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Abstract. The reaction-diffusion master equation (RDME) has recently been used as a model
for biological systems in which both noise in the chemical reaction process and diffusion in space of
the reacting molecules is important. In the RDME space is partitioned by a mesh into a collection of
voxels. There is an unanswered question as to how solutions depend on the mesh spacing. To have
confidence in using the RDME to draw conclusions about biological systems, we would like to know
that it approximates a reasonable physical model for appropriately chosen mesh spacings. This issue
is investigated by studying the dependence on mesh spacing of solutions to the RDME in R

3 for
the bimolecular reaction A + B → ∅, with one molecule of species A and one molecule of species B
present initially. We prove that in the continuum limit the molecules never react and simply diffuse
relative to each other. Nevertheless, we show that the RDME with non-zero lattice spacing yields
an asymptotic approximation to a specific spatially-continuous diffusion limited reaction (SCDLR)
model. We demonstrate that for realistic biological parameters it is possible to find mesh spacings
such that the relative error between asymptotic approximations to the solutions of the RDME and
the SCDLR models is less than one percent.

1. Introduction. Noise in the chemical reaction process can play an important
role in the dynamics of biochemical systems. In the field of molecular cell biology, this
has been convincingly demonstrated both experimentally and through mathematical
modeling. The pioneering work of Arkin and McAdams [7] has been followed by
numerous studies showing that not only must biological cells compensate for noisy
biochemical gene/signaling networks [12, 31, 40, 37], but they may also take advantage
of the inherent stochasticity in the chemical reaction process [8, 44, 33].

Until recently, stochastic mathematical models of biochemical reactions within
biological cells were primarily non-spatial, treating the cell as a well-mixed volume,
or perhaps as several well-mixed compartments (i.e. cytosol, nucleus, ER,...). Bio-
logical cells contain incredibly complex spatial environments, comprised of numerous
organelles, irregular membrane structures, fibrous actin networks, long directed mi-
crotubule bundles, and many other geometrically complex structures. While few
authors have modeled the effects of these structures on the dynamics of chemical
reactions within biological cells, several have recently begun to investigate what ef-
fect the spatially distributed nature of the cell has on biochemical signaling net-
works [42, 2, 38, 17, 47]. Deterministic reaction-diffusion partial differential equation
models are well-established for modeling biochemical systems in which reactant species
are present in sufficiently high concentrations, however, there is not yet a standard
model for systems in which noise in the chemical reaction process is thought to be
important. Three different [6, 28, 15, 48], but related, mathematical models have
recently been used for representing stochastic reaction-diffusion systems in biological
cells [2, 38, 17, 47].

In both the methods of [6] and [48] molecules are modeled as points undergoing
spatially-continuous Brownian motion, with bimolecular chemical reactions occurring
instantly when the molecules pass within specified reaction-radii. We subsequently
refer to this model, proposed by Smoluchowski [43], as a spatially-continuous diffusion
limited reaction (SCDLR). [6] and [48] differ in their numerical simulation algorithms,
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but both involve approximations that remain spatially continuous while introducing
time discretizations. In contrast to both these methods, the reaction-diffusion master
equation (RDME) model used in [15] and [28] discretizes space, approximating the
diffusion of molecules as a continuous time random walk on a lattice, with bimolecular
reactions occurring with a fixed probability per unit time for molecules within the
same voxel. Exact realizations of the reaction-diffusion master equation can be created
using the Gillespie Method [21]. The method of [28] shows how to modify the diffusive
jump rates of the standard reaction-diffusion master equation approach to account
for complex spatial geometries.

While several authors have recently used the reaction-diffusion master equation
to study biological systems, see for example [17] and [11], there is still an unanswered
question as to whether this spatially-discrete model approximates any underlying
physical model for appropriately chosen mesh sizes. (Note that [11] uses an approxi-
mate simulation algorithm instead of the exact Gillespie method approach mentioned
above). In particular, the main justification for the use and accuracy of the reac-
tion diffusion master equation appears to be the physical separation of timescales
argument given in Section 1.1.2. This argument suggests that the reaction-diffusion
master equation is only physically valid for mesh sizes that are neither too large or
too small, and gives no hint as to an underlying spatially continuous model that is
approximated by the reaction-diffusion master equation.

Our purpose herein is to investigate the dependence of the reaction-diffusion mas-
ter equation on mesh spacing. We begin by answering the question of what happens
in the continuum limit that the mesh spacing approaches zero. To this end, we
prove in Section 2.1 that for two molecules that can undergo the bimolecular reaction
A + B → ∅, as the mesh spacing approaches zero the molecules never react and sim-
ply diffuse relative to each other. This rigorous result appears to contradict the naive
formal continuum limit,

D∆ − kδ(x), (1.1)

that one obtains for the generator of the dynamics (2.7). The apparent contradiction
arises from the subtlety of giving a rigorous mathematical definition to the opera-
tor (1.1). In the context of quantum mechanical scattering in R

3 an equivalent oper-
ator, with the reaction term called a pseudo-potential, has been introduced formally
by Fermi [19] and elaborated on by Huang and Yang [24]. A rigorous mathematical
definition of (1.1) was first given by Berezin and Faddeev [10] and more recently by
Albeverio et al. [3]. An important point in the work of [3] is that a one-parameter
family of self-adjoint operators, ∆ + αδ(x) may be defined in R

3 corresponding to
an extension of the standard Laplacian from R

3 \ {(0, 0, 0)} to R
3. The results of

Section 2.1 imply that the standard scaling of the bimolecular reaction rate used in
the RDME leads the solution of the RDME to converge to the α = 0 operator, i.e. the
Laplacian on R

3. To obtain an operator (1.1) corresponding to the formal continuum
limit that differs from the Laplacian, one would need to appropriately renormalize the
bimolecular reaction rate and/or extend the reaction operator to couple in neighboring
voxels.

We next investigate what the reaction–diffusion master equation approximates
for mesh spacings that are neither too large or too small. The operator (1.1) arises
in Quantum Mechanics to give local potentials whose scattering approximates that of
a hard sphere of a fixed radius. Here, the dynamics (2.7) generated by a physically
appropriate, mathematically rigorous definition of (1.1) provides an asymptotic ap-
proximation to the solution of the SCDLR model. This motivates Section 2.2, where
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we show that for the mesh spacing larger than an appropriately chosen “reaction-
radius,” defined by the relative diffusion constant and bimolecular reaction rate of
the species, the reaction–diffusion master equation is an asymptotic approximation to
the SCDLR model [43, 29]. We derive, for the special case of two molecules that can
undergo the bimolecular reaction A + B → ∅, asymptotic expansions in the reaction-
radius of the solutions to both the RDME and the SCDLR model in Subsections 2.2.1
and 2.2.2 respectively. In Subsection 2.2.3 we prove that the zero’th and first order
terms in the expansion of the reaction-diffusion master equation converge to the corre-
sponding terms of the SCDLR model, while the second order term diverges. Moreover,
we examine the numerical error between the expansion of the reaction-diffusion mas-
ter equation, truncated after the second order term, and the asymptotic expansion of
the SCDLR model, also truncated after the second order term. It is shown that for
biologically relevant values of the reaction-radius, the relative error between the two
truncated expansions can be reduced below one percent with appropriately chosen
mesh widths. This suggests that for biologically relevant parameter regimes and well-
chosen mesh spacings, the reaction-diffusion master equation might provide a useful
approximation to the spatially-continuous diffusion limited reaction model.

The model problem studied in Section 2 is chosen for ease of mathematical analy-
sis. We believe that our results should be extendable to the general reaction-diffusion
master equation formulation presented in Section 1.1 for chemical systems with arbi-
trary zero’th, first, and second order chemical reactions. Note, for a general chemical
system the reaction-diffusion master equation is a, possibly infinite, coupled system
of ODEs. Formally, as we show in [25], the continuum limit of the coupled system
is equivalent to a, possibly infinite, coupled system of PDEs with distributional co-
efficients. Similarly, a number of authors [39, 46] have exploited the equivalence of
the reaction-diffusion master equation to a discrete version of the second quantization
Fock-space formulation of Doi [14] to study formal representations of the continuum
limit of the RDME.

1.1. Background on the Reaction-Diffusion Master Equation. We begin
by formulating the reaction-diffusion master equation in Subsection 1.1.1. A recent
review of stochastic reaction-diffusion models and numerical methods, including the
RDME, is provided in [16]. In Subsection 1.1.2 we present a standard physical argu-
ment for determining mesh sizes where the reaction-diffusion master equation should
be a “reasonable” physical model. Subsection 1.1.3 briefly reviews the relationship
between deterministic reaction-diffusion partial differential equation models and the
reaction-diffusion master equation.

1.1.1. Mathematical Formulation. We consider the stochastic reaction and
diffusion of chemical species within a domain, Ω. Ω may denote a closed volume, or
all of R

3. In the reaction–diffusion master equation model, Ω is divided by a mesh
into a collection voxels labeled by vectors i in some index set I (i.e. i ∈ I). For
example, if Ω = R

3 then I = Z
3. It is assumed that the size of each voxel can

be chosen such that within each voxel, independently, the well–mixed formulation of
stochastic chemical kinetics [34] is physically valid. Determining for which mesh sizes
this supposition is reasonable is one of the main goals of this work, and is further
discussed in Sections 1.1.2 and 2. Given this assumption, diffusive transitions of
particles between voxels are then modeled as first order chemical reactions. Note that
this is equivalent to modeling diffusion as a continuous-time random walk on a lattice.

The state of the chemical system of interest is defined to be the number of each
chemical species within each voxel. Let M l

i(t) denote the random variable for the
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number of particles of chemical species l in the i’th voxel, l = 1 . . . L. We define
M i(t) =

(

M1
i , . . . ,ML

i

)

to be the state vector of the chemical species in the i’th
voxel, and M(t) = {M i}i∈I to be the total state of the system (i.e. the number of
all species at all locations). The probability for M(t) to have the value m at time t,
given the initial state, M(0) = m0, is denoted by

P (m, t) ≡ Prob{M(t) = m|M(0) = m0}.

We now define a notation to represent changes of state due to diffusive transitions.
Let 1l

i be the state where the number of all chemical species at all locations is zero,
except for the l’th chemical species at the i’th location, which is one. (i.e. M(t) + 1l

i

would add one to chemical species l in the voxel labeled by i). kl
ij shall denote the

diffusive jump rate for each individual molecule of the l’th chemical species into voxel
i from voxel j, for i 6= j. Since diffusion is treated as a first order reaction and
molecules are assumed to diffuse independently, the total probability per unit time at
time t for one molecule of species l to jump from voxel j to voxel i is kl

ijM
l
j(t). kii

is chosen to be zero, so that a molecule must hop to a different voxel.
We assume there are K possible reactions, with the function ak

i (mi) giving the
probability per unit time of reaction k occurring in the i’th voxel when M i(t) = mi.

For example, letting k label the unimolecular (first order) reaction Sl → Sl′ , then
ak

i (mi) = α ml
i, where α is the rate constant in units of number of occurrences of

the reaction per molecule of Sl per unit time. Letting k′ denote the index of the

bimolecular reaction Sl + Sl′ → Sl′′ , where l 6= l′, then ak′

i (mi) = β ml
im

l′

i . Here β is

the rate constant in units of number of occurrences of the reaction per molecule of Sl

and per molecule of Sl′ , per unit time. State changes in M i(t) due to an occurrence
of the k’th chemical reaction in the i’th mesh voxel will be denoted by the vector
νk = (ν1

k , . . . , νL
k ) (i.e. M i(t) → M i(t) + νk). The corresponding state change in

M(t) due to an occurrence of the k’th reaction in the i’th voxel will be denoted by
νk 1i (i.e. M(t) → M(t) + νk 1i).

With these definitions, the reaction-diffusion master equation for the time evolu-
tion of P (m, t) is then

dP (m, t)

dt
=
∑

i∈I

∑

j∈I

L
∑

l=1

(

kl
ij

(

ml
j + 1

)

P (m + 1l
j − 1l

i, t) − kl
jim

l
iP (m, t)

)

(1.2)

+
∑

i∈I

K
∑

k=1

(

ak
i (mi − νk)P (m − νk 1i, t) − ak

i (mi)P (m, t)
)

.

This is a coupled set of ODEs over all possible non-negative integer values of the
matrix m. Notice the important point that the reaction probabilities per unit time,
ak

i (mi), may depend on spatial location. To the authors’ knowledge, this equation
goes back to the work of Gardiner [20].

Equation (1.2) is separated into two sums. The first term corresponds to diffusive
motion between voxels i and j of a given species, l. The second is just the components
of the chemical master equation [34], but applied at each individual voxel. In previous
work we have shown that, as the mesh spacing approaches zero, to recover diffusion of
an individual molecule in a system with no chemical reactions or to recover diffusion
of the mean chemical concentration of each species in (1.2), the diffusive jump rates
should be chosen so as to determine a discretization of the Laplacian [28].
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Let Dl denote the diffusion constant of chemical species l. For a regular Cartesian
mesh in R

d, the diffusive jump rates for species l would be given by

kl
ji =

{

Dl/h2, i a non-diagonal neighbor of j,

0, else.

Denote by ek the unit vector along the k’th coordinate axis of R
d. For a Cartesian

mesh in R
d the reaction-diffusion master equation (1.2) then simplifies to

dP (m, t)

dt
=
∑

i∈Zd

d
∑

k=1

∑

±

L
∑

l=1

Dl

h2

((

ml
i±ek

+ 1
)

P (m + 1l
i±ek

− 1l
i, t) − ml

iP (m, t)
)

(1.3)

+
∑

i∈Zd

K
∑

k=1

(

ak
i (mi − νk)P (m − νk 1i, t) − ak

i (mi)P (m, t)
)

.

1.1.2. Physical Validity. To date, no rigorous derivation of the reaction–diffusion
master equation from a more microscopic physical model has been given. One sys-
tematic computational study was reported in [9] showing good agreement between
the reaction–diffusion master equation and Boltzmann-like dynamics. The validity of
the reaction–diffusion master equation model is often assumed based on the physical
argument presented below (see, for example, the supplement to [15]).

First order reactions are assumed to represent internal events, and as such are
presupposed to be independent of diffusion. We also assume that on relevant spatial
scales of interest, molecular interaction forces are weak, so that until two molecules are
sufficiently close they do not influence each other’s movement. Motion of molecules
is then taken to be purely diffusive. To ensure that the continuous-time random
walk approximation to diffusion inherent in the reaction-diffusion master equation is
accurate, we must chose the mesh spacing significantly smaller than characteristic
length scales of interest. Denoting this length scale by L, and the width of a (cubic)
voxel by h, we then require

L ≫ h. (1.4)

The primary physical assumption in formulating the reaction-diffusion master equa-
tion is that a separation of timescales exists such that on the spatial scale of voxels
bimolecular reactions may be treated as well-mixed. For example, consider the bi-
molecular reaction A + B → C with rate constant K. It is assumed that within a
given voxel the timescale of a well-mixed bimolecular reaction between one specific
molecule of chemical species A and any molecule of species B, τKA

, is much larger than
the timescale for the A molecule and an arbitrary B molecule to become well-mixed
relative to each other due to diffusion, τD. (Here D = DA + DB denotes the relative
diffusion constant between the A and B molecules). We specifically assume that

τKA
≫ τD, (1.5)

where

τKA
≈ 1

K [B]
, τD ≈ h2

D
.
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Letting nB denote the number of B molecules inside the voxel, than in three-dimensions
[B] = nB/h3, so that equation (1.5) simplifies to

h ≫ KnB

D
.

Combining this with equation (1.4) we have that

L ≫ h ≫ KnB

D
. (1.6)

It is therefore necessary to bound h from above and below to ensure accuracy of the
reaction-diffusion master equation.

1.1.3. Relation to Deterministic Reaction–Diffusion PDEs. We now ex-
amine the relation between the reaction diffusion master equation and standard de-
terministic reaction–diffusion PDE models. Define Vi to be the volume of the i’th
voxel. We let Cl

i(t) = M l
i(t)/Vi be the random variable for the chemical concen-

tration of species l, in voxel i, and define Ci(t) = (C1
i , . . . , CL

i ). Denote by ãk
i the

concentration dependent form of ak
i . ãk

i and ak
i are related by ãk

i (c) = ak
i (Vic)/Vi,

and vice–versa ak
i (m) = ãk

i (m/Vi)Vi. Letting E[Cl
i(t)] denote the average value of

Cl
i(t), from equation (1.2) we then find

d E[Cl
i]

dt
=
∑

j∈I

(

Vj

Vi

kl
ij E[Cl

j ] − kl
ji E[Cl

i]

)

+
K
∑

k=1

νl
kE[ãk

i (Ci)].

Note the important point that for nonlinear reactions, such as bimolecular reactions,

E[ãk
i (Ci(t))] 6= ãk

i (E[Ci(t)]) . (1.7)

For chemical systems in which any nonlinear reactions are present, the equations for
the mean concentrations will then be coupled to an infinite set of ODEs for the higher
order moments.

We now consider the continuum limit that h → 0. Let x denote the centroid of
the voxel labeled by i, and assume that h is chosen to approach zero such that x

always remains the centroid of some voxel. We then define

Sl(x, t) = lim
h→0

E[Cl
i(t)],

and S(x, t) = (S1(x, t), . . . , SL(x, t)). Denote by Dl the diffusion constant of the
l’th chemical species, and define ãk(S(x, t),x) to be the continuum spatially varying
concentration dependent form of ak

i . Following the discussion in Subsection 1.1.1, the
jump rates kl

ij are chosen to be a discretization of the Laplacian. The deterministic
reaction-diffusion PDE model can be thought of as the approximation that

∂Sl(x, t)

∂t
= Dl∆Sl +

K
∑

k=1

νl
k ãk(S(x, t),x).

This equation implicitly assumes that in the formal continuum limit the equations
for the mean concentrations form a closed system. In general, however, this is only
true for chemical systems in which all reaction terms are linear due to equation (1.7).
For systems with nonlinear reaction terms, the equations for the mean concentrations
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would then remain coupled to higher order moments in the formal continuum limit,
giving an infinite system of equations to solve in order to determine the means.

As discussed in the introduction, it has been shown more generally that the formal
continuum limit of the reaction-diffusion master equation itself may be interpreted as
a Fock Space representation of a quantum field theory [39].

2. A Reduced Model To Study h Dependence of RDME. We now in-
vestigate the behavior of the reaction-diffusion master equation as the mesh spacing,
h, becomes small in a simplified model. The simplified model studied is that of two
molecules, one of chemical species A and one of chemical species B, that diffuse in R

3

and can annihilate by undergoing the chemical reaction A + B → ∅. In this system,
the reaction-diffusion master equation can be reduced to a form that is much easier
to study analytically than equation (1.3). (Note that we subsequently assume we are
working in R

3 with a standard cubic Cartesian mesh of mesh width h). We show
that in this special case the continuum limit is formally given by a partial differential
equation with distributional coefficients.

The model problem can be derived from the reaction-diffusion master equa-
tion (1.3) as follows. We first simplify to the reaction A + B → C with well-mixed
bimolecular reaction rate k, and only one molecule of A, one molecule of B, and no
molecules of C initially. k is assumed to have units of volume/time as is standard for
deterministic ODE models. We denote by A(t) = {Ai(t)}i∈Z3 the vector stochastic
process for the number of chemical species A at each location at time t. (We define
B(t) and C(t) similarly). ai will denote a specific number of molecules of chemical
species A at location i, and

a = {ai | i ∈ Z
3},

a possible value of A(t). (We again define b and c similarly). The notation a + 1i

will, as before, represent a with one added to ai. In terms of a, b, and c, the reaction-
diffusion master equation gives the time evolution of

P (a, b, c, t) = Prob {A(t) = a,B(t) = b,C(t) = c | A(0),B(0),C(0)} .

Let 0 denote the zero vector. We assume that A(0) = 1i0 , B(0) = 1i′0
, and C(0) = 0.

At time t, the state of the chemical system is then A(t) = 1i, B(t) = 1i′ , and C(t) = 0

prior to the reaction occurring, or A(t) = 0, B(t) = 0, and C(t) = 1i subsequent
to the reaction occurring. (Here i and i′ label arbitrary molecule positions). Let δii′

denote the three-dimensional Kronecker delta function, zero if i 6= i′ and one if i = i′.
For this system, the reaction-diffusion master equation (1.3) simplifies to

dP

dt
(1i, 1i′ ,0) =

3
∑

k=1

∑

±

[

DA

h2

(

P (1i±ek
, 1i′ ,0, t) − P (1i, 1i′ ,0, t)

)

+
DB

h2

(

P (1i, 1i′±ek
,0, t) − P (1i, 1i′ ,0, t)

)

]

− k

h3
δii′P (1i, 1i′ ,0, t),

for states where a reaction has not yet occurred, and to

dP

dt
(0,0, 1i) =

3
∑

k=1

∑

±

DC

h2

[

P (0,0, 1i±ek
, t) − P (0,0, 1i, t)

]

+
k

h3
P (1i, 1i,0, t),
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for states where the reaction has occurred. Note the important point that the bi-
molecular reaction rate is given by k/h3, since k has units of volume/time.

This simplified reaction-diffusion master equation is completely equivalent to a
new representation described by the probability distributions F (0,0,1)(i, t) and F (1,1,0)(i, i′, t).
Here superscripts denote the total number of each of species A, B, and C in the sys-
tem, and indices give the corresponding locations of these molecules. F (1,1,0)(i, i′, t)
denotes the probability that the species A and B particles have not yet reacted, and
are located in voxels i and i′ respectively at time t. F (0,0,1)(i, t) gives the probability
that the particles have reacted, and the C particle they created is located in voxel i

at time t.
Assuming the A particle starts in voxel i0 and the B particle in voxel i′0, the

equations of evolution of F (0,0,1)(i, t) and F (1,1,0)(i, i′, t) follow immediately from the
simplified reaction-diffusion master equation, and are given by

dF (1,1,0)

dt
(i, i′, t) =

(

[

DA∆A
h + DB∆B

h

]

F (1,1,0)
)

(i, i′, t) − k

h3
δii′F

(1,1,0)(i, i, t),

(2.1)

dF (0,0,1)

dt
(i, t) =

(

DC∆C
h F (0,0,1)

)

(i, t) +
k

h3
F (1,1,0)(i, i, t), (2.2)

with initial conditions F (1,1,0)(i, i′, 0) = δii0δi′i′0
and F (0,0,1)(i, 0) = 0. Here ∆A

h

denotes the standard second order discrete Laplacian acting on the coordinates of the
A particle, and ∆B

h denotes the discrete Laplacian acting on the coordinates of the
species B particle. For example,

(

∆B
hF (1,1,0)

)

(i, i′, t) =
3
∑

k=1

∑

±

DB

h2

(

F (1,1,0)(i, i′ ± ek, t) − F (1,1,0)(i, i′, t)
)

.

∆C
h is defined similarly. More general multi-particle reaction-diffusion master equa-

tions can also be converted to related systems of coupled differential-difference equa-
tions. These equations correspond to discrete versions of the spatially-continuous
“distribution function” stochastic reaction-diffusion model proposed in [14]. Note
that if the number of reacting molecules is unbounded, the number of equations will
be infinite. See [25] for a derivation of the corresponding system of equations governing
the reaction A + B ⇆ C with arbitrary amounts of each chemical species.

Notice that equation (2.1) is independent of equation (2.2), and by itself can be
thought of as representing the reaction A + B → ∅. To study this chemical reaction
we drop the C dependence in F (1,1,0)(i, i′, t) and study F (1,1)(i, i′, t), which satisfies

dF (1,1)

dt
(i, i′, t) =

(

[

DA∆A
h + DB∆B

h

]

F (1,1)
)

(i, i′, t) − k

h3
δii′F

(1,1)(i, i, t), (2.3)

with initial condition F (1,1)(i, i′, 0) = δii0δi′i′0
.

We now consider the separation vector, i − i′, for the two particles of species A
and B. Define the probability of the separation vector having the value j,

P (j, t) =
∑

i−i′=j

F (1,1)(i, i′, t),

=
∑

i∈Z3

F (1,1)(i, i − j, t).
(2.4)
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It follows from (2.3), as shown in [26], that P (j, t) satisfies

dP

dt
(j, t) = (D∆hP ) (j, t) − k

h3
δj0P (0, t),

P (j, 0) = δjj0
,

(2.5)

where D = DA +DB and j0 = i0 − i′0. Note this equation is equivalent to a reaction–
diffusion master equation model of the binding of a single diffusing particle to a fixed
binding site at the origin.

To study the limiting behavior of our system for small h we convert equation (2.5)
from units of probability to units of probability density. This change is necessary
since the underlying SCDLR model we compare with is described by the evolution of
a probability density. Let xj = hj denote the center of the Cartesian voxel labeled
by j ∈ Z

3. We denote the probability density for the separation vector to be xj at
time t by ph(xj , t) ≡ P (j, t)/h3. Equation (2.5) can now be converted to an equation
for ph(xj , t), giving

dph

dt
(xj , t) = D(∆hph)(xj , t) −

k

h3
δj0 ph(0, t),

ph(xj , t) =
1

h3
δjj0

, j0 6= 0,

(2.6)

where again, j0 = i0 − i′0. Note the assumption, which we use for the remainder
of this paper, that initially the molecules are in different voxels, i.e. j0 6= 0. This
assumption is necessary to avoid a product of delta functions centered at the same
location in the SCDLR model used in Section 2.2. Equation (2.6) is the final reduced
form of the reaction A + B → ∅ that we subsequently study.

In Section 2.1 we consider the limit of this model as h → 0 and observe that
the molecules never react. In contrast, we show in Section 2.2 that this simplified
model can be thought of as a good asymptotic approximation to a specific microscopic
continuous-space reaction-diffusion model, assuming h is neither too small nor too
large. Specifically, we show that the simplified discrete model can be thought of as
an asymptotic approximation to a SCDLR model, where reactions are modeled as
occurring instantly when two diffusing particles approach within a specified reaction
radius. The asymptotic approximation of (2.6) to the SCDLR model diverges like 1/h
as h → 0 and therefore the master equation loses accuracy when h is sufficiently small.
Recall, however, that h cannot be taken arbitrarily large as then neither diffusion nor
the reaction process are approximated accurately! In Section 2.2.3 we investigate the
error between the asymptotic approximations, truncated after the second order terms,
of the SCDLR model and the simplified reaction-diffusion master equation model.
Both numerically calculated errors values and analytical convergence/divergence rates
are presented. It is shown that for this simplified model, the physically derived bounds
on h given in Section 1.1.2 may be reasonable restrictions on how h should be chosen
so that the truncated asymptotic expansion of the reaction-diffusion master equation
provides an accurate approximation to the truncated expansion of the SCDLR model.

2.1. Continuum Limit as h → 0. We might expect the solution to equa-
tion (2.6) to approach the solution to

∂p

∂t
(x, t) = D∆p(x, t) − kδ(x)p(0, t), x ∈ R

3,

p(x, 0) = δ(x − x0), x0 6= 0,
(2.7)
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as h → 0. Ignoring, for now, the question of how to define a partial differential
equation with distributional coefficients, we next show that as h → 0 the molecules
never react, and simply diffuse relative to each other. Thus, in the continuum limit,
the molecules do not feel the delta function reaction term at all.

To study the solution to equation (2.6) as h → 0 we will make use of the free space
Green’s function for the discrete-space continuous-time diffusion equation, Gh(xj , t).
Gh satisfies

dGh

dt
(xj , t) = D(∆hGh)(xj , t),

Gh(xj , 0) =
1

h3
δj0,

(2.8)

and has the Fourier representation

Gh(xj , t) =

∫∫∫

[−1
2h

, 1
2h ]

3
e−4Dt

P3
k=1 sin2(πhξk)/h2

e2πiξ·(xj) dξ. (2.9)

Here ξ = (ξ1, ξ2, ξ3), and [−1/2h, 1/2h]
3

denotes the cube centered at the origin with
sides of length 1/h. We will also need the Green’s function for the continuum free
space diffusion equation, G(x, t), given by

G(x, t) =
1

(4πDt)
3/2

e−|x|2/(4Dt). (2.10)

Note we prove in Theorem A.1 that away from the origin, Gh converges to G uniformly
in time as h → 0.

Using Duhammel’s Principle, the solution to equation (2.6) may be written as

ph(xj , t) = Gh(xj − xj0
, t) − k

∫ t

0

Gh(xj , t − s)ph(0, s) ds. (2.11)

Letting xj = 0, we find that the solution at the origin satisfies the Volterra integral
equation of the second kind

ph(0, t) = Gh(xj0
, t) − k

∫ t

0

Gh(0, t − s)ph(0, s) ds, (2.12)

where we have used that the Gh(xj − xj0
, t) = Gh(xj0

− xj , t). Note that since
ph(0, t) = P (0, t)/h3, and P (x, t) is the probability distribution for a discrete space
continuous-time Markov process, we have that ph(0, t) ≥ 0.

We will also find it useful to consider the binding time distribution for the par-
ticles, Fh(t). Denote by T the random variable for the binding time of the particles;
then Fh(t) = Prob{T < t} and is given by

Fh(t) ≡ k

∫ t

0

ph(0, s) ds,

=
k

h3

∫ t

0

P (0, s) ds.

(2.13)

Note Fh(t) may be defective, i.e. Fh(∞) < 1, since in three dimensions the particle
separation is not guaranteed to ever take the value 0 as t → ∞. Considering the
coupled system for both ph and Fh, total probability is now conserved so that

∑

j∈Z3

(

ph(xj , t)h
3
)

+ Fh(t) = 1, ∀ t ≥ 0.
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For the remainder of this section we assume that x = xj = hj for some j ∈ Z
3,

and remains fixed as h → 0. (Likewise we assume that x0 = xj0
= hj0, for some

j0 ∈ Z
3 and is also held fixed as h → 0). With the preceding definitions, we now

show that reaction effects are lost as h → 0.
Theorem 2.1. Assume the initial particle separation, x0 6= 0, and is held fixed

as h → 0. For all t ≥ 0, the probability the particles have reacted by time t approaches
zero as h → 0, i.e.

lim
h→0

Fh(t) = 0. (2.14)

In addition, assume x 6= 0, and is held fixed as h → 0. Then for all t > 0, the solution
to equation (2.11) converges to the solution to the free space diffusion equation, i.e.

lim
h→0

ph(x, t) = G (x − x0, t) , ∀ t > 0. (2.15)

Theorem 2.1 implies that, in the continuum limit, the particles never react and
simply diffuse relative to each other. Figure 2.1 shows solution curves as h is varied
of ph(0, t) in Figure 2.1a, and ph(x, t) in Figure 2.1b. A stronger result than the
theorem is illustrated in Figure 2.2, where the numerical convergence of ph(0, t) to
zero and ph(x, t) to G(x − x0, t) are illustrated as functions of h. We were unable
to calculate ph(0, t) for sufficiently small mesh widths, h, to resolve the asymptotic
convergence rate of ph(0, t) to zero, but the figure shows the decrease in ph(0, t) as h
is decreased. An apparent second order convergence rate of ph(x, t) to G(x−x0, t) is
also seen, though this convergence rate may not be the correct asymptotic rate (since
to calculate ph(x, t) we make use of ph(0, t) through equation (2.11)). Details of the
numerical methods used to find ph(0, t) and ph(x, t) may be found in Appendix B.

To prove Theorem 2.1 we need the following two lemmas and Theorem A.1, which
proves that away from the origin Gh converges to G uniformly in t as h → 0.

Lemma 2.2. Assume x 6= 0, and x is fixed as h varies. Then for all ǫ > 0 there
exists an h0 > 0 such that for all h ≤ h0,

Gh(x, t) ≤ G(x, t) + ǫ.

Moreover, for h ≤ h0

sup
t≥0

Gh(x, t) ≤ C

where C is a constant depending only on x (independent of h and t).
Proof. In Theorem A.1 we prove that Gh(x, t) → G(x, t) uniformly in t. Hence

for all ǫ > 0, we can find an h0 > 0 such that for all h ≤ h0,

Gh(x, t) ≤ G(x, t) + ǫ.

G(x, t) is maximized for t = |x|2 /6D, so that

sup
t≥0

Gh(x, t) ≤
(

3

2π

)
3
2 1

|x|3
e−3/2 + ǫ.
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Fig. 2.1: 2.1a shows ph(0, t) vs. t on [0, .04]. Each curve on the figure corresponds
to ph(0, t) for a different value of h. The topmost curve corresponds to h = 2−5, the
next largest to 2−6, and so on through the bottom curve, corresponding to h = 2−11.
Figure 2.1b shows ph(x, t) vs t on [0, .04] at x = (0, 1/8, 1/8). Again curves are
plotted for h = 2−5, 2−6, . . . , 2−11, however they are visually indistinguishable. In
both figures x0 = (1/8, 1/8, 1/8), D = 1, and k = 4πDa, where a = .001.

We will subsequently make use of the Laplace transform, defined for a function
f(t) as

f̃(s) =

∫ ∞

0

f(t)e−st dt.

The second lemma we need is
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h
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Fig. 2.2: Convergence of ph(0, t) to zero and ph(x, t) to G(x − x0, t) as h → 0.
e0(h) = maxt∈[0,.04] ph(0, t), and eG(h) = maxt∈[0,.04] |ph(x, t) − G(x − x0, t)|. Note
that the slope of the best fit line to eG(h) = 2.0035. Values of x, x0, D, and k are
the same as in Figure 2.1.

Lemma 2.3. Denote by G̃h(x, s) the Laplace transform of Gh(x, t) with respect
to t. We again assume that x 6= 0, and x is fixed as h → 0. Then

lim
h→0

G̃h(x, s) = G̃(x, s), ∀s > 0, (2.16)

and

lim
h→0

G̃h(0, s) = ∞, ∀s > 0. (2.17)

Proof. By Theorem A.1, for each fixed s > 0, Gh(x, t)e−st converges uniformly
in t to G(x, t)e−st as h → 0. We may thus conclude that

lim
h→0

∫ ∞

0

Gh(x, t)e−st dt =

∫ ∞

0

G(x, t)e−st dt.

By definition, this implies that G̃h(x, s) → G̃(x, s) for all s > 0, as h → 0.
For the second limit, we have that for all t > 0, Gh(0, t) → G(0, t) = 1/(4πDt)3/2

as h → 0 by Theorem A.1. Therefore, by Fatou’s Lemma,

lim inf
h→0

∫ ∞

0

Gh(0, t)e−st dt ≥
∫ ∞

0

lim inf
h→0

Gh(0, t)e−st dt,

=

∫ ∞

0

1

(4πDt)3/2
e−st dt,

= ∞.
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With these lemmas, we may now prove the main theorem of this section.
Proof. [Proof of Theorem 2.1] Taking the Laplace Transform of equation (2.12)

we find

p̃h(0, s) =
G̃h(x0, s)

1 + kG̃h(0, s)
.

Lemma 2.3 then implies

lim
h→0

p̃h(0, s) = 0, ∀s > 0.

By (2.13), k ph(0, t) is the binding time density corresponding to the binding time dis-
tribution, Fh(t). Since kp̃h(0, s) → 0 as h → 0, the continuity theorem [18, Theorem
2a Section XIII.2] implies that

lim
h→0

Fh(t) = 0.

Equation (2.11) implies

|ph(x, t) − Gh(x − x0, t)| ≤ k

∫ t

0

Gh(x, t − s)ph(0, s) ds.

For all h sufficiently small, Lemma 2.2 implies

|ph(x, t) − Gh(x − x0, t)| ≤ k

(

sup
t

G(x, t) + ǫ

)
∫ t

0

ph(0, s) ds,

=

(

sup
t

G(x, t) + ǫ

)

Fh(t).

Fh(t) goes to zero and Gh(x − x0, t) → G(x − x0, t) as h → 0 by Theorem A.1, so
that we may conclude ph(x, t) → G(x − x0, t) as h → 0.

2.2. RDME as an Asymptotic Approximation of Diffusion to a Small

Target. While reaction effects are lost as h → 0, we will now show that for h small,
but not “too” small, the simplified model given by equation (2.5) provides an ap-
proximation to a SCDLR model. We consider a system consisting of two diffusing
molecules, one of species A and one of species B. The reaction A + B → ∅ is
modeled by having the two molecules annihilate instantly when they reach a certain
physical separation length, called the reaction-radius, and denoted by a. We define
f (1,1)(qA, qB, t) to represent the probability density for both molecules to exist, the
A molecule to be at qA, and the B molecule to be at qB at time t. The model is then

∂f (1,1)

∂t
(qA, qB, t) =

(

[

DA∆A + DB∆B
]

f (1,1)
)

(qA, qB, t),
∣

∣qA − qB
∣

∣ > a,

f (1,1)(qA, qB, t) = 0,
∣

∣qA − qB
∣

∣ = a,

lim
|qA|→∞

f (1,1)(qA, qB, t) = 0,

lim
|qB|→∞

f (1,1)(qA, qB, t) = 0,

f (1,1)(qA, qB, 0) = δ(qA − qA
0 )δ(qB − qB

0 ), qA
0 6= qB

0 .
(2.18)
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For simplicity, we again convert to the system for the separation vector, x = qA−qB,
between the A and B particles. Let p(x, t) represent the probability density that the
particles have the separation vector x at time t. p(x, t) then satisfies

∂p

∂t
(x, t) = D∆p(x, t), |x| > a,

p(x, t) = 0, |x| = a,

lim
|x|→∞

p(x, t) = 0,

p(x, 0) = δ(x − x0), x0 6= 0,

(2.19)

where D = DA + DB, and x0 = qA
0 − qB

0 . We subsequently refer to equation (2.19)
as the SCDLR model.

Recall the definition of ph(xj , t), the probability density for the particle separation
from the master equation to be xj at time t, equation (2.6). (Where xj = hj, j ∈ Z

3).
We expect that ph(xj , t) ≈ p(xj , t) for h small, but not “too small”.

Our main assumption is that h ≫ a, motivated by the simplification of the
heuristic physical assumption, equation (1.6), in the case of one particle of chemical
species A and one particle of chemical species B,

h ≫ k

D
.

We relate the reaction-radius, a, to k/D through the definition

a =
k

4πD
.

This definition agrees with the well-known form of the bimolecular reaction rate con-
stant for a strongly diffusion limited reaction (see for example [29] for a review of the
relevant theory and [43] for the original work). Our key assumption is that k/D is a
small parameter, relative to spatial scales of interest, that determines the size of the
reaction radius in equation (2.19).

Replacing k with 4πDa, equation (2.6) becomes

dph

dt
(xj , t) = D(∆hph)(xj , t) −

4πDa

h3
δj0 ph(0, t),

ph(xj , 0) =
1

h3
δjj0

,

(2.20)

where again, j0 = i0 − i′0. It is this equation we compare to the SCDLR model,
equation (2.19).

As we showed in Section 2.1, the solutions to (2.20) converge to the solutions
of the free-space diffusion equation as h → 0. To investigate the regime where h is
small, but h ≫ a, we introduce asymptotic expansions of equations (2.19) and (2.20)
for a small. Our motivation in comparing the asymptotic expansions of the exact
solution to (2.19) and the reaction-diffusion master equation (2.20) is in part due to
the asymptotic nature of the solution to the formal continuum limit of (2.20). As
mentioned in Subsection 2.1, we might expect the solution of the discrete model to
approach the solution to

∂p

∂t
(x, t) = D∆p(x, t) − 4πDaδ(x)p(0, t), x ∈ R

3,

p(x, 0) = δ(x − x0), x0 6= 0,
(2.21)
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as h → 0. It is true in the distributional sense that the reaction operator

−4πDa
δj0

h3
→ −4πDaδ(x),

as h → 0, however, as we saw in Section 2.1 in the continuum limit all reaction
effects are lost from the discrete equation (2.20). As described in the introduction,
the reaction term in equation (2.21) may be rigorously treated by defining the entire
operator in (2.21) as a member of a one-parameter family of self-adjoint extensions
to R

3 of the Laplacian on R
3 \ 0, see [3, 4, 5]. We denote this family of extensions

by the operator ∆ + αδ(x), where α denotes the arbitrary parameter. The solution
to (2.21) with the rigorously defined operator D∆−4πDaδ(x) [5, Introduction] is the
same as the solution to the following pseudo-potential model [19, 24]

∂ρ

∂t
(x, t) = D∆ρ(x, t) − 4πDaδ(x)

∂

∂r
(rρ(x, t)) , x ∈ R

3,

ρ(x, 0) = δ(x − x0), x0 6= 0,
(2.22)

where r = |x|. These delta function and pseudo-potential operators were introduced
in quantum mechanics to give local potentials whose scattering approximates that of a
hard sphere of radius a. The solution to (2.22) is an asymptotic approximation in a of
the solution to the SCDLR model (2.19), accurate through terms of order a2 (see for
example [27] and compare with the results of Subsection 2.2.2). This suggests that
the reaction-diffusion master equation (2.20) provides an approximation to (2.21)
and (2.22), and therefore to the SCDLR model (2.19), even though, as shown in
Subsection 2.1, it converges to the diffusion equation (i.e. the α = 0 case), as the
mesh spacing approaches zero.

In Section 2.2.1 we derive, through second order, the asymptotic expansion of
the discrete reaction diffusion master equation model (2.20), while in Section 2.2.2 we
calculate the corresponding expansion of the SCDLR model (2.19). The error between
terms of the same order in each of the two expansions is examined in Section 2.2.3. In
addition, we also examine the relative error between the expansions, truncated after
the second order terms, of the solutions to (2.19) and (2.20).

2.2.1. Perturbation Theory for RDME. In order to examine the interme-
diate situation that h is small, but h ≫ a, we now look at the asymptotics of the
solution to (2.20) for a small. We begin by calculating the perturbation expansion of
ph(x, t) for a small. Throughout this section we assume that x = xj = hj for some
j ∈ Z

3, and x0 = xj0
= hj0, for some j0 ∈ Z

3. We also assume that x 6= 0 and
x0 6= 0. Using Duhammel’s Principle, the solution to equation (2.20) satisfies

ph(x, t) = Gh(x − x0, t) − 4πDa

∫ t

0

Gh(x, t − s)ph(0, s) ds. (2.23)

We find an asymptotic expansion of ph in a of the form

ph(x, t) = p
(0)
h (x, t) + a p

(1)
h (x, t) + a2p

(2)
h (x, t) + . . . ,

using a Neumann or Born expansion. This expansion is easily obtained by repeatedly
replacing ph(0, s) in equation (2.23) with the right hand side of equation (2.23) eval-
uated at x = 0. Note that this technique leaves an explicit remainder with which we
could perhaps estimate the error between the asymptotic expansion and ph(x, t). For
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our purposes it suffices to just calculate the first three terms of the expansion. We
find

ph(x, t) = Gh(x − x0, t) − 4πDa

∫ t

0

Gh(x, t − s)Gh(x0, s) ds

+ (4πDa)
2
∫ t

0

Gh(x, t − s)

∫ s

0

Gh(0, s − s′)ph(0, s′) ds′ ds,

= Gh(x − x0, t) − 4πDa

∫ t

0

Gh(x, t − s)Gh(x0, s) ds

+ (4πDa)
2
∫ t

0

Gh(x, t − s)

∫ s

0

Gh(0, s − s′)Gh(x0, s
′) ds′ ds

+ a3Ra(x, t),

where a3Ra(x, t) denotes the remainder when the expansion is stopped at second
order. The expansion of (2.20) is then

Theorem 2.4.

p
(0)
h (x, t) = Gh(x − x0, t), (2.24)

p
(1)
h (x, t) = −4πD

∫ t

0

Gh(x, t − s)Gh(x0, s) ds, (2.25)

p
(2)
h (x, t) = (4πD)

2
∫ t

0

Gh(x, t − s)

∫ s

0

Gh(0, s − s′)Gh(x0, s
′) ds′ ds. (2.26)

The formal continuum limit of (2.25) is

−4πD

∫ t

0

G(x, t − s)G(x0, s) ds. (2.27)

Denote this expression by u(t). To find an explicit functional form of u(t) we make
use of the Laplace transform. Let f̃(s) denote the Laplace transform of a function
f(t). Taking the transform of equation (2.27) in t, we find

ũ(s) =
−1

4πD |x| |x0|
e−(|x|+|x0|)

√
s/D,

= −|x| + |x0|
|x| |x0|

G̃
(

(|x| + |x0|)x̂, s
)

,

where x̂ = x/ |x| is a unit vector in the direction x. Note that G(|x| x̂, t) is a radially
symmetric function in x, and therefore independent of x̂. Taking the inverse Laplace
transform of ũ(s) we find

−4πD

∫ t

0

G(x, t − s)G(x0, s) ds = −|x| + |x0|
|x| |x0|

G
(

(|x| + |x0|)x̂, t
)

. (2.28)

2.2.2. Perturbation Theory for SCDLR Model. There are a number of
different techniques that give the asymptotic expansion of equation (2.19) as a → 0.
We give the exact solution of (2.19) in Theorem 2.5 below, and show that it can
be directly expanded in a in Theorem 2.6. Alternatively, the first three terms of the
expansion can be derived through the use of the pseudo-potential approximation (2.22)
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to the Dirichlet boundary condition in (2.19). The solution to the new diffusion
equation with pseudo-potential is then itself an asymptotic approximation to the
solution of (2.19), accurate through second order in a. This can be seen by comparing
the expansion of the exact solution in Theorem 2.6 to the expansion of the pseudo-
potential solution, see [27].

To derive the exact solution to (2.19), we find it useful to work in spherical
coordinates, and make the change of variables x → (r, θ, φ), r ∈ [a,∞), θ ∈ [0, π),
and φ ∈ [0, 2π). Similarly, we will let p(r, θ, φ, t) = p(x, t), and x0 → (r0, θ0, φ0).

The exact solution to (2.19) can be found using the Weber Transform [23]. Denote
by jl(r) and ηl(r) the l’th spherical Bessel functions of the first and second kind
respectively, and let

ql(s, u) = jl(s)ηl(u) − ηl(s)jl(u).

The forward Weber transform of a function f(r), on the interval [a,∞), is defined to
be

F (λ, a) =

√

2

π

∫ ∞

a

ql(λr, λa)f(r)r2 dr.

The inverse Weber transform of F (λ, a) is then given by

f(r) =

√

2

π

∫ ∞

0

ql(λr, λa)

j2
l (λa) + η2

l (λa)
F (λ, a)λ2 dλ.

Using the Weber transform and an expansion in Legendre polynomials, Pl(cos(γ)),
with cos(γ) = cos(θ) cos(θ0) + sin(θ) sin(θ0) cos(φ − φ0), we find

Theorem 2.5. The solution to the freespace diffusion equation with a zero Dirich-
let boundary condition on a sphere of radius a, equation (2.19), is given by

p(r, θ, φ, t) =
∞
∑

l=0

2l + 1

2π2

[
∫ ∞

0

ql(λr, λa)

j2
l (λa) + η2

l (λa)
ql(λr0, λa)e−λ2Dtλ2 dλ

]

Pl(cos(γ).

(2.29)

We again let x̂ = x/ |x|, so that x̂ is a unit vector in the same direction as x.
The first three terms in the expansion of p(x, t) are then given by

Theorem 2.6. The solution (2.29) to the problem of diffusing to an absorbing
sphere (2.19) has the asymptotic expansion for small a,

p(x, t) ∼ p(0)(x, t) + ap(1)(x, t) + a2p(2)(x, t) + . . . , (2.30)

where

p(0)(x, t) = G(x − x0, t), (2.31)

p(1)(x, t) = −|x| + |x0|
|x| |x0|

G
(

(|x| + |x0|)x̂, t
)

, (2.32)

p(2)(x, t) =
2Dt − (|x| + |x0|)2

2Dt |x| |x0|
G
(

(|x| + |x0|)x̂, t
)

. (2.33)

Proof. Notice in (2.29) that all a dependence is in the bracketed term. Denoting
this term by Rl(r, r0, t), we can calculate an asymptotic expansion of Rl for small
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a. This expansion is a straightforward application of the well-known expansions of
jl(λa) [1, eq. 10.1.2] and ηl(λa) [1, eq. 10.1.3] for small a. We find, through second
order in a, that

Rl(r, r0, t) ∼ R
(0)
l (r, r0, t) + aR

(1)
l (r, r0, t) + a2R

(2)
l (r, r0, t) + . . . ,

where

R
(0)
l (r, r0, t) =

∫ ∞

0

jl(λr)jl(λr0)e
−λ2Dtλ2 dλ,

R
(1)
l (r, r0, t) =

{

0, l > 0,
∫∞

0
(j0(λr)η0(λr0) + η0(λr)j0(λr0)) e−λ2Dtλ3 dλ, l = 0,

R
(2)
l (r, r0, t) =

{

0, l > 0,
∫∞

0
(η0(λr)η0(λr0) − j0(λr)j0(λr0)) e−λ2Dtλ4 dλ, l = 0.

Using this expansion we may derive an expansion for p(r, θ, φ, t). We will need several
identities involving the spherical Bessel functions. Foremost is the following,

G(x, t) =

∫

R3

e−4π2|ξ|2Dte2πiξ·x dξ,

=
1

2π2

∫ ∞

0

j0(λ |x|)e−λ2Dtλ2 dλ. (2.34)

Here the first integral is the well-known Fourier representation of G(x, t). Switching ξ

to spherical coordinates in the Fourier integral and performing the angular integrations
gives (2.34).

Recall that j0(r) = sin(r)/r, η0(r) = − cos(r)/r, and P0(cos(γ)) = 1. Sub-

stituting these expressions into R
(1)
0 (r, r0, t) and R

(2)
0 (r, r0, t), evaluating the subse-

quent integrals, and using (2.34), we obtain (2.32) and (2.33). Using [1, eq. 10.1.45]
and (2.34), we obtain (2.31).

2.2.3. Error Between Asymptotic Expansions of the SCDLR Model

and RDME for Small h. We now examine the error between corresponding terms
of the asymptotic expansions from Sections 2.2.1 and 2.2.2. Our main results are

Theorem 2.7. Assume x = hj 6= 0, x0 = hj0 6= 0, and both are fixed as h → 0.
Then for all t > 0 and h sufficiently small,

lim
h→0

p
(0)
h (x, t) = p(0)(x, t), with

∣

∣

∣
p
(0)
h (x, t) − p(0)(x, t)

∣

∣

∣
= O

(

h2

t5/2

)

, (2.35)

lim
h→0

p
(1)
h (x, t) = p(1)(x, t), with

∣

∣

∣
p
(1)
h (x, t) − p(1)(x, t)

∣

∣

∣
= O

(

t h2−ǫ
)

, (2.36)

where ǫ may be chosen arbitrarily small. For all fixed t > 0,

p
(2)
h (x, t) ≥ C

h
, for h sufficiently small, (2.37)

where C is strictly positive and constant in h, but may depend on t or D.
This theorem demonstrates that the reaction-diffusion master equation is a con-

vergent asymptotic approximation to the SCDLR model only through first order in the
perturbation expansion. For h sufficiently small, the second order term will diverge
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105

Fig. 2.3: Absolute error in asymptotic expansion terms. e(i)(h) =
∣

∣

∣
p
(i)
h (x, t) − p(i)(x, t)

∣

∣

∣
, where t = .5, x = x0 = (1/8, 1/8, 1/8), and D = 1. Num-

bers in the inset within the figure denote the slope of the best fit line through each
curve.

like 1/h as h → 0. The master equation model will then give a good approximation
to the SCDLR model only when h is small enough that the first two terms in the
asymptotic expansion (2.30) are well-approximated, while a is sufficiently small and
h sufficiently large that the divergence of higher order terms is small.

Note that the divergence of the second order term follows from the behavior as
h → 0 of the time integral of the continuous-time discrete-space Green’s function
evaluated at the origin. The proof of the theorem demonstrates that

∫ t

0

Gh(0, s) ds =
fh(t)

h
,

where, for t fixed, fh(t) is bounded from below as h → 0. The n’th term in the
expansion of ph(x, t) will involve n − 2 integrals of Gh(0, t), so that we expect it to
diverge like 1/hn−2. For example, the n = 4 term is given by

p
(3)
h (x, t) =

∫ t

0

Gh(x, t − s)

∫ s

0

Gh(0, s − s′)

∫ s′

0

Gh(0, s′, s′′)Gh(x0, s
′′) ds′′ ds′ ds,

which we would expect to diverge like 1/h2. Since the coefficient of the n’th term in
the expansion is an−1, we expect the n’th term to behave like an−1/hn−2. For n large
this suggests that the heuristic assumption that h ≫ k/4πD = a from Section 1.1.2
is a reasonable rule of thumb for choosing the mesh size.

Figure 2.3 shows the pointwise error in each of the first three terms of the asymp-
totic expansion as a function of h, for fixed t, x, and x0. Note that for each term the
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Fig. 2.4: Percent relative error in perturbation expansions through 2’nd order. Each
curve plots EREL(x, t, h, a) vs. h for different values of the reaction radius, a. For all
curves t = .5, x = x0 = (1/8, 1/8, 1/8), and D = 1.
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Fig. 2.5: Percent relative error in perturbation expansions through 2’nd order. Each
curve plots EREL(x, t, h, a) vs. h for different values of the reaction radius, a. For all
curves t = .038147, x = x0 = (1/8, 1/8, 1/8), and D = 1.
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observed numerical convergence (divergence for the second order term) rate agrees
with that in Theorem 2.7. Let

Rh(x, t, h, a) = p
(0)
h (x, t) + ap

(1)
h (x, t) + a2p

(2)
h (x, t),

and

R(x, t, h, a) = p(0)(x, t) + ap(1)(x, t) + a2p(2)(x, t).

Figures 2.4 and 2.5 plot the percent relative error between Rh and R,

EREL(x, t, h, a) = 100
Rh(x, t, h, a) − R(x, t, h, a)

R(x, t, h, a)
, (2.38)

which also represents the percent relative error between the perturbation expansions
of ph(x, t) and p(x, t), the solution to the SCDLR model, truncated after the third
term. Notice that for larger values of h the relative error decreases as h decreases,
but that as h becomes smaller the 1/h divergence of the second order term begins to
dominate and cause EREL to diverge. Both Figures 2.3 and 2.4 are shown for relatively
large t values. Figure 2.5 shows the behavior of EREL at a shorter time, when both
ph(x, t) and p(x, t) have relaxed less. The details of the numerical methods used in
calculating the terms of the asymptotic expansions are explained in Appendix B.

For a ≤ 10−3 the overall relative error can be reduced below one percent. In phys-
ical units, appropriate for considering chemical systems at the scale of a eukaryotic
cell, D would have units of square micrometers per second, t units of seconds, and
x, x0, and a units of micrometers. This suggests that for physical reaction-radii of
one nanometer or less the reaction-diffusion master equation may be a good approx-
imation to a diffusion limited reaction. While physical reaction-radii have not been
experientially determined for most biological reactions, it has been found experimen-
tally that the LexA DNA binding protein has a physical binding potential of width
∼ 5 Å [30]. We caution, however, that these results are only valid for the truncated
perturbation expansions, and do not necessarily hold for the error between the exact
solutions ph(x, t) and p(x, t). Moreover, for realistic biophysical systems, one would
frequently be interested in volumes where more than one of each substrate is present;
a case we have not examined herein.

Proof. [Proof of Theorem 2.7] The validity of equation (2.35) has already been
established in Theorem A.1. Lemma 2.2 and Corollary A.2 imply that for all h and
ǫ sufficiently small, and all t ≥ 0,

sup
t∈[0,∞)

|Gh(x, t − s)Gh(x0, s) − G(x, t − s)G(x0, s)| ≤ Ch2−ǫ,

with C independent of t, s, and h. Recalling (2.28), (2.32), and (2.25) we find

∣

∣

∣
p
(1)
h (x, t) − p(1)(x, t)

∣

∣

∣
≤ C th2−ǫ,

which proves (2.36). We now consider the divergence of p
(2)
h (x, t). The non-negativity

of Gh(x, t) for all x and t ≥ 0 implies that for all t > 3δ > 0,

p
(2)
h (x, t) ≥ (4πD)2

∫ t−δ

2δ

Gh(x, t − s)

∫ s

s−δ

Gh(0, s − s′)Gh(x0, s
′) ds′ ds.
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We subsequently denote by C a generic positive constant independent of h, but depen-
dent on t. Note that G(x, t) is positive for all x and all t > 0. Uniform convergence
in time of Gh(x, t) to G(x, t) (Theorem A.1) implies that ǫ and h may be taken
sufficiently small so that

inf
s∈(2δ,t−δ)

Gh(x, t − s) ≥ inf
s∈(2δ,t−δ)

G(x, t − s) − ǫ

≥ C > 0,

and similarly

inf
s′∈(δ,t−δ)

Gh(x0, s
′) ≥ C > 0.

We then find that for all h sufficiently small,

p
(2)
h (x, t) ≥ C

∫ t−δ

2δ

∫ s

s−δ

Gh(0, s − s′) ds′ ds,

≥ C

∫ δ

0

Gh(0, s) ds. (2.39)

Gh(0, s) has the Fourier representation

Gh(0, s) =
1

h3

∫∫∫

[−1
2 ... 1

2 ]
3
e−4Ds

P3
k=1 sin2(πyk)/h2

dy.

As the integrand in the above integral is non-negative, we may apply Fubini’s Theorem
to switch the order of integration in (2.39). We find

p
(2)
h (x, t) ≥ C

h

∫∫∫

[−1
2 ... 1

2 ]
3

1
∑3

k=1 sin2(πyk)

(

1 − e−4Dδ
P3

k=1 sin2(πyk)/h2
)

dy.

Switching to spherical coordinates in the integral we have that

p
(2)
h (x, t) ≥ C

h

∫ 1/2

0

(

1 − e−16Dδr2/h2
)

dr,

=
C

h

(

1

2
−
√

π

t

h

8
erf(

2
√

t

h
)

)

. (2.40)

Here we have used that πy ≥ sin(πy) ≥ 2y on [0, 1/2]. The last term in parenthesis
in equation (2.40) approaches zero as h → 0 and therefore

p
(2)
h (x, t) ≥ C

h
,

for h sufficiently small, with C strictly positive.

3. Conclusions. We have shown that as the mesh spacing approaches zero in
the reaction-diffusion master equation model, particles undergoing a bimolecular re-
action never react, and simply diffuse. In contrast, the relative errors of the truncated
asymptotic expansions shown in Figures 2.4 and 2.5 suggest that for physically rea-
sonable parameters values, the mesh spacing in the reaction-diffusion master equation
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may be chosen to give a good approximation of a spatially-continuous diffusion lim-
ited reaction model. Notice in Figure 2.5 that the mesh spacing for the minimal
relative error is generally more than a factor of ten larger than the reaction-radius.
This suggests that choosing the mesh spacing to satisfy the physically derived lower
bound, equation (1.6), may be a good rule of thumb. Note, however, that good
agreement between the truncated asymptotic expansions does not necessarily guar-
antee good agreement of the actual solutions of the two models. We hope to report
on the error between the solutions to the reaction-diffusion master equation and the
SCDLR model, for biologically relevant parameter values, in future work. Towards
that end, we would like to examine this error in a more biologically relevant domain.
(The restriction to R

3 in the current work was made to simplify the mathematical
analysis.)

The results of Section 2.2.3 suggest a means by which to improve the accuracy
of the reaction-diffusion master equation as an approximation to a diffusion limited
reaction; modifying/renormalizing the bimolecular reaction rate, k/h3, so that the
second order term in the asymptotic expansion of the solution to the reaction-diffusion
master equation converges to the corresponding term in the asymptotic expansion of
the SCDLR model. Note, this may require changing the discrete bimolecular reaction
operator to couple neighboring voxels, and would presumably correspond to modifying
it to converge to a pseudo-potential reaction operator like that in equation (2.22).

Finally, we would like to point out that it should be an easy modification to
extend the results of this work to R

d, for all d ≥ 2. In particular, it appears that
the second order term in the asymptotic expansion of the reaction-diffusion master
equation diverges like log(h) in two-dimensions, and 1/hd−2 in d-dimensions with
d > 2. In one-dimension the solution of the continuum model, equation (2.21), is
well-defined, and we expect the solution to the reaction-diffusion master equation to
converge to it.
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Appendix A. Convergence of the Green’s Function for the Discrete-

Space Continuous-Time Diffusion Equation. We prove the following conver-
gence theorem
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Theorem A.1. Let xj = hj remain fixed as h → 0. Then for all xj , all t ≥ δ > 0
with δ fixed, and h > 0 sufficiently small,

|Gh(xj , t) − G(xj , t)| ≤ C
h2

δ5/2
. (A.1)

Here C is independent of t, h, and xj .
In addition, for xj fixed as h → 0 and xj 6= 0, Gh(xj , t) → G(xj , t) uniformly

in all t ≥ 0 as h → 0.
Proof. We begin by proving equation (A.1). Gh has the representation

Gh(xj , t) =

∫∫∫

[−1
2h

... 1
2h ]

3
e−4Dt

P3
k=1

sin2(πhξk)

h2 e2πi(xj ,ξ) dξ.

Similarly,

G(xj , t) =

∫∫∫

R3

e−4Dtπ2|ξ|2e2πi(xj ,ξ) dξ.

We find

|Gh(xj , t) − G(xj , t)| ≤
∫∫∫

[−1
2h

... 1
2h ]

3

∣

∣

∣

∣

e−4Dt
P3

k=1

sin2(πhξk)

h2 − e−4Dtπ2|ξ|2
∣

∣

∣

∣

dξ

+

∫∫∫

R3−[−1
2h

... 1
2h ]

3
e−4Dtπ2|ξ|2 dξ.

(A.2)
Denote these last two integrals by I and II respectively. The second integral may
be bounded by expanding the domain of integration to the exterior of the sphere of
radius 1/2h. Switching to polar coordinates this gives

II ≤ 4π

∫ ∞

1
2h

r2e−4Dtπ2r2

dr,

=
1

4πDth
e−π2Dt/h2

+
1

8(πDt)3/2
erfc

(

π
√

Dt

h

)

.

Using that [1, eq. 7.1.13]

erfc(r) ≤ e−r2

, r ≥ 0, (A.3)

we find

II ≤ 1

h(4πDt)3/2

(

2
√

πDt + h
)

e−π2Dt/h2

, ∀t > 0. (A.4)

For h sufficiently small this error bound will satisfy (A.1).
To bound I, we begin by Taylor expanding the first term of the integrand in I

about the point πhξ. Note that πhξ ∈ [−π/2, π/2]
3

even as h changes. Let, y = πhξ

and define

f(y) = 4Dt
3
∑

k=1

sin2(yk)π2ξ2
k

y2
k

.
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e−f(y) has the two-term Taylor expansion with remainder

e−f(y) = e−4Dtπ2|ξ|2 +
1

2

(

y,D2e−f(ȳ)y
)

, ȳ ∈
[

−1

2
,
1

2

]3

.

Here D2 denotes the matrix of second derivatives of f(y), and the first derivative
term disappears since the gradient of f(y) is zero at y = 0. The second derivative
term is given by

(

D2e−f(y)
)

i,j
= −

(

∂2f

∂yi∂yj
(y) − ∂f

∂yi
(y)

∂f

∂yj
(y)

)

e−f(y),

where

∂f

∂yi
(y) = −4Dtπ2ξ2

k

(

2 sin2(yi)

y3
i

− sin(2yi)

y2
i

)

,

and

∂2f

∂yi∂yj
(y) =

{

0, i 6= j,

4Dtπ2ξ2
i

(

2y2
i cos(2yi) − 4yi sin(2yi) + 6 sin2(yi)

)

/y4
i .

Since ȳi ≤ 1/2, we may uniformly bound in y the remainders for the one term Taylor
expansions of the derivatives of f(ȳ). We find

D2e−f(ȳ) ≤ e−f(ȳ)A(ξ, t),

where

Ai,j(ξ, t) =

{

O(t2ξ2
i ξ2

j ), i 6= j,

O(t2ξ4
i + tξ2

i ), i = j.

Letting ‖ · ‖2 denote the matrix norm induced by the Euclidean vector norm, this
estimate gives the bound

(

y,D2e−f(ȳ)y
)

≤ e−f(ȳ)‖A(ξ, t)‖2 |y|2 ,

≤ Ce−f(ȳ)‖A(ξ, t)‖F |ξ|2 h2, (A.5)

where ‖ · ‖F denotes the matrix Frobenius norm. Let Mn(ξ) be a three-dimensional
monomial of degree n, we have

‖A(ξ, t)‖F =
(

O(t4M8(ξ)) + O(t2M4(ξ))
)

1
2 ,

≤ O(t2 |ξ|4) + O(t |ξ|2), (A.6)

for specific monomials M8(ξ) and M4(ξ). (This follows since M2n(ξ) ≤ C |ξ|2n
for all

n). Moreover, since

sin2(x) ≥ 4

π2
x2, ∀x ∈

[

−π

2
,
π

2

]

,

we have that

e−f(ȳ) ≤ e−16Dt|ξ|2 . (A.7)
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Combining the two preceding estimates, (A.6) and (A.7), with equation (A.5) we find
(

y,D2e−f(ȳ)y
)

≤
(

O(t2 |ξ|6) + O(t |ξ|4)
)

e−16Dt|ξ|2h2.

This estimate implies that

I ≤ h2

∫∫∫

[−1
2h

... 1
2h ]

3

(

O(t2 |ξ|6) + O(t |ξ|4)
)

e−16Dt|ξ|2 dξ (A.8)

≤ h2

∫ ∞

0

(

O(t2r8) + O(t r6)
)

e−16Dtr2

dr,

= O

(

h2

t5/2

)

.

For t ≥ δ the desired bound in equation (A.1) follows.
We now prove the second assertion of the theorem, that for xj 6= 0 and fixed as

h → 0, Gh(xj , t) → G(xj , t) as h → 0 uniformly in all t ≥ 0. To prove the assertion,
we find it necessary to treat separately very short and all other times. Let ah = h−1−µ

with µ ∈ (0, 1), so that ahh2 → 0 and ahh → ∞ as h → 0. The condition ahh → ∞
as h → 0 will turn out to be necessary to prove uniform convergence for short times.
We wish to show that

lim
h→0

sup
t∈[0,∞)

|Gh(xj , t) − G(xj , t)| = 0.

This is equivalent to proving that for any ǫ > 0 and all h sufficiently small

sup
t∈[0,ahh2)

|Gh(xj , t) − G(xj , t)| < ǫ, (A.9)

and

sup
t∈[ahh2,∞)

|Gh(xj , t) − G(xj , t)| < ǫ. (A.10)

We begin by proving (A.10). Equation (A.2) bounds the error for fixed t by two
terms, I and II, with II satisfying equation (A.4). Let 0 < R < 1/(2h). I satisfies

I ≤
∫∫∫

|ξ|<R

∣

∣

∣

∣

e−4Dt
P3

k=1

sin2(πhξk)

h2 − e−4Dtπ2|ξ|2
∣

∣

∣

∣

dξ,

+

∫∫∫

[−1
2h

... 1
2h ]

3
−{|ξ|<R}

∣

∣

∣

∣

e−4Dt
P3

k=1

sin2(πhξk)

h2 − e−4Dtπ2|ξ|2
∣

∣

∣

∣

dξ.

We subsequently label the two terms on the right hand side by Ia and Ib respectively.
In what follows, C will denote an arbitrary constant, independent of h and t. The
argument giving equation (A.8) holds for Ia, and shows that

Ia ≤ Ch2

∫∫∫

|ξ|<R

(

t2 |ξ|6 + t |ξ|4
)

e−16Dt|ξ|2 dξ,

≤ Ch2R3

∫∫∫

|ξ|<R

(

t2 |ξ|3 + t |ξ|
)

e−16Dt|ξ|2 dξ,

= C
h2R3

t
, ∀t > 0. (A.11)
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Using (A.7), we have that

Ib ≤ C

∫ ∞

R

r2e−16Dtr2

dr,

=
C

t3/2

[

8R
√

te−16DtR2

+
√

π erfc
(

4R
√

Dt
)]

,

which by (A.3) implies

Ib ≤
C

t3/2

[

8R
√

t +
√

π
]

e−16DtR2

, ∀t > 0. (A.12)

To summarize, we have shown that

|Gh(xj , t) − G(xj , t)| ≤ Ia + Ib + II,

where

Ia ≤ C
h2R3

t
,

Ib ≤
C

t3/2

[

8R
√

t +
√

π
]

e−16DtR2

,

II ≤ 1

h(8πDt)3/2

(

2
√

πDt + h
)

e−π2Dt/h2

.

(A.13)

We now show this error can be made uniformly small in t for t ≥ ahh2. Substituting
this inequality into equation (A.13) we find

Ia ≤ C
R3

ah
,

Ib ≤
C

(ahh2)3/2

[

8R
√

ahh +
√

π
]

e−16Dahh2R2

,

II ≤ 1

(8πDahh2)3/2

(

2
√

πDah + 1
)

e−π2Dah .

(A.14)

Clearly II will be arbitrarily small for all h sufficiently small, so it remains to show
that R and ah can be chosen such that Ia and Ib approach zero as h → 0. This will
hold if

lim
h→0

R3

ah
= 0,

lim
h→0

ahh2R2 = ∞,
(A.15)

with 0 < R < 1/(2h), ahh → ∞ as h → 0, and ahh2 → 0 as h → 0. As mentioned
earlier, we let ah = h−1−µ with µ ∈ (0, 1). In addition, let R = h−α/2 with α ∈
(0, 1). Note that this choice of α allows 0 < R < 1/(2h) for h small as required.
Equation (A.15) then holds if

1 + µ − 3α > 0,

2α + µ − 1 > 0.
(A.16)

These equations have an infinite number of valid solutions which also satisfy the
other necessary conditions on R and ah. For example, α = 1/4 and µ = 3/4. We
have therefore shown that equation (A.10) holds.
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We now prove that equation (A.9) holds. We denote the first non-zero component
of xj by x. Note that Gh(xj , t) may be written in terms of the solution to the one-
dimensional continuous-time discrete-space diffusion equation, gh(xjk

, t), as

Gh(xj , t) =
3
∏

k=1

gh(xjk
, t).

Non-negativity of gh(xjk
, t) and the conservation relation

∞
∑

n=−∞

gh(nh, t)h = 1

imply

Gh(xj , t) ≤
1

h2
gh(x, t).

Without loss of generality, we now assume that x > 0. Then for any positive number,
λ,

1

h2
gh(x, t) ≤ 1

h2

∞
∑

n=−∞

eλn−λx/hgh(nh, t).

We define

M(λ, t) =
∞
∑

n=−∞

eλngh(nh, t).

Note that gh(nh, t)h, is the probability distribution for a continuous-time random
walk in R

1 with nearest-neighbor transition rate D/h2 and lattice spacing h. Like-
wise, M(λ, t)h is the moment generating function associated with gh(nh, t)h. Differ-
entiating M(λ, t) and using that gh(nh, t) satisfies the continuous-time discrete-space
diffusion equation, we find

dM

dt
(λ, t) =

2D

h2
(cosh(λ) − 1) M(λ, t).

As gh(nh, 0) = δn0/h, we have M(λ, 0) = 1/h. This implies

M(λ, t) =
1

h
e(cosh(λ)−1)(2Dt/h2),

≤ 1

h
e(cosh(λ)−1)(2Dah),

so that

1

h2
gh(x, t) ≤ 1

h3
e−λx/he(cosh(λ)−1)(2Dah).

Since λ is arbitrary, we now assume that λ is small. We may then expand the cosh(λ)
term so that

1

h2
gh(x, t) ≤ 1

h3
e−λx/heDahλ2

eO(λ4ah).
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Choosing λ = x/2Dahh, which will be small for h sufficiently small, we find

1

h2
gh(x, t) ≤ 1

h3
e−x2/2Dahh2

eO(1/a3
h
h4).

Since ah = h−1−µ, µ ∈ (0, 1), we see that the last exponential will approach 1 as h → 0
if µ > 1/3. Recall that µ must also satisfy the two inequalities given in (A.16). The
choice of µ = 3/4 given earlier satisfies all required inequalities. We have therefore
shown that for all h sufficiently small,

Gh(xj , t) ≤
C

h3
e−x2/4Dahh2

, ∀t ∈ [0, ahh2),

which proves (A.9) and completes the proof of uniform convergence in time.
Corollary A.2. Let xj = jh be fixed as h → 0, and xj 6= 0. Then for all h

sufficiently small, and any ǫ > 0 sufficiently small,

sup
t∈[0,∞)

|Gh(xj , t) − G(xj , t)| ≤ Ch2−ǫ, (A.17)

where C is independent of t and h.
Proof. We note that the choices µ = 1 − ǫ/4 and α = ǫ/4 satisfy all required

inequalities in Theorem A.1. Moreover, all the necessary error terms will converge
to zero exponentially as h → 0 with the exception of the error bound on Ia given in
equation (A.14). With the chosen µ and α this term satisfies

Ia ≤ Ch2−ǫ,

proving the corollary.

Appendix B. Numerical Methods for Evaluating ph(x, t) and p
(i)
h (x, t).

All reported simulations were performed using MATLAB. The numerical calculations
in both Subsections 2.1 and 2.2.3 rely on evaluation of Gh(x, t), the Green’s function
for the discrete-space continuous-time diffusion equation, given by equation (2.8). To
rapidly, and accurately, evaluate this function we rewrite it as

Gh(x, t) =

3
∏

k=1

gh(xk, t),

where

gh(xk, t) = 2

∫ 1/2h

0

e−4Dt sin(πhξk)/h2

cos(2πxkξk) dξk.

For the numerical calculations in Subsection 2.2.3 we evaluated gh(xk, t) using MAT-
LAB’s built-in adaptive Gauss-Lobato quadrature routine, quadl. This routine was
found to be too slow for the repeated evaluations required in the calculations of Sub-
section 2.1. There we instead numerically evaluated gh(xk, t) using the trapezoidal
rule, after applying the double exponential transformation for a finite interval de-
scribed in [35]. For similar absolute error tolerances this method was substantially
faster than quadl.

In Subsection 2.1, ph(0, t) was found using a Gregory method [13] to solve the
Volterra equation of the second kind, equation (2.12). We found it necessary to use



n′ 0, n 1, n − 1 2, n − 2 3, n − 3 4, n − 4 4 < n′ < n − 4
ωn′

95
288

317
240

23
30

793
720

157
160 1

Table B.1: Gregory method weights, ωn′ , for n′ = 0, . . . , n.

a sixth order method to resolve ph(0, t) accurately with a computationally tractable
number of time-points. For comparison, the fourth order Gregory method described
in [13] would have required more time points than available memory on our computer
system to achieve the desired absolute error tolerance.

The sixth order Gregory method we used is based on discretizing time, tn = n∆t,
and calculating an approximate solution, un(0) ≈ ph(0, tn). The discrete equations
satisfied by un(0) are

un(0) = Gh(x0, tn) − k∆t

n
∑

n′=0

Gh(0, tn − tn′)un′(0)ωn′ , (B.1)

where the weights of the Gregory rule are given by Table B.1 To start this method
we require values for u0(0), u1(0), . . . , u8(0). u0(0) is given by the initial condition

u0(0) = Gh(x0, 0) = 0.

The other values were obtained by using a sixth order explicit Runge-Kutta method.
(See [13] for details of using explicit Runge-Kutta methods to solve Volterra integral
equations of the second kind, and [32] for the specific method we used).

If one naively solves (B.1) by advancing from one time to the next, using u0(0),. . . ,
un−1(0) to calculate un(0), the total work in solving for N time points will be O(N2).
The discrete convolution structure of (B.1) can be exploited by the FFT-based method
of [22] to reduce the total work to O(N log2(N)). In practice we required this opti-
mization to solve (B.1) in a reasonable amount of time. An important technical point
we found was that both MATLAB’s built-in discrete convolution routine, conv, and
the MATLAB Signaling Toolbox FFT-based method, fftfilt, performed poorly for
sufficiently large vectors. Our final code used the convfft routine [41], which per-
formed significantly faster for large vectors.

We found this solution method computationally effective for h as small as 2−11.
Below this mesh size we encountered stability problems with the Gregory discretiza-
tion. Moreover, to obtain the same absolute error tolerances used for coarser mesh
sizes, the simulations required more time points than could be stored in the four gi-
gabytes of system memory on our workstation. We also tried several [36, 45] existing
spectral methods for numerically solving Volterra integral equations of the second
kind, but found that in practice they were unable to obtain comparable accuracies to
the Gregory method described above in solving equation (2.12).

Once un(0) was calculated, we solved for un(x) ≈ ph(x, tn) by discretizing equa-
tion (2.11) to give

un(x) = Gh(x − x0, t) − k∆t

n
∑

n′=0

Gh(x, tn − tn′)un′(0)ωn′ ,

where ωn′ is again defined by Table B.1.
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Finally, for the figures in Subsection 2.2.3 each value of p
(1)
h (x, t) was calculated

using composite Simpson’s rule. p
(2)
h (x, t) was calculated by reusing composite Simp-

son’s rule on the calculated values of p
(1)
h (x, t).
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