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Abstract

We study the asymptotic behavior of a system modeling a composite material made of an
elastic periodically perforated support, with period ε > 0, and a perfect gas placed in each of
these perforations, as ε goes to zero. The model we use is linear corresponding to deformations
around a reference configuration. We apply both two-scale asymptotic expansion and two-scale
convergence methods in order to identify the limit behaviors as ε goes to 0. We state that in
the limit, we get a two-scale linear elasticity–like boundary value problem. From this problem,
we identify the corresponding homogenized and periodic cell equations which allows us to find
the first corrector term. The analysis is performed both in the case of an incompressible and
compressible material. We derive some mechanical properties of the limit materials by studying
the homogenized coefficients. Finally, we numerically calculate the homogenized coefficients
in the incompressible case, for different types of elastic materials.
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‡Université Pierre et Marie Curie-Paris6, UMR 7598, Laboratoire J.-L. Lions, Paris, F-75005 France and Division

of Applied Mathematics, Brown University 182 George Street, Providence, RI 02912, USA.
§DIM-FCFM, U. de Chile, Santiago, Chile & CMM UMI 2807 CNRS-UChile, Santiago, Chile. This work has

been partially supported by FONDECYT 1061263, ECOS-CONICYT CO4E08 grants and ACI project “le-poumon-

vous-dis-je”

1



1 Introduction

1.1 Preface

In the last decades, a growing interest in the use of both mathematical and numerical tools to
study human physiological phenomena has been observed, e.g. in the study of the blood circulation
system, respiratory system, heart’s electrical activity, brain deformation, etc..

Our motivation concerns the mathematical modeling of the respiratory system and this paper
belongs to a series relative to this topic ([1], [2], [26], [17], [18]). Our interest here is to provide
the basics to get a model for the behavior of the alveolar region. The coarse description of the
respiratory system on which this analysis enters can be described as follows (see for example,
[19], [36], [37] for more details): we assume that the respiratory system can be separated into
three distinct parts. First, the upper part composed of the mouth and nose, larynx and pharynx,
secondly, the trachea and bronchial tree (subdivided in proximal part, from 1st to 5th − 6th

generation, and distal part, from 6th − 7th to 13th generation), lastly, the lungs composed by the
set of terminal acini (which are, in its turn, composed of the terminal bronchioles and the alveoli),
the whole being imbedded in a structural matrix, called the parenchyma.

It is quite an easy matter to realize that the exact representation of a flow governed by the
Navier–Stokes equations, in this complex 3D geometry, is far from being achievable currently.
This will only be feasible, though still quite expensive, for the upper airways and the bronchial
proximal part ([15], [25]). For the other parts, we need to perform some model reduction. For
the bronchial distal part, we may refer to a reduction technique, as the one advocated in the
blood circulation [30] and in the bronchial tree [27], or to a more sophisticated approach [24].
Concerning the terminal part, the description of the set of acini may be obtained thanks to the
homogenization framework, either fractal homogenization as in [7], or periodic homogenization for
the alveola part, involving fluid structure interaction, which is the subject of the present paper.

This paper is a first step in this direction as it is based on serious simplifications of the
parenchyma-alveolar system. First of all, we restrain our study to the stationary case, and we
assume that the number of air molecules in each alveolus remains constant (e.g., more or less, the
case of an excised lung filled with air, at a given pressure, and then sealed in order to analyze its
mechanical behavior [35]). Next, we assume that air behaves like a perfect compressible gas, and
that parenchyma behaves like a linear elastic material (the deformations are small). Finally, the
space repetition of the acini suggests us to consider a periodically perforated elastic material with
period ǫ > 0. Since in our framework each alveolus is isolated, we will not consider the terminal
bronchioles as part of the geometry.

The material under study here is rather like a foam, for which we did not find any analysis in
the literature through homogenization. We first study the case of a compressible elastic material
and then, the incompressible case (which is a good assumption for the parenchyma). In the first
case, the behavior of the elastic deformation field is governed by the linear elasticity system (see
[8], [31]) and the physical properties of the elastic material are determined by the Lamé constants
µ and λ (or, equivalently, by the Young modulus E and Poisson ratio ν). The incompressible case
can be obtained from the first model by letting λ go to infinity, and then, the elastic deformation
field is governed by a Stokes-like system (in this case ν = 1/2). In both cases, the interaction of
the elastic material and the gas leads, after linearization, to a non-standard boundary condition
on the bubble’s walls. The boundary condition is of non-local type, similar to the case considered
in other fluid-structure problems [10], [12]. Then, we obtain boundary value problems (13) and
(14), for the compressible and incompressible case, respectively. In the incompressible case, when
the effect of gas pressure is neglected, the well-known homogenization of the Stokes-perforated
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domain model is obtained (see [32], [33]).
Once the geometry and models are set up, we first study the well-posedness of both problems

and then, using some homogenization techniques; we analyze the asymptotic behavior of the dis-
placement field solutions of (13) and (14) as ǫ goes to 0. The main results of this paper are the
two-scale convergence theorems 2.4 and 3.5, for the compressible and incompressible models, re-
spectively. From these results it is possible to identify the macroscopic homogenized problems (see
(63)-(64) and (85)-(87), respectively). To study the well-posedness of the homogenized problem,
we use both the method based on a Korn-type inequality in the two-scale limit problem [3] and
the method of direct existence and uniqueness of the final homogenized problem after eliminating
the microscopic variable [10].

A physical interpretation of the homogenized problem can be performed: In the case of a
compressible elastic material, the macroscopic effect of the gaseous bubbles can be observed as
a modification, as expected, of the compressibility (the second Lamé constant λ) of the limit
material (see (64)). In the incompressible case, these effects are more noticeable since a new
macroscopic compressibility-like constant appears in the limit problem (see (85)- (87)). This new
constant only depends in microscopic characteristics of the bubble (gas pressure and geometry).
We can observe that in the case of a simple perforated incompressible media (i.e., the case of void
inclusions) this constant is equal to 0. Therefore the added compressibility of the limit material
is mainly due to the presence of the perfect gas inside each bubble.

Finally, we calculate the homogenized coefficients in the incompressible case, for different
geometries and elastic materials (determined by the first Lamé constant µ). We compare the
case of void inclusions with the case of a gas at atmospheric pressure. The results show that in
the case of a soft elastic material (such as living tissues), the absence or presence of gas in the
bubbles produces significant variations in the homogenized coefficients. On the other hand, if
a stiffer material is considered (such as rubber), a slighter influence of the bubbles’ gas on the
homogenized coefficients can be observed. The main effect here is for incompressible materials
that become compressible.

One may quote other works related to lung modeling such as [29], where the alveoli struc-
ture is considered as a porous media and a formal homogenization is performed on the linearized
Navier–Stokes equations coupled to linear viscoelasticity. Another related article is [23], where a
computational algorithm is proposed in order to generate the acinus geometry. In [20] the prop-
agation of elastic waves in the thorax is studied. The lung, that is supposed to be homogeneous,
belongs to a stratified domain that represents the thoracic cage.

Concerning homogenization theory for related fluid-structure interaction problems one may
refer to [14] where the homogenization of a thin elastic structure immersed in a viscous fluid is
studied. In this work both fluid and solid domains are connected subsets. In [9] the homogeniza-
tion of a perforated media with time-oscillating perforation is studied.

In our case, we consider non connected alveoli. This first approximation gives an idea of the
elastic properties of the media, that could be validated in some cases, as when considering impact
forces [21]. Indeed, under impact forces, the characteristic time of deformations is small compared
with the characteristic time of air-transport between alveoli. In any case, a more complete model
should be considered by coupling the homogenized model presented here with the respiratory tree
represented as a dissipative term in the equations following the ideas of [17].

In a forthcoming analysis we can use the reduced model obtained by the homogenization
process in a geometry acquired from medical images and couple this system to a network of pipes,
representing either a real or a artificial representing the upper and proximal parts introduced
above. The coupling could be at the level of the boundary conditions in the network where the
flow rate would be computed from the volume variations of the parenchyma.
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Figure 1: The domain Ωε and the fluid-structure unit cell Y .

The paper is organized as follows. In the remaining part of section 1 we present the geometry
of the perforated elastic media, and then we describe the models that we shall study. In section 2,
we formally derive the homogenized limit of the compressible model (13) by a two-scale asymptotic
expansion and then we justify it in the two-scale convergence framework. Then, in section 3, we
carry out the same analysis for the incompressible model (14). Finally, in section 4, through
numerical simulations, we compute the homogenized coefficients to test the homogenized model
with parameters inspired in realistic lung’s anatomic data.

1.2 Geometry

Let Ω be a regular nonempty bounded open subset in R
N (N = 2 or 3) with boundary Γ and unit

outward normal n. The boundary is decomposed as Γ = ΓD ∪ ΓN , where ΓD and ΓN are such
that ΓD ∩ ΓN = ∅ and |ΓD| > 0; they support, respectively, Dirichlet and Neumann boundary
conditions.

Let Y = (−1/2, 1/2)N be the unit cell decomposed into two nonempty open sets: YF that
represents a simply connected bubble and YS that represents the elastic support. They are such
that

Y = Y S ∪ Y F , YS ∩ YF = ∅, Y F ⊂ Y. (1)

For instance, YF could be an open ball B(0, r) centered at 0 with radius r < 1/2. Given a small
parameter ε > 0 and a multi index k = (k1, . . . , kN ) ∈ Z

N , we define

Y ε,k = ε(Y + k) , Y ε,k
F = ε(YF + k) , Y ε,k

S = ε(YS + k) , Γε,k = ∂Y ε,k
F , (2)

that is, a translation and a homothetic transformation of the reference cells Y , YS, YF and of its
interface. By introducing the multi index set

Z
N
ε = {k ∈ Z

N : Y ε,k ⊂ Ω}, (3)

we define the periodically perforated domain and its interior boundary as

Ωε = Ω \
⋃

k∈ZN
ε

Y ε,k
F , Γε =

⋃

k∈ZN
ε

Γε,k, (4)
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with unit outward normal nε (note that, with this definition, nε points out into the interior of

Y ε,k
F , see figure 1) that we will simply denote by n if there is no possible confusion.

Let χε,k, χε,k
F and χε,k

S be the characteristic functions of Y ε,k, Y ε,k
F and Y ε,k

S in L2(Ω), respec-

tively, and χε
F and χε

S the characteristic functions of
⋃

k∈ZN
ε

Y ε,k
F and Ωε, respectively. Note that

we have the following relations

χε
F =

∑

k∈ZN
ε

χε,k
F , χε

S = 1 − χε
F . (5)

1.3 Description of the models

We suppose that Ωε is the reference configuration for the elastic media for a given constant external
pressure pa > 0. The external pressure pa is also the reference pressure into the inclusions that
we consider impermeable, so the number Nε of gas moles into each bubble at a given constant
temperature Ta > 0 is given by the law of ideal gases:

NεRTa = εN |YF | pa, (6)

where εN |YF | is the prescribed volume of each bubble in the reference configuration and R =
kB NA, where NA > 0 is the Avogadro’s number and kB > 0 is the Boltzmann constant. We are
interested in the small deformations of the elastic media around the reference state, and thus to
the variation of the displacement associated with the variations of the bubbles pressure.

We shall analyze two cases: firstly, we will consider a linear homogeneous elastic material and
secondly, we will add to this model an incompressibility constraint.

Since we assume that the gas is perfect, the pressure pε,k and the volume V ε,k of the deformed
k-bubble satisfy the law

pε,k =
NεRTa

V ε,k
=
εN |YF |

V ε,k
pa, (7)

where we have used (6). If we denote by dε the displacement field of the elastic media, then the
volume can be expressed in term of dε or of the deformation map ϕε(x) = x+ dε(x) as

V ε,k = Gε,k(d
ε) =

∫

Y ε,k
F

det∇ϕε(x) dx, (8)

where dε has been extended to the interior of the inclusions in a way that will be specified later.
This volume can be written thanks to an integration by parts (see [8] p. 83 and remind that

the normal nε points out into Y ε,k
F ) in the following way:

Gε,k(d
ε) = −

1

N

∫

Γε,k

ϕε(x) · Cof∇ϕε(x)n
ε dγ. (9)

Here CofA = (detA)A−t denotes the cofactor matrix. The idea is now to linearize (9). The
Gâteaux derivative of the functional Gε,k is given by (see [8] p. 83)

G′
ε,k(b)θ = −

1

N

∫

Γε,k

θ · Cof∇(x+ b(x))nε dγ.

Consequently, we can approximate the deformed volume of the k-bubble by

V ε,k ≈ Gε,k(0) +G′
ε,k(0)d

ε = εN |YF | −
1

N

∫

Γε,k

dε · nε dγ. (10)
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Then the corresponding pressure given by (7) can be approximated by

pk
ε =

εN |YF |

V ε,k
pa ≈

(
1 +

1

NεN |YF |

∫

Γε,k

dε · nε dγ

)
pa. (11)

Hence, at first order, the variation of the pressure inside the k-bubble depends on the average of
the normal displacement on the interface and is given by

pk
ε − pa ≈

A

εN

(∫

Γε,k

dε · nε dγ

)
, with A =

pa

N |YF |
, (12)

where we have introduced the constant A that we will use through the whole paper. Therefore,
in the first case that we shall analyze, the displacement field dε satisfies the linearized elasticity
equations with non standard boundary conditions on the fluid-solid interface:





−divσ(dε) = fS, in Ωε,

σ(dε)nε +
A

εN

(∫

Γε,k

dε · nε dγ

)
nε = 0, on Γε,k, ∀k ∈ Z

N
ε ,

σ(dε)n = 0, on ΓN ,
dε = 0, on ΓD,

(13)

where σ(dε) stands for the stress tensor associated with dε, i.e.

σ(dε) = λdivdεI + 2µe(dε),

with λ > 0 and µ > 0, the Lamé constants of the elastic media, and e(dε) = 1/2(∇dε + (∇dε)T )
stands for the strain tensor. Finally, fS represents an external force field acting in the media (e.g.
gravity force).

Note that this type of non-local boundary conditions appears in other fluid-structure models,
for instance, when studying vibrations of rigid tubes immersed in a fluid (see [5], [12]).

It is possible to consider a non-homogeneous Neumann boundary condition on ΓN that would
represent a pressure force acting on this boundary.

In the second case that we shall study, we consider a linear incompressible media corresponding
to the following model:





−div(σ(dε, qε)) = fS, in Ωε,
divdε = 0, in Ωε,

σ(dε, qε)nε +
A

εN

(∫

Γε,k

dε · nε dγ

)
nε = 0, on Γε,k, ∀k ∈ Z

N
ε ,

σ(dε, qε)n = 0, on ΓN ,
dε = 0, on ΓD,

(14)

where now the stress tensor σ(dε, qε) is defined by

σ(dε, qε) = 2µe(dε) − qεI.

The constraint divdε = 0 corresponds to the linearized version of det(∇ϕε) = 1, which states
that the body is incompressible, and qε is the Lagrange multiplier associated with this constraint.
Note that (14) can be obtained from (13) by letting λ tend to +∞ (see section 3.2, remark 3.5).
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2 Compressible case: homogenization process

The analysis will be divided into several steps: first we prove that (13) is well-posed and we derive a
priori estimates independent of the parameter ε. Afterwards the homogenized problem is obtained
formally thanks to a two scale asymptotic expansion and justified by the two scale convergence
method. Finally the limit problem is studied: in particular we exhibit the homogenized stress
tensor and prove that the limit problem is well–posed.

2.1 Variational formulation and a priori estimates

In this section we present the variational formulation of problem (13) and we derive an existence
and uniqueness result for it. Afterward, using the variational formulation, we obtain a priori
estimates independent of ε on the solutions of (13).

2.1.1 Variational formulation

Let Xε
D = {v ∈ H1(Ωε)N | v|ΓD

= 0} and XD = {v ∈ H1(Ω)N | v|ΓD
= 0} where v|ΓD

denotes
the trace of v on ΓD. Let us denote by || · ||0,Ωε and || · ||0,Ω their respective L2-norms and by
| · |1,Ωε = ||∇ · ||0,Ωε and | · |1,Ω = ||∇ · ||0,Ω their respective H1 Sobolev seminorms.

It is easy to see that the variational formulation of (13) is




Find dε ∈ Xε
D such that

aε(dε, ϕε) = ℓε(ϕε), ∀ ϕε ∈ Xε
D,

(15)

where aε(·, ·) : Xε
D ×Xε

D → R is the bilinear form defined by

aε(dε, ϕε) = aε
µ(dε, ϕε) + aε

λ(dε, ϕε) + aε
Γ(dε, ϕε), (16)

with

aε
µ(dε, ϕε) = 2µ

∫

Ωε

e(dε) : e(ϕε)dx,

aε
λ(dε, ϕε) = λ

∫

Ωε

divdεdivϕεdx, (17)

aε
Γ(dε, ϕε) =

A

εN

∑

k∈ZN
ε

(∫

Γε,k

dε · n dγ

)(∫

Γε,k

ϕε · n dγ

)
,

and ℓε(·) : Xε
D → R is the linear form defined by

ℓε(ϕε) =

∫

Ωε

fS · ϕε dx, with fS ∈ L2(Ω). (18)

It is well known that Poincaré’s and Korn’s inequalities hold in Xε
D, that is, there exist αε > 0

and γε > 0, constants only depending on Ωε, such that (see [13])

||dε||0,Ωε ≤ γε|d
ε|1,Ωε , ∀dε ∈ Xε

D,

and
||e(dε)||0,Ωε ≥ αε|d

ε|1,Ωε , ∀dε ∈ Xε
D.

Therefore, since µ, λ > 0 and A > 0 (note that this implies that aε
Γ(dε, dε) is positive), for each

ε > 0, the bilinear form aε is continuous and coercive. Hence by Lax-Milgram lemma, there exists
a unique solution to (15).
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2.1.2 A priori estimates

Since αε and γε depend on ε, the estimates that we could derive will not be uniform on ε. However,
it is known (see for instance [9] or the appendix in [10]) that there exists an extension operator
˜: Xε

D → XD such that

ϕ̃ε = ϕε in Ωε, ‖e(ϕ̃ε)‖0,Ω ≤ K‖e(ϕε)‖0,Ωε , ∀ϕε ∈ Xε
D, (19)

where K > 0 does not depend on ε. Since Poincaré’s and Korn’s inequalities also hold in XD, it
follows that for all ϕε ∈ Xε

D:

||e(ϕε)||0,Ωε ≥
1

K
||e(ϕ̃ε)||0,Ω ≥

α0

K
|ϕ̃ε|1,Ω ≥

α0

K
|ϕε|1,Ωε , (20)

and

||ϕε||0,Ωε ≤ ||ϕ̃ε||0,Ω ≤ γ0|ϕ̃ε|1,Ω ≤
K

α0
γ0||e(ϕ

ε)||0,Ωε ≤
Kγ0

α0
|ϕε|1,Ωε , (21)

with α0 > 0 and γ0 > 0 depending only on Ω. This shows in fact that | · |1,Ωε , ||e(·)||0,Ωε , | ·̃ |1,Ω,
||e( ·̃ )||0,Ω are equivalent norms in Xε

D uniformly with respect to ε. Let Xε
D be endowed with one

of these norms.
In order to obtain uniform a priori estimates for the sequence {dε}ε>0, we use in (15) dε as

test function, and since λ and A are positive, we obtain

2µ||e(dε)||20,Ωε ≤ aε(dε, dε) ≤ ||fS ||0,Ωε ||dε||0,Ωε .

Now, using extension operator and inequalities (20) and (21) we have

2µ
(α0

K

)2
|d̃ε|21,Ω ≤ 2µ||e(dε)||20,Ωε ≤ ||fS ||0,Ω||d̃ε||0,Ω ≤ γ0||fS ||0,Ω|d̃ε|1,Ω

and we have obtained the following

Proposition 2.1 If fS ∈ L2(Ω)N then the sequence of solutions {dε}ε>0 of (15) is such that

|d̃ε|1,Ω ≤ C, ∀ ε > 0, (22)

where C = C(µ, fS,Ω, α0, γ0,K) > 0 is a constant that does not depend on ε and ˜ denotes the
extension operator introduced in (19).

2.2 Two-scale asymptotic expansion

In this section we use the two-scale asymptotic expansion method to find the homogenized equation
in the linear compressible model (13).

In this case we propose the following ansatz for dε

dε(x) = d0(x, x/ε) + εd1(x, x/ε) + ε2d2(x, x/ε) + . . . , (23)

where dk, k = 0, 1, 2, ... is a function such that dk : (x, y) ∈ Ω × Y → dk(x, y) ∈ R
N assumed to

be Y -periodic in the fast variable y.

Remark 2.1 A differential operator ∂ applied to such a function now acts as

∂ = ∂x +
1

ε
∂y , (24)

where the subscripts stand for the variable in which the differentiation is taken.
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The main idea is to replace (23) in (13) and, by comparison of the powers of ε, we find local
differential problems (in the rapid variable y) parameterized by the macroscopic variable x for d0,
d1 and d2. Using (24) it is possible to expand the terms σ(dε)n and divσ(dε). These calculations
are standard (see [6], for a general overview, and [10] in the case of Stokes equations) so we present
here only the expansion of the non-local term in the boundary condition on Γε,k in (13), i.e., the
integral term

A

εN

∫

Γε,k

dε · nεdγ.

Using the Green formula we have

A

εN

∫

Γε,k

dε · nεdγ = −
A

εN

∫

Y ε,k
F

divdεdx = −
A

εN

∫

Y ε,k

(divdε)χε,k
F dx. (25)

Note that the minus sign is due to the fact that the normal nε points out into Y ε,k
F .

The key point is to note that if we use the ansatz (23) in the previous integrals, both macro-
scopic and microscopic variables are coupled, therefore we have to pay special attention to this
non-local term. From (25) the first idea is to consider a constant by cell function defined by

∀x ∈ Ω, Ψε(x) = −
A

εN

∫

Y ε,k

(divdε)χε,k
F dx, if x ∈ Y ε,k. (26)

We would like to find the two scale asymptotic expansion of Ψε. Let us denote by Πε the L2-
projection operator over the space of constant-by-cell functions. It is defined by

Πε(v) =
∑

k∈ZN
ε

v̄ε,kχε,k, v ∈ L2(Ω), (27)

where v̄ε,k is the mean value of v in cell Y ε,k, that is

v̄ε,k =
1

εN |Y |

∫

Y ε,k

v(x′) dx′. (28)

Using (26), (27) and (28), we have

∀x ∈ Ω, Ψε(x) = −|Y |AΠε(divdεχε
F )(x), if x ∈ Y ε,k,

where χε
F is defined in 5. Hence, we are led to study the two scale asymptotic expansion of

Πε(divdεχε
F ). To do this we will first analyze, the expansion of Πε(ϕ) with ϕ ∈ C∞(Ω;L∞

# (Y )),

and then, apply this result to ϕ = (divdε)χε
F with dε given by (23). For any x ∈ Y ε,k

Πε(ϕ)(x) =
1

εN |Y |

∫

Y ε,k

ϕ

(
x′,

x′

ε

)
dx′.

Since x′ ∈ Y ε,k we have x′ = xε,k + εy′ with y′ ∈ Y (xε,k = ε(k + 0) denotes the translation and
homothetic transformation of the center of the reference cell Y ). Using this change of variables
and the periodicity of ϕ in the second argument, we have

Πε(ϕ)(x) =

∫

Y
ϕ(xε,k + εy′, y′) dy′ .

9



Performing a formal Taylor expansion of ϕ(·, y′) around the point x we obtain (note that x =
xε,k + εy with y ∈ Y , so x′ − x = ε(y′ − y)):

1

|Y |

∫

Y
ϕ(xε,k + εy′, y′) dy′ =

1

|Y |

∫

Y

(
ϕ(x, y′) + ε(y′ − y) · ∇xϕ(x, y′)

+ ε2(y′ − y)TD2
xϕ(x, y′)(y′ − y) +O(ε3)

)
dy′.

Hence, Πε(ϕ) can be written as

Πε(ϕ)(x) = ϕ̄0(x) + εϕ̄1(x, y) + ε2ϕ̄2(x, y) + . . . ,

where

ϕ̄0(x) =
1

|Y |

∫

Y
ϕ(x, y′)dy′ ,

ϕ̄1(x, y) =
1

|Y |

∫

Y
(y′ − y) · ∇xϕ(x, y′)dy′ ,

and

ϕ̄2(x, y) =
1

|Y |

∫

Y
(y′ − y)TD2

xϕ(x, y′)(y′ − y)dy′ .

Note that the first term ϕ̄0 is nothing but the L2-weak limit of Πε(ϕ) as ε goes to 0.
Finally, since

divdε(x) = ε−1divyd
0(x, x/ε) + divxd

0(x, x/ε) + divyd
1(x, x/ε)

+ε(divxd
1(x, x/ε) + divyd

2(x, x/ε)) + . . . ,

we obtain that

Ψε(x) = −A

(
ε−1

∫

YF

divyd
0(x, y′)dy′

+

∫

YF

(divxd
0(x, y′) + divyd

1(x, y′))dy′

+

∫

YF

(y′ − y)∇xdivyd
0(x, y′)dy′

+ε

[∫

YF

(divxd
1(x, y′) + divyd

2(x, y′))dy′

+

∫

YF

(y′ − y)∇x(divxd
0(x, y′) + divyd

1(x, y′))dy′

+

∫

YF

(y′ − y)TD2
xdivyd

0(x, y′)(y′ − y)dy′
]

+ . . .

)
. (29)

In (29) we can use Green formula in some integrals of this expansion, in the following way

∫

YF

divyd
k(x, y′)dy′ = −

∫

Γ
dk · n, (30)

The second integral is an integral with respect to the fast variable. In all what follows any surface
integral over Γ has to be understood as an integral with respect to the fast variable.
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Replacing these expansions in (13) and by comparison of the powers of ε we find the first local
problem in YS:

(LP )0
(ε−2:) −divyσy(d

0) = 0, in YS ,

(ε−1:) σy(d
0)n +A

(∫

Γ
d0 · n

)
n = 0, on Γ,

d0 Y -periodic.

It is not difficult to see that the unique solution to this problem is, up to an additive constant,
the null function. Hence d0 = d0(x). Taking into account that d0 does not depend on y, the next
local problem reads

(LP )1
(ε−1:) −divyσy(d

1) = 0, in YS,

(ε0:) σy(d
1)n+A

(∫

Γ
d1 · n

)
n = −σx(d

0)n

+A(|YF |divxd
0)n, on Γ,

d1 Y -periodic.

This problem gives d1 knowing d0. In order to obtain the equation satisfied by d0 we write the
differential problem for d2:

(LP )2
(ε0:) −divyσy(d

2) = divxσy(d
1) + divxσx(d0)

+divyσx(d1) + fS , in YS ,

(ε1:) σy(d
2)n+A

(∫

Γ
d2 ·n

)
n = −σx(d1)n+A

(∫

YF

divxd
1dy′

)
n

+A

(∫

YF

y′·∇x(divxd
0 + divyd

1) dy′
)
n

−A

(∫

YF

y ·∇x(divxd
0 + divyd

1) dy′
)
n, on Γ,

d2 Y -periodic,

where we have used (29), (30) and again the fact that d0 = d0(x).
The local problems (LP )n (n = 0, 1, 2) are particular instances of the following problem: find

χ defined over YS such that

(LP ) −divy(σy(χ)) = F, in YS ,

σy(χ)n +A

(∫

Γ
χ · n

)
n = G, on Γ,

χ Y -periodic.
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In order to have existence and uniqueness of a solution for the problem (LP ) and since

∫

Γ
n = 0,

the compatibility condition that must be satisfied (see [10]) reads:
∫

YS

Fdy +

∫

Γ
G = 0. (31)

It is easy to see that (31) is satisfied in (LP )0 and (LP )1. The condition (31) applied to (LP )2
provides a further relation between d0 and d1. Indeed, we obtain

−|YS|divx

(
σx(d0) +

1

|YS|

∫

YS

σy(d
1)

)
=

= |YS |fS −A

∫

Γ

(
y ·

∫

YF

∇x(divxd
0 + divyd

1)dy′
)
n, (32)

where we have used the fact that

∫

Γ
H(x)n = H(x)

∫

Γ
n = 0 and

∫

YS

divyσx(d1)dy =

∫

Γ
σx(d1)n

that results from the Y -periodicity of d1 and the Green formula. Recalling that d0 does not
depend on y and that d1 is periodic with respect to y the left hand side of (32) reads

∫

Γ

(
y ·

∫

YF

∇x(divxd
0 + divyd

1)dy′
)
n =

=

∫

Γ
y ·

(
|YF |∇xdivxd

0 −∇x

∫

YS

divyd
1dy′

)
n

=

(∫

Γ
y ⊗ n

)(
|YF |∇xdivxd

0 −∇x

∫

YS

divyd
1dy′

)
,

where the tensorial notation b ⊗ n stands for the N × N matrix defined by (b ⊗ n)ij = ni bj, so
that, for any a , b ∈ R

N ,
(a · b)n = (b⊗ n)a. (33)

Finally, we note that
∫

Γ
niyj = −

∫

YF

divy(yje
i)dy = −|YF |δji,

where ei is the ith canonical unit vector in R
N , therefore

∫

Γ

(
y ·

∫

YF

∇x(divxd
0 + divyd

1)dy′
)
n =

= −|YF |

(
|YF |∇xdivxd

0 −∇x

∫

YS

divyd
1dy

)
.

Replacing in (32), reordering, and using the notations σ0 and σ1 defined by

σ0(·) = 2µe(·) + λ0div(·)I, with λ0 = λ+A
|YF |

2

|YS |
, (34)

and
σ1(·) = 2µe(·) + λ1div(·)I, with λ1 = λ−A|YF |, (35)

we obtain

−divx

(
σ0

x(d
0) +

1

|YS |

∫

YS

σ1
y(d

1)dy

)
= fS. (36)

Therefore (34), (35) and (36) is the formal homogenized differential problem, as ǫ goes to 0, of
the elastic incompressible media with gaseous bubbles (13).
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2.3 Two-scale convergence method

In this section we apply the two-scale homogenization method in order to mathematically justify
the homogenized limit problem (34), (35) and (36). The main idea of this method was introduced
firstly by G. Nguetseng in 1989 [28] and then generalized and applied to several important cases
by G. Allaire in 1992 [3], including the case of perforated domains. The two-scale method applied
to the Stokes equations with non-slip boundary conditions (this case coincides in the stationary
case to incompressible elasticity) has been studied in [4].

We recall the following definition (see [3]):

Definition 2.1 We say that {vε} ⊂ L2(Ω) two-scale converges to some function v ∈ L2(Ω;L2
#(Y ))

(and we will denote it by vε 2
⇀ v) if

lim
ε→0

∫

Ω
vε(x)ψ

(
x,
x

ε

)
dx =

∫

Ω

∫

Y
v(x, y)ψ(x, y) dydx, (37)

for all admissible function ψ ∈ L2(Ω;C∞
# (Y )) or ψ ∈ C∞(Ω;L2

#(Y )).

The same definition can be given for {vε} ⊂ L2(Ω)N with a two-scale limit v in L2(Ω;L2
#(Y ))N

or for {V ε} ⊂ L2(Ω)N×N with a two-scale limit V in L2(Ω;L2
#(Y ))N×N by changing the product

by a dot product for vectors or the tensorial product for matrices, respectively.

From the a priori estimates of Proposition 2.1, it is well known that the following two-scale
convergence result holds (see [3]):

Proposition 2.2 Let {d̃ε}ε>0 be the sequence of extended weak solution of (13), then there exist
d0 ∈ XD and d1 ∈ L2(Ω;H1

#(Y )/R)N such that, as ε tends to 0,

d̃ε 2
⇀ d0, (38)

∇d̃ε 2
⇀ ∇xd

0 + ∇yd
1, (39)

divd̃ε 2
⇀ divxd

0 + divyd
1, (40)

e(d̃ε)
2
⇀ ex(d0) + ey(d

1), (41)

where the extension operator ˜ was introduced in (19).

The main difficulty when taking the limit of a(dε, ϕε) is to deal with the product of boundary
integrals, that is,

aε
Γ(dε, ϕε) =

A

εN

∑

k∈ZN
ε

(∫

Γε,k

dε · n dγ

)(∫

Γε,k

ϕε · n dγ

)
.

Following [5], a way to overcome this difficulty is to rewrite this term using the already defined
L2-projection operator over the constant by cell functions (see (27)).

Indeed by noticing that Y ε,k ∩ Y ε,l = ∅, for k 6= l, it is easy to see that for all u, v ∈ L2(Ω)
∫

Ω
Πε(u)Πε(v) dx =

1

εN |Y |

∑

k∈ZN
ε

(∫

Y ε,k

u dx

)(∫

Y ε,k

v dx

)
. (42)

Then, since Πε is a L2-projection operator, we also have that
∫

Ω
Πε(u)Πε(v) dx =

∫

Ω
uΠε(v) dx =

∫

Ω
Πε(u) v dx, ∀u, v ∈ L2(Ω). (43)
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Finally, using the extension operator we have
∫

Γε,k

dε · n dγ = −

∫

Y ε,k
F

divd̃ε dx = −

∫

Y ε,k

χε,k
F divd̃ε dx. (44)

Therefore, thanks to (5), (42), (43) and (44) we have that

aε
Γ(dε, ϕε) = A

∫

Ω

(
χε

F divd̃ε
)

Πε
(
χε

F divϕ̃ε
)
dx. (45)

The following strong convergence result, that we will use when passing to the two-scale limit,
holds

Lemma 2.3 Let Πε be the projection operator defined in (27). Then for all ϕ ∈ C∞(Ω;C∞
# (Y ))

Πε
(
χε

F ϕ
(
·,
·

ε

))
(x) −→

1

|Y |

∫

Y
ϕ(x, y)χF (y)dy L2(Ω)-strongly.

Proof. Let us take a fixed x ∈ Ω. There exists (ε, k) (actually may be for ε small enough if x is
close to the boundary) such that x belongs to Y ε,k. Thus

Πε
(
χε

F ϕ
(
·,
·

ε

))
(x) =

1

εN |Y |

∫

Y ε,k
F

ϕ

(
x′,

x′

ε

)
dx′.

The same calculation we did before when writing the two scale asymptotic expansion gives

Πε
(
χε

F ϕ
(
·,
·

ε

))
(x) =

1

|Y |

∫

YF

(
ϕ(x, y′) + ε(y′ − yε) · ∇xϕ(x, y′) +O(ε2)

)
dy′,

with yε =
x− xε,k

ε
∈ Y .

From the previous expansion and since yε is bounded we obtain, as ε tends to zero, that

Πε
(
χε

F ϕ
(
·,
·

ε

))
(x) −→

1

|Y |

∫

YF

ϕ(x, y) dy, a.e. in Ω.

Therefore the result follows from dominated convergence since it is clear that
∣∣∣Πε

(
χε

F ϕ
(
·,
·

ε

))
(x)

∣∣∣ ≤ |YF |

|Y |
sup

x∈Ω, y∈Y
|ϕ(x, y)|, ∀x ∈ Ω.

�

Now, we are able to prove the following convergence result:

Theorem 2.4 Let {dε}ε>0 be the sequence of weak solutions of (15). Then the sequences {d̃ε}ε>0,
{∇d̃ε}ε>0 two-scale converge to d0 and ∇xd

0 +∇yd
1 where (d0, d1χS) ∈ XD ×L2(Ω;H1

#(YS)/R)N

is the unique solution of the following variational two-scale homogenized problem

2µ

∫

Ω

∫

YS

(ex(d0) + ey(d
1)) : (ex(φ) + ey(φ

1)) dydx

+λ

∫

Ω

∫

YS

(divxd
0 + divyd

1)(divxφ+ divyφ
1) dydx

+A

∫

Ω

(
|YF |divxd

0 −

∫

Γ
d1 · n

)(
|YF |divxφ−

∫

Γ
φ1 · n

)
dx

= |YS |

∫

Ω
fS · φdx, (46)

for all (φ, φ1) ∈ XD × L2(Ω;H1
#(YS)/R)N .
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Proof. In order to take the two-scale limit in the variational formulation (15) we choose test
functions of the form

ϕε(x, y) =
(
φ(x) + εφ1(x, y)

)
, (47)

where φ ∈ C∞(Ω)N , such that φ = 0 on ΓD, and φ1 ∈ C∞(Ω;C∞
# (Y ))N . These test functions are

admissible for the two-scale convergence definition since ϕε ∈ C∞(Ω;L2
#(Y ))N (see [3]).

Using the extension operator ˜ we can write all the integrals over Ωε in the variational
formulation (15) as integrals over Ω. That is

2µ

∫

Ω
e(d̃ε) : e(ϕε)χε

Sdx+ λ

∫

Ω
divd̃εdivϕεχε

Sdx+ aε
Γ(d̃ε, ϕε) =

∫

Ω
fS · ϕεχε

S dx. (48)

It is easy to see, using (41) in Proposition 2.2, that we can pass to the limit as ε goes to 0 in
the first and second term in the left-hand side of (48). In fact, we have

2µ

∫

Ω
e(d̃ε) : e(ϕε)χε

Sdx −→ 2µ

∫

Ω

∫

YS

(ex(d0) + ey(d
1)) : (ex(φ) + ey(φ

1)) dydx,

and

λ

∫

Ω
divd̃εdivϕεχε

Sdx −→ λ

∫

Ω

∫

YS

(divxd
0 + divyd

1)(divxφ+ divyφ
1) dydx.

In order to pass to the limit in the third term as already announced we use (45) and again
Proposition 2.2. However, we have to verify that Πε (χε

F divϕε) converges L2-strongly and we
have to identify its limit. This is done by using Lemma 2.3 with divϕε as test function. Since
divϕε = div(φ(x) + εφ1(x, x/ε)) = divxφ+ divyφ

1 + εdivxφ
1, we obtain that

Πε (χε
F divϕε) −→

1

|Y |

∫

Y
(divxφ+ divyφ

1)χF dy, strongly in L2(Ω).

Now, thanks to (40) in Proposition 2.2 and the definition of two-scale convergence we have

divd̃εχε
F ⇀

∫

Y
(divxd

0 + divyd
1)χF dy, weakly in L2(Ω) .

Hence, combining the above L2-strong and L2-weak convergences, we can pass to the limit in (45)
to obtain that

aε
Γ(d̃ε, ϕε) −→ A

∫

Ω

(∫

YF

(divxd
0 + divyd

1) dy

) (∫

YF

(divxφ+ divyφ
1) dy

)
dx.

Note that this limit can be rewritten as

A

∫

Ω

(
|YF |divxd

0 −

∫

Γ
d1 · n

)(
|YF |divxφ−

∫

Γ
φ1 · n

)
dx.

Finally, we pass to the limit in the right-hand side of (48),

ℓ(ϕε) =

∫

Ω
(fSχ

ε
S) · ϕε → |YS |

∫

Ω
fS · φdx.

Consequently, we can pass to the limit in (15) and obtain (46), for all (φ, φ1) ∈ {ψ ∈ C∞(Ω)N :
ψ|ΓD

= 0} ×C∞(Ω;C∞
# (Y ))N which is dense in XD × L2(Ω;H1

#(YS)/R)N .

What remains to be proven is the uniqueness of (d0, d1χS) ∈ XD×L2(Ω;H1
#(YS)/R)N solution

of the two-scale weak limit problem (46) . It is not difficult to check that the left hand side of
(46) is XD × L2(Ω;H1

#(YS)/R)N -coercive as a consequence of the following lemma:
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Lemma 2.5 For any (d0, d1) ∈ XD ×L2(Ω;H1
#(YS)/R)N there exists a constant C > 0 such that

‖d0‖L2(Ω)N + ‖d1‖L2(Ω;L2
#

(YS)/R)N + ‖∇xd
0‖L2(Ω)N×N + ‖∇yd

1‖L2(Ω×YS)N×N

≤ C‖ex(d0) + ey(d
1)‖L2(Ω×YS)N×N .

(49)

This lemma states that ‖ex(d0) + ey(d
1)‖L2(Ω×YS)N×N is a norm for the Hilbert space XD ×

L2(Ω;H1
#(YS)/R)N . The proof is given in Appendix A.

It is now possible to identify two differential problems from the variational two-scale problem
(46). One in the macroscopic variable, and the other one in the microscopic scale. This is done
by using special test functions.

First, by taking φ = 0 and integrating by parts in YF in (46) we obtain that ∀φ1 ∈ C∞(Ω;C∞
# (Y ))N ,

2µ

∫

Ω

∫

YS

(ex(d0) + ey(d
1)) : ey(φ

1) dydx

+λ

∫

Ω

∫

YS

(divxd
0 + divyd

1)divyφ
1 dydx

−A|YF |

∫

Ω
divxd

0

(∫

∂YF

φ1 · n

)
dx

+A

∫

Ω

(∫

∂YF

d1 · n

)(∫

∂YF

φ1 · n

)
dx = 0. (50)

Using φ1 ∈ D(Ω;C∞
# (Y ))N such that φ1 = 0 for y ∈ YF in (50), and after an integration by

parts, we obtain that
−divyσy(d

1) = 0, in Ω × YS . (51)

Then, multiplying (51) by φ1 ∈ D(Ω;C∞
# (Y ))N integrating by parts and comparing again with

(50) with the same test functions, we obtain the following boundary condition

(
σy(d

1) +A

(∫

∂YF

d1 · n

))
n = A|YF |(divxd

0)n− σx(d0)n, on Ω × ∂YF . (52)

By taking now φ1 = 0 in (46) and also integrating by parts twice in YF we obtain for all
φ ∈ C∞(Ω) that

2µ

∫

Ω

∫

YS

(ex(d0) + ey(d
1)) : ex(φ) dydx +

λ

∫

Ω

∫

YS

(divxd
0 + divyd

1) divxφdydx+

+A|YF |
2

∫

Ω
divxd

0 divxφdx−A|YF |

∫

Ω

(∫

YS

divyd
1 dx

)
divxφdx

= |YS |

∫

Ω
fS · φdx. (53)

By using the notations of the stress tensors σ0 and σ1 introduced in (34), (35) and taking
φ ∈ D(Ω)N in (53) we recover (36):

−divσ0
x(d0) − div

(
1

|YS |

∫

YS

σ1
y(d

1) dy

)
= fS, in Ω. (54)
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Then, by multiplying (54) by φ ∈ H1(Ω), φ = 0 if x ∈ ΓD (that is φ ∈ XD) and integrating by
parts, after comparing with (53) with the same test functions we obtain the following boundary
condition for (54)

σ0
x(d0)n+

(
1

|YS |

∫

YS

σ1
y(d

1)n dy

)
= 0, on ΓN . (55)

Therefore, (d0, d1) is solution of the following coupled differential problem:





−divσ0
x(d0) − div

(
1

|YS |

∫

YS

σ1
y(d

1) dy

)
= fS, in Ω,

σ0
x(d0)n+

(
1

|YS |

∫

YS

σ1
y(d

1)n dy

)
n = 0, on ΓN ,

d0 = 0, on ΓD,

(56)

and 



−divyσy(d
1) = 0, in Ω × YS ,

σy(d
1)n+A

(∫

∂YF

d1 · n

)
n = A|YF |(divxd

0)n

−σx(d
0)n, on Ω × ∂YF ,

d1 Y -periodic.

(57)

Remark 2.2 The case A = 0 (that is, when there is no gas in the inclusions) corresponds to a
periodic perforated elastic media with homogeneous Neumann boundary conditions on the holes,
and we recover a more standard homogenized problem [10]. One of the difference here when A 6= 0,
is that the boundary condition of the cell problem (57) is non standard due to the presence of the
non local term. Moreover, and as it should be expected, the presence of gas in the holes changes
the reaction to compression of the media (see the definition of σ0 and σ1).

2.4 Homogenized problem

In this subsection we rewrite (56), (57) uniquely in terms of d0 and thus exhibit the homogenized
stress tensor associated with the limit problem.

Using the superposition principle in (57) (or in the local problem (LP )1), we have that

d1 =

N∑

k,l=1

[ex(d0)]klχ
kl, (58)

where χkl, 1 ≤ k, l ≤ N , is solution of




−divy(σy(χ
kl)) = 0, in YS ,

σy(χ
kl)n+A

(∫

Γ
χkl · ndγ

)
n = −σ1

y(p
kl)n, on Γ,

χkl Y -periodic,

(59)

and where pkl is defined by

pkl(y) =
1

2
(yke

l + yle
k), 1 ≤ k, l ≤ N. (60)

Remark 2.3 Problem (59) is well-posed since it is easy to check that the compatibility condition
(31) is satisfied.
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Remark 2.4 The stress tensors σ, σ0 and σ1, defined in (34)-(35), can be written in terms of
a strain tensor e(·) and appropriately defined symmetric fourth-order tensors A, A0 and A1. In
fact, for σ we have (see, for example, [31])

σ(·) = Ae(·), (61)

with
Aijkl = 2µδijkl + λδijδkl, 1 ≤ i, j, k, l ≤ N, (62)

and

δijkl =
1

2
(δikδjl + δilδjk) ,

(δij stands for the Kronecker delta).
If A0 and A1 are defined in the same way as in (62) by replacing λ by the modified Lamé

constants (see (34)-(35)), λ0 and λ1, respectively, then the same relations are satisfied.

Replacing (58) in (36) -or (54)- and (55) and using (61) we obtain the homogenized problem
for d0 




−divx(Ahomex(d0)) = f, in Ω,
Ahomex(d0)n = 0, on ΓN ,

d0 = 0, on ΓD,
(63)

where Ahom is the fourth-order tensor given by

Ahom
ijkl =

1

|YS|

∫

YS

(
σ(φkl)ij −A|YF |divχklδij

)
dy +

A|YF |
2

|YS |
δijδkl, (64)

and φkl = pkl + χkl.
The following proposition holds:

Proposition 2.6 The fourth-order tensor Ahom defined in (64) is such that

a) (symmetry) Ahom
ijkl = Ahom

ijlk = Ahom
klij ;

b) (ellipticity) there exists β > 0 such that for any N ×N symmetric matrix ξ

(Ahomξ) : ξ ≥ βξ : ξ;

c) Ahomξ : ξ = 0 iff ξ = 0.

As a consequence of Proposition 2.6, that is proven in Appendix B, we have the following
existence and uniqueness result:

Theorem 2.7 The homogenized problem (63) has a unique solution d0 ∈ XD.

Proof. See for example [31]. �

Remark 2.5 The homogenized problem (63) obtained by two-scale convergence is exactly (34)-
(36) formally obtained with the asymptotic expansion.
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3 Incompressible case: homogenization process

3.1 Incompressible elastic model

We now study the case where the elastic media is assumed to be incompressible. The unknowns
are now the displacement field dε, that satisfies the incompressibility constraint divdε = 0, and
the pressure qε which is the Lagrange multiplier associated with this constraint. The model now
reads: 




−div(σ(dε, qε)) = fS, in Ωε,
divdε = 0, in Ωε,

σ(dε, qε)nε +
A

εN

(∫

Y ε,k

dε · nε dγ

)
nε = 0, on Γε,k, ∀k ∈ Z

N
ε ,

σ(dε, qε)n = 0, on ΓN ,
dε = 0, on ΓD,

(65)

where we use the notations of previous sections (the constant A was introduced in (12)) and
tensor σ(dε, qε) is defined by

σ(dε, qε) = 2µe(dε) − qεI.

In the next subsection, using the mixed variational formulation and a priori estimates, we will
prove that problem (65) is well posed and that it can be rigorously obtained as the limit of (13)
as λ tends to infinity. Next, in order to obtain the limit of (65) as ε goes to zero, we proceed as
for the compressible case: first we explain what has to be changed in the two scale asymptotic
expansion and then, we study the two scale limit. Finally we exhibit the homogenized problem.

3.2 Mixed variational formulation

Let Xε
D be the functional space introduced in section 2.1.1. Let M ε = L2(Ωε) be endowed with

the norm ‖ · ‖0,Ωε . The mixed variational formulation of (65) is





Find (dε, pε) ∈ Xε
D ×M ε such that

(aε
µ(dε, ϕε) + aε

Γ(dε, ϕε)) + bε(ϕε, qε) = ℓε(ϕε), ∀ ϕε ∈ Xε
D,

bε(dε, rε) = 0, ∀ rε ∈M ε,

(66)

where aε
µ and aε

Γ are the bilinear forms defined in (17), ℓε is defined in (18), and bε(·, ·) : Xε
D×M ε →

R is the bilinear form defined by

bε(ϕε, rε) = −

∫

Ωε

rεdivϕεdx. (67)

Since aε
µ + aε

Γ is elliptic and continuous in Xε
D ×Xε

D, in order to have existence and uniqueness
for the mixed variational problem (66), the inf–sup condition has to be satisfied (see [16]), that
is, we have to prove that there exists a constant β > 0 such that

inf
rε ∈M ε

sup
ϕε∈Xε

D

bε(ϕε, rε)

|ϕε|1,Ωε ||rε||0,Ωε

≥ β. (68)

Proposition 3.1 The inf-sup condition holds uniformly in ε, i.e. there exists β > 0, that does
not depend on ε, such that (68) holds.
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Proof. Given qε ∈ L2(Ωε), we extend it by (see [10])

q̂ε(x) =





qε(x) x ∈ Ωε

−
1

|Ω \ Ωε|

∫

Ωε

qε(x)dx, x ∈ Ω \ Ωε,
(69)

and this extension is such that
||q̂ε||0,Ω ≤ C1||q

ε||0,Ωε , (70)

with C1 independent of ε (see [10]). Moreover as q̂ε belongs to L2
0(Ω), then there exists d̂ ∈ H1

0 (Ω)
(see [16]), such that

divd̂ = q̂ε, in Ω,

and
|d̂|1,Ω ≤ C2||q̂ε||0,Ω, (71)

with C2 also independent of ε. Let zε be the restriction of d̂ to Ωε. Then zε belongs to Xε
D (in

fact, it is equal to 0 on the whole boundary ∂Ω, not only on ΓD), and is such that

divzε = qε, in Ωε,

and
|zε|1,Ωε ≤ |d̂|1,Ω ≤ C2||q̂ε||0,Ω ≤ C1C2‖q

ε‖0,Ωε . (72)

Now, using (71) and (72) we have that
∫

Ωε

qεdivzε dx =

∫

Ωε

|qε|2 dx

≥ (C1C2)
−1||qε||0,Ωε |zε|1,Ωε . (73)

Hence the inf-sup condition holds with a constant β = (C1C2)
−1 that does not depend on ε. �

With the ellipticity and continuity of aε
µ + aε

Γ and the inf-sup condition we have the following
existence and uniqueness result:

Theorem 3.2 Given fS ∈ L2(Ω), there exists a unique solution (dε, qε) to the mixed variational
problem (66) in Xε

D ×M ε.

Remark 3.1 It is not difficult to see that dε can be obtained as the limit of {dε
λ}λ≥0 solutions

of (13) as λ goes to infinity. Moreover it is easy to check that qε is the weak limit in L2(Ωε) of
qε
λ = λdiv(dε

λ).

3.3 A priori estimates

In this section we get uniform a priori estimates for the extension of (dε, qε) solution of (66). We
have

Proposition 3.3 Let fS ∈ L2(Ω). If (dε, pε) ∈ Xε
D×M ε is the weak solution of (14) (i.e. solution

of the mixed variational problem (66)), then

|d̃ε|1,Ω ≤ C||fS||0,Ω, (74)

||q̂ε||0,Ω ≤ C||fS||0,Ω, (75)

where ˜ and ̂ denote the extension operators introduced in (19) and (69), respectively, and C
stands for constants independent of ε.

Proof. The proof relies on standard arguments. Indeed, using properties of the extension operator
˜ , and Korn’s and Poincaré’s inequalities in Xε

D and XD lead to (74). Moreover, from the inf-sup

condition we can get uniform estimates for q̂ε once we have uniform estimates for d̃ε. �
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3.4 Two-scale asymptotic expansion method

As for the “compressible” case we can obtain the homogenized problem by a two scale asymptotic
expansion. The linear model (14) proposed for the incompressible elastic material with gaseous
inclusions is similar to the problem studied in [10] in the case of a fluid in a periodically perforated
domain with Neumann or Fourier boundary conditions on the inclusion’s boundaries.

As in [10], we propose the following ansatz for dε and qε:

dε(x) = d0(x, x/ε) + εd1(x, x/ε) + ε2d2(x, x/ε) + . . . ,

qε(x) =
1

ε
q−1(x, x/ε) + q0(x, x/ε) + εq1(x, x/ε) + . . . ,

where dk and qk are functions such that dk : Ω× Y → R
N , qk : Ω× Y → R and Y -periodic in the

rapid variable y.
The main difference between the incompressible case and the previous one is the constraint

divdε = 0, which implies the following relations

divyd
0 = 0 in Ys and divxd

k−1 + divyd
k = 0 in Ys, (76)

for every k ≥ 1.
Replacing these expansions in (14) and by comparison of powers of ε we find local problems

that we will denote by (LP )inc
k (k = 0, 1, 2, . . . ), which are the analogous of local problems (LP )k

obtained by replacing σy(d
k) with σy(d

k, qk−1) and σx(dk) with σx(d
k, qk−1), for k = 0, 1, . . . and

by adding the corresponding local divergence constraint (76).
Combining these relations, the first local problem is:

(LP )inc
0 −divyσy(d

0, q−1) = 0, in YS,

divyd
0 = 0, in YS,

σy(d
0, q−1)n = 0, on Γ,

q−1, d0 Y -periodic,

whose unique solution is the trivial solution (d0, q−1) = (d0(x), 0) (that is, d0 equal to 0 up to an
additive constant in y).

In order to simplify the next local problems we remark that the constraints (76) can be used to

rewrite the surface integral A

∫

Γ
dk ·n that appears in the left-hand side of the boundary condition

on Γ in each local problems (LP )inc
k . Indeed, remembering that dk is periodic with respect to y
∫

Γ
d0 · n =

∫

YS

divyd
0dy = 0,

and for k ≥ 1, we have the following recursion formula for the unknown surface integral terms
∫

Γ
dk · n =

∫

YS

divyd
kdy = −

∫

YS

divxd
k−1dy.

Finally, the relations in (76) and the fact that d0 depends only on x are also used to expand other
terms that appear in the boundary condition on Γ as, for example, the terms

∫

YF

divyd
1(x, y′) dy′ = −

∫

Γ
d1 · n = −

∫

YS

divyd
1(x, y′) dy′

= |YS |divxd
0(x),
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and using this equality
∫

YF

y · ∇x(divxd
0(x) + divyd

1(x, y′)) dy′ = |YF |y · ∇xdivxd
0 + y · ∇x

∫

YF

divxd
1(x, y′) dy′

= |YF | y · ∇xdivxd
0 + |YS | y · ∇xdivxd

0

= |Y | y · ∇xdivxd
0.

Consequently we have

(LP )inc
1 −divyσy(d

1, q0) = 0, in YS,

divyd
1 = −divxd

0, in YS,

σy(d
1, q0)n = −σx(d0, 0)n +A(|Y |divxd

0)n, on Γ,

q0, d1 Y -periodic,

and

(LP )inc
2 −divyσy(d

2, q1) = divxσy(d
1, q0) + divxσx(d0, 0)

+divyσx(d1, 0) + fS, in YS ,

divyd
2 = −divxd

1, in YS ,

σy(d
2, q1)n = −σx(d1, 0)n

+A

(∫

Y
divxd

1dy′ − |Y | y · ∇xdivxd
0

)
n

+A

(∫

YF

y′ · ∇x(divxd
0 + divyd

1) dy′
)
n, on Γ,

q1, d2 Y -periodic.

Remark 3.2 We can note here that, due to the incompressibility constraint the non standard
non local boundary conditions are replaced, in the local problems, by standard Neumann boundary
conditions.

In order to have existence and uniqueness of solutions for problems (LP )inc
k (k = 1, 2) a compat-

ibility condition must be satisfied:
∫

YS

Fkdy +

∫

Γ
Gk = 0, k = 1, 2,

where Fk and Gk stand, respectively, for the right-hand side in the momentum equation and the
right-hand side in the boundary condition on Γ in (LP )inc

k . It is easy to see that the compatibility
condition for (LP )inc

1 is satisfied. Using Green’s formula in the compatibility condition for (LP )inc
2 ,

we arrive to the following equation for d0:

−divx(2µex(d0)) =
1

|YS |

∫

YS

fS + divx

(
1

|YS |

∫

YS

σy(d
1, q0)

)

−A
|Y |

|YS |

(∫

Γ
n⊗ y

)
∇xdivxd

0,
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where we have used that

∫

Γ
g(x)n = 0 and the notation (a⊗ b) introduced in (33). Furthermore

we have that

−A
|Y |

|YS |

(∫

Γ
n⊗ y dγ

)
= A

|Y ||YF |

|YS |
I,

thus

−divx(2µex(d0)) =
1

|YS |

∫

YS

fS + divx

(
1

|YS |

∫

YS

σy(d
1, q0)

)

+A
|Y ||YF |

|YS |
∇xdivxd

0. (77)

Remark 3.3 Note that as expected, since the gas is compressible, the limit problem satisfied by
d0 is also “compressible”.

Remark 3.4 For A = 0 we recover standard results for the homogenized Stokes equations in
perforated domain with Neumann boundary conditions.

3.5 Two-scale convergence method

In this section we use the two-scale convergence method in order to obtain the two-scale homog-
enized problem associated to (14).

As in section 2.3 we use the a-priori estimates of Proposition 3.3 to prove the following

Proposition 3.4 Let (d̃ε, q̂ε) be the sequence of extended solution of mixed variational problem
(66).Then there exist q0 ∈ L2(Ω;L2

#(Y )), d0 ∈ XD and d1 ∈ L2(Ω;H1
#(Y )/R)N such that, as ε

tends to 0,

d̃ε 2
⇀ d0, (78)

∇d̃ε 2
⇀ ∇xd

0 + ∇yd
1, (79)

divd̃ε 2
⇀ divxd

0 + divyd
1, (80)

e(d̃ε)
2
⇀ ex(d0) + ey(d

1), (81)

q̂ε 2
⇀ q0. (82)

With this proposition and Lemma 2.3 we are able to prove, as in section 2.3, the following

Theorem 3.5 Let (dε, qε)ε>0 be the sequence of weak solution of (66). Then the sequence (d̃ε, q̂ε)ε>0

two-scale converges to (d0, q0) ∈ XD ×L2(Ω;L2
#(Y )) and ∇d̃ε two scale converges to ∇xd

0 +∇yd
1

where (d0, d1χS , q
0χS) ∈ XD × L2(Ω;H1

#(YS)/R)N × L2(Ω;L2
#(Y )) is the unique solution of the

following variational two-scale homogenized problem

2µ

∫

Ω

∫

YS

(ex(d0) + ey(d
1)) : (ex(φ) + ey(φ

1)) dydx

+A

∫

Ω

(
|YF |divxd

0 +

∫

Γ
d1 · n

)(
|YF |divxφ+

∫

Γ
φ1 · n

)
dx

−

∫

Ω

∫

YS

q0(divxφ+ divyφ
1)dydx = |YS |

∫

Ω
fS · φdx,

∫

Ω

∫

YS

(divxd
0 + divyd

1)ηdydx = 0, (83)
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for all (φ, φ1, η) in XD × L2(Ω;H1
#(YS)/R)N × L2(Ω;L2

#(YS)).

Proof. The theorem can be proven exactly as Theorem 2.4, the only point to verify is the existence
and uniqueness of the limit pressure q0. This can be done by proving the following two scale inf-sup
condition:

Lemma 3.6 There exists a constant β > 0 such that for all p ∈ L2(Ω;L2
#(YS))

sup
(φ,φ1)∈XD×L2(Ω;H1

#
(YS)/R)N

∫

Ω

∫

YS

p(divxφ+ divyφ
1)

‖φ, φ1‖XD×L2(Ω;H1
#

(YS)/R)N

≥ β‖p‖L2(Ω;L2
#

(YS)).

This lemma, which is proven in Appendix C, is equivalent to the fact that the mapping T defined
by

XD × L2(Ω;H1
#(YS)/R)N → L2(Ω;L2

#(YS))

(φ, φ1) 7→ divxφ+ divyφ
1

is an isomorphism on ker T⊥. �

Remark 3.5 By proceeding exactly as for (14), it is an easy task to verify that the two-scale
problem (83) can be obtained from (46) by letting λ go to infinity. Consequently we have the
following commutative diagram

ε → 0

P ε
comp(13) −→ P hom

comp(46)

λ

↓ ↓ ↓
∞

P ε
inc(14) −→ P hom

inc (83)

As in the compressible case, using appropriate test functions φ and φ1, we can find the corre-
sponding strong two-scale boundary-value problem associated to the above two-scale variational
problem (83):





−div

(
2µex(d0) +

1

|YS|

∫

YS

σy(d
1, q0) + A

|Y ||YF |

|YS |
divxd

0

)
= fS, in Ω,

(
2µex(d0) +

1

|YS |

∫

YS

σy(d
1, q0) + A

|Y ||YF |

|YS|
divxd

0

)
n = 0, on ΓN ,

d0 = 0, on ΓD,

where the cell problem reads





−divyσy(d
1, q0) = 0, in Ω × YS,

divyd
1 = −divxd

0, in Ω × YS,
σy(d

1, q0)n = −2µex(d0)n+A|Y |(divxd
0)n, on Ω,

d1, q0 Y -periodic.
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3.6 Homogenized equation

In order to obtain the homogenized equation and in particular the homogenized stress tensor, we
introduce the following auxiliary local problems:

(LP )inc
kl −divy(σy(χ

kl, ηkl)) = 0, in YS,

divyχ
kl = −δkl, in YS,

σy(χ
kl, ηkl)n = −Alocey(p

kl)n, on Γ,

ηkl, χkl Y -periodic,

where Aloc is the fourth-order tensor defined by

Aloc
ijkl = 2µδijkl −A|Y |δijδkl,

and pkl is the polynomial defined in (60). It follows that

Alocey(p
kl) = 2µey(p

kl) −A|Y |divyp
klI.

Therefore, by superposition, the solution of (LP )inc
1 can be written as

d1 =

N∑

k,l=1

[ex(d0)]klχ
kl, q0 =

N∑

k,l=1

[ex(d0)]klη
kl. (84)

Let us define the fourth order tensor Ahom
inc by

(Ahom
inc )ijkl = 2µδijkl +

1

|YS |

∫

YS

[σy(χ
kl, ηkl)]ijdy, (85)

and the matrix Bhom by

Bhom = A|Y |
|YF |

|YS |
I

=
pa |Y |

N |YS |
I. (86)

Therefore the homogenized equation is

−divx(Ahom
inc ex(d0) +Bhomdivxd

0) = fS.

Adding the associated Dirichlet and Neumann boundary condition on ΓD and ΓN , respectively,
we obtain the following limit equation





−divx(Ahom
inc ex(d0) +Bhomdivxd

0) = fS, in Ω,
(Ahom

inc ex(d0) +Bhomdivxd
0)n = 0, on ΓN ,
d0 = 0, on ΓD.

(87)

The following proposition holds

Proposition 3.7 The fourth order tensor Ahom
inc defined in (85) satisfies the following properties:
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a) (symmetry) (Ahom
inc )ijkl = ((Ahom

inc )klij = (Ahom
inc )ijlk;

b) (ellipticity) there exists β > 0 such that for any N ×N symmetric matrix ξ

(Ahom
inc ξ) : ξ ≥ βξ : ξ;

c) Ahom
inc ξ = 0 iff ξ = 0.

Proof. The proof is similar as in proposition 2.6. The main idea is to prove the following identity

(Ahom
inc )ijkl = ay(φ

kl, φij) +A|Y |δijδkl ,

where ay(·, ·) is the bilinear form from H1
#(YS) ×H1

#(YS) in R defined by

ay(χ,ϕ) =
2µ

|YS |

∫

YS

ey(χ) : ey(ϕ)dy.

�

Remark 3.6 The homogenized problem (87) obtained by two-scale convergence is exactly (77)
formally obtained with the asymptotic expansion.

4 Numerical calculations of the homogenized coefficients, incom-

pressible case

In this section we compute numerically the homogenized coefficients defined in (85) and (86).
First, we compute the entries of the tensor Ahom

inc (see (85)) for different incompressible elastic
materials, which are determined by the Lamé constant µ, for different ratios |YF |/|YS |, and for
the cases pa = 0 and pa = 105Pa. That is, we compare the homogenized coefficients in the case of
void inclusions with the case of inclusions filled with a gas at atmospheric pressure. The results
show that the difference between the homogenized coefficients in the case of void inclusions and
gas inclusions is more important when a softer materials (like living tissues) is considered, and
it can be neglected in the case of a stiffer material (like rubber). Also, the influence of the cell’s
geometry can be observed.

Finally, we evaluate the entries of Bhom (see (86)) for the same cell’s geometries used in the
calculation of Ahom

inc and for pa = 105.

4.1 Ahom
inc tensor, approximation of local problems

In order to compute the coefficients of the homogenized tensor Ahom
inc defined in (85) (and that, in

what follows, we will simply denote by aijkl) we solve numerically (LP )inc
kl (that we will denote by

Pkl). We use a stable mixed finite element approximation (P1isoP2/P1). The periodic boundary
conditions are incorporated to the FEM spaces by adding the corresponding basis functions as-
sociated with the left-right and up-down boundary nodes and by adding the four basis functions
associated with the corner’s nodes. Note that χkl ∈ (H1

#(YS)/R)N , therefore in the corresponding
FEM space, the basis function associated to the remaining corner node is eliminated.

Following the symmetry property of proposition 3.7, from the 16 entries of tensor Ahom
inc there

are only six different values. Therefore, we define a1 = a1111, a2 = a1212(= a1221 = a2112 = a2121),
a3 = a1122(= a2211), a4 = a1121(= a1211 = a2111 = a1112), a5 = a1222(= a2122 = a2212 = a2221) and
a6 = a2222.
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Moreover, following [11], if the domain YF presents symmetry with respect to axis OX and
OY , then from the above six values in Ahom

inc we have only three different values, since a1 = a6

and a4 = a5 = 0.

Remark 4.1 With these properties we see that we only need to solve two local problems, for
example P11 (to calculate a1 and a3) and P12 (to calculate a2), instead of the original three.

In order to avoid corner singularities we use YF = {(x, y) ∈ R
2 : (x−1/2)2 +(y−1/2)2 < r2F}

with 0 < rF < 1/2 (see Figure 2).

Figure 2: ηkl pressure iso-values, case kl = 11 (left) and kl = 12 (right).

We consider three different values for the Lamé constant µ: µ = 105 Pa, 106 Pa and 109 Pa.
The first two values correspond to the case of a living tissue material (see [29]), and the last one,
to the case of an incompressible rubbery material. The results show that in the case of a soft
elastic material (such as living tissues), the absence or presence of gas in the bubbles produces
significant variations in the homogenized coefficients.

The graphics in Figure 3 present the calculated values of a1, a2 and a3 as functions of dF = 2rF
. Each figure corresponds to a different value of µ, and in each of them there are displayed the
curves for the cases pa = 0 and pa = 105.

Remark 4.2 From Figure 3 we can observe that the presence of gas rigidifies the homogenized
material (since ai(pa = 0) < ai(pa = 105), i = 1, 3). We can also observe that the smaller the
inclusion is (i.e. dF → 0), the stiffer the homogenized material results, or inversely, the greater
the inclusion is (i.e. dF → 1) the softer the homogenized material results. Finally, as expected by
the definition of P12, no difference is observed for a2.

Remark 4.3 In the human parenchyma geometry, we have that the alveola’s diameter dalv could
vary between 75µm and 360µm, and the thickness of the alveolar walls hwall is approximately
5µm (see [20]). Therefore the ratio ρ = hwall/dalv vary between 1/72 and 1/15. By applying
these proportions to our cell’s geometry, we have that dF will vary from 15/17 ≈ 0.8824 to
dF = 72/74 ≈ 0.9730 (where we have used hwall = ρ(Γ, ∂Y )). Hence, in view of an application to
human physiology we should use dF ≈ 0.9, or even dF ≈ 1, however, having it close to 1 would
lead to the resolution of local problems in very thin domains, with the corresponding numerical
difficulties that situation like this implies.
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Figure 3: a1 (+ and ×), a2 (∗ and �), and a3 (� and ◦), (+, ∗ ,�: pa = 0, ×, �, ◦: pa = 105 Pa
), for different diameters, for µ = 105 Pa (top-left), µ = 106 Pa (top-right) and µ = 109 Pa
(bottom-left).

4.2 B
hom matrix

Let us define bhom =
pa|Y |

N |YS|
, therefore, Bhom = bhomI (see (86)). Figure 4 presents the calculated

values of bhom for pa = 105Pa, N = 2, |Y | = 1, and |YS | = 1 − πr2F .

Remark 4.4 From the definition of bhom we see that if dF tends to 1, then bhom tends to +∞.
On the other hand, if dF tends to 0, then bhom tends to pa/N .

Appendix A

Proof of Lemma 2.5

We prove the inequality (49) by contradiction. Assume that there exists a sequence (d0
n, d

1
n)n in

XD ×L2(Ω;H1
#(YS)/R)N such that ‖ex(d0

n) + ey(d
1
n)‖L2(Ω×YS) tends to zero as n goes to infinity

and such that ‖d0
n‖L2(Ω) + ‖d1

n‖L2(Ω;L2
#

(YS)/R) + ‖∇xd
0
n‖L2(Ω) + ‖∇yd

1
n‖L2(Ω×YS) = 1. Thus, up to
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Figure 4: bhom = pa|Y |
N |YS |

for different diameters dF .

a subsequence
d0

n → d0 in L2(Ω)N ,
d0

n ⇀ d0 in H1(Ω)N ,
d1

n ⇀ d1 in L2(Ω;H1
#(YS)/R)N ,

from which we deduce that ex(d0) + ey(d
1) = 0 in D′(Ω × YS). This implies that all the second

derivatives of d1 with respect to y are equal to zero. Therefore d1 = 0 in L2(Ω;H1
#(YS)/R)N since

d1 is periodic in y and YS is connected. Consequently, ex(d0) = 0 which leads to d0 = 0 in Ω since
d0 = 0 on ΓD (see [8]). We just proved that

d0
n → 0 in L2(Ω)N ,
d0

n ⇀ 0 in H1(Ω)N ,
d1

n ⇀ 0 in L2(Ω;H1
#(YS)/R)N .

Now, in order to obtain a contradiction, we have to prove that the last two convergences are in
fact strong ones. We have that

∂yiyj
d1

n ⇀ 0 in L2(Ω;H−1(YS))N , ∀(i, j) ∈ {1, 2, 3},

that yields the strong convergence of ∇yd
1
n towards 0 in L2(Ω;L2(YS)/R)N×N . Thus there exist

vectors cin in L2(Ω)N such that ∇y(d
1
n)i+c

i
n converges strongly towards zero in L2(Ω×YS)N . Since

∇yd
1
n converges weakly in L2(Ω×YS)N×N to zero, we know that cin tends weakly in L2(Ω×YS)N

to zero. Next, we prove that this convergence is strong. Thanks to lemma 2. 10 of [3], for any
vector θ in L2(Ω)N there exists ψ ∈ L2(Ω;H1

#(YS))N such that

divy(ψ) = 0,
ψ = 0 on ∂YF ,∫

YS

ψ(x, y)dy = θ(x),

‖ψ‖L2(Ω;H1
#

(YS)) ≤ C‖θ‖L2(Ω).

Consequently, considering (ψi
n) associated with (cin), we remark that (ψi

n) is bounded in L2(Ω;H1
#(YS))N ,

and thanks to the strong convergence in L2(Ω × YS)N of ∇y(d
1
n)i + cin to zero, we have :

‖cin‖
2
L2(Ω) =

∫

Ω

∫

YS

(∇y(d
1
n)i + cin) · ψi

n → 0.
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Therefore
d1

n → 0 in L2(Ω;H1
#(YS)/R)N ,

and
ey(d

1
n) → 0 in L2(Ω × YS).

Thus
ex(d0

n) → 0 in L2(Ω),

which implies thanks to Korn inequality on XD that d0
n converges strongly to zero in XD. But

then ‖d0
n‖L2(Ω) + ‖d1

n‖L2(Ω;L2
#

(YS)/R) + ‖∇xd
0
n‖L2(Ω) + ‖∇yd

1
n‖L2(Ω×YS) = 1 → 0, which leads to a

contradiction. �

Appendix B

Proof of Proposition 2.6

Proof. We will proceed as in [10]. Let a#
y (·, ·) be the bilinear form associated to problems (LP )kl,

that is

a#
y (χ,ϕ) =

1

|YS |

(∫

YS

Aey(χ) : ey(ϕ)dy +A

∫

Γ
χ · ndγ

∫

Γ
ϕ · ndγ

)
.

We will prove that
Ahom

ijkl = a#
y (φij , φkl), (88)

where φkl = pkl + χkl, and therefore part a) follow directy since it is easy to see that a#
y (·, ·) is a

symmetric bilinear form. Part b) follows from part c) and the fact that a#
y (·, ·) is also positive.

In order to prove (88), we note that

a#
y (φij , φkl) = a#

y (φkl, pij) + a#
y (φkl, χij). (89)

Let us study the first term in the right-hand side of (89):

a#
y (φkl, pij) =

1

|YS|

∫

YS

Ae(φkl) : e(pij)dy +
A

|YS |

∫

Γ
φkl · ndγ

∫

Γ
pij · ndγ

=
1

|YS|

∫

YS

σ(φkl)ijdy

+
A

|YS|

(∫

YS

divχkldy −

∫

YF

divpkldy

) (
−

∫

YF

divpijdy

)

=
1

|YS|

(∫

YS

σ(φkl)ijdy −A|YF |δij

∫

YS

divχkldy +A|YF |
2δklδij

)
,

where we have used that divpkl = δkl and e(pkl)ij = δijkl. Hence, a#
y (φkl, pij) = Ahom

ijkl .
Next, we will prove that the second term in the right-hand side of (89) is equal to 0. In fact,

we use χij as test function in (LP )kl, then, after an integration by parts and using the boundary
condition on Γ, we obtain

|YS |a
#
y (χkl, χij) +

∫

Γ
σ1(pkl)n · χijdγ = 0. (90)
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Integration by parts of the second term in the left-hand side of (90) gives

∫

Γ
σ1(pkl)n · χijdγ =

∫

YS

divyσ
1(pkl)χijdy +

∫

YS

σ1(pkl) : e(χij)dy,

and since pkl is a degree one polynomial we have

∫

Γ
σ1(pkl)n · χijdγ =

∫

YS

σ1(pkl) : e(χij)dy.

Combining with (90) we obtain

|YS |a
#
y (χkl, χij) = −

∫

YS

σ1(pkl) : e(χij)dy. (91)

On the other hand,

a#
y (pkl, χij) =

1

|YS |

(∫

YS

σ(pkl) : e(χij)dy +A

∫

Γ
pkl · ndγ

∫

Γ
χij · ndγ

)

=
1

|YS |

(∫

YS

σ(pkl) : e(χij)dy −A|YF |

∫

YS

divyχ
ijdy

)

=
1

|YS |

∫

YS

σ1(pkl) : e(χij)dy. (92)

Therefore, by adding (91) and (92) we conclude that a#
y (φkl, χij) = 0.

Part c) is consequence of (88). In fact

0 = Ahomξ : ξ =
∑

ij

∑

kl

Ahom
ijkl ξijξkl

= a#
y


∑

ij

ξijφ
ij ,

∑

kl

ξklφ
kl




= a#
y (φξ , φξ), (93)

where φξ =
∑

ij

ξijφ
ij and

∑

ij

(·) =
∑

1≤i,j≤N

(·). (93) implies that ey(φξ) = 0 and then (see [22]), if

N = 3, we have that
φξ = a+ b× y, (94)

with a, b ∈ R
3. That is, φξ is a rigid displacement of a solid body (see [31]). On the other hand

φξ =
∑

ij

ξijφ
ij =

∑

ij

ξij(χ
ij + pij). (95)

Combining (94) and (95) we have that
∑

ij

ξijχ
ij is a polynomial of degree one. Since χij is

Y−periodic we conclude that ∑

ij

ξijχ
ij = c, c ∈ R

N .
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Therefore
φξ = c+

∑

ij

ξijp
ij . (96)

Combining now (94) and (96) we have

a+ b× y = c+
∑

ij

ξijp
ij, ∀ y ∈ R

3,

in particular, for y = 0, then using that pij(0) = 0, we have a = c and then

b× y = ξy

which implies that b = 0 and ξ = 0. When N = 2 a similar analysis can be performed. �

Appendix C

Proof of Lemma 3.6

Proof. Lemma 3.6 is equivalent to show that for any p ∈ L2(Ω;L2
#(YS)) there exists (φ, φ1) ∈

XD × L2(Ω;H1
#(YS)/R)N such that

divxφ+ divyφ
1 = p, in Ω × YS

and
‖(φ, φ1)‖XD×L2(Ω,H1

#
(YS)/R)N ≤ C‖p‖L2(Ω;L2

#
(YS)).

We built p such that

p =





p, in Ω × YS,

− 1
|YS |

∫

Ω

∫

YS

p(x, y)dxdy, in Ω × YF .

The new pressure p satisfies

∫

Ω

∫

Y
p(x, y)dxdy = 0. We would like to find (φ, φ1) ∈ XD ×

L2(Ω;H1
#(Y )/R)N such that divxφ+ divyφ

1 = p in Ω × Y . If such (φ, φ1) exists then it verifies

divxφ =
1

|Y |

∫

Y
p = χ ∈ L2

0(Ω),

and

divyφ
1 = p−

1

|Y |

∫

Y
p = θ,

where θ ∈ L2(Ω;L2
#(Y )) and

∫

Y
θ = 0. We know (see [16], [34]) that there exists φ ∈ H1

0 (Ω)N such

that divxφ = χ and ‖φ‖H1
0 (Ω) ≤ C‖χ‖L2

0(Ω). But ‖χ‖L2
0(Ω) ≤ C‖p‖L2(Ω;L2

#
(YS)) thus ‖φ‖H1

0 (Ω) ≤

C‖p‖L2(Ω;L2
#

(YS)). In order to find φ1 we solve





∆yχ
1 = θ, in Y,

∂χ1

∂n
= 0, on Γ,

χ1periodic in y.
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This problem is well-posed since

∫

Y
θ = 0, and we have

‖χ1(x, ·)‖H1(Y )/R ≤ C‖θ(x, ·)‖L2(Y ).

Consequently, since ‖θ‖L2(Ω;L2
#

(Y )) ≤ C‖p‖L2(Ω;L2
#

(YS)), φ
1 = ∇yχ

1 answers the question. �
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