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OPERATOR-BASED PRECONDITIONING OF STIFF HYPERBOLIC
SYSTEMS*

DANIEL R. REYNOLDS, RAVI SAMTANEY?, AND CAROL S. WOODWARD#

Abstract. We introduce an operator-based scheme for preconditioning stiff components encoun-
tered in implicit methods for hyperbolic systems of partial differential equations posed on regular
grids. The method is based on a directional splitting of the implicit operator, followed by a char-
acteristic decomposition of the resulting directional parts. This approach allows for solution to any
number of characteristic components, from the entire system to only the fastest, stiffness-inducing
waves. We apply the preconditioning method to stiff hyperbolic systems arising in magnetohydro-
dynamics and gas dynamics. We then present numerical results showing that this preconditioning
scheme works well on problems where the underlying stiffness results from the interaction of fast
transient waves with slowly-evolving dynamics, scales well to large problem sizes and numbers of
processors, and allows for additional customization based on the specific problems under study.

Key words. Implicit Methods, Preconditioning, Hyperbolic Systems

AMS subject classifications. 65F10, 65Y20, 35L60

1. Introduction. The numerical solution of hyperbolic systems pervades the
modeling of processes ranging from astrophysics and gas dynamics to magnetically-
confined fusion. A key feature for many of these processes is a significant stiffness of
the system as compared with the physical time scales of interest, e.g. plasma refuel-
ing in tokamaks, magnetic reconnection in the earth’s magnetotail and core collapse
supernova [17, 21, 22, 32, 36, 38, 39]. As an example, in core collapse supernova, one
solves a hyperbolic hydrodynamic system including a shock moving from the super-
nova core outward. Stability of an explicit scheme applied to this problem requires a
time step governed by the CFL condition of motion in the core (~ 1077 s), but the
slower dynamics of the shock are of interest (~10~% s). Hence, one would like to run
the simulation at the larger time step governed by accuracy considerations of model-
ing the shock rather than the stability constraint at the core [38]. Additionally, while
there have been rather significant advances in more diffusive simulations of Navier-
Stokes and resistive magnetohydrodynamic (MHD) flows through the development
of modern multigrid methods, such approaches fail at high Reynolds and Lundquist
numbers. In many of these and similar problems, such stiffness is induced through
only a small number of the hyperbolic waves. Moreover, these stiff components may
prohibit scaling of explicit simulations to the very high resolutions required in study-
ing these processes. For these types of problems fully implicit solution techniques have
recently been gaining favor in the community [10, 26, 28]. Of primary importance in
the use of fully implicit methods for such problems is their ability to perform such
simulations more efficiently and/or more scalably than their explicit counterparts.

Even for non-stiff systems, implicit methods may prove beneficial as computa-
tional simulations increase in scale, since explicit methods can succumb to poor paral-
lel weak scaling. As detailed in [26], parallel execution time (E) for a CFL-constrained
explicit calculation for a hyperbolic system is proportional to T'S'Te/dpa/d where
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P is the number of processors, T is the simulation time interval, S is the problem
size per processor, d gives the spatial resolution, and « is determined by the PDE
under consideration (hyperbolic gives o = 1, parabolic gives a = 2). Thus even for
3D hyperbolic problems (best case scenario), explicit method execution times scale
with processor count as E o« P'/2; 2D parabolic problems scale dramatically worse,
with £ o« P. As a result of this CFL stability dependence, explicit methods have
difficulty demonstrating ideal weak scaling (E o 1). While this may not seem severe
for moderate problem sizes, target applications on modern petascale computational
architectures encounter P ~ 10* — 10°, at which level even explicit methods may not
be utilized efficiently.

The application of implicit approaches usually requires the solution of a nonlinear
system within each time step, typically solved with Newton’s method. For large-scale
applications simulated on modern petascale machines, these nonlinear systems are
solved with a Newton-Krylov method [26]. As Krylov methods can stall, precondi-
tioning is generally required for efficient solution of the linear systems.

Recent years have seen increased activity in the development and use of implicit
solution approaches to hyperbolic systems as part of fluid dynamics applications (see
[20, 28] and references therein). Generally, the emphasis of these works was to ob-
tain steady state solutions for aerodynamics applications, altough more recently the
emphasis has shifted to unsteady problems. An excellent example of the latter is
the work of Mavriplis and coauthors [30, 41] who investigated nonlinear multigrid
methods as solvers and preconditioners with a Newton or Newton-Krylov technique
using unstructured meshes. Another recent example in the aerodynamic literature
for implicit solutions to unsteady problems [5] combined nonlinear multigrid with a
Newton-Krylov approach; using line Jacobi and diagonally dominant ADI approaches
for preconditioning the linear system. Similarly, in the context of MHD, there has
been significant recent work on the development of preconditioning approaches for
fully implicit Newton-Krylov simulations. The notion of “physics-based” precondi-
tioners has been championed by Chacén and co-workers [10, 8]. Their approach relies
on an approximate Schur factorization of the linear Newton systems to “parabolize”
the hyperbolic portions of the MHD system, making it amenable to multigrid tech-
niques. The resulting preconditioners have been employed in 2D reduced MHD [10],
and 3D resistive MHD [8]. Our work, described next, is distinguished from other
works, in that our preconditioner directly attacks the sources of stiffness in the sys-
tem through an appropriate decomposition of the hyperbolic operator. In addition,
our preconditioner does not rely on a diffusive component (although one could be han-
dled in our approach through an operator split preconditioner applied to the unsplit
implicit system).

As evident in the literature, there are a variety of approaches for implicit solu-
tions of hyperbolic systems arising in gas dynamics and MHD, with the dominant
methods being nonlinear multgrid, Newton-Krylov or a combination of both. In this
paper, we present a systematic approach based on a preconditioned Newton-Krylov
method to implicitly solve general stiff hyperbolic systems such as those encountered
in applications from fluid dynamics, fusion, and astrophysics. The idea behind our
preconditioning approach is as follows: since the stiffness of the system results from
a small number of fast waves, we derive an approximate decomposition of the system
into its component waves and precondition only the stiffness-inducing parts. We base
this approximate decomposition on an O(At?)-accurate splitting of the system into
its directional components, followed by a characteristic projection to decouple the
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component waves. The result of this decoupling is a set of tridiagonal systems, that
we solve in parallel using a divide-and-conquer approach similar to [1]. We note that
within this strategy each characteristic equation is solved independently, enabling so-
lution of only those components inducing stiffness to the fully implicit system, while
leaving the slower components alone. Upon solution of these decoupled equations,
we project the preconditioned solutions back into their original conserved variables,
resulting in the approximate solution of the original linear Jacobian system. This
preconditioning scheme is valid for any method of lines approach to hyperbolic sys-
tems that employs a linear single or multistep method for time integration, including
those discussed in our earlier work using CVODE (high order, adaptive, fixed-leading-
coefficient BDF) and KINSOL (fixed-step 6 method) [23]. In this paper we focus on
the fixed time-step Crank-Nicolson approach, in order to better elucidate the effect of
preconditioning outside the adaptive time-stepping context. We note that extensions
to the general hyperbolic system (e.g. reaction or diffusion terms), may be precondi-
tioned independently from the stiff waves using an operator-split formulation.

This paper is organized as follows. In the next section we describe an implicit
preconditioned Newton-Krylov approach to solving a general system of hyperbolic
equations. In Section 3 we show how the implicit approach is applied to the systems
of gas dynamics and magnetohydrodynamics. We present numerical results for the
preconditioning strategy on a suite of test problems designed to investigate accuracy
and scalability in Section 4 and give concluding remarks in Section 5.

2. Preconditioned Newton-Krylov Method for Hyperbolic PDEs. In
this section, we describe the fully implicit formulation and Newton-Krylov solution
approach for general hyperbolic conservation laws.

2.1. Discretization Approach. Consider the general hyperbolic sytem:
U+ V- -FU)=0, (2.1)

where U = U(x,t) : R? x R — R" is a vector of n conserved quantities, and F(U) =
{F(U),GU),H(U)}T : R* — R3" is a vector of fluxes.

In numerically approximating solutions of the system (2.1), we follow a method of
lines approach for splitting the time and space dimensions. Under this methodology,
the spatial components are discretized following a spatial semi-discretization involving
a diagonal mass matrix (i.e. finite-differences or finite-volumes) on a regular spatial
grid. Time discretization of (2.1) is performed using a standard linear multistep
method that defines a nonlinear residual based on the parameters oy, 3; and ¢,

fU™) =U" + AtV - F(U") — zq: [, U™+ AtV - F(U" )] (2.2)

=1

In this work we demonstrate results using a second-order Crank-Nicolson method in
which f(U) =U"—-U"""+ Atd (V-FU")+V-FU"')), § = 0.5. Fully implicit
evolution of the equation (2.1) over a time interval [t"~1 "] is then accomplished
through solution to the nonlinear root-finding problem f(U™) = 0. To this end,
we employ an inexact Newton-Krylov algorithm, as is standard for scalable parallel
solution to coupled systems of partial differential equations [28].

Since all operations in the Newton-Krylov context require only linear complexity
operations, the key component required for scalability of fully implicit simulations
using this technology is an optimal preconditioning strategy for the inner Krylov
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linear solver [25, 28]. In Newton-Krylov algorithms, at each Newton iteration a Krylov
iterative method is used to solve Jacobian systems of the form

JOV =—f(U), J(U) EI—F’Y%(V'F(U)), v = Atfp. (2.3)

The number of iterations required for convergence of a Krylov method depends on the
eigenstructure of J, where systems with clustered eigenvalues typically result in faster
convergence than those with evenly distributed eigenvalues [18, 19, 40]. Unfortunately,
for a fixed At, as the spatial resolution is refined the distribution of these eigenvalues
spreads, resulting in increased numbers of Krylov iterations and hence non-scalability
of the overall solution algorithm. The role of a preconditioning operator P is to
transform the original Jacobian system (2.3) to either

JP~'PV = —f (right prec.), or P71JV = —P71f (left prec.).
The Krylov iteration is then used to solve one of
(JP YW =~f o (P'I)V=X,

where X = —P~1f is computed prior to the Krylov solve or V = P~V is computed
after the Krylov solve. Scalable convergence of the method then depends on the
spectrum of the preconditioned operator (JP~! or P~1.J), as opposed to the original
Jacobian operator J. Hence, an optimal preconditioning strategy will satisfy the two
competing criteria:
1. P = J, to help cluster the spectrum of the preconditioned operator.
2. Application of P~! should be much more efficient than solution to the original
system, optimally with linear complexity as the problem is refined and with
no dependence on an increasing number of processors in a parallel simulation.

In the next section, we develop an operator-based preconditioning strategy for the
system of hyperbolic conservation laws (2.1).

2.2. Preconditioner Formulation. For linear multistep time integration ap-
proaches, we first rewrite the nonlinear problem (2.2) in the form

fU)=U+~[0.FU)+0,GU)+0.HU)|+g=0, (2.4)
where the terms F(U), G(U) and H(U) denote the z, y and z directional hyperbolic

fluxes, and the term g incorporates previous time-level information into the discretized
problem. This nonlinear problem has Jacobian

JU) =T +7[Jr(U) 0:() + Ja(U) 0y () + Ju(U) 9-(-)], (2.5)

with, e.g., Jp(U) = £ F(U). We use the notation (-) to denote the location at which

the action of the linear operator takes place, e.g.

[+~ Jp(U)0()]V =V 4+~ Jp(U)d, V.
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Omitting the explicit dependence on U from the notation, and introducing nonsingular
matrices L, L and Ly, we may re-write the Jacobian system (2.5) as

J=1+~[JrLp'Lr0,(-) + JaLg'Lay(-) + JuLy' L. (+)]
=1+~ [JpLp'0, (Lp(-)) — JpLy' 0y (Lp
+JaL5 0y (La(+) — JaLg 18 Lg
+Ju L 0, (L (- 2. (
=1+~ [JpLp' 0, (Lp(-
~JrL3'0, (LF) (-

(
) — (Le) (-
) —JuL Lu)(+)]
)+ JeLg 16 (La(+)
) — JeLg'oy (Le) (-

The preconditioning scheme in this approach is based on the assumption that the
majority of the stiffness found in the Jacobian is a result of a small number of very
fast hyperbolic waves. To develop an approach for separately treating only these fast
waves, we consider the preconditioning matrix, P, constructed using a directional and
operator-based splitting of J,
P =[I+4JpLp'0x (Lr()] [ +7JaLg 0y (La())] [I + 7Ly 0 (Lu())]
[I —yJpLp' (0sLr) —vJaLg (0yLe) — vJuLy' (9:Lu)) (2.6)
=J+0(+?).

We denote these components as P = Pr Pg Py Piocqi- Through constructing the op-
erator P as a product in this manner, the preconditioner solve consists of 3 simpler,
1-dimensional implicit advection problems, along with one additional correction for
spatial variations in the directional Jacobians Jr, Jg and Jg. Hence, Pu = b may be
solved via the steps (i) Prx =, (ii) Pgw = x, (iii)) Py v = w, and (iv) Pocai u = v.
We note that the splitting (2.6) is not unique, and that in fact these operations can

be applied in any order. We discuss our technique for efficient solution of each of the
above systems in the following two sections.

2.3. Directional Preconditioner Solves. We first consider solution of the
three preconditioning systems Pg, P and Py from (2.6) of the form, e.g. (a-direction)

Prx=b & x+vJpL7'0:(Lrx) =b. (2.7)

To this point Lp, Lg, and Ly are still unspecified. We take these to be n x n matrices
whose rows are the left eigenvectors of the respective Jacobians, giving the identities,

LrJr = ArLp, Ap = diag(A',...,\"), JrRp = RpAp,

where Rp = L}l are the right eigenvectors (n x n column matrix), and A\* are the
eigenvalues of Jr. Through pre-multiplication of (2.7) by L, we have

Lpx+vLpJrpRpO, (LFX)ZLFZ? & LFX""YAFax (LFX)ZLFb.
Defining the vector of characteristic variables w = Ly, we decouple the equations,
w~+ yApd,w = Lpb & wh + Nt =65 k=1,...,n

where w* denotes the k-th element of the characteristic vector w, and 8 = Lgb.
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Spatial discretization of each of the characteristic variables w* in the same manner
as the original PDE (2.1), results in a tightly-banded linear system of equations (tridi-
agonal, pentadiagonal, etc., depending on the method), to solve for the values w”

For example the tridiagonal version due to a O(Az?) finite-difference discretization is

L ko _ pk 9
wi + o (Wi —wisy) = 6. (2:8)

In the ensuing results, we use a second order centered finite-volume approximation,
with resulting systems for each w* that are tridiagonal. Moreover, the above ap-
proach results not only in tridiagonal systems for each characteristic variable w*, but
the systems are in fact block tridiagonal, where each block corresponds to only one
spatial {z,y, z} row that is decoupled from all other rows through the domain in the
same direction. Thus solution of these linear systems can be very efficient, as the
computations on each row may be performed independently of one another.

Furthermore, since our initial assumption was that the stiffness of the over-
all system resulted from a few very fast waves, we need not construct and solve
the above systems for each characteristic variable w¥. In cases where the wave
speeds can be estimated, we may set a pre-defined cutoff to the number of waves
included in the preconditioner. This reduction allows for significant savings in pre-
conditioner computation. For those waves that we do not precondition, we approxi-
mate them as having wave speed equal to zero, i.e. solving with the approximation
Ap = diag(A\',...,)\?,0,...,0). Omission of the (n — ¢) slowest waves in this fashion
amounts to a further approximation of the preconditioner to the original discretized
PDE system. Writing Pp as the a-directional preconditioner based on g waves, we
may consider ||x — X||p, where x solves Prx = b and x solves Ppy =0, ie.

X+7JrRrO:(Lrx) =b, X +7JrRrO:(LrR) = b,
where Jp = RpApLp. Left-multiplying by Lp and proceeding as before, we obtain

w + ’}/Apamw = Lpb, w + ’}//A\FaTUA) = Lpb,

w® + N\ o wk = (Lpb)*, k=1,....n
Wk + A9 = (Lpb)E, k=1,....q
W* = (Lpb)*, k=q+1,...,n.

Measuring the error between w and w in the {P-norm (1 < p < ), we have

n

o =l = > flw* a7 = > o = (Leb)*];
k=1

k=q+1

< > |arwa) -1

k=q+1
(a0l T
(1 _ ||’Y/\k8m(')||p> |(Lrb) ||p,

I r) I,

p
p

(]

k=q+1
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where we have assumed for the last inequality that H'y)\kam()Hp <l,k=q+1,...,n
[16]. Lastly since x = Rpw, we obtain the error bound

1/p
) ‘ A0, \"
Ix = xll, < IBell, | D <W ||(LFb)kHII:
x P

k=q+1
Since the eigenvector matrices Ly and Rp may be renormalized as desired, and the
eigenvalues are ordered so that A; > A, for 4 < j, the dominant error from precondi-
tioning only the ¢ fastest waves is approximately

YA+ /Al
I — YA+ /Aa]

Hence omission of waves with small eigenvalues compared to the dynamical time scale
(i.e. YA < 1) will not significantly affect preconditioner accuracy.

2.4. Local Non-Constant Coefficient Correction Solve. The remaining
component of the split preconditioner (2.6) comprises the local system Pjoeqitt = v,

I +~JrRpO,Lr +~vJaRcOyLg +vJuRy0.Ly)u=v
< I +~RpArpd,Lr + yRoAGOy Lo + YRy Apd. Lyl u = v.

We note that for spatially homogeneous Jacobians, d,Lr = 0yLg = 0Ly = 0, in
which case this system reduces to v = v. In keeping with the previous discretization
approaches, we approximate this system in the same way as above, e.g.

YRpApO,Lr ~ 53—RpiMri(Lrit1 — Lpi-1)-

These solves are spatially decoupled (with respect to u), resulting in a block-diagonal
matrix whose solution requires only n x n dense linear solves at each spatial location.

3. Application to Compressible Gas Dynamics and Magnetohydrody-
namics. The preconditioning method developed in the previous section is applicable
to any system of multi-dimensional hyperbolic equations. In this section we apply it to
the compressible gas dynamics and magnetohydrodynamics (MHD) systems of equa-
tions. We include a simple 1D example to illustrate the effect of the preconditioning
method on the spectrum of the preconditioned Jacobian.

3.1. Equations of Compressible Gas Dynamics and MHD. Single fluid
magnetohydrodyanmics is a mathematical description of a plasma which may be de-
rived from kinetic equations assuming quasineutrality and no distinction between ions
and electrons. The equations of gas dynamics form a subset of the MHD equations
and may be simply obtained by setting the magnetic field, B, to zero. The MHD
equations couple the equations of compressible hydrodynamics with the low-frequency
Maxwell’s equations, and may be written in conservation form using rational units,

U +V-FU) =S{U,V-B)+ S(U) (3.1)

where the solution vector U = U(x,t) is given by U = {p, pu, B, e}T, and the hyper-
bolic flux vector F(U) is given by

= T
FU) = {pu,puu+(p+ BB)I-BB,uB —Bu, (e +p+ %)U_B(B.u)} .
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In these equations p is the density, u is the velocity, B is the magnetic field, p and T are
the pressure and temperature, and e is the total energy per unit volume of the plasma.
The system is closed by the equation of state, e = w25 +5u - u+ %B -B, with the ratio
of specific heats denoted by I' and taken to be 5/3 throughout this work. The left
hand side of the above equations comprises the ideal MHD portion of the single-fluid
MHD equations, and for completeness we have included a source term S(U) above
which allows diffusive terms (usually viscous, resistive and heat conduction terms;
see Reynolds et al. [37] for these). As mentioned above, setting B = 0 results in the
compressible Navier-Stokes equations if viscosity and heat conductivity are included,
or the compressible Euler equations describing the motion of a ideal compressible gas
if diffusion terms are absent. The source term is also a placeholder for reaction terms
which may occur, for example, in gas combustion systems.

Following the original work of Godunov [15], and subsequent work by Falle et al.
[13] and Powell et al. [35] we have included a non-conservative source term S(U,V -
B) = —V-B{0,B,u,B - u}’ to symmetrize the ideal MHD system. Inclusion of this
source term leads to a non-singular Jacobian, Jg, for the ideal MHD system, and as
long as V - B remains negligible, inclusion of this term will not affect conservation or
accuracy of the PDE system. Finally, for the MHD system, a consequence of Faraday’s
law is that an initially divergence-free magnetic field must lead to a divergence-free
magnetic field for all times, which corresponds to the lack of observations of magnetic
monopoles in nature. This solenoidal property is expressed as V - B = 0. The effect
of implicit solvers and preconditioning on this property is discussed in Appendix A.

For both MHD and compressible gas dynamics, nonlinearities typically occur
on the left hand side of equations (3.1), i.e, in the hyperbolic part of the system of
equations. Examples of physical systems where the stiffness results from the large
separation of scales or wave-speeds present in the hyperbolic portion of the equations
are: (a) tokamak fusion MHD in which the dynamical time scales of interest are
ten-to-hundred times slower than the fastest time scales present, and (b) low Mach
number combustion in which the advective time scales of interest are nearly two orders
of magnitude smaller than the acoustic time scales (altough the fastest time scales in
combustion may be due to chemical reactions which are not part of the hyperbolic part
of the equations and not considered here). Due to this stiffness, numerical simulations
of such systems can benefit from the implicit approach presented in this work.

3.2. Preconditioner for the Gas Dynamics/Ideal MHD System. The
development of the preconditioner for the gas dynamics or the ideal MHD system
proceeds in almost exactly the same fashion as described in Section 2.2. For ideal
MHD, we base our work on the 8-wave MHD system introduced by Powell et al. [35].
The row-matrix (now an 8 x 8 matrix) of left eigenvectors for this system is derived
as Ly = Q 'LrQ, where Q corresponds to the Jacobian of the conserved variable
to primitive variable transformation, (p, pu, B,e) — (p,u, B, p), and Ly corresponds
to the matrix of left eigenvectors of Jp. This 8-wave formulation is equivalent to the
ideal MHD system (3.1), so long as the solenoidal constraint V - B = 0 is satisfied

exactly. Hence, for such constraint-preserving states we have the identities
Jr=Q 'JrQ, Lp=Q 'LrQ, Rp=Q 'RpQ,
where RFEL;}, LFJF:AFLF, JFRFZRFAF.
The eight eigenvalues for the ideal MHD system are: Ap = diag(u, £cp, uy £cq, ug

Cs, Uz, Uy ), Where u, is the z-velocity, and cy, ¢4, s are, respectively, the fast mag-
netosonic, Alfvén and slow magnetosonic speeds. Typically in tokamak fusion MHD,
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cs < ¢q < cp. Of the two identical eigenvalues u,, one corresponds to the entropy
wave while the other corresponds to advection of V - B in the 8-wave formulation.

In three-dimensional gas dynamics, the left and right eigenvectors are 5 x 5 ma-
trices and can be easily generalized from a one-dimensional system presented in
Chapter 3 of Reference [29]. The eigenvalues of inviscid gas dyanmics are: Ap =
diag(uy £ ¢, Uy, Uz, Uz ), where c is the sound speed given by ¢ = vyp/p.

3.3. An Illustrative Example. Before applying the preconditioner to multi-
dimensional nonlinear examples, we illustrate its benefit on a simple example. We
consider the 1D linearized ideal MHD system,

U + J%0,U =0, (3.2)
where J% = dlzl(UU)|U:Uo, under the following background state: {py = 1.0, pug =
0,B; = 0.1cos(a), B, = 0.1sin(a), B, = 1,pp = 0.01}, with @ = 60°. This corre-
sponds to a low-( tokamak plasma with B, playing the role of the toroidal magnetic
field, and B, and B, corresponding to the poloidal magnetic field. The wave speeds
for this state are: ¢, = 0.006, ¢, = 0.05, and ¢y = 1.013 (i.e. ¢ o< 10¢, o< 100cs, con-
ditions similar to those encountered in tokamak fusion plasmas). We discretize (3.2)
uniformly over the domain x € [0, L] with N finite volume cells, and mesh spacing
Az = L/N. We further assume periodic boundary conditions, a fourth order finite
difference discretization of the spatial derivative and a 6-scheme time discretization.
The spatial derivative is approximated as (0,U), = a(Uit1 — Ui—1) + b(Uiy2 — U;_2),
where in the fourth-order method a = (1.5Az)~! and b = (—12Ax)~!. We then solve
the linear system JU"*! = g(U™) at every time step, where
9i(U) =U; = (1 = 0)At Jr [a(Uit1 — Ui-1) + b(Uit2 — Ui—2)],

1 K M 0 0 -M -—-K
-K I K M 0 0 -M
-M -K I K M 0 0
J = , (3.3)
0 0 -M -K I K M
M 0 0O -M -K I K
| K M o0 - 0O -M -K I |

K =a0At Jp,and M = b0At Jp. The preconditioner is defined by setting all but the
q—stiffest eigenvalues to zero; we define A= diag{\1,- - Ag,0,---,0} and then solve
only for the corresponding characteristic variables. This results in a preconditioner
matrix that is identical to (3.3), albeit with the sub-blocks K and M replaced with
the approximate blocks K = aAtRAL and M = bAtRAL, respectively.

We choose the time step At to be 500 times the explicit time step constrained by
the usual CFL condition and use § = 0.5. The domain length and discretization size
are L = 2 and N = 512, respectively. For this example, the real part of the eigenvalues
of J are all unity, and its condition number is approximately 343. In Figure 3.1 we
plot the eigenvalues of the preconditioned operator, JP~!, where P uses ¢ = 0 (no
preconditioning), ¢ = 2 (fast magnetosonic), ¢ = 4 (Alfvén and fast magnetosonic),
and ¢ = 8 (all waves). For these values of ¢, the condition number decreases from
343 to 16 to 2 and finally to 1, leading to the observation that for a linear system of
hyperbolic conservation laws, the preconditioner is exactly equal to the Jacobian.

4. Computational Results. Unless otherwise noted, all tests were performed
using identical solver parameters: a relative nonlinear residual tolerance e = 1077,
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Eigenvalue Spectra vs Preconditioning
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+ No prec
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Fic. 3.1. FEigenvalue spectrum as preconditioning is increased. All eigenvalues are of the form
A = 1414\1, we therefore plot |\| to indicate the shrinking spectrum as q increases.

a maximum of 20 Newton iterations, at most 200 GMRES iterations per Newton
step, an inexact Newton tolerance of 0.01|| f(U)|lwrms, and a time-centered implicit
discretization (i.e. ¢ = 1, fp = B1 = 0.5 from equation (2.2)). All preconditioned
tests used the full 8-wave formulation with the splitting correction Pocar (labeled FW
Prec), and are compared against an implicit but un-preconditioned solver (labeled No
Prec). Of these, all non-scaling studies were performed in serial, on a dual 3.0 GHz
linux workstation, while all parallel scaling tests were performed on the Thunder Linux
cluster at LLNL, consisting of 1024 1.4GHz Itanium-2 nodes (4 processors/node). The
computational tests are performed using an implicit resistive MHD code described in
[37], in which we have added the preconditioning approach. We examine this approach
on a suite of stiff test problems from MHD and gas dynamics. We first examine a
MHD linear wave propagation problem on which we expect the preconditioner solve to
be nearly exact. This problem is then rotated to exercise the directionally-split nature
of the preconditioner. The third test is a two dimensional Rayleigh-Taylor instability
in compressible gas dynamics. The fourth problem is the Kelvin Helmholtz instability,
a stringent nonlinear resistive MHD test that has been used to assess the efficacy of
preconditioners for implicit MHD solvers [9]. We further provide parallel weak scaling
results, as well as some investigation of various approximations to this preconditioning
approach that may offer increased computational efficiency.

4.1. Linear Wave Propagation Tests. We begin with the “best case scenario”
for this preconditioner, consisting of an ideal MHD linear wave advection test prob-
lem. It involves application of a small amplitude perturbation to an initially constant
equilibrium, where the perturbation consists of an eigen-function corresponding to
the slow magnetosonic wave [37]. Hence implicit integration of this problem consists
of advection of this stiff, slow wave across the domain.

We set the computational domain to [0,2] x [0,2], with periodic boundary con-
ditions in both the z and y directions, and initialize the equilibrium state U =

(p,pu,B,e)”, where p =1, u = 0, B = (cos acosf,sinasin@, 0) and e = 0.1. Here,
0 = tan—! ]Z—y, a = —44.5°, and the ratio ,’:—y gives the direction of wave propagation.

We project these to characteristic variables via W = LU , where L is left eigenvector
matrix of the linearized MHD system, and then perturb the 6th-fastest characteristic,
w® = wb + 1075 cos (rkyx + mkyy). The initial condition is then set as U° = RW,
where R is the right eigenvector matrix. All runs are taken to a final time of T = 10.
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Fic. 4.1. Krylov iterations for the linear wave tests: x-directional (left) and oblique (right).

[ Mesh | At [[ NP Time (X) [ FW Time (X) [[ NP Time (O) [ FW Time (O) ]
642 0.05 13.426 13.100 13.864 15.284
642 0.1 8.104 7.920 9.097 7.564
642 0.2 5.820 3.991 7.310 3.859
1287 0.05 70.393 64.763 85.321 63.295
1282 0.1 45.559 32.447 62.747 32.605
1282 0.2 43.914 19.495 57.916 18.926
2562 0.05 568.336 338.796 727.269 322.778
2562 0.1 419.905 189.650 609.195 174.714
2562 0.2 449.975 129.825 713.768 136.875

TABLE 4.1

Runtimes for linear wave tests.

We note that even though the simulation code is fully nonlinear, the nonlinear effects
are second order in the perturbation amplitude, and thus simulations still operate
within the linearized MHD regime.

We examine two scenarios: in the first the wave propagates parallel to the x-axis
(i.e. ky =1, ky, = 0), hence the directional splitting used in the preconditioner should
not affect its accuracy. In the second the propagation is at a 45° angle oblique to the
z-axis (i.e. ky =k, = 1), exercising the directionally-split nature of the approach.

Results for both tests are shown in Figure 4.1. The total number of Krylov itera-
tions is plotted for various time step sizes (different curves) and spatial discretizations
(horizontal axis). For the z-directional test, the preconditioner is nearly exact, and
hence the Krylov iterations remain nearly constant as the mesh is refined, as compared
with the non-preconditioned tests that increase rapidly. For the oblique test, the di-
rectional splitting does not appear to significantly affect the preconditioner accuracy,
again resulting in nearly constant Krylov iterations with mesh refinement. Table 4.1
shows the CPU timings, which suggest that for small problem sizes the reduction in
linear iterations does not outweigh the computational cost of preconditioning; though
once the mesh is refined the preconditioning benefit becomes increasingly apparent.

4.2. Rayleigh-Taylor Test. The Rayleigh Taylor instability (RTT) occurs when-
ever fluids of different density are subjected to acceleration in a direction opposite
that of the density gradient [11]. RTI is encountered in a variety of contexts, such as
combustion, inertial-confinement fusion, supernovae explosions and geophysics. Sim-
ulations of the compressible RTT are quite common (e.g. see Table 1 of [12] for a list
of compressible RTT investigations and other references therein). Furthermore, in a
variety of such simulations the Mach number is typically low (O(0.1) or less). This
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begs for an implicit treatment of the fast acoustic time scales, as they evolve much
more quickly than the advective time scales of physical interest. For this test, we aug-
ment the compressible gas dynamics equations with gravitational acceleration and
viscous stress terms in the momentum equations, and the work done due to gravity
and viscosity in the energy equation. Initially, the fluids are at rest under hydrostatic
equilibrium. The density field is then perturbed acccording to the equations

p(.) = 5 (1 + p2) 3 (p2 = p) tanhly (2, )],

N
v(x,y) =y — % Z exp[—o(k — 2)?] [ay cos(kx) + ag sin(kx)] .
k=1

We set p1 = 1 and p2 = 2 (i.e. Atwood ratio is one-third), where aj, as are random
amplitudes in the interval [—0.5,0.5] and ¢ = 0.01. The domain of investigation
is [-7/2,7/2] x [—6,6], with boundary conditions as outflow in y and periodic in
x. We set the Froude number to 10 and Reynolds number to 10°. Snapshots of
the density field at ¢+ = 0,400 are shown in Figure 4.2 for a 2562 mesh simulation
computed with a time step of At = 0.25. In this simulation the peak Mach number
varied from 0 at ¢ = 0 to approximately 0.011 at ¢ = 400. In Figure 4.3 we present

Density, t=C

Density, t=40C

F1G. 4.2. Snapshots of the p in the Rayleigh-Taylor test at t =0 (left) and t = 400 (right).

solver results, in which the preconditioned approach takes considerably fewer linear
iterations for all time step sizes and spatial discretizations used. The CPU data in
Table 4.2 demonstrates that for very small time steps and coarse meshes, the cost of
preconditioning outweighs the runtime benefit resulting from the reduced iterations.
For larger time steps or better-refined meshes, the preconditioned simulation again
significantly outperforms the un-preconditioned solver.

4.3. Kelvin-Helmholtz Tests. We now investigate a more strenuous MHD
problem, the Kelvin-Helmholtz test [11, 27]. This instability exhibits a large growth
rate, and the dynamics quickly become nonlinear with tightly-coupled, highly inhomo-
geneous fields. We therefore consider this to be a “worst-case” test problem (among
stiff MHD tests) for this preconditioning approach. The test should require multiple
Newton iterations per time step, each requiring re-computation of the characteristic
decomposition for projection onto individual waves. In addition, the test will signifi-
cantly tax the splitting errors induced through the preconditioner formulation.
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4
1 x 10
—6—No Prec, At=1e-1
~O"FW Prec, At=1e-1
gl —8—No Prec, At=2e-1
~@FW Prec, At=2e-1
—6—No Prec, At=4e-1
< FW Prec, At=4e-1

Total Krylov Iterations (2D Rayleigh Taylor)

Krylov iterations

6412 1282 25612
mesh size

Fic. 4.3. Krylov iterations for the 2D Rayleigh Taylor tests.

[ Mesh | At [[ NP Time | FW Time |

647 0.1 145.41 269.35
642 0.2 119.33 134.73
642 0.4 139.82 106.79
1282 | 0.1 1129.5 1365.5
1282 | 0.2 1157.8 678.36
1282 | 0.4 1502.7 581.49
2562 | 0.1 9791.4 7594.5
2562 | 0.2 13862 3773.3
2562 | 0.4 18951 3525.9
TABLE 4.2

Runtimes for 2D Rayleigh Taylor tests. Comparable explicit simulation times were 225.39,
3168.8 and 25404.0 seconds for the 642, 1282 and 2562 tests, respectively.

We set the computational domain to [—%, %} X [—%, %] X [—%, %], with periodic
boundary conditions in the z and z directions, and homogeneous Neumann boundary
conditions in the y direction. We initialize the constant fields p = 1, B = (0.1, 0, 10),
p =025 ~v=2and uy = u. = B, = 0. We then set u, = % tanh(100y) +
1—10 cos(O.wa)—!—% sin(3ﬂ'y)—|—% cos(0.872), and initialize the total energy to e = %—F
%|B|2 + §|u|2. This problem employs the resistive MHD equations, with resistivity,
viscosity and heat conduction coefficients set to 10~%, and all runs are taken to a
final time of Ty = 2. As previous results on this problem suggest that the instability
growth rate is independent of the size of the resistivity, such small parameters are
natural since the instability is predominantly driven by nonlinear (hyperbolic) effects
[6, 24, 27]. Moreover, for these parameters, Ty = 2 is well within the nonlinear
evolution regime for this problem. The 2D tests ignore the z contribution to u,, while
the 3D tests replace GMRES with a BiCGStab linear solver using a maximum of 500
iterations.

Snapshots of the  and z components of the (initially homogeneous) magnetic
field at t = 2 are shown in Figure 4.4 for a 2562 mesh simulation computed with
a time step of At = 0.0025. Throughout this simulation, the number of nonlinear
iterations ranged from 1 to 3, with the associated preconditioned Krylov iteration
counts beginning at 6 and ending at 13 per time step. Solver results for these tests
are shown in Figure 4.5 and Table 4.3. The 3D non-preconditioned solver could not
converge within the allowed iterations at At = 0.01 for larger mesh sizes, and could
not converge at At = 0.02 for any but the coarsest mesh. For all time step sizes
and all spatial discretizations used, the preconditioner results in significantly fewer
linear iterations, with the disparity growing as the mesh is refined. However for small
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e i

F1G. 4.4. Snapshots of By (left) and B (right) in the 2D Kelvin Helmholtz test at t = 2.
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Fic. 4.5. Krylov iterations for the 2D (left) and 3D (right) Kelvin Helmholtz tests. The 3D
non-preconditioned solver could not converge within the allowed iterations for many of the At = 0.01
runs, or for nearly all of the At = 0.02 runs, so those portions of the curves are omitted.

time steps and coarse spatial meshes we again see that the cost of preconditioning
outweighs the runtime benefit due to the reduced iteration count. At larger time step
sizes and for more refined meshes the preconditioned simulation is the clear winner.

4.4. Weak Scaling Tests. We also consider the scalability of this approach as
both the problem size and number of processors are increased (i.e. weak scaling). Here,
all problem specifications match those in earlier tests, except that the final time is
reduced to Ty = 0.5. We plot total wall-clock time and total linear iterations required
as we increase the computational mesh proportionately with the number of processors.
Perfect weak scaling of these quantities would be represented by a horizontal line.

Results for the obliquely-propagating linear wave test problem and both 2D and
3D Kelvin Helmholtz test problems are presented in Figure 4.6. On the linear wave
tests we note that the requisite linear iterations for convergence scales almost perfectly
for all time step factors. While the linear iterations scale ideally, we note that CPU
scaling depends on both a constant number of linear iterations and the scalability
of the inner parallel periodic tridiagonal solver. The plot therefore investigates the
scalability of this inner linear solver, showing modest increases in CPU time as the
problem size is increased, with good scaling up to p &~ 1000 for these 2D tests.

For the more strenuous Kelvin Helmholtz tests we see how the preconditioner
accuracy comes into play for moderate to large problem sizes. Here the 2D tests
exhibit a slow growth in linear iterations up through p ~ 256, while the 3D tests show
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[ Mesh | At [ NP Time | FW Time | [ Mesh | At [[ NP Time | FW Time |
647 0.0025 267 359 167 0.005 84.2 141.1
642 0.005 220 204 16° 0.01 64.7 72.6
642 0.01 228 117 16° 0.02 141.0 52.4
1287 | 0.0025 1720 1720 323 0.005 1044 1236
1282 0.005 1740 980 323 0.01 1368 790.5
1282 0.01 2170 731 328 0.02 — 729.6
2562 | 0.0025 16200 9950 64 0.005 16393 12510
2562 0.005 19800 6170 643 0.01 — 7893
2562 0.01 26000 8050 643 0.02 — 10037

TABLE 4.3

Runtimes for Kelvin Helmholtz tests: left is 2D, right is 3D.

good scalability in linear iterations for all but the largest At. Such behavior could
be due to either an increase in splitting inaccuracy or an increase in the second-order
(viscous and resistive) terms that are left un-preconditioned with this formulation.
These increases in linear iterations are borne out in the CPU scalings, where we
notice a steady increase in required CPU time. Even with those increases, however,
we point out that in 3D the required CPU time only goes up by about a factor of 6
in scaling up from 1 to 1000 processors.

4.5. Preconditioner Optimizations. In the preconditioner formulation from
Section 2, a number of optimizations are readily apparent. We examine three such
changes here: preconditioning only a subset of the MHD waves, omitting the local
correction solve Piyca1, and freezing the eigen-decomposition used in the preconditioner
to the initial condition. Each may provide increased efficiency over the full approach
used in the previous results. For problems whose stiffness results from only the fastest
MHD waves, preconditioning the slow waves may not contribute to the accuracy of
the overall approach and may therefore be omitted. For problems that are close to
spatially-homogeneous, the correction matrix Poca1 =~ I, and hence may be omitted.
Lastly, for problems that do not deviate far from their initial conditions, the eigen-
decompositions J, = R,A. L, may remain nearly unchanged throughout a simulation,
and therefore the initial decomposition could be reused.

We investigate such optimizations on both the oblique linear wave test and the
2D Kelvin Helmholtz test problems in Tables 4.4 and 4.5. Here, the preconditioners
include the standard 8 wave approach above (Prec = 8), the 8 wave approach without
the correction solve (Prec = 8 NC), the 8 wave approach without correction that is
frozen on the initial condition (Prec = 8 NC-f), the non-corrected 4 wave formulation
(Prec = 4 NC), and the non-corrected 2 wave formulation (Prec = 2 NC). We tested
each of these approaches on a variety of spatial discretizations and time step factors
(C = At/Atcpr,). All simulations were performed for 50 time steps, and we present
values of both the total linear iterations (Krylov) and the total run time (CPU). As
demonstrated in these results, such optimizations can indeed provide benefits over
the full preconditioner formulation; however it is difficult to a priori determine the
best formulation for a given problem, as the optimal approach appears to be problem
dependent. However, in most circumstances it appears that the splitting correction
solve Poca may both slow convergence of the Krylov iteration and contribute to
unnecessary overhead in the preconditioner evaluation.

5. Conclusions. We have introduced a preconditioner designed to alleviate
stiffness induced by fast hyperbolic effects for problems posed on structured grids.
Through splitting the implicit operator into its directional components along each
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F1G. 4.6. Weak scaling results for the oblique wave (top row), 2D Kelvin Helmholtz (middle
row) and 8D Kelvin Helmholtz (bottom row) tests: linear iterations on left, CPU time on right.

axial direction and then using the characteristic decomposition of the linearized op-
erator appropriately, we approximate the solution to a multivariable 3D hyperbolic
operator with a sequence of single-valued tridiagonal solves. Moreover, through us-
ing the characteristic decomposition we may choose to precondition any number of
components, namely only those contributing the greatest stiffness to the problem.

Such an approach is not limited to uniform grid calculations. Block-structured
AMR methods discretize PDEs with a hierarchy of regular grids to adaptively refine
around regions of interest [3, 4, 39]. For such problems, Fast Adaptive Composite linear
solvers are often used, which employ fast uniform-grid algorithms on each level in an
iterative fashion to achieve the solution on the hierarchical composite mesh [31, 33, 34].
This preconditioning approach could easily be utilized in such an method.

As a result of the splittings on which this preconditioner is based, its accuracy
may be limited by the time step size, the strength of propagation in directions oblique
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C =50 | C=50 C =100
Mesh Prec Krylov

C =100 H C =250 ‘ C:250‘

CPU Krylov CPU Krylov CPU
128 x 128 8 1.0 0.6 1.0 0.6 1.0 0.6
128 x 128 8 NC 1.0 0.4 1.0 0.4 1.0 0.4
128 x 128 8 NC-f 1.0 0.4 1.0 0.4 1.0 0.4
128 x 128 | 4 NC 1.0 0.4 2.7 0.7 1.2 0.4
128 x 128 | 2 NC 1.0 0.5 2.7 0.6 1.2 0.4
256 x 256 | 8 1.0 2.8 1.0 2.8 4.0 5.1
256 x 256 | 8 NC 1.0 2.1 1.0 2.2 3.8 3.7
256 x 256 8 NC-f 1.0 2.1 1.0 2.1 3.8 3.7
256 x 256 4 NC 1.1 2.0 1.0 2.0 3.6 3.5
256 x 256 | 2 NC 1.1 2.1 1.0 2.1 3.6 3.7
512 x 512 8 1.0 13.1 1.1 12.7 1.8 15.0
512 x 512 | 8 NC 1.0 10.1 1.0 9.7 7.8 27.9
512 x 512 8 NC-f 1.0 10.1 1.0 9.7 7.8 28.0
512 x 512 4 NC 1.4 11.4 3.2 14.2 7.8 25.5
512 x 512 2 NC 1.4 11.7 3.2 16.4 7.8 30.2

TABLE 4.4

Comparisons of average linear iterations and CPU time per time step for various ‘optimizations’
on the oblique linear advection test.

C=25 | C=25 C =50 | C =50 C =100 | C =100

Mesh Prec Krylov CPU Krylov CPU Krylov CPU
128 x 64 8 15.8 1.9 27.1 2.8 95.7 9.4
128 x 64 8 NC 14.7 1.3 27.3 2.0 65.9 4.8
128 x 64 8 NC-f 13.9 1.1 21.0 1.6 42.6 2.8
128 x 64 4 NC 14.7 1.1 27.2 1.8 66.2 4.2
128 x 64 2 NC 14.8 1.0 26.3 1.6 65.1 3.7
256 x 128 8 13.6 8.8 23.9 11.2 72.3 30.5
256 x 128 | 8 NC 12.4 5.9 22.6 7.3 56.2 17.0
256 x 128 | 8 NC-f 11.8 5.3 17.9 5.9 29.9 8.7
256 x 128 4 NC 12.4 4.3 22.5 6.5 56.8 14.7
256 x 128 2 NC 11.4 3.4 21.1 5.5 54.5 13.0
512 x 256 8 10.7 29.1 21.2 49.4 58.8 122.2
512 x 256 | 8 NC 9.0 18.9 18.8 33.5 48.1 84.6
512 x 256 | 8 NC-f 10.0 19.3 14.4 25.8 26.7 44.8
512 x 256 | 4 NC 9.0 16.0 18.1 27.2 49.9 69.1
512 x 256 2 NC 9.4 14.9 17.3 23.9 45.8 55.4

TABLE 4.5

Comparisons of average linear iterations and CPU time per time step for various ‘optimizations’
on the 2D Kelvin-Helmholtz test problem.

to the coordinate axes, the spatial inhomogeneity of the fluxes that give rise to the
local correction matrix Pocal, and the number of waves that are treated with the
preconditioner. However even with such approximations, we have demonstrated its
effectiveness on a variety of problems that have been designed to exercise each of
these error-inducing terms. All of these tests have one similarity in common — they
are numerically stiff, having dynamical time scales that occur orders of magnitude
more slowly than the fastest wave effects. In fact these are precisely the type of
problems that require implicit methods; otherwise standard explicit-time approaches
prove more efficient. We note that in a previous paper, we have shown that non-
preconditioned implicit methods can result in tremendous efficiency improvements
over explicit methods on stiff MHD problems [37]; through this preconditioning ap-
proach we have further improved the efficiency of such implicit simulations.

We have also investigated the weak scaling performance of the preconditioned
implicit solver on a number of tests. In each case, the preconditioned solver scaled
well as the problem sizes (and processor counts) were increased, even demonstrating
nearly-ideal weak scaling in linear iterations for moderate processor counts (p < 256
in 2D, and p < 1728 in 3D). In those tests where the weak CPU scaling deteriorated,
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the number of linear iterations required for convergence did not increase dramatically,
indicating that improvements could still be made in the parallel implementation of the
preconditioning approach (the parallel tridiagonal solver), extending its effectiveness
to increasingly large processor counts. We intend to investigate this issue, as well as
approaches for reducing the splitting error, in future work.
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Colella during the course of this work.
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Appendix A. Solenoidal Preservation in Implicit MHD Solutions.

In this section we show that the use of fully implicit methods based on matrix-free
inexact Newton-Krylov algorithms retains the solenoidal condition on the magnetic
field for MHD calculations. To demonstrate this preservation, we first summarize the
structure of these algorithms before moving on to the theoretical result.

In solving the nonlinear root-finding problem f(U™) = 0, given in (2.2), inexact
Newton methods generate a sequence of iterates {U;} that converge to the time-
evolved solution U™ as follows [25]. Given an initial guess Uy (typically chosen as some
convex combination of previous states, Uy = > axU" % 3 a; = 1), and nonlinear
and linear tolerances e and J, the sequence {U;} is generated through the steps:

(i) Solve J(U;)V; = —f(U;) for V; such that ||J(U;)Vi + f(Us)]| < 0.

(ii) Set Uiy1 =U; +V;, and if || f(Usv1)|| < ¢, stop.

In solving the systems (i), matrix-free Krylov methods [16] generate another sequence
of iterates {Si} converging to V;, where each iterate is chosen from the subspace

Kk(jaf):Span{fvjf7j2f7"'vjkf)}v (Al)
and where J approximates the Jacobian via a finite-difference,
JUWV = [f(U+0oV)— f(U)] Jo = JU)V + O(0). (A.2)

For solution algorithms of this type, we have the following result.

THEOREM A.1. If the spatial semi-discretization of (V - F(U)) is commutative,
i.e. 8§y = 8595, then the above algorithm applied to (2.2) exactly preserves an initially
solenoidal magnetic field, for any nonlinear and linear tolerances ¢ and ¢.



20 D.R. REYNOLDS, R. SAMTANEY AND C.S. WOODWARD

Proof. We first define the space of all constraint-preserving discrete states,
V={U=(p,pu,B,e)’ € R* | V-B =0}.

Here N is the spatial discretization size. Due to the homogeneous linear constraint
V-B =0,V is a vector space, since for any U,V € V and a, 8 € R, V- (aU + V) =
aV-U+BV-V =0, hence (aU + 3V) € V and by the vector space structure of IRV
the vector space structure of V follows.

Let Fp(U) correspond to the B flux components, Fp(U) = V x E, where from
Ohm’s law the electric field E = —ux B+nV xB,so V- (V- Fg(U)) =V-(V xE).
While this identically equals zero on the continuum level, at the discrete level

V- (VXE)=0,(0,E. —0,Ey) + 0y(0,E, — 0, E.) + 0,(0, B, — 0y Ey)

zy

which only equals zero if the spatial discretization is commutative, which holds by
assumption. Hence, given any element U € V, (V- F(U)) € V.

Therefore if U € V, f(U) € V since f(U) is formed as a linear combination
of elements in V. Moreover, the Krylov subspace Kk(j ,f) €V, due to the finite-
difference approximation .J that recursively forms K(J, f) out of elements in V.
Additionally, the updated solution is formed as the linear combination U™ = Uy +
> Vi, where V; € Kk(j, f). Lastly, since the initial guess Uy = > axU"F € V is
the starting point for the iteration, and we begin the simulation with an initially
solenoidal magnetic field, the updated solution U™ € V as well. O

The salient features of this argument require that (a) the spatial semi-discretization
is commutative, and (b) the Krylov algorithm is both matrix-free and not precondi-
tioned. The first of these requirements is not met when upwind spatial discretizations
based on Riemann or approximate Riemann solvers are used [2, 14]. For precondi-
tioned simulations, the Krylov subspace is formed with the preconditioned operator,
ie. Kk(Pj , /), and hence a preconditioner may push the solution off of the con-
straint manifold. While we do not show that the preconditioned system satisfies the
constraints, we have observed minimal deviation from the solenoidal property in our
tests to date, as shown in Figure A.1. We note that a proof demonstrating similar
behavior regarding the global conservation of mass, momentum and energy (exact
conservation without preconditioning for any e and §) may be found in [7].
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Fic. A.1. V - B results due to preconditioning. Oblique wave propagation on a 256> mesh
with At ~ 0.15 (left); 2D Kelvin Helmholtz on a 5122 mesh with At ~ 0.006 (right). While
preconditioning increases |V -B| error (worst with Plyeq;), it remains well below simulation accuracy.






The Princeton Plasma Physics Laboratory is operated
by Princeton University under contract
with the U.S. Department of Energy.

Information Services
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543

Phone: 609-243-2750
Fax: 609-243-2751
e-mail: pppl_info@pppl.gov
Internet Address: http:/www.pppl.gov



	M_Richman_extender.pdf
	Background
	Extender
	Parallel Algorithms

	Speed Optimization
	Efficient Parallelization
	Optimizing Representation of Plasma Surface
	Results


	Automation
	Fortran 90 module
	Generalized PBS job scripts

	Conclusion
	PBS batch job template


	report number: 4377
	Title: Operator-Based Preconditioning of Stiff Hyperbolic Systems
	Date: February, 2009
	authors: Daniel R. Reynolds, Ravi Samtaney, And Carol S. Woodward


