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Abstract

The subject of the paper is the mesh independent convergence of the preconditioned
conjugate gradient method for nonsymmetric elliptic problems. The approach of equivalent
operators is involved, in which one uses the discretization of another suitable elliptic operator
as preconditioning matrix. By introducing the notion of compact-equivalent operators, it is
proved that for a wide class of elliptic problems the superlinear convergence of the obtained
PCGM is mesh independent under FEM discretizations, that is, the rate of superlinear
convergence is given in the form of a sequence which is mesh independent and is determined
only by the elliptic operators.
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1 Introduction

The conjugate gradient method is a widespread way of solving large linear algebraic systems, such
as those arising from discretized elliptic problems, in particular when combined with a suitable
preconditioning. Since its first presentation in [19] the convergence of the CGM has been well
established, as summarized in [2]. The convergence theory of the CGM often involves linear
operators in Hilbert space, see various both classical and recent results [12, 13, 18, 24, 27, 28]
and the authors’ papers [4, 5, 6]. A basic reason to use Hilbert space theory is to derive mesh
independence of the convergence estimates, by which it can be shown that the preconditioned
CGM can be competitive with multigrid methods [12].

The theory of equivalent operators in Hilbert space has proved an efficient clear framework
for the convergence study of the preconditioned CGM for elliptic problems [12, 16, 23]. Thereby
one uses the discretization of a suitable linear elliptic operator as preconditioning matrix, see
also [8, 10, 28]. As a main result, mesh independence of linear convergence rates is rigorously
characterized in [12, 23]. We note that in [16], for proper boundary conditions, when the pre-
conditioned operator is a compact perturbation of the identity then convergence is expected to
be faster than any linear rate.

Our goal is to complete the above results by showing that for a class of elliptic problems,
the superlinear convergence of the PCGM is mesh independent under FEM discretizations.
This means that a bound on the rate of superlinear convergence is given in the form of a
sequence which is mesh independent and is determined only by the elliptic operators. To describe
the suitable class of problems, we introduce the notion of compact-equivalent operators which
expresses that preconditioning one of them with the other yields a compact perturbation of
the identity. This notion and the convergence result give a refinement of the case of equivalent
operators: roughly speaking, if the two operators (the original and preconditioner) are equivalent
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then the corresponding PCGM provides mesh independent linear convergence, whereas if the
two operators are compact-equivalent then the PCGM provides mesh independent superlinear
convergence.

Our present results are extensions of the earlier ones [6, 22], where such mesh independence
was proved for the GCG-LS method for elliptic Dirichlet problems, however, with severe restric-
tions: except some special cases, both the original and preconditioning operators had to contain
constant coefficients. Now we show that two elliptic operators, with homogeneous Dirichlet con-
ditions on the same portion of the boundary, are compact-equivalent if and only if their principal
parts coincide up to a constant factor. Within this class, the proof of the mesh independence
result then contains no restrictions except standard smoothness and coercivity assumptions on
the operators.

The paper is organized as follows: the required background is given in Section 2, compact-
equivalent operators are introduced and characterized in Section 3, and the mesh independence
result is proved in Section 4.

2 Background

2.1 Conjugate gradient algorithms

Let us consider a linear system

Bu—f 1)

with a given nonsingular matrix B € R™*", f € R" and solution u. Let (.,.) be a given inner
product on R™ and, denoting by B* the adjoint of B w.r.t. this inner product, assume that
B+ B* >0, i.e., is positive definite.

If B is self-adjoint, then the standard CGM reads as follows [2, 27]: let ug € R™ be arbitrary,
do := Bug — f; for given up and dj, with 7y := Buy — f, we let

(Px, di) . 7841
U = up — apdp, where aqp = ———; d = Tr41 + Brdr, where G, = ———. (2
k1 = U — Qpdy k= By, dy) k1 = Tr+1 + Brdy Bk E (2)
Then, using the error vector ej, = uy, —u and its energy norm ||ex||p = (Bey, ex)/?, respectively,

and with the decomposition B = I+C (where [ is the identity matrix), the following celebrated
estimate holds [2, 27]:

(lesle)™ < 2 5oy e e=12.0m) Q)
”eOHB =k = J g Ly eeny ’

which shows superlinear convergence if the eigenvalues |\ (C)| > |A2(C)| > ... approach zero.

Since this result is basic for the whole paper, and for completeness, we present a derivation
of (3) following [2]. The optimality of the CGM implies

llex|ls < min  max _|Py())]
leolls = Puemi aeots))

where 7} denotes the set of polynomials Py, of degree k with Px(0) = 1. Let A\; := \;(B)
k

and ji; := Aj(C) (= ;= 1). Then the polynomials Py(\) := I] (1 - 3) satisfy Py(\;) = 0
j=1



(i=1,..,k) and

max | Pg(A
xeo(B)} z>k+1

15 = il
z>k+1 H \1 + ,u,] - z'>k:+1

hence, using the arithmetic-geometric inequality,

k k

2 1

P l/k \,u] E .
s [P < ZE:|1-+»u]|" kP b

which yields (3).

For nonsymmetric B, several CG algorithms exist (see e.g. [2, 11]). The GCG-LS method
[1, 2] is defined directly for the equation (1) and produces a similar estimate as (3) if B is
normal. Mesh independent bounds in [6, 22] for (3) for some elliptic problems have been given
using the GCG-LS method. Alternatively, one can consider the normal equation and apply a
symmetric CG algorithm, which we will do in this paper. For clearness, let us hereby consider
a nonsymmetric linear system

Au=b (4)
with given A € R™"*", b € R", such that
A+ A" >0. (5)

Let us apply the iteration (2) for equation A*Au = A*b, i.e. with B = A*A and f = A*b. Then,
with notations s, = 7, and r, = A~T#,, we obtain the following algorithmic form: let ug € R"
be arbitrary, rg := Aug — b, sg := do := A*rg; for given dj, ug, ri and s, we let

2 = Adk,
o <Tk7 Zk> _ d _ .

Sk1 = A1y,

50 = skl
fsill?

v kg1 = Sk + Brdy.

Let us consider the decomposition
A=T+K.

Then, using the relations B = I + (K* + K + K*K), |lex|ls = ||Aex|| = ||r&]| and || B~ < v~1
|| Az||>

where v := mingecgn T estimate (3) can be reformulated as

(””@”)W 2i(u (K* + )+ N(KCK))  (k=1,2,0.m) (7)
”ro” < = 2 =1,4,...,).

The goal of this paper is to derive a mesh independent bound for (7) when (4) comes from
a preconditioned discretized elliptic PDE using suitable equivalent operators.



2.2 Singular values of compact operators

Let H be a real Hilbert space. We shall consider compact operators, i.e., operators C' such that
the image (C'v;) of any bounded sequence (v;) contains a convergent subsequence.

Definition 2.1 (i) We call \j(F) (i = 1,2,...) the ordered eigenvalues of a compact self-
adjoint linear operator F' in H if each of them is repeated as many times as its multiplicity and
A (E)] = Aa(F) = ..

(ii) The singular values of a compact operator C' in H are
5i(C) == N(C*O)Y2, (i=1,2,..)

where \;(C*C) are the ordered eigenvalues of C*C. In particular, if C' is self-adjoint then
5i(C) = [\(O)]-

Some useful properties of compact operators are listed below:
Proposition 2.1 Let C be a compact operator in H. Then

(a) for any k € Nt and any orthonormal vectors uy,...,u;, € H,

k k
2‘(01%, ui)| < Zsi(C) )

(b) If B is bounded linear operator in H, then

si(BC) < ||B||si(C)  (i=1,2,...).

(¢) (Variational characterization of the eigenvalues). If C' is also self-adjoint, then

_ : |(Cu, u)
A (C)| = H}flllrclH urlné;?l [z
u

where H;_y stands for an arbitrary (i — 1)-dimensional subspace.
(d) If a sequence (u;) C H satisfies (uj,uj) = (Cus,u;) =0 (i # j), then
inf [(Cui, i)/ [Juil|* = 0.
PROOF.  Statements (a) and (b) are the consequences of [14, Chap. VI, Corollary 3.3
and Proposition 1.3, resp.], for statement (c) see [15, Theorem II1.9.1]. To prove (d), assume
the contrary that the infimum equals § > 0. We may assume that (Cu;,u;) has constant sign

(otherwise we consider such a subsequence only). Then the orthonormal sequence v; := u; /| w;|
satisfies for all ¢ # j

26 < [(Cui,vi) + (Cjyv3)] = [(C(vi = v3), 05 — v3)] < 1O (i = v3)ll vi — w5l = V2| Cvi = w))

hence the image (C'v;) of the bounded sequence (v;) contains no convergent subsequence, i.e. C'
is not compact. ]



3 Compact-equivalent operators in Hilbert space

In this section we introduce and characterize compact-equivalent operators. Roughly speaking,
the compact-equivalence of the unbounded operators N and L expresses that N~!L is a compact
perturbation of constant times the identity. To avoid difficulties with domains and ranges, our
definition will use a weak form of the operators in a suitable energy space Hg. In particular, no
regularity is required in the case of elliptic operators.

The fact that a compact perturbation of constant times identity is a bounded operator
implies that compact-equivalent operators are equivalent in the sense of [12]. Hence, when we
characterize compact-equivalent elliptic operators (under standard smoothness and coercivity
assumptions), we can a priori assume that they have homogeneous Dirichlet conditions on the
same portion of the boundary [23]. Within this class, compact-equivalence will hold if and only
if the principal parts of the operators coincide up to some constant.

3.1 Basic definitions

In what follows, let H be a real Hilbert space. Let S be a (generally unbounded) linear symmetric
operator in H which is coercive, i.e., there exists p > 0 such that (Su,u) > p||ul|?> (u € D(S)).
Then the energy space Hg is the completion of D(S) under the inner product (u,v)s = (Su,v),
and the coercivity implies Hg C H. The corresponding S-norm is denoted by |[|ulls, and the
space of bounded linear operators on Hg by B(Hg).

Definition 3.1 Let S be a linear symmetric coercive operator in H. We say that a linear
operator L in H is S-bounded and S-coercive, and write L € BCg(H), if the following properties
hold:

(i) D(L) C Hs and D(L) is dense in Hg in the S-norm;
(ii) there exists M > 0 such that

[(Lu, v)| < Mllul|s[lvlls (w0 € D(L));

(iii) there exists m > 0 such that

(Lu,u) 2 mllull§  (ue D(L)).

Definition 3.2 For any L € BCs(H), let Lg € B(Hg) be defined by
(Lsu,v)s = (Lu,v)  (u,v € D(L)).

Remark 3.1 (a) The above definition makes sense since Lg is the bounded linear operator on
Hg that represents the unique extension to Hg of the densely defined S-bounded bilinear
form w,v — (Lu,v).

(b) Lg is coercive on Hg.
(c) If in particular R(L) C R(S) (where R(.) denotes the range), then Lg|p ) = S—1L.
Remark 3.2 Definition 3.2 uses the idea of weak form of operators from [23]. Namely, if Hg is

a subspace of H!(Q) consisting of functions vanishing on a fixed portion of the boundary, then
Lg coincides with the weak operator L,, using (2.15) in [23].



Now let us consider an operator equation
Lu=g (8)
where L € BCg(H) and g € H.
Definition 3.3 We call u € Hg the weak solution of equation (8) if
(Lsu,v)s = (g,v) (v € Hg). (9)

Remark 3.3 (a) For all g € H the weak solution of (8) exists and is unique. This follows
in the usual way from the Lax-Milgram theorem, since v — (g,v) is a bounded linear
functional on Hg by the coercivity of .S.

(b) If w € D(L), then u satisfies (8) (i.e. it is a strong solution) if and only if it is a weak
solution.

3.2 Compact-equivalent operators

Definition 3.4 Let L and N be S-bounded and S-coercive operators in H. We call L and N
compact-equivalent in Hg if
Lsg = puNs + Qs (10)

for some constant p > 0 and compact operator Qg € B(Hg).

Remark 3.4 (i) It follows in a straightforward way that the property compact-equivalence is
an equivalence relation.

(ii) In the special case R(L) C R(N), compact-equivalence of L and N means that N~1L is
a compact perturbation of constant times the identity in the space Hg. Indeed, it is easy to see
that here N~'L = Ns_lLS\D(L), and by definition the latter is the perturbation of pl with the
operator Ng 1QS| D(L)» Which is compact since Ng is bounded. (In the general case the "weakly
preconditioned’ form Ng 1Lg is also a compact perturbation.)

Now we characterize compact-equivalence for elliptic operators. Let H = L?(2) and let us
define the operators

Niu = —div (A1 Vu) + by - Vu + ciu for up, =0, Ou_ 4. arur, =0,

Ova,

Nou = —div (A2 Vu) + by - Vu + cou for ur, = 0, Ou 4 QU = 0

Ova,

ou
Ova,

where = A; v-Vu denotes the weighted normal derivative. (The formal domain of N; to be

used in Definition 3.2 consists of those u € H%(Q) that satisfy the above boundary conditions,
however, this is nowhere used elsewhere.) The following properties hold, where i = 1, 2:

Assumptions 3.2

(i) Q c R%is a bounded piecewise C'! domain; I'p, 'y are disjoint open measurable subparts
of O such that 0Q =Tp UTy;

(ii) 4; € CHQ,R%™?) and for all z € Q the matrix A;(x) is symmetric; b; € C1(Q)%, ¢; €
LOO(Q), Qg € LOO(FN);



(iii) we have the coercivity properties \ n(qun( )))\ > p > 0 with p independent of z, ¢; :=
co(A;(x

ci—%divbizomﬂand&i ::ai—l—%(b,wy) >0onI'y;
(iv) either I'p # 0, or ¢ or &; has a positive lower bound.

For the study of such operators we define the space
HLH(Q) :={uec H(Q) : ur, =0} with (u,v)s:= / (G Vu-Vv+ huv) + Buvdo (11)
Q I'n

where G has the same properties as A; above in (ii)-(iii), and h € L>(Q), h > 0if I'p # 0 and
h > &y > 0if Tp = 0, further, 3 € L®(T'y) and 3 > 0. Then H}(Q) is the energy space Hg
of the operator Su := —div (G Vu) + hu on D(S) := {u € H3(Q) : ur, =0, ﬁ\l“w =0}. It
is easy to check the properties in Definition 3.1 from the above assumptions, which means that
Ni, Ny € Cs(L*(12)).

Proposition 3.1 The elliptic operators N1 and No are compact-equivalent in H},(Q) if and
only if their principal parts coincide up to some constant p > 0, i.e. Ay = pAs.

PrOOF. We have for all u,v € Hp ()
(Vi) gu,v)s = / (Ai Vu-Vu+ (b;- Vu)v + ciuv) dr + a;uv do .
Q I'n

Hence
(N1)g — p(N2)g = Js + Qs

where, using notations b :=b; — pubs, c¢:=c¢; — pce and a := a1 — pasg, we have

(Jsu,v)g :/(A1 —pAz2) Vu-Vo and (Qsu,v)g = / ((b-Vu)v—i—cuv) dx + auv do .
Q Q

'y
(12)
Here Qg is compact, which is known [16] when N7 and Ns have the same boundary conditions.
Otherwise we use the equality

/(b'Vu)vd:v = —/ u(b - Vo) dw—/(divb)uvdx+ (b-vyuvdo (u,v € HH(Q)) (13)
Q Q Q Ty

whence, using notations ¢ :=c—divband a:=a+b- v,

|Qsulls = sup |[(Qsu,v)s| = sup —/ u(b - Vv)dx +/ cuv dx + auv da‘ .
vEH}D(Q) UEH}D(Q) Q Q I'n
vl g=1 lvllg=1
Using the embedding estimates
lllz2) < Callvlls,  Illlzewy) < Cryllolls (v € Hp()) (14)

(where Cq, Cry, > 0) and ||Vv| 12(q) < p~?||v||s, and letting K, := p*1/2|]bHLoo(Q)+C’Q||EHLoo(Q),
Ky = CFNHdHLOO(FN)’ we obtain

1Qsulls < Killull2(q) + Kallull2ry) (15)

whence g is compact.



It remains to prove that if A; # pAs then Jg is not compact. Using Proposition 2.1 (d), it
suffices to find a sequence (u;) C H}(2) € H}(Q) satisfying
(ui,uj)s = (Jsui,uj)s =0 (i #j), (16)
iIilf [(Jsus, wi)s|/||uil|% =6 > 0. (17)
Let A:= A; — pAs. Since A is not identically zero, there is z¢ € §2 such that Ag := A(z¢) # 0.
Here Ay is symmetric, hence there is ug € H}(2) such that /Q Ag Vug - Vug # 0. Let

e = ]/QAO Vuo-Vu()’/(/Q]Vqu), Qupp = {z € Q: |A(z) — Aol| < £/2}

which is an open set since A is continuous. Fix 2’ € Q, and for any z € Q and R > 0 let
O pr={ze RY: 2+ R(x—2) € Q}. Let z; € Q, R; > 0 (i € NT) such that Q; := Qzr C Q0
and (); are pairwise disjoint sets. We define u; € H}(Q) by w;(x) := uo(z'+ Ri(x — z;)) for x € Q;
and u;(z) := 0 for x € Q\ ;. Since suppu; = Q; are disjoint, (16) is satisfied. Further, using
the fact {; C €25 and a linear transformation ; — ) in the integral, we obtain

suu)sl VoA Vs Vol [fo Ao Voo V| o o Vo V|
Jo, IVus[? Jo, IVui[? N Jo, IVui[? 2 Jo [Vuol? 2 2

e

Since for u € Hg(2) have [Ju|§ < C - [, [Vul?, the above estimate yields (17) with § = 5% > 0.
|

4 Compact-equivalent preconditioning and mesh independent
superlinear convergence rates

We prove the mesh independent convergence results for the PCGM in four stages. First we
consider symmetric preconditioning operators, which is more straightforward to handle. Then,
by suitable modifications of the proof, we turn to arbitrary preconditioning operators (in the
studied coercive framework) where the general result is obtained. In both the symmetric and
nonsymmetric cases we first consider an abstract Hilbert space level, then derive the correspond-
ing estimates for elliptic problems.

The distinction between the symmetric and nonsymmetric preconditioners also reflects that
the symmetric ones are in general much more relevant in practice. For nonsymmetric precondi-
tioners our result has mostly a theoretical interest for its generality, nevertheless, some practical
examples will be given here as well.

For simplicity we will consider compact-equivalence with 1 = 1 in (10), which is clearly
no restriction, since if a preconditioner Ng satisfies Lg = ulNg + Qg then we can consider the
preconditioner yNg instead.

4.1 The abstract operator equation and its discretization

Let us consider the operator equation
Lu=g (18)

where L € BCs(H) and g € H, and let v € Hg be the weak solution as in Definition 3.3.
Equation (18) will be solved numerically using a Galerkin discretization: let

Vi, = spanf{ep1,...,on} C Hg,



where ; are linearly independent, be a given finite-dimensional subspace and
n
Ly := {(LS%,Wﬁs}m:l :
Finding the discrete solution u; € V}, requires solving the n x n system
L,c=b (19)

with b = {(g,¢;)}}=;. Since L € BCg(H), the symmetric part of Ly is positive definite,
hence system (19) has a unique solution. Moreover, if a sequence of such subspaces V}, satisfies
inf, ey, ||u —v|ls — 0 for all u € Hg, then the coercivity of Lg implies in the standard way [7]
that up converges to the exact weak solution in Hg-norm.

4.2 Symmetric preconditioning in Hilbert space

We introduce the stiffness matrix of S
n

Sy = {(%‘,wﬁs} (20)

ij=1
as preconditioner for system (19), and wish to solve
S;'L,ec=b (21)

(with b = S,:lb) using the CGM. Let us endow R" with the Sy-inner product (c,d)s, = Sj c-d.
Then the Sp-adjoint of S,:th is Sgle, hence we apply the CG algorithm (6) with A = Sgth
and A* = S,;lL:,f.
Let us now assume that L and S are compact-equivalent with © = 1. In this special case
(10) holds with Ng = I:
Ls=1+Qs. (22)
Hence, letting

Qn= {<Qs%@j>s}n ,

ij=1
system (21) takes the form

(In+S,'Qu)c=b (23)
where I, is the n xn identity matrix. Using (7), the CG algorithm (6) thus provides the estimate
Irells, \ "~ 2 &
<||7”0||s:> < o ;(MSJQ%C +8,1Qn) + Mi(S, ' QTS 'Qn)) (24)
(k=1,2,...,n), where X
v, = min W (25)
0 h

Our goal is to give a bound on (24) that is independent of the subspace V,.

Proposition 4.1 Let L be S-bounded and S-coercive. Let Sy, Qp be defined as above and let
5i(Qs) and \i(Qs + Qs) (i = 1,2,...) denote the corresponding singular values resp. ordered
eigenvalues where Qg, defined in (22), is compact on Hg. Then the following relations hold:

k k
(a) STNSQE S, QR <D si(@Qs)? (k=1,...,n),
=1 i=1

9



k k
(b) > IX(S,QE +S,'Qu) Z Qs +Qs)  (k=1,...,n),

i=1
(c) vp >m?  foruvy in (25), where m:= inf

PROOF. (a) Let \; := \(S;'QL'S;'Qp) (i=1,..,n) and let ¢’ = (c},...,c,) € R” be
corresponding eigenvectors such that

Spct-cl =y (1,1 =1,...,n), (26)
where - denotes the ordinary inner product on R". Then
S, 'Quc-Quci=N  (i=1,..,n). (27)
Let d°:= Sngh ¢’ for all i, that is
S,d' = Q¢ (28)

which turns (27) into o
Sydi-di = )\, . (29)

n 3 n .
Now let u; = 3~ cjp; € Vi and 2 = 3 djp; € Vi (i=1,..,n). Then (29) yields
j=1 j=1

lz:ll% = M- (30)
Further, for all v = f: pj¢j € Vi, with notation p = (p1,...,pn) € R", (28) yields S, d’ - p =
j=1

Q) ¢’ - p, which implies

(zi,v)s = (Qsui,v)s (v E V),
i.e. z is the orthogonal projection of Qgu; € Hg into Vj. Therefore | z]ls < ||@suills, and
(30) provides

B

k k

Z <3 1QsuillE = D (QaQsui wi)s. (31)
=1 =1

i=1

Here (u;,u)s = Spct - ¢! for all i,1 = 1,...,n, hence by (26) the vectors u; are orthonormal
in Hg. Therefore Proposition 2.1 (a) for the operator C' = Q%Qyg in the space Hg yields the
desired estimate.

~(b) The proof is similar to that of (a). Now let A; := \i(S,'Q} +S;,'Qp) and let ¢’ =
(ct,...,c) € R" be corresponding eigenvectors with property (26). Then

(Qh +Qu)c' = \i S ¢’ (i=1,..,n)

and (26) yields o o
= (QL +Qp)c'-ct=2Qyct- .

n .
For u; = > c;«pj € V}, we thus obtain
=1

ZIA | =2 ZI Qsui, ui)s| = ZI (Qs + Qs)ui, ui)s|, (32)

10



and Proposition 2.1 (a) for the operator C' = Q§ + Qg in the space Hg yields the desired
estimate.

(c) We have

1Sy ' Laells, . 118, ' Laclls, llclls, . (S;'Lpe,c)s, . Lyc-c
catells, et el Semt o fellf, =R Spcec
c£0 Sh c#£0 Sh c£0 Sh o N

L L L L
= min (Lsu, u)s Su’;L)S > inf (Lsu, u)s Su’;L)S = inf (Lsu, u)s S%;L)S = in < u,g) =m
MR Z M T b B B T
where the density of D(L) in Hg has been used. ]

In virtue of (24) and Proposition 4.1, we have proved

Theorem 4.1 Let L be S-bounded and S-coercive, and let L and S be compact-equivalent
with p = 1. Let the compact operator Qs be as in (22). Then for any subspace Vi, =
span{pi,...,on} C Hg, the CG algorithm (6) with Sp-inner product, applied for the n x n
preconditioned system (21), yields

1/k
(H:’;”?) < e (k=1,2,..,n) (33)
k
where g = # Z(\)\z(Q*S +Qs)| + si(QS)2> -0 (as k — 00) (34)
i=1

and (k) pen+ s a sequence independent of n and V.

4.3 Symmetric preconditioning for discretized elliptic problems

4.3.1 General elliptic equations

Let us consider an elliptic problem

Lu= —div(AVu)+ b-Vu+cu=yg

=0 Ou_ =0 (35>
Urp =Y, dva +aury =

where L satisfies Assumptions 3.2 and g € L?(Q2). We define Hj(Q) = {u € H'(Q) : u,, = 0},

then Assumptions 3.2 ensure that problem (35) has a unique weak solution u € H,(Q). Now

let Vi, = span{p1,...,on} C HH(Q) be a given FEM subspace. We seek the FEM solution
up, € Vp,, which requires solving the n X n system

Lyoc=b (36)

where

(Lh)i,j=/(AV%'-VstJr(b-Vsm)soﬁcwmj) +/ apip;do
Q 'y

and b; = [ 9¢; ( =1,...,n). Following subsection 4.2, we define a preconditioner for system
(36) as the discretization of a suitable symmetric elliptic operator. Let

Su:= —div(AVu) + hu for ue H*(Q) : ur, =0, aaTuA + Bury =0, (37)

11



where h € L>®(Q) and h > 0if T'p # 0 and h > 6y > 0 if T'p = 0, further, 3 € L>®°(I'y) and
B > 0. The corresponding inner product on Hp, () is

(u,v)g = /Q(A Vu - Vv + huv) + g Buv do . (38)

We introduce the matrix N

Si = {{eeis), (39)
as preconditioner for system (36), and then solve system (21) using the CG algorithm (6) with
the Sp-inner product and with A = Sgth and A* = S;ILZ.

Theorem 4.2 Let Vj, C H},(Q) be an arbitrary FEM subspace and consider the FEM discretiza-
tion (36) of problem (35), using the stiffness matriz Sy, as preconditioner. Then the superlinear
convergence of the preconditioned CGM is mesh independent in the sense of Theorem 4.1, i.e.,

we have

Irelis, \ "

( b Sh) < e (k=12 ..n) (40)
Irolls,

for the mesh independent sequence e, — 0 from (34).

PRrROOF. The coercivity and boundedness assumptions on the coefficients of L and S imply
in a standard way that L is S-bounded and S-coercive. Proposition 3.1 yields that L and S are
compact-equivalent in H} () if the latter is endowed with the inner product (38). Therefore
Theorem 4.1 is valid with the compact operator QQg defined via

(Qsu,v)g = /Q((b -Vu)v + (¢ — h)uv) + / (o — B)uvdo (u,v € HH(Q)), (41)

I'n

which satisfies (22). (]

We note that the above result is an extension of [6], where the mesh independence property
has been proved for Dirichlet boundary conditions when either S is the symmetric part of L, or
both L and S have constant coefficients.

Remark 4.1 Finding the correction terms in algorithm (6) with the present choice A = S,:th
and A* = S,:ILZ are equivalent to the auxiliary problems

find 2, € V3, : (zk,v)s = (Lgdi,v)s (v € Vp),
find Sk+1 € Vi, : <Sk+1, U>S = <L:§dk,v>5 (U S Vh),

ie., zx and sgq1 are the FEM solutions in V}, of the symmetric elliptic problems of the form
Sz = Ldy, and Ssi1 = L*ry1 with the boundary conditions of (37).

Proposition 4.2 Under the conditions of Theorem 4.2, the sequence ey, in (40) satisfies

4s Fi1
Ek S 5 ) 42

where p; (i € N1) are the solutions of eigenvalue problem

Su::uuv Urp =0, r(gTuA+ﬁu)\FN = Hu (43)
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and s,r > 0 are constants defined below. When the asymptotics p; = O(i 2/‘1) holds (in partic-
ular, for Dirichlet boundary conditions),

ekgo(logk) if d=2 and =, <O( if d>3. (44)

1
)
PrOOF. From (41) and (13) for v = u, letting d = ¢ — h and v = a — 3, we obtain

1 ..
(qu,u)gz/ﬂ(d—§(dlvb))u2 ('y—i— (b- l/))u dJ<C'1||uHL2 +C’2HU||L2 (Tn)*

I'n

We have |((Q§ + Qs)u, u)s| = 2|(Qsu, u)s|, hence the variational characterization of the eigen-
values yields

(@5 + Qs)u, u)s| : Cullullf2(q) + Collull?ar,,

A (O%5+ = min ma < 2 min ma
I\ (Qs+Qs)| Hi \CHg uJ_Hi)fl (|| © H;_1CHs "J-Hi}fl ||UH
ko S u#0 S

where H;_; stands for an arbitrary (i — 1)-dimensional subspace. On the other hand, here Qg
falls into the type (12), hence (15) implies

SUlls 1 L2(Q 2 L2(Ty)
lQsulld < 2K7|lul?2(q) + 2K3 ||ull7

Since s;(Qs)? = \i(Q5Qs) and (QEQsu,u)s = |Qsul|%, we obtain as above that

2 . (QeQsu,u)s i 2K%||u||2L2(Q) + 2K22||UH%2 r
5i(Qs)* = min max —>—o—— < min  max 5
H; 1CHg wlHi_ l|lullZ H;_1CHgs ulHi, [ullg
u7#0 u#0
2
Altogether, letting s := %, ri= gli el formula (34) implies

A ) ||’U«||%2(Q) + %HUH%Q(FN)
ep < — Z fi where ;= min = max [ull% ’
u#0

in which the fraction equals 1/ for (43), hence the equality fi; = i follows from the variational
characterization of the eigenvalues.

Estimate (44) follows from the asymptotics p; = O(i%/%) by an elementary calculation. For
Dirichlet boundary conditions, this asymptotic behaviour is found in [9]. u

Remark 4.2 The asymptotic behaviour p; = O(i*/%) is not known for general (other than
Dirichlet) boundary conditions up to the authors’ knowledge. However, for the simple special
case —Au = pu, % lpo = pu where Q is a disc in R?, one can easily verify via the sign properties
of the Bessel functions that p; are asymptotic to the Dirichlet eigenvalues and hence also satisfy
i = O(i%/%). This suggests the wider validity of this asymptotic rate.

4.3.2 An example: convection-diffusion equations with Helmholtz preconditioners

As a special case of the preceding paragraph, let us consider the case of a convection-diffusion
operator L in (35) and a preconditioning operator S with constant coefficients. Namely, if A = I
in (35) then we have the problem

{ Lu= —Au+ b(z) - Vu+ c(x)u = g(x) (45)

ur, =0, % +a(z)ur, =0

13
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where for emphasis, the dependence of the coefficients on x has now been indicated unlike before.
Let us define the preconditioning operator

Su:= —Au+ hu  for ue H*Q): ur, =0, 2%+ Bur, =0, (46)

where h, 3 € R are constants such that h > 0if I'p # () and h > 0 if I'p = @, further, 3 > 0.

Then the auxiliary problems with this preconditioning are discrete Helmholtz problems with
constant coefficients. For such problems various fast solvers are available (like fast Fourier
transform, cyclic reduction or multigrid, see e.g. [17, 25, 26]) which, together with the mesh
independence result of Theorem 4.2, turns Sy into an efficient preconditioner. We point out
that this is an extension of [6], where the mesh independence property has been proved for
Dirichlet boundary conditions under the strong restriction that the operator L itself has constant
coefficients.

4.3.3 Elliptic systems

Analogously to paragraph 4.3.1, we can consider elliptic systems
!
Liu = —div (A; Vu;) + b; - Vu; + Y- Viju; = g
' (A Vui) + i - Vui El gt = (i=1,...,0) (47)
uir, =0, 3%; + ajuiry =0
where 0, A; and o; are as in Assumptions 3.2, b; € CLQ)N, ¢; € L*(2), Vi; € L>=(Q). We
assume that b; and the matrix V = {sz}i j—1 satisfy the coercivity property

Amin(V 4+ VT) —maxdivb; >0 (48)

pointwise on 2, where \,;, denotes the smallest eigenvalue, then system (47) has a unique
weak solution u € H%(Q)!. Now we choose a FEM subspace V;, € H1(Q)! and look for the
solution of the corresponding algebraic system Ly ¢ = b. We define the preconditioning operator
S = (S1,...,5) as the [-tuple of independent operators

Siu; = —div (4; Vu) + hju for u; € H*(Q) : Ui, =0, g% + Bittiry =0 (49)

(i=1,...,1) with the conditions of (37), and let Sy, be the stiffness matrix of S in HL(Q)".

Then, similarly to paragraph 4.3.1, one can verify that the superlinear convergence of the
preconditioned CGM is mesh independent in the sense of Theorem 4.1, i.e., (33)—(34) hold.

This result is an extension of [22] where the above preconditioning has been introduced and
its efficient parallelizability has been demonstrated; on the other hand, the mesh independence
property was proved there for Dirichlet boundary conditions under strong restrictions on the
matrix V' (antisymmetric, or normal when the operator L itself has constant coefficients).

4.4 Nonsymmetric preconditioning in Hilbert space

Now let N be a general (possibly nonsymmetric) S-bounded and S-coercive operator which is
compact-equivalent to L with p =1, i.e., (10) becomes

Ls=Ngs+Qs. (50)

We introduce the stiffness matrix of Ng

Ny, = {(Ns%,%’)s}

n

4,j=1
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as preconditioner for system (19), and wish to solve
N, 'L,c=b (51)

(with b = N, 'b) using the CGM. Since N is nonsymmetric, in order to define an inner product
on R™ we preserve the stiffness matrix of S on V},, i.e. using (20) we endow R"™ with the Sj-inner
product (c,d)g, := Sjc-d as earlier. Then the Sj-adjoint of N;th is S,:lL;: N,:TSh, hence
we apply the CG algorithm (6) with A = N;th and A* = SglL;;N;TSh.
Letting
n
Qh = {<QS‘PZ) <Pj>5}i’j:1 )

system (21) takes the form R
(I,+N,'Qu)c=b (52)

where Ij, is the n x n identity matrix. Using (7), the CG algorithm (6) thus provides

1/k k
T 2 _ _ _ _ _ _
(” k”8h> < 2 3 (A8 QI N, TS, + N Q) + (S, QE N, TSN 'Qu) ) (53)

rolls, kv =

(k=1,2,...,n) where

N, 'Lyc|/3
vy, = min M (54)
ccRn ||c||Sh
Again, our goal is to give a bound on (53) that is independent of V},.
Proposition 4.3 Let L and N be S-bounded and S-coercive operators, in particular
L N - N
m:= in (u,g>>0’ m:= inf %>O, M := sup w>0,
webw ul? vebv) [l 2o Tullsllolls

and let Qg be a compact operator on Hg. Let Sy, Np and Qp be defined as above, and let
5:(Qs) (i=1,2,...) denote the singular values of Qs. Then the following relations hold:

k k
(a) 28y QL N TSN, Q) < — Z (k=1,...,n),
i=1 i=1
k 9 K
(0) Y (S, 'QEN, TS, + N, Q)| < = > si (k=1,...,n),
i=1 i=1
2
m
(c) v > ek
PrROOF. (a) We proceed similarly to Proposition 4.1. Let \; := \; (S,: Qf N_TShN_ Qr)
(i=1,..,n) and let ¢ = (c},...,c}) € R™ be corresponding eigenvectors with property (26).
Then ‘ '
SiN, 'Quc N 'Quci =N (i=1,..,n). (55)

Let d°:= N,:lQh ¢’ for all i, that is

N,di = Qpc’. (56)
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. n
For this d* and )\;, similarly to Proposition 4.1, we have (29) and, letting u; = ‘21 cipj € Vi
J:
no. n

and z; = ) dip; € Vj we obtain (30). Further, for all v = 3 pjp; € Vj, with notation

j=1 j=1
p=(p1,...,pn) € R™, (56) yields N, d*-p = Qp ¢ - p, which means

(Nszi,v)s = (Qsui,v)s (v € V).
From this we have
, 1 1
l2ills < = (Nszi, 2i)s = —(Qsui, 2i)s < — [|Qsuillszills

hence |z]|s < % [|@suills. Then from (30)

k k k
1 1 «
> i < 3 > | QsuillE = ) > (Q5Qsui, ui)s, (57)

=1 =1 =1

whence the desired estimate follows in the same way as from (31) in Proposition 4.1.
(b) Now let \; := \i(S;'QF N, 7S, + N 'Qp) and let ¢ = (c},...,c) € R™ be corre-
sponding eigenvectors with property (26). Then

)\z’ = )\i Sh Ci : Ci = Qz N,:TSh Ci : Ci + ShNngh Ci : Ci =2 ShN;IQh Ci . Ci =2 Qh Ci : ei

. . n
where €* := N,:TSh c' for all . Here for all v = Y pjp; € V4, with notation p = (p1,...,pn) €
j=1
R", we obtain e’-Nj,p = S;,c’ - p, which means (w;, Ngv)s = (u;,v)s for all v € V},, where
n n

w; = Y e§<pj and u; = Y, cécpj, or
j=1 j=1

(Nsw;,v)s = (uj,v)g (veW,). (58)

Denote by P the orthogonal projection of Hg onto Vj,. Then (58) yields u; = PNw;. Here
the linear mapping (PNg)y, : Vi — Vi is one-to-one, since for all v € V},

(PN§v,v)s = (N§v,v)s = (Nsv,v)s > ml[v[|5 . (59)
Therefore
Qi e’ = (Qsui, wi)s = (Qsui, (PN§)y, wi)s = (ui, Q5(PNG)jy: ui)s.

Here the operator (PN gﬁ)‘_vi has a norm-preserving extension N from Vj, onto Hg (namely, with

N|(V;,,)L :=0), and from (59) we have ||NH < % Altogether, we obtain

k k k k
Dol =2 Y {Qu(PNG)y, wi, uids| = 2D (QsNug, ui)s| < 2 si(Q5N)
i=1 i=1 i=1 i=1

_ 2 e 2
=% gsz(Qs) =R gsz(@ﬁ

(where, in the inequalities, statments (a) and (b) of Proposition 2.1 have been used, respectively).
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(c) Let ¢ € V}, be arbitrary, d:= N,:thc. Let u = il cjpj € Vyand z = il djpj € Vh.
Then mllul|% < (Lsu,u)s =Lpc-c=N,d-c= (st,;;s < [[Nsz||s|luls, he]r;ce
m|lulls < [[Nsz|ls
and

-1
NG, Lnell§, _ Spd-d _ |23 o 5 |l=l3 m’
cl§, Spe-c ullg ~ 7 [Ns2l[§ T M2

In virtue of (53) and Proposition 4.3, we have proved

Theorem 4.3 Let L and N be S-bounded and S-coercive operators that are compact-equivalent
in Hg with p = 1. Let the compact operator Qg be as in (50). Then for any subspace Vj, =
span{pi,...,on} C Hg, the CG algorithm (6) with Sp-inner product, applied for the n x n
preconditioned system (51), yields

Irilis, )"
( b Sh) < e (k=1,2,..n) (60)
Irolls,
h 200 §k3(2 (Qs)+ =5 5:(@s)?) — 0 (ask— o) (61)
= —_— _— s —_— . — —
where €k Tom? 2 msZ S 2 Si(ls a o0

and (k) pen+ s a sequence independent of n and Vj,.

Remark 4.3 When one preconditions L with N, a useful choice for the operator S is the
symmetric part of N: i.e., if D(N) = D(N*) then S = (N + N*)/2, and if D(N) # D(N*) then
S is an operator that generates the inner product satisfying (u,v)g := %((Nu, v) + (u, Nv)) for
u,v € D(N), see [21]. Then in Proposition 4.3 we have (Nu,u) = ||ul|} (u € D(N)), hence
m=1.

4.5 Nonsymmetric preconditioning for discretized elliptic problems

This section contains our most general result for elliptic operators: in the studied coercive frame-
work, preconditioning with an arbitrary operator IV that is compact-equivalent with L provides
mesh independent superlinear convergence. Although this property has mostly a theoretical
importance, some practical examples are given here as well. Let us first consider the elliptic
problem (35):

(62)

ou

u|FD = 0’ ova

Lu= —div(AVu)+ b-Vu+cu=g
+aur, =0

and let us now define the nonsymmetric preconditioning operator
Nu:= —div(AVu)+ w-Vu+ zu for we H*(Q): ur, =0, 887”,4 +nur, =0, (63)

where L and N satisfy Assumptions 3.2 in the obvious sense, further, g € L?(Q). Accordingly,
the preconditioner for the discretized problem (36) is the nonsymmetric stiffness matrix

(Nh)mZ/Q(AV%-V%JF(W'V%)%+Z%<Pj) +/F neip; do .
N
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We use the same energy space as in the symmetric case, i.e. Hg = H} () with inner product
(38). We then solve the preconditioned system using the CG algorithm (6) with the Sp-inner
product and with A = N;th and A* = S;ngN;TSh.

Theorem 4.4 Let V), C H})(Q) be an arbitrary FEM subspace and consider the FEM discretiza-
tion (36) of problem (35), using the stiffness matriz Ny, as preconditioner. Then the superlinear

convergence of the preconditioned CGM is mesh independent in the sense of Theorem 4.3, i.e.,
(60)—(61) hold.

PROOF. Similar to that of Theorem 4.2, now Theorem 4.3 is applied in H}(12). ]

Example. Let us consider problem (45), i.e. when in (62) we have
Lu= —Au+ b(z) - Vu+ c(z)u,

where for emphasis, the dependence of the coefficients on x has now been indicated. Assume
that we are in 2D and, say, b (z) has larger values than by(z), where b(z) = (b1(z), b2(x)) and
x = (x1,22). Then one can propose the preconditioning operator

Nu= —Au+ w g—;‘l + zu for ue H%(Q): ur, =0, % +nur, =0, (64)

where w1, z,7 € R are constants such that z > 0if I'p # () and z > 0 if I'p = (), further, n > 0.
For convection-dominated problems (i.e. when |b| is large), the presence of the nonsymmetric
term wy g—;ﬁ may turn N into a much better approximationion of L than a symmetric precondi-
tioner like (46). Nevertheless, since this term is one-dimensional, the solution of the auxiliary
problems remains considerably simpler than the original one, e.g. via local 1D Green’s functions
[3]. The above operator N has been proposed in [6], where the mesh independence result of the
PCGM has been proved for Dirichlet boundary conditions under the strong restriction that the
operator L itself has constant coefficients.

Analogously to the symmetric case in paragraph 4.3.3, the above results can be extended
to systems in a straightforward way. Namely, let us consider system (47) and introduce the
preconditioning operator N as an [-tuple of decoupled operators IN;, where each N; is of the
type (63). Then the superlinear convergence of the preconditioned CGM is mesh independent in
the sense of Theorem 4.3, i.e., (60)—(61) hold. Since N; are decoupled, the resulting algorithm is
parallelizable. This turns it into an efficient method if, for instance, each N; is like (64), or the
problem itself is in 1D which occurs e.g. after using the method of splitting in meteorological
models with several components.

5 Remarks on singular perturbation problems
For singular perturbation problems such as
Lou=—cAu+ b-Vu+cu=f

(plus boundary conditions), where ¢ > 0 but ¢ << ||b||, one cannot neglect the first order
term when forming a preconditioner. Such problems are characterized by thin boundary and/or
interior layers and the diffusion term plays a noticable role only in the layer. This property
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is not exploited in preconditioners like (64). A possible approach to handle such problems is
therefore to use the following defect-correction method:

Loy (ups1r —ug) = f —Lew (ke NT)

where ug is given, and in practice only one or two steps need to be performed. Here

Ls@yu := —=d(x)Au+ b-Vu+cu

where §(z) = 0 outside the layers and increases continuously along each characteristic line
(defined by the velocity vector b) from zero to ¢ in the layers. The widths of the layers are
typically chosen as €log(1/e). To solve the correction equation by iteration, one can form a pre-
conditioner S by using the operator b - Vu + hu outside the layers and —§(z)Au+ b - Vu + hu
in the layers for some properly chosen function h > 0. The analysis of the problem will not be
considered further in the present paper.
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