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HYDRODYNAMIC LIMIT OF THE FOKKER–PLANCK

EQUATION DESCRIBING FIBER LAY–DOWN PROCESSES

L. L. BONILLA, T. GÖTZ, A. KLAR, N. MARHEINEKE, AND R. WEGENER

Abstract. In this paper, a stochastic model [5] for the turbulent fiber lay-
down in the industrial production of nonwoven materials is extended by in-
cluding a moving conveyor belt. In the hydrodynamic limit corresponding to
large noise values, the transient and stationary joint probability distributions
are determined using the method of multiple scales and the Chapman-Enskog
method. Moreover, exponential convergence towards the stationary solution
is proven for the reduced problem. For special choices of the industrial pa-
rameters, the stochastic limit process is an Ornstein–Uhlenbeck. It is a good
approximation of the fiber motion even for moderate noise values. Moreover, as
shown by Monte–Carlo simulations, the limiting process can be used to assess
the quality of nonwoven materials in the industrial application by determining
distributions of functionals of the process.

Keywords. Stochastic Differential Equations, Fokker–Planck Equation, Asymp-
totic Expansion, Ornstein–Uhlenbeck Process

AMS Classification. 37H10, 34E13, 60H30, 65C05

1. Introduction

Nonwoven materials / fleece are webs of long flexible fibers that are used for com-
posite materials (filters) as well as in the hygiene and textile industries. They are
produced in melt-spinning operations: hundreds of individual endless fibers are ob-
tained by the continuous extrusion of a molten polymer through narrow nozzles
that are densely and equidistantly placed in a row at a spinning beam. The viscous
/ viscoelastic fibers are stretched and spun until they solidify due to cooling air
streams. Before the elastic fibers lay down on a moving conveyor belt to form a

Date: June 15, 2007 Time: 12:40 File: limitAa.

Figure 1.1. Production of nonwoven materials. Left to right:
plant and fleece (Neumag, www.neumag.saurer.com), simulated
process (computation by Fraunhofer ITWM (FIDYST), visualiza-
tion by Fraunhofer IGD)
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web, they become entangled and form loops due to the highly turbulent air flows.
The homogeneity and load capacity of the fiber web are the most important textile
properties for quality assessment of industrial nonwoven fabrics. The optimization
and control of the fleece quality require modeling and simulation of fiber dynamics
and lay-down. In addition, it is necessary to determine the distribution of fiber
mass and directional arrangement in the web.

The software FIDYST, developed on basis of the mathematical model of [9] at the
Fraunhofer ITWM, Kaiserslautern, enables numerical simulation of the spinning
and deposition regime in the nonwoven production processes, cf. Figure 1.1. The
interaction of the fiber with the turbulent air flows is described by a stochastic force
in the momentum equation, which is derived, analyzed and experimentally validated
in [11, 12]. The resulting force model depends on the flow velocity which is split
into mean and random parts following Reynolds’ idea for the averaged Navier-Stokes
equations. The random force is modeled as white noise with a fluctuation-dependent
amplitude that carries information of the kinetic turbulent energy, dissipation rate
and correlation lengths. Due to the huge amount of physical details incorporated
in FIDYST, the simulations of the fiber spinning and lay-down usually require an
extremely large computational effort and high memory storage. Hence the optimiza-
tion and control of the full process, and particularly of fleece quality, are difficult.
Thus, a simplified stochastic model for the fiber lay-down process is presented in
[5]. Under the assumption of a non-moving conveyor belt, this model describes
the position of the fiber on the transport belt by a stochastic differential system
containing parameters that characterize the process. For example, the effect of air
turbulence has to be identified from the full model and adapted to be used in the
reduced one. Parameter identification can be obtained from a FIDYST-simulation
of a single, relatively short fiber whose computation time is short even using the
more complex model. Then, the reduced model can be used to calculate fast and
efficiently the performance of hundreds of long fibers for fleece production. In [5]
the associated Fokker–Planck equation and stationary solution are investigated for
the case of non-moving conveyor belt. In this case, the model without noise is
conservative and its equations, Hamiltonian. For small turbulence noise, stochastic
averaging can be used to derive a stochastic equation for the energy and related
functionals of the stochastic process. Moreover, their distributions can be analyzed.
An analytic investigation of the corresponding Fokker-Planck equation has been
performed in [7], ergodicity of the process has been proven and explicit rates for
the convergence to the stationary solution have been obtained.

In this paper, we extend the stochastic model of [5] to a more realistic fiber lay-down
model with a moving transport belt, Section 2. In this case, the model equations are
no longer Hamiltonian for zero noise. Both for moving and non-moving conveyor
belts, we consider the case of large turbulence noise, A → ∞, in which the probabil-
ity density of the fiber becomes rapidly independent of the angle between the fiber
and the direction of the conveyor’s motion and the angle between the fiber and the
position vector of its tip, respectively. In the case of a non-moving belt, Section 3
describes how to use the method of multiple scales in order to determine explicitly
a reduced Smoluchowski equation for the fiber probability density, the stationary
distribution and the transient joint probability distributions, all from the associated
Fokker–Planck equation. For a moving belt, the same magnitudes are determined
using the Chapman–Enskog method [4, 1] in Section 4. To leading order, the sta-
tionary distributions are of Gaussian type; in particular for special choices of the
process parameters, Ornstein–Uhlenbeck processes turn out to be the limit solu-
tions. In Section 5 exponential convergence towards the stationary solution of the
reduced Fokker–Planck equation is proved by classical arguments. The numerical
results in Section 6 show that direct Monte Carlo simulations of the fiber process
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agree quite well with the theoretical results even for moderate values of the noise
strength A. In addition, certain functionals of the fiber (i.e. mass distributions) are
essential for the quality assessment of nonwoven materials. We compare their dis-
tributions with the corresponding functionals for the limiting Ornstein–Uhlenbeck
process.

2. The model

Consider a slender, elastic, non-extensible and endless fiber in a lay-down regime.
Let the fiber be produced with the spinning speed vspin, excited into motion by
a surrounding highly turbulent air flow and laid down on a conveyor belt moving
with the velocity vbelt. Due to its slenderness, the fiber laid on the two-dimensional
transport belt is described as a curve η : R

+
0 → R

2. Choosing arc-length parame-
terization, the non-extensibility condition ‖dη/dt‖ = 1 holds by setting

dη = (cosα, sin α) dt

where α denotes the angle of the fiber relative to the direction of motion e1 of
the transport belt. The reference point of the spinning process determined by the
position of the nozzle moves in the coordinate system of the transport belt in the
direction −e1. Thus,

ξ(t) = η(t) − (−κte1)

describes the deviation of the fiber from the reference point as a function of the
arc-length parameter t, where κ = vbelt/vspin ∈ [0, 1] is the ratio between the belt
and spinning speeds. Generalizing [5], we model (ξ, α) by the following stochastic
differential system

dξ1 = (cosα + κ) dt(2.1a)

dξ2 = sin α dt(2.1b)

dα = c(ξ) (ξ1 sin α − ξ2 cosα) dt + A dWt.(2.1c)

Here, the change of the angle α is characterized by the deterministic buckling /
coiling c of the fiber (that tends to turn it back to its reference point) and by the
random fluctuations A dWt due to the interaction of the fiber with the external
turbulent air flow. W denotes an one-dimensional Wiener process.

Remark 2.1. The general deterministic coiling behavior of flexible fibers has been
studied for example in [10, 8]. The function c in our model prescribes its amplitude
that depends on the lay-down process. c is a scalar-valued function for isotropic
processes and a matrix-valued one for anisotropic processes, [5]. For reasons that
will become clear later on, cf. Eq. (4.9), physically reasonable solutions can be
expected only if exp (−B(ξ) − kξ1) is integrable for k ∈ R, where ∂ξi

B(ξ) = c(ξ)ξi.
A typical example satisfying this condition is c(ξ) = 1 since then B(ξ) = (ξ2

1 +ξ2
2)/2.

�

Remark 2.2. The isotropic model considered here can be treated as dimensionless
with c(e1) = 1, for anisotropic lay-down processes with 1/2 tr(c(e1)) = 1. This
corresponds to a scaled throwing (lay-down) range of order one. Consequently, the
noise amplitude A characterizes the relation between stochastic and deterministic
rates in the behavior of the system. �

To illustrate our previous considerations, realizations of the processes η and ξ are
exemplified in Figure 2.1 (left) and 2.2, respectively, where the parameters (A, κ) are
selected in the set (A, κ) = {(0.79, 0.1), (2.23, 0.1), (2.23, 0.8)}, and c(ξ) = 1 is fixed.
Superposing many fibers, i.e. η-paths, generates a nonwoven material whose prop-
erties depend on the industrial control parameters A, κ and c, see Figure 2.1 (right)
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Figure 2.1. Left: η-path. Right: Associated fleece (20 fibers).
Top to bottom: (A, κ) = {(0.79, 0.1), (2.23, 0.1), (2.23, 0.8)}

for 20 fibers. In this figure, the distance between two neighboring spinning nozzles
is dspin = 2.5 · 10−3, fleece length is Lfleece = 10 and fiber length is T = Lfleece/κ.
For κ → 1 the belt velocity coincides with the spinning speed such that the fibers lay
down almost straight independent of turbulence noise. The smaller κ is, the more
fiber material (length) can become entangled and form loops. The size of the loops
is thereby determined by the amplitude of the turbulence noise A. For small A the
deterministic coiling / buckling radius dominates the fiber behavior, whereas a finer
entanglement on various scales arises for large A. For the industrial application,
nonwoven materials with a homogeneous distribution of mass and fiber orientation
are desirable, and they typically have these characteristics for small κ and larger
A. To get a deeper insight into the probability density of the underlying ξ-process
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Figure 2.2. ξ-path, corresponding to Fig. 2.1. Top to bottom:
(A, κ) = {(0.79, 0.1), (2.23, 0.1), (2.23, 0.8)}

(2.1), p = p(ξ1, ξ2, α, t), we consider its associated Fokker–Planck equation

(2.2) ∂tp+(cosα + κ) ∂ξ1
p+sinα∂ξ2

p−∂α [c(ξ)(−ξ1 sin α + ξ2 cosα)p] =
A2

2
∂2

αp .

Remark 2.3. In the case of a non-moving conveyor belt (κ = 0), the processes η and
ξ coincide. Then, it is advantageous to introduce polar coordinates ξ1 = r cosϕ,
ξ2 = r sin ϕ and β = α − ϕ and to define b(r) = ‖ξ‖ c(‖ξ‖) as done in [5]. The
resulting system reduces then to two dimensions and the associated Fokker–Planck
equation for (r, β) reads

(2.3) ∂tp + cosβ∂rp +

(

b(r) − 1

r

)

∂β (p sinβ) =
A2

2
∂2

βp

�

In the following we determine the evolution and the stationary solution of the
Fokker–Planck equations (2.2), (2.3) in the limit as A → ∞. Note, since we embed
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our model in the context of dynamical systems and stochastic processes, we refer
occasionally to the notation and interpretation of time for the fiber arc-length t.

3. The non–moving conveyor belt

We start our investigation with the case of a non–moving belt. This case is quite
instructive and allows to introduce the main ideas to tackle also the case of a
moving belt. Let ε = 1/A2 � 1. As already mentioned above, we introduce polar
coordinates and obtain the following Fokker–Planck equation:

∂tp + cosβ∂rp +

(

b(r) − 1

r

)

∂β (p sinβ) =
1

2ε
∂2

βp(3.1a)

for the density distribution p(r, β, t) subject to the normalization condition
∫

R+×[−π,π]

p(r, β, t) dr dβ = 1(3.1b)

and the initial condition

p(r, β, 0) = p0(r, β).(3.1c)

Note that the stochastic term only appears in the angular coordinate. Hence, for
dominating stochastic forcing, i.e. ε � 1, we expect a fast averaging over the β–
coordinate. Dominant balance between diffusion and the time derivative of p implies
a fast time scale τ = t/ε. The relaxation to the stationary distribution will take
much longer.

To capture the fast averaging over β and the slower convergence to the stationary
solution, we use the method of multiple scales. Let us introduce two time scales:
the fast scale τ = t/ε and a slow scale T = εt. For the distribution function
p = p(r, β, t; ε) (which is 2π-periodic in β), we propose the following ansatz:

(3.2) p = p(0)(r, β, τ, T ) + εp(1)(r, β, τ, T ) + ε2p(2)(r, β, τ, T ) + . . .

Inserting (3.2) into (3.1) and equating equal powers of ε in the resulting equations,
we obtain a hierarchy of problems for the p(m). As we shall see, secular terms
appear only in the equation for p(2), and their elimination requires the introduction
of the slow scale T = εt. To leading order, we have to solve

Lp(0) = 0(3.3a)
∫

R+×[−π,π]

p(0) dr dβ = 1(3.3b)

p(0)(r, β, 0, 0) = p0(r, β)(3.3c)

where L = ∂τ −∂2
β/2 denotes the diffusion operator in the angular direction. Solving

the parabolic equation (3.3a) yields

p(0)(r, β, τ, T ) =
1

2π
P(r, T ) +

∑

j∈Z\{0}

eijβ−j2τ/2Cj(r)(3.4a)

where

Cj(r) =
1

2π

∫ π

−π

e−ijβp0(r, β) dβ(3.4b)

and

P(r, 0) =
1

2π

∫ π

−π

p0(r, β) dβ(3.4c)
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are the Fourier–coefficients of the initial condition.

In the case of a rotational symmetric initial distribution p0 = p0(r), all the coeffi-
cients Cj vanish identically. If the initial distribution is not symmetric, the angular

components Cje
ijβ−j2τ/2 are exponentially decaying with τ , i.e. the angular depen-

dence of p is averaged out on the fast time scale τ . The relaxation to the stationary
solution is determined by the behavior of P(r, T ) on the long time scale T . There-

fore, we will neglect the exponentially small terms Cje
ijβ−j2τ/2 in the following.

To determine the stationary solution P , we proceed with the next terms of the
expansion (3.2). The O(ε)–problem reads as

Lp(1) = −cosβ

2π

[

∂rP +

(

b(r) − 1

r

)

P
]

∫

R+×[−π,π]

p(1) dr dβ = 0

p(1)(r, β, 0, 0) = 0.

Again, solving the above parabolic problem, yields

p(1) =
A(r, T )

2π
− cosβ

π

[

∂rP(r, T ) +

(

b − 1

r

)

P(r, T )

]

,

where A(r, T ) is a solution of the homogeneous problem, LA = 0, such that
∫ ∞

0 A(r, T ) dr = 0 (normalization condition). At this order, we have two functions,
P and A, not yet determined. Hence, we proceed to the second order

Lp(2) =
cos2 β

π
∂r

[

∂rP +

(

b − 1

r

)

P
]

+

(

b − 1

r

) [

∂rP +

(

b − 1

r

)

P
]

∂β
sin β cosβ

π
− 1

2π
∂TP

− cosβ

2π

[

∂rA +

(

b(r) − 1

r

)

A
]

=
1 + cos 2β

2π
∂r

[

∂rP +

(

b − 1

r

)

P
]

− 1

2π
∂TP

+

(

b − 1

r

) [

∂rP +

(

b − 1

r

)

P
]

cos 2β

π

− cosβ

2π

[

∂rA +

(

b(r) − 1

r

)

A
]

To ensure the boundedness of p(2), the average of the right hand side of the preceding
equation over β should vanish. Otherwise a secular term proportional to T would
be part of the solution p(2). This solvability condition yields

∂TP = ∂r

[

∂rP +

(

b(r) − 1

r

)

P
]

(3.5a)

where P also satisfies the normalization condition
∫

R+

P(r, T ) dr = 1(3.5b)

the initial condition (3.4c) and

P(0, T ) = P(∞, T ) = 0 .(3.5c)

Equation (3.5) is the reduced Fokker–Planck (Smoluchowski) equation, which de-
termines the leading order approximation to the solution of the system (3.1), in the
limit as ε → 0, i.e. for dominating stochastic forcing.
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The stationary solution Ps(r) satisfying (3.5) is given by

(3.6) Ps(r) = k re−B(r)

where B′(r) = b(r) and k is the normalization constant. Note that Ps(r) is in-
dependent of the noise strength A, and is also the stationary solution of the full
Fokker–Planck equation (3.1). The limiting stochastic differential equation (SDE)
associated to (3.5) reads

dr = −
(

b(r) − 1

r

)

dT +
√

2 dWT .

Remark 3.1. In the generic case b(r) = r, we obtain B(r) = r2/2 and the station-
ary solution

Ps(r) = re−r2/2 .

that is a rotational symmetric Gaussian distribution centered at the origin with
variance 1. The solution of its associated SDE

dr = −
(

r − 1

r

)

dT +
√

2 dWT

is a radially symmetric Ornstein–Uhlenbeck process. This can be concluded from
the Fokker–Planck equation of the reduced process (3.5). Defining the function

P̃(ξ) = P(r)/r for ξ = (ξ1, ξ2) and r =
√

ξ2
1 + ξ2

2 we obtain

(3.7) ∂T P̃ = ∇ξ · (∇ξ + c(ξ)ξ) P̃

with the associated SDE

dξ = −c(ξ)ξ dT +
√

2 dWT .

For our special case c(ξ) = 1, the solution is the Ornstein–Uhlenbeck process. The
probability density for this case can be calculated explicitely, as we will do in the
next section. �

Remark 3.2. A direct solution of equation (3.5) for b(r) = r can be performed
in terms of a series expansion in Laguerre polynomials. For a normalized initial
distribution we obtain

P = re−
r
2

2 + a1e
−2T r(1 − r2

2
)e−r2/2 +

∞
∑

ν=2

aνe−2νT re−r2/2Lν(
r2

2
)

where the expansion coefficients are determined by the initial distribution:

aν =

∫

R+×[−π,π]
p0(r, β) Lν( r2

2 ) drdβ

2π
∫ ∞

0 e−x[Lν(x)]2 dx

�

Remark 3.3. We consider the full Fokker–Planck equation (3.1). Even with a
rotationally symmetric initial condition and the rotationally symmetric stationary
solution (3.6), terms depending on the angle β appear at intermediate times. This
can be seen by computing the next term in the expansion (3.2)

p(1) = p(1)(r, β, T ) = −cosβ

π

[

∂rP +

(

b(r) − 1

r

)

P
]

,

which depends on β even though the initial condition and the stationary solution do
not. This could have been already anticipated from the full Fokker–Planck equation,
which does not admit time–dependent rotationally symmetric solutions. �
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4. The case of a moving conveyor belt

In the case of a moving belt, the Fokker–Planck equation (2.2) reads as

(4.1) ∂tp + ((s + κe1) · ∇ξ) p − ∂α [c(ξ) (n · ξ) p] =
1

2ε
∂2

αp .

where s = (cosα, sin α) and n = ∂αs = (− sinα, cosα) as well as ε = 1/A2 are
introduced to simplify the notations. The density distribution p satisfies the nor-
malization condition

∫

R2×[−π,π]

p(ξ, α, t) dξ dα = 1 .

Additionally we have the initial condition

p(ξ, α, 0) = p0(ξ, α) .

In the case of strong stochastic influence, i.e. ε � 1, we would like to follow the main
ideas of the previous case for κ = 0, i.e. the non–moving belt. However, the term
proportional to κ generates secular terms in the equation for p(1). This indicates
that the slow scale needed to rid of the secular terms should be t. To leading order,
the method of multiple scales would then give a hyperbolic reduced equation that
does not describe the even slower relaxation towards a stationary solution on the
scale T = εt. We need a perturbation method that yields a reduced equation with
terms of different order in ε: the Chapman-Enskog method. As explained in [4] and
[1], the Chapman-Enskog ansatz for the probability density is

p(ξ, α, t; ε) =
1

2π
P(ξ, t; ε) + ε p(1)(ξ, α;P) + ε2p(2)(ξ, α;P) + o(ε2).(4.2)

The first term in this equation solves the leading order problem ∂2
αp = 0. We have

anticipated that after a transient in the fast scale τ = εt, the slowly-varying density
P becomes independent on α, as shown by the method of multiple scales. Of course,
this ignores an initial layer that can be inferred from (3.4a): An additional term

corresponding to
∑

j∈Z\{0} eijβ−j2t/(2ε)Cj(r) in (3.4a) should be added to (4.2) to

account for the effect of initial conditions, so that the probability density becomes

p(ξ, α, t; ε) =
1

2π
P(ξ, t; ε) +

∑

j∈Z\{0}

eijα−j2t/(2ε)

2π

∫ π

−π

e−ijap0(ξ, a) da(4.3)

+ε p(1)(ξ, α;P) + ε2p(2)(ξ, α;P) + o(ε2).

The higher order terms p(m) depend on time only through their dependence on P .
Moreover, up to terms of order ε2, we have

(4.4) ∂tP = F (0) + εF (1) .

F (m) are functionals of P to be determined so that the p(m) are bounded and 2π-
periodic in α. Inserting (4.2) and (4.4) in (4.1), we find a hierarchy of problems.
To ensure that P contains all the contributions from the homogeneous equations in
the hierarchy, we have to impose the additional constraints

(4.5)

∫ π

−π

p(m) dα = 0, m = 1, 2, . . . .

The following problem corresponds to the terms of order O(ε):

−1

2
∂2

αp(1) = − (s · ∇ξ)P − κ∂ξ1
P − ∂α(c(ξ) (s · ξ)P) − F (0) ,
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together with (4.5). This problem has a normalized solution which is 2π-periodic in
α provided the average over one period of the right hand side of the linear equation
vanishes. This solvability condition yields F (0):

(4.6) 0 = κ∂ξ1
P + F (0)

This condition means that the transport of P with the belt velocity κ in the ξ1–
direction occurs on the original time scale t. Furthermore, we get

p(1) = −2 [s · (∇ξ + c(ξ)ξ)P ] ,

which satisfies (4.5) for m = 1. Note that we have not added a term A(ξ, t)/(2π)
to the right hand side of this equation because of the condition (4.5) ensuring that
all solutions of the homogeneous equation ∂2

αA = 0 are included in P(ξ, t; ε).

To determine the reduced Fokker–Planck equation in analogy to (3.5), we have to
consider again the problem provided by terms of order O(ε2)

−1

2
∂2

αp(2) = − (s · ∇ξ) p(1) − κ∂ξ1
p(1) − ∂α

[

c(ξ) (n · ξ) p(1)
]

− F (1) + 2
[

s · (∇ξ + c(ξ)ξ) F (0)
]

,

together with (4.5). The solvability condition that the average of the right hand
side over one period in α should vanish yields F (1):

(4.7) 0 = ∇ξ · (∇ξ + c(ξ)ξ)P − F (1)

Inserting the conditions (4.6) and (4.7) in equation (4.4) yields the reduced equation

(4.8) ∂tP = ∇ξ · (ε∇ξ + εc(ξ)ξ − κe1)P .

This is the analogon to (3.7), the difference lies in the transport term κ∂ξ1
P . The

stationary solution Ps(ξ) is characterized by

∇ · (ε∇ + εc(ξ)ξ − κe1)Ps = 0

together with the normalization condition
∫

R2

Ps dξ = 1 .

The solution of this linear PDE is given by

(4.9) Ps(ξ) = ke−B(ξ)−κξ1/ε

where ∇B(ξ) = c(ξ)ξ and k is the normalization constant. The associated SDE is

dξ = −εc(ξ)ξdt + κe1dt +
√

2ε dWt

Remark 4.1. In the case of a moving conveyor belt, the stationary distribution
(4.9) depends on the noise, as A = 1/

√
ε. This contrasts with the case of the non-

moving belt, κ = 0, in which the stationary distribution is the same for deterministic
(A = 0) or stochastic (A > 0) dynamics. Obviously, we obtain a stationary distri-
bution independent of ε in the limit as ε → 0 only if κ is proportional to ε = 1/A2.
This means, we deal with the case of large A and small κ, and the turbulence noise
happens to be of order 1/

√
κ. �

Remark 4.2. As in the case of the non-moving belt, we consider the special case
c(ξ) = 1, i.e. b(r) = r. Then, B(ξ) = ξ2

1/2 + ξ2
2/2 and we obtain the Ornstein–

Uhlenbeck type process prescribed by

(4.10) dξ = −εξ dt + κe1 dt +
√

2ε dWt

or respectively

∂tP = ∇ · (ε∇ + εξ − κe1)P .
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Its stationary density distribution is Gaussian, centered at µ = (κ/ε, 0) with vari-
ance σ2 = 1

(4.11) Ps(ξ) =
1

2π
e−(ξ1−κ/ε)2/2−ξ2

2/2 .

�

To investigate the relaxation to the stationary solution in more detail, we focus on
the case c(ξ) = 1. To compute the density of the process explicitely, we assume,
that the initial distribution is a Dirac delta at some point µ0 ∈ R

2. We make the
following ansatz for the transient distribution

P(ξ, t) =
f(t)

2π
e−(ξ−µ(t)/ε)2/(2σ(t)) ,

i.e. a Gaussian with moving center µ(t), variance σ2(t) and normalization con-
stant f(t). Plugging this ansatz into the reduced Fokker–Planck equation (4.8) and
equating for all ξ1, ξ2 yields after some calculations

dµ

dt
= ε (κe1 − µ)

dσ

dt
= 2ε (1 − σ)

df

dt
σ + f

dσ

dt
= 0

Together with the initial conditions µ(0) = µ0, σ(0) = 0 and f(0) = 1, we obtain
f = 1/σ and the following motions of the mean and the standard deviation

µ(t) = κe1(1 − e−εt) + µ0e
−εt

σ(t) = 1 − e−2εt.

Compare this result with the explicit solution formulas for linear stochastic differ-
ential equations in [3].

Remark 4.3. Note that the relaxation to the stationary solution, i.e. µ = κe1 and
σ = 1, happens on the slow time scale T = εt. Furthermore the decay rate for the
standard deviation is twice the decay rate of the mean value. �

5. Convergence of the reduced Fokker–Planck equation

In the previous section we have derived the reduced Fokker–Planck equation (4.8)

∂tP = ∇ · (ε∇P + (εcξ − κe1)P)

in the case of dominating stochastic forcing A2 = 1/ε � 1. The “relative velocity”
κ of the lay-down process as well as the function c = c(ξ) governing the determin-
istic fiber bending are still arbitrary. The stationary distribution Ps of (4.9) is of
Gaussian type

Ps(ξ) = ke−B(ξ)−κξ1/ε

with ∇B(ξ) = c(ξ)ξ.

The convergence against this stationary solution can be proven by classical argu-
ments, see e.g. [2] for a recent discussion. Let us introduce the Kullback-Leibler
relative entropy

(5.1) S =

∫

P ln
P
Ps

.
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Clearly, S ≥ 0. The rate of dissipation of the entropy is given by

∂tS =

∫

∂tP ln
P
Ps

=

∫

ln
P
Ps

∇ · [ε∇P + (εcξ − κe1)P ]

and after integration by parts

∂tS = −
∫

[

∇ ln
P
Ps

]

· [ε∇P + (εcξ − κe1)P ]

Using the fact, that ε∇Ps = −(εcξ − κe1)Ps, we get

∂tS = −ε

∫

P
(

∇ ln
P
Ps

)2

≤ 0

Hence, the entropy is monotonically decaying in time and S = 0 if and only if
P = Ps.

Applying the logarithmic Sobolev inequality [6], we obtain

(5.2) ∂tS ≥ −2εS

and hence a decay rate of e−2εt for the entropy S. Using the Csiszar-Kullback
inequality yields a decay rate of e−εt for the L1–distance of P and Ps.

6. Approximation quality of Ornstein–Uhlenbeck process

In this section we investigate the process (2.1) with c(ξ) = 1 numerically and com-
pare it with the limiting process for A → ∞, i.e. (4.10):

dξ = −εξ dt + κe1 dt +
√

2ε dWt.

Its stationary probability density,

Ps(ξ) =
1

2π
e−(ξ1−κ/ε)2/2−ξ2

2/2 ,

is independent of ε for κA2 = k, k ∈ R. To test how well Ps approximates the nu-
merically obtained stationary probability distribution of the process (2.1), we com-
pare both distributions for different values of A. Figure 6.1 shows the stationary
marginal probability distributions for the components ξ1 and ξ2 when k = 0.5. The
distributions are computed from 15000 Monte–Carlo simulations of the ξ-process
(2.1). Whereas the distribution functions for A < 1 are quite different from the
marginals of Ps, they are qualitatively similar for A = 1 and show good agreement
for A > 2. The L∞– and L2–errors are less than 2% for A > 2 as illustrated in
Figure 6.2. For A > 2 and N = 15000 Monte–Carlo simulations, the deviations
of the stationary marginal probability distributions from the limiting marginals are
within the range of the approximation error, of order 1/

√
N ∼ 10−2. Consequently,

the limit distribution is a good approximation of the true distributions – already for
moderate values of A. However, we should note that the resulting “limit process”
of our fiber model for A → ∞, the Ornstein–Uhlenbeck process, is only continu-
ous, not differentiable. Hence, its associated η-process η(t) = ξ(t) − κte1, is not
parameterized by arc-length and the lack of differentiability obviously affects the
non-extensibility condition. In Figure 6.3 realizations of the Ornstein-Uhlenbeck
(ξ-process of (4.10)) and its associated η-process are depicted and compared to our
differentiable fiber process of Section 2, assuming an initial value ξ(0) = (0, 0), final
time T = 100 and parameter values κ = 0.1, A = 2.23. Note that the same amount
of fiber mass is laid down.

For the industrial application, it is important to know and control the mass distri-
bution or other distributions of functionals of ξ. These distributions shed light into
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Figure 6.1. Stationary marginal distributions of ξ-components
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Figure 6.2. L∞–error and L2–error between the stationary mar-
ginal distributions and the limiting (A → ∞) stationary marginal
distribution for different A.

the structure of the fleece material and therefore may serve to assess its quality.
The fiber mass that lies in a prescribed spatial domain D can also be interpreted
as the time the process stays in that domain. It is described by the distribution of
the random variable

M =

∫ T

t0

χD(η(t)) dt(6.1)

for fixed T , T > t0 with χD denoting the characteristic function of D. In the
following we compare the distribution of (6.1) for the original fiber process given by
(2.1) and the limit process (4.10). We evaluate the distribution of M numerically
for the two processes and compare them using Monte–Carlo simulations for fixed
κ = 0.1, A = 2.23. Figure 6.4 shows the probability distribution function (pdf) for
the relative time that the respective ξ-processes ((2.1) and (4.10)) spend in a square
domain D. The square is centered at a point in the set K = {(0, 0), (0, 1), (1, 0)}, its
length may vary in the set L = {1, 0.5, 0.25}, initially at time t0 = 0, ξ(0) = (0, 0)
and the final time is T = 100. The respective means differ only by 1% which is
within the order of the approximation error of the Monte–Carlo simulations. In
contrast to this, the relative error of the standard deviations depends on the chosen
size of the test domain: the smaller the domain, the higher the error – up to 14%
for L = 0.25, but only 2% for L = 1.
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Figure 6.3. Differentiable fiber process (top) versus continuous
Ornstein–Uhlenbeck limit process (bottom)

Figure 6.5 compares the distributions of the mass of a single fiber laid down in a non-
woven web. This means we consider the ditribution of (6.1) for the η-processes. We
observe the same trend as for the ξ-processes for the relative time spent in a square
D: very good agreement for larger test domains and poor agreement for smaller
domains. The symmetry axis for the η-processes is η2 = 0. Hence, we consider
domains with a certain distance dsym from the center point to the symmetry axis:
the larger dsym, the lower the probability that mass lies in D. This tendency is
amplified by the size of D: the smaller the test domain, the lower the probability.
In contrast to this trend, the probability that mass is accumulated in small domains
D is much higher for the Ornstein–Uhlenbeck process than for our fiber process.
The reason is that a realization of the continuous Ornstein–Uhlenbeck can move
more easily, whereas the differentiable fiber process stays longer in certain regions
and therefore other regions are not covered.

Summarizing, the Ornstein–Uhlenbeck limit process approximates our fiber process
well – not only as regards the joint probability distribution but also the mass dis-
tributions for test domains of size 1 which corresponds to the size of the throwing
(lay-down) range of the fiber, but not for smaller domains.

7. Conclusion

In this work we have presented an extended stochastic model for the fiber lay-
down regime in a nonwoven production process that contains a moving conveyor
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Figure 6.4. Pdf for the relative time that the fiber ξ-process
(–) and the Ornstein–Uhlenbeck process (- -) spend in a square
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{(0, 0), (0, 1), (1, 0)} (marked by ◦, ., 4)

belt. From the associated Fokker–Planck equation and using the method of mul-
tiple scales or the Chapman-Enskog technique, we have explicitely determined the
limit processes and the stationary and transient joint probability distributions in
the hydrodynamic limit, as A → ∞. Quite generally and to leading order of these
perturbation methods, we have found that the limiting stationary distribution (as
A → ∞) approaches a Gaussian-type function. For the special choice c = 1 of the
fiber coiling function, the limiting process is a Ornstein–Uhlenbeck process, and the
mean of its stationary Gaussian distribution depends on the relation of “relative
process velocity” and turbulence noise, κA2. Already for moderate values of A,
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i.e. A > 2, this limiting distribution turns out to be a very good approximation
according to our numerical simulations. Moreover, important distributions of func-
tionals of the process, such as the mass distribution, are well approximated by the
Ornstein–Uhlenbeck process for test squares D of the size of the typical throwing
(lay-down) range of the fibers.

For the control and optimization of the production and quality of nonwoven materi-
als, the parameters characterizing our model, c, A, κ and samples sizes D, should be
identified from FIDYST-simulations of the complete physical production process as
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well as from experimental data. If the ranges of these parameters are such that the
limiting process studied in this work describes well the physical production, the fiber
mass distribution in a fleece material could be determined from the superposition
of many Ornstein–Uhlenbeck η-processes.
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