let u ∈ HS be the weak solution as in Definition 3.3.
Equation (18) will be solved numerically using a Galerkin discretization: let

Vh = span{ϕ1, . . . , ϕn} ⊂ HS ,
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where ϕi are linearly independent, be a given finite-dimensional subspace and

Lh :=
{
〈LSϕi, ϕj〉S

}n

i,j=1
.

Finding the discrete solution uh ∈ Vh requires solving the n× n system

Lh c = b (19)

with b = {〈g, ϕj〉}n
j=1. Since L ∈ BCS(H), the symmetric part of Lh is positive definite,

hence system (19) has a unique solution. Moreover, if a sequence of such subspaces Vh satisfies
infv∈Vh

‖u − v‖S → 0 for all u ∈ HS , then the coercivity of LS implies in the standard way [7]
that uh converges to the exact weak solution in HS-norm.

4.2 Symmetric preconditioning in Hilbert space

We introduce the stiffness matrix of S

Sh =
{
〈ϕi, ϕj〉S

}n

i,j=1
(20)

as preconditioner for system (19), and wish to solve

S−1
h Lh c = b̃ (21)

(with b̃ = S−1
h b) using the CGM. Let us endow Rn with the Sh-inner product 〈c,d〉Sh

:= Sh c·d.
Then the Sh-adjoint of S−1

h Lh is S−1
h LT

h , hence we apply the CG algorithm (6) with A = S−1
h Lh

and A∗ = S−1
h LT

h .
Let us now assume that L and S are compact-equivalent with µ = 1. In this special case

(10) holds with NS = I:
LS = I + QS . (22)

Hence, letting
Qh =

{
〈QSϕi, ϕj〉S

}n

i,j=1
,

system (21) takes the form
(Ih + S−1

h Qh) c = b̃ (23)

where Ih is the n×n identity matrix. Using (7), the CG algorithm (6) thus provides the estimate
(
‖rk‖Sh

‖r0‖Sh

)1/k

≤ 2
kνh

k∑

i=1

(
|λi(S−1

h QT
h + S−1

h Qh)|+ λi(S−1
h QT

h S−1
h Qh)

)
(24)

(k = 1, 2, ..., n), where

νh = min
c∈Rn

c 6=0

‖S−1
h Lhc‖2

Sh

‖c‖2
Sh

. (25)

Our goal is to give a bound on (24) that is independent of the subspace Vh.

Proposition 4.1 Let L be S-bounded and S-coercive. Let Sh, Qh be defined as above and let
si(QS) and λi(Q∗

S + QS) (i = 1, 2, . . .) denote the corresponding singular values resp. ordered
eigenvalues where QS, defined in (22), is compact on HS. Then the following relations hold:

(a)
k∑

i=1

λi(S−1
h QT

h S−1
h Qh) ≤

k∑

i=1

si(QS)2 (k = 1, . . . , n),
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(b)
k∑

i=1

|λi(S−1
h QT

h + S−1
h Qh)| ≤

k∑

i=1

|λi(Q∗
S + QS)| (k = 1, . . . , n),

(c) νh ≥ m2 for νh in (25), where m := inf
u∈D(L)

u6=0

〈Lu, u〉
‖u‖2

S

.

Proof. (a) Let λi := λi(S−1
h QT

h S−1
h Qh) (i = 1, ..., n) and let ci = (ci

1, . . . , c
i
n) ∈ Rn be

corresponding eigenvectors such that

Sh ci · cl = δil (i, l = 1, ..., n), (26)

where · denotes the ordinary inner product on Rn. Then

S−1
h Qh ci ·Qh ci = λi (i = 1, ..., n). (27)

Let di := S−1
h Qh ci for all i, that is

Sh di = Qh ci (28)

which turns (27) into
Shdi · di = λi . (29)

Now let ui =
n∑

j=1
ci
jϕj ∈ Vh and zi =

n∑
j=1

di
jϕj ∈ Vh (i = 1, ..., n). Then (29) yields

‖zi‖2
S = λi . (30)

Further, for all v =
n∑

j=1
pjϕj ∈ Vh, with notation p = (p1, . . . , pn) ∈ Rn, (28) yields Sh di · p =

Qh ci · p, which implies
〈zi, v〉S = 〈QSui, v〉S (v ∈ Vh),

i.e. zi is the orthogonal projection of QSui ∈ HS into Vh. Therefore ‖zi‖S ≤ ‖QSui‖S , and
(30) provides

k∑

i=1

λi ≤
k∑

i=1

‖QSui‖2
S =

k∑

i=1

〈Q∗
SQSui, ui〉S . (31)

Here 〈ui, ul〉S = Sh ci · cl for all i, l = 1, ..., n, hence by (26) the vectors ui are orthonormal
in HS . Therefore Proposition 2.1 (a) for the operator C = Q∗

SQS in the space HS yields the
desired estimate.

(b) The proof is similar to that of (a). Now let λi := λi(S−1
h QT

h + S−1
h Qh) and let ci =

(ci
1, . . . , c

i
n) ∈ Rn be corresponding eigenvectors with property (26). Then

(QT
h + Qh) ci = λi Sh ci (i = 1, ..., n)

and (26) yields
λi = (QT

h + Qh) ci · ci = 2Qh ci · ci.

For ui =
n∑

j=1
ci
jϕj ∈ Vh we thus obtain

k∑

i=1

|λi| = 2
k∑

i=1

|〈QSui, ui〉S | =
k∑

i=1

|〈(Q∗
S + QS)ui, ui〉S | , (32)
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and Proposition 2.1 (a) for the operator C = Q∗
S + QS in the space HS yields the desired

estimate.
(c) We have

min
c∈Rn

c 6=0

‖S−1
h Lhc‖Sh

‖c‖Sh

= min
c∈Rn

c 6=0

‖S−1
h Lhc‖Sh

‖c‖Sh

‖c‖2
Sh

≥ min
c∈Rn

c 6=0

〈S−1
h Lhc, c〉Sh

‖c‖2
Sh

= min
c∈Rn

c6=0

Lh c · c
Sh c · c

= min
u∈Vh
u6=0

〈LSu, u〉S
‖u‖2

S

≥ inf
u∈HS
u6=0

〈LSu, u〉S
‖u‖2

S

= inf
u∈D(L)

u 6=0

〈LSu, u〉S
‖u‖2

S

= inf
u∈D(L)

u6=0

〈Lu, u〉
‖u‖2

S

= m

where the density of D(L) in HS has been used.

In virtue of (24) and Proposition 4.1, we have proved

Theorem 4.1 Let L be S-bounded and S-coercive, and let L and S be compact-equivalent
with µ = 1. Let the compact operator QS be as in (22). Then for any subspace Vh =
span{ϕ1, . . . , ϕn} ⊂ HS, the CG algorithm (6) with Sh-inner product, applied for the n × n
preconditioned system (21), yields

(
‖rk‖Sh

‖r0‖Sh

)1/k

≤ εk (k = 1, 2, ..., n) (33)

where εk =
2

km2

k∑

i=1

(
|λi(Q∗

S + QS)|+ si(QS)2
)
→ 0 (as k →∞) (34)

and (εk)k∈N+ is a sequence independent of n and Vh.

4.3 Symmetric preconditioning for discretized elliptic problems

4.3.1 General elliptic equations

Let us consider an elliptic problem




Lu ≡ −div (A∇u) + b · ∇u + cu = g

u|ΓD
= 0, ∂u

∂νA
+ αu|ΓN

= 0
(35)

where L satisfies Assumptions 3.2 and g ∈ L2(Ω). We define H1
D(Ω) = {u ∈ H1(Ω) : u|ΓD

= 0},
then Assumptions 3.2 ensure that problem (35) has a unique weak solution u ∈ H1

D(Ω). Now
let Vh = span{ϕ1, . . . , ϕn} ⊂ H1

D(Ω) be a given FEM subspace. We seek the FEM solution
uh ∈ Vh, which requires solving the n× n system

Lh c = b (36)

where
(Lh)i,j =

∫

Ω

(
A∇ϕi · ∇ϕj + (b · ∇ϕi)ϕj + cϕiϕj

)
+

∫

ΓN

αϕiϕj dσ

and bj =
∫
Ω gϕj (j = 1, ..., n). Following subsection 4.2, we define a preconditioner for system

(36) as the discretization of a suitable symmetric elliptic operator. Let

Su := −div (A∇u) + hu for u ∈ H2(Ω) : u|ΓD
= 0, ∂u

∂νA
+ βu|ΓN

= 0, (37)
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where h ∈ L∞(Ω) and h ≥ 0 if ΓD 6= ∅ and h ≥ δ0 > 0 if ΓD = ∅, further, β ∈ L∞(ΓN ) and
β ≥ 0. The corresponding inner product on H1

D(Ω) is

〈u, v〉S :=
∫

Ω
(A ∇u · ∇v + huv) +

∫

ΓN

βuv dσ . (38)

We introduce the matrix
Sh =

{
〈ϕi, ϕj〉S

}n

i,j=1
(39)

as preconditioner for system (36), and then solve system (21) using the CG algorithm (6) with
the Sh-inner product and with A = S−1

h Lh and A∗ = S−1
h LT

h .

Theorem 4.2 Let Vh ⊂ H1
D(Ω) be an arbitrary FEM subspace and consider the FEM discretiza-

tion (36) of problem (35), using the stiffness matrix Sh as preconditioner. Then the superlinear
convergence of the preconditioned CGM is mesh independent in the sense of Theorem 4.1, i.e.,
we have (

‖rk‖Sh

‖r0‖Sh

)1/k

≤ εk (k = 1, 2, ..., n) (40)

for the mesh independent sequence εk → 0 from (34).

Proof. The coercivity and boundedness assumptions on the coefficients of L and S imply
in a standard way that L is S-bounded and S-coercive. Proposition 3.1 yields that L and S are
compact-equivalent in H1

D(Ω) if the latter is endowed with the inner product (38). Therefore
Theorem 4.1 is valid with the compact operator QS defined via

〈QSu, v〉S =
∫

Ω

(
(b · ∇u)v + (c− h)uv

)
+

∫

ΓN

(α− β)uv dσ (u, v ∈ H1
D(Ω)), (41)

which satisfies (22).

We note that the above result is an extension of [6], where the mesh independence property
has been proved for Dirichlet boundary conditions when either S is the symmetric part of L, or
both L and S have constant coefficients.

Remark 4.1 Finding the correction terms in algorithm (6) with the present choice A = S−1
h Lh

and A∗ = S−1
h LT

h are equivalent to the auxiliary problems

find zk ∈ Vh : 〈zk, v〉S = 〈LSdk, v〉S (v ∈ Vh),

find sk+1 ∈ Vh : 〈sk+1, v〉S = 〈L∗Sdk, v〉S (v ∈ Vh),

i.e., zk and sk+1 are the FEM solutions in Vh of the symmetric elliptic problems of the form
Szk = Ldk and Ssk+1 = L∗rk+1 with the boundary conditions of (37).

Proposition 4.2 Under the conditions of Theorem 4.2, the sequence εk in (40) satisfies

εk ≤ 4s

k

k∑

i=1

1
µi

, (42)

where µi (i ∈ N+) are the solutions of eigenvalue problem

Su = µu, u|ΓD
= 0, r ( ∂u

∂νA
+ βu)|ΓN

= µu (43)
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and s, r > 0 are constants defined below. When the asymptotics µi = O(i2/d) holds (in partic-
ular, for Dirichlet boundary conditions),

εk ≤ O
( log k

k

)
if d = 2 and εk ≤ O

( 1
k2/d

)
if d ≥ 3. (44)

Proof. From (41) and (13) for v = u, letting d = c− h and γ = α− β, we obtain

〈QSu, u〉S =
∫

Ω

(
d− 1

2
(div b)

)
u2 +

∫

ΓN

(
γ +

1
2
(b · ν)

)
u2 dσ ≤ C1‖u‖2

L2(Ω) + C2‖u‖2
L2(ΓN ).

We have |〈(Q∗
S + QS)u, u〉S | = 2|〈QSu, u〉S |, hence the variational characterization of the eigen-

values yields

|λi(Q∗
S+QS)| = min

Hi−1⊂HS

max
u⊥Hi−1

u 6=0

|〈(Q∗
S + QS)u, u〉S |
‖u‖2

S

≤ 2 min
Hi−1⊂HS

max
u⊥Hi−1

u6=0

C1‖u‖2
L2(Ω) + C2‖u‖2

L2(ΓN )

‖u‖2
S

,

where Hi−1 stands for an arbitrary (i − 1)-dimensional subspace. On the other hand, here QS

falls into the type (12), hence (15) implies

‖QSu‖2
S ≤ 2K2

1‖u‖2
L2(Ω) + 2K2

2‖u‖2
L2(ΓN ) .

Since si(QS)2 = λi(Q∗
SQS) and 〈Q∗

SQSu, u〉S = ‖QSu‖2
S , we obtain as above that

si(QS)2 = min
Hi−1⊂HS

max
u⊥Hi−1

u6=0

〈Q∗
SQSu, u〉S
‖u‖2

S

≤ min
Hi−1⊂HS

max
u⊥Hi−1

u 6=0

2K2
1‖u‖2

L2(Ω) + 2K2
2‖u‖2

L2(ΓN )

‖u‖2
S

.

Altogether, letting s := C1+K2
1

m2 , r := C1+K2
1

C2+K2
2
, formula (34) implies

εk ≤ 4s

k

k∑

i=1

µ̂i where µ̂i = min
Hi−1⊂HS

max
u⊥Hi−1

u6=0

‖u‖2
L2(Ω) + 1

r‖u‖2
L2(ΓN )

‖u‖2
S

,

in which the fraction equals 1/µ for (43), hence the equality µ̂i = 1
µi

follows from the variational
characterization of the eigenvalues.

Estimate (44) follows from the asymptotics µi = O(i2/d) by an elementary calculation. For
Dirichlet boundary conditions, this asymptotic behaviour is found in [9].

Remark 4.2 The asymptotic behaviour µi = O(i2/d) is not known for general (other than
Dirichlet) boundary conditions up to the authors’ knowledge. However, for the simple special
case −∆u = µu, ∂u

∂ν |∂Ω = µu where Ω is a disc in R2, one can easily verify via the sign properties
of the Bessel functions that µi are asymptotic to the Dirichlet eigenvalues and hence also satisfy
µi = O(i2/d). This suggests the wider validity of this asymptotic rate.

4.3.2 An example: convection-diffusion equations with Helmholtz preconditioners

As a special case of the preceding paragraph, let us consider the case of a convection-diffusion
operator L in (35) and a preconditioning operator S with constant coefficients. Namely, if A ≡ I
in (35) then we have the problem





Lu ≡ −∆u + b(x) · ∇u + c(x)u = g(x)

u|ΓD
= 0, ∂u

∂ν + α(x)u|ΓN
= 0

(45)
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where for emphasis, the dependence of the coefficients on x has now been indicated unlike before.
Let us define the preconditioning operator

Su := −∆u + hu for u ∈ H2(Ω) : u|ΓD
= 0, ∂u

∂ν + βu|ΓN
= 0, (46)

where h, β ∈ R are constants such that h ≥ 0 if ΓD 6= ∅ and h > 0 if ΓD = ∅, further, β ≥ 0.
Then the auxiliary problems with this preconditioning are discrete Helmholtz problems with

constant coefficients. For such problems various fast solvers are available (like fast Fourier
transform, cyclic reduction or multigrid, see e.g. [17, 25, 26]) which, together with the mesh
independence result of Theorem 4.2, turns Sh into an efficient preconditioner. We point out
that this is an extension of [6], where the mesh independence property has been proved for
Dirichlet boundary conditions under the strong restriction that the operator L itself has constant
coefficients.

4.3.3 Elliptic systems

Analogously to paragraph 4.3.1, we can consider elliptic systems

Liu ≡ −div (Ai∇ui) + bi · ∇ui +
l∑

j=1
Vijuj = gi

ui |ΓD
= 0, ∂ui

∂νA
+ αiui |ΓN

= 0





(i = 1, . . . , l) (47)

where Ω, Ai and αi are as in Assumptions 3.2, bi ∈ C1(Ω)N , gi ∈ L2(Ω), Vij ∈ L∞(Ω). We
assume that bi and the matrix V = {Vij}l

i,j=1 satisfy the coercivity property

λmin(V + V T )−max
i

div bi ≥ 0 (48)

pointwise on Ω, where λmin denotes the smallest eigenvalue, then system (47) has a unique
weak solution u ∈ H1

D(Ω)l. Now we choose a FEM subspace Vh ⊂ H1
D(Ω)l and look for the

solution of the corresponding algebraic system Lh c = b. We define the preconditioning operator
S = (S1, . . . , Sl) as the l-tuple of independent operators

Siui := −div (Ai∇u) + hiu for ui ∈ H2(Ω) : ui |ΓD
= 0, ∂ui

∂νA
+ βiui |ΓN

= 0 (49)

(i = 1, . . . , l) with the conditions of (37), and let Sh be the stiffness matrix of S in H1
D(Ω)l.

Then, similarly to paragraph 4.3.1, one can verify that the superlinear convergence of the
preconditioned CGM is mesh independent in the sense of Theorem 4.1, i.e., (33)–(34) hold.

This result is an extension of [22] where the above preconditioning has been introduced and
its efficient parallelizability has been demonstrated; on the other hand, the mesh independence
property was proved there for Dirichlet boundary conditions under strong restrictions on the
matrix V (antisymmetric, or normal when the operator L itself has constant coefficients).

4.4 Nonsymmetric preconditioning in Hilbert space

Now let N be a general (possibly nonsymmetric) S-bounded and S-coercive operator which is
compact-equivalent to L with µ = 1, i.e., (10) becomes

LS = NS + QS . (50)

We introduce the stiffness matrix of NS

Nh =
{
〈NSϕi, ϕj〉S

}n

i,j=1
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as preconditioner for system (19), and wish to solve

N−1
h Lh c = b̂ (51)

(with b̂ = N−1
h b) using the CGM. Since N is nonsymmetric, in order to define an inner product

on Rn we preserve the stiffness matrix of S on Vh, i.e. using (20) we endow Rn with the Sh-inner
product 〈c,d〉Sh

:= Sh c · d as earlier. Then the Sh-adjoint of N−1
h Lh is S−1

h LT
h N−T

h Sh, hence
we apply the CG algorithm (6) with A = N−1

h Lh and A∗ = S−1
h LT

h N−T
h Sh.

Letting
Qh =

{
〈QSϕi, ϕj〉S

}n

i,j=1
,

system (21) takes the form
(Ih + N−1

h Qh) c = b̂ (52)

where Ih is the n× n identity matrix. Using (7), the CG algorithm (6) thus provides

(
‖rk‖Sh

‖r0‖Sh

)1/k

≤ 2
kνh

k∑

i=1

(
λi(S−1

h QT
h N−T

h Sh + N−1
h Qh) + λi(S−1

h QT
h N−T

h ShN−1
h Qh)

)
(53)

(k = 1, 2, ..., n) where

νh = min
c∈Rn

‖N−1
h Lhc‖2

Sh

‖c‖2
Sh

. (54)

Again, our goal is to give a bound on (53) that is independent of Vh.

Proposition 4.3 Let L and N be S-bounded and S-coercive operators, in particular

m := inf
u∈D(L)

u6=0

〈Lu, u〉
‖u‖2

S

> 0, m̂ := inf
u∈D(N)

u 6=0

〈Nu, u〉
‖u‖2

S

> 0, M̂ := sup
u∈D(N)

u6=0

|〈Nu, v〉|
‖u‖S‖v‖S

> 0,

and let QS be a compact operator on HS. Let Sh, Nh and Qh be defined as above, and let
si(QS) (i = 1, 2, . . .) denote the singular values of QS. Then the following relations hold:

(a)
k∑

i=1

λi(S−1
h QT

h N−T
h ShN−1

h Qh) ≤ 1
m̂2

k∑

i=1

si(QS)2 (k = 1, . . . , n),

(b)
k∑

i=1

|λi(S−1
h QT

h N−T
h Sh + N−1

h Qh)| ≤ 2
m̂

k∑

i=1

si(QS) (k = 1, . . . , n),

(c) νh ≥ m2

M̂2
.

Proof. (a) We proceed similarly to Proposition 4.1. Let λi := λi(S−1
h QT

h N−T
h ShN−1

h Qh)
(i = 1, ..., n) and let ci = (ci

1, . . . , c
i
n) ∈ Rn be corresponding eigenvectors with property (26).

Then
ShN−1

h Qh ci ·N−1
h Qh ci = λi (i = 1, ..., n). (55)

Let di := N−1
h Qh ci for all i, that is

Nh di = Qh ci . (56)
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For this di and λi, similarly to Proposition 4.1, we have (29) and, letting ui =
n∑

j=1
ci
jϕj ∈ Vh

and zi =
n∑

j=1
di

jϕj ∈ Vh we obtain (30). Further, for all v =
n∑

j=1
pjϕj ∈ Vh, with notation

p = (p1, . . . , pn) ∈ Rn, (56) yields Nh di · p = Qh ci · p, which means

〈NSzi, v〉S = 〈QSui, v〉S (v ∈ Vh).

From this we have

‖zi‖2
S ≤

1
m̂
〈NSzi, zi〉S =

1
m̂
〈QSui, zi〉S ≤ 1

m̂
‖QSui‖S‖zi‖S ,

hence ‖zi‖S ≤ 1
m̂ ‖QSui‖S . Then from (30)

k∑

i=1

λi ≤ 1
m̂2

k∑

i=1

‖QSui‖2
S =

1
m̂2

k∑

i=1

〈Q∗
SQSui, ui〉S , (57)

whence the desired estimate follows in the same way as from (31) in Proposition 4.1.
(b) Now let λi := λi(S−1

h QT
h N−T

h Sh + N−1
h Qh) and let ci = (ci

1, . . . , c
i
n) ∈ Rn be corre-

sponding eigenvectors with property (26). Then

λi = λi Sh ci · ci = QT
h N−T

h Sh ci · ci + ShN−1
h Qh ci · ci = 2 ShN−1

h Qh ci · ci = 2Qh ci · ei

where ei := N−T
h Sh ci for all i. Here for all v =

n∑
j=1

pjϕj ∈ Vh, with notation p = (p1, . . . , pn) ∈
Rn, we obtain ei ·Nh p = Sh ci · p, which means 〈wi, NSv〉S = 〈ui, v〉S for all v ∈ Vh, where

wi =
n∑

j=1
ei
jϕj and ui =

n∑
j=1

ci
jϕj , or

〈N∗
Swi, v〉S = 〈ui, v〉S (v ∈ Vh). (58)

Denote by P the orthogonal projection of HS onto Vh. Then (58) yields ui = PN∗
Swi. Here

the linear mapping (PN∗
S)|Vh

: Vh → Vh is one-to-one, since for all v ∈ Vh

〈PN∗
Sv, v〉S = 〈N∗

Sv, v〉S = 〈NSv, v〉S ≥ m̂‖v‖2
S . (59)

Therefore

Qh ci · ei = 〈QSui, wi〉S = 〈QSui, (PN∗
S)−1
|Vh

ui〉S = 〈ui, Q∗
S(PN∗

S)−1
|Vh

ui〉S .

Here the operator (PN∗
S)−1
|Vh

has a norm-preserving extension N̂ from Vh onto HS (namely, with

N̂ |(Vh)⊥ := 0), and from (59) we have ‖N̂‖ ≤ 1
m̂ . Altogether, we obtain

k∑

i=1

|λi| = 2
k∑

i=1

|〈Q∗
S(PN∗

S)−1
|Vh

ui, ui〉S | = 2
k∑

i=1

|〈Q∗
SN̂ui, ui〉S | ≤ 2

k∑

i=1

si(Q∗
SN̂)

≤ 2
m̂

k∑

i=1

si(Q∗
S) =

2
m̂

k∑

i=1

si(QS)

(where, in the inequalities, statments (a) and (b) of Proposition 2.1 have been used, respectively).
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(c) Let c ∈ Vh be arbitrary, d := N−1
h Lhc. Let u =

n∑
j=1

cjϕj ∈ Vh and z =
n∑

j=1
djϕj ∈ Vh.

Then m‖u‖2
S ≤ 〈LSu, u〉S = Lh c · c = Nh d · c = 〈NSz, u〉S ≤ ‖NSz‖S‖u‖S , hence

m‖u‖S ≤ ‖NSz‖S

and
‖N−1

h Lhc‖2
Sh

‖c‖2
Sh

=
Sh d · d
Sh c · c =

‖z‖2
S

‖u‖2
S

≥ m2 ‖z‖2
S

‖NSz‖2
S

≥ m2

M̂2
.

In virtue of (53) and Proposition 4.3, we have proved

Theorem 4.3 Let L and N be S-bounded and S-coercive operators that are compact-equivalent
in HS with µ = 1. Let the compact operator QS be as in (50). Then for any subspace Vh =
span{ϕ1, . . . , ϕn} ⊂ HS, the CG algorithm (6) with Sh-inner product, applied for the n × n
preconditioned system (51), yields

(
‖rk‖Sh

‖r0‖Sh

)1/k

≤ εk (k = 1, 2, ..., n) (60)

where εk =
2M̂2

km2

k∑

i=1

( 2
m̂

si(QS) +
1

m̂2
si(QS)2

)
→ 0 (as k →∞) (61)

and (εk)k∈N+ is a sequence independent of n and Vh.

Remark 4.3 When one preconditions L with N , a useful choice for the operator S is the
symmetric part of N : i.e., if D(N) = D(N∗) then S = (N + N∗)/2, and if D(N) 6= D(N∗) then
S is an operator that generates the inner product satisfying 〈u, v〉S := 1

2

(
〈Nu, v〉+ 〈u,Nv〉

)
for

u, v ∈ D(N), see [21]. Then in Proposition 4.3 we have 〈Nu, u〉 = ‖u‖2
S (u ∈ D(N)), hence

m̂ = 1.

4.5 Nonsymmetric preconditioning for discretized elliptic problems

This section contains our most general result for elliptic operators: in the studied coercive frame-
work, preconditioning with an arbitrary operator N that is compact-equivalent with L provides
mesh independent superlinear convergence. Although this property has mostly a theoretical
importance, some practical examples are given here as well. Let us first consider the elliptic
problem (35): 




Lu ≡ −div (A∇u) + b · ∇u + cu = g

u|ΓD
= 0, ∂u

∂νA
+ αu|ΓN

= 0
(62)

and let us now define the nonsymmetric preconditioning operator

Nu := −div (A∇u) + w · ∇u + zu for u ∈ H2(Ω) : u|ΓD
= 0, ∂u

∂νA
+ ηu|ΓN

= 0, (63)

where L and N satisfy Assumptions 3.2 in the obvious sense, further, g ∈ L2(Ω). Accordingly,
the preconditioner for the discretized problem (36) is the nonsymmetric stiffness matrix

(Nh)i,j =
∫

Ω

(
A∇ϕi · ∇ϕj + (w · ∇ϕi)ϕj + zϕiϕj

)
+

∫

ΓN

ηϕiϕj dσ .
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We use the same energy space as in the symmetric case, i.e. HS = H1
D(Ω) with inner product

(38). We then solve the preconditioned system using the CG algorithm (6) with the Sh-inner
product and with A = N−1

h Lh and A∗ = S−1
h LT

h N−T
h Sh.

Theorem 4.4 Let Vh ⊂ H1
D(Ω) be an arbitrary FEM subspace and consider the FEM discretiza-

tion (36) of problem (35), using the stiffness matrix Nh as preconditioner. Then the superlinear
convergence of the preconditioned CGM is mesh independent in the sense of Theorem 4.3, i.e.,
(60)–(61) hold.

Proof. Similar to that of Theorem 4.2, now Theorem 4.3 is applied in H1
D(Ω).

Example. Let us consider problem (45), i.e. when in (62) we have

Lu = −∆u + b(x) · ∇u + c(x)u,

where for emphasis, the dependence of the coefficients on x has now been indicated. Assume
that we are in 2D and, say, b1(x) has larger values than b2(x), where b(x) = (b1(x), b2(x)) and
x = (x1, x2). Then one can propose the preconditioning operator

Nu = −∆u + w1
∂u
∂x1

+ zu for u ∈ H2(Ω) : u|ΓD
= 0, ∂u

∂ν + ηu|ΓN
= 0, (64)

where w1, z, η ∈ R are constants such that z ≥ 0 if ΓD 6= ∅ and z > 0 if ΓD = ∅, further, η ≥ 0.
For convection-dominated problems (i.e. when |b| is large), the presence of the nonsymmetric
term w1

∂u
∂x1

may turn N into a much better approximationion of L than a symmetric precondi-
tioner like (46). Nevertheless, since this term is one-dimensional, the solution of the auxiliary
problems remains considerably simpler than the original one, e.g. via local 1D Green’s functions
[3]. The above operator N has been proposed in [6], where the mesh independence result of the
PCGM has been proved for Dirichlet boundary conditions under the strong restriction that the
operator L itself has constant coefficients.

Analogously to the symmetric case in paragraph 4.3.3, the above results can be extended
to systems in a straightforward way. Namely, let us consider system (47) and introduce the
preconditioning operator N as an l-tuple of decoupled operators Ni, where each Ni is of the
type (63). Then the superlinear convergence of the preconditioned CGM is mesh independent in
the sense of Theorem 4.3, i.e., (60)–(61) hold. Since Ni are decoupled, the resulting algorithm is
parallelizable. This turns it into an efficient method if, for instance, each Ni is like (64), or the
problem itself is in 1D which occurs e.g. after using the method of splitting in meteorological
models with several components.

5 Remarks on singular perturbation problems

For singular perturbation problems such as

Lεu ≡ −ε∆u + b · ∇u + cu = f

(plus boundary conditions), where ε > 0 but ε << ‖b‖, one cannot neglect the first order
term when forming a preconditioner. Such problems are characterized by thin boundary and/or
interior layers and the diffusion term plays a noticable role only in the layer. This property
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is not exploited in preconditioners like (64). A possible approach to handle such problems is
therefore to use the following defect-correction method:

Lδ(x)(uk+1 − uk) = f − Lεu (k ∈ N+)

where u0 is given, and in practice only one or two steps need to be performed. Here

Lδ(x)u := −δ(x)∆u + b · ∇u + cu

where δ(x) = 0 outside the layers and increases continuously along each characteristic line
(defined by the velocity vector b) from zero to ε in the layers. The widths of the layers are
typically chosen as ε log(1/ε). To solve the correction equation by iteration, one can form a pre-
conditioner S by using the operator b · ∇u + hu outside the layers and −δ(x)∆u + b · ∇u + hu
in the layers for some properly chosen function h ≥ 0. The analysis of the problem will not be
considered further in the present paper.
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