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Abstract. This paper presents a new framework for modeling light interception by isolated trees
which makes it possible to analyze the in�uence of structural tree organization on light capture. The
framework is based on a multiscale representation of the plant organization. Tree architecture is
decomposed into a collection of components representing clusters of leaves at di�erent scales in the
tree crown. The components are represented by porous envelopes automatically generated as convex
hulls containing components at a �ner scale. The component opacity is de�ned as the interception
probability of a light beam going through its envelope. The role of tree organization on light capture
was assessed by running di�erent scenarii where the components at any scale were either randomly
distributed or localized to their actual 3D position. The modeling framework was used with three-
dimensional digitized fruit trees, namely peach and mango trees. A sensitivity analysis was carried
out to assess the e�ect of the spatial organization in each scale on light interception. This modeling
framework makes it possible to identify a level of tree description that achieves a good compromise
between the amount of measurement required to describe the tree architecture and the quality of the
resulting light interception model.

Key words. multiscale modeling, light interception, three-dimensional (3-D) modeling, functional-
structural modeling, porous envelope, clumping, fruit trees

1. Introduction. Light capture by plants is an essential process for plant growth
and survival. Indeed light provides plants with energy which can be used for carbon
�xation through foliage photosynthesis and for transpiration which allows water and
nutriment transport within the plant [19]. Light interception by plants foliage is
governed by simple basic principles: photons coming from the sun direction (direct
radiation) and the whole sky hemisphere (di�use radiation) may be intercepted by
the plant elements or transmitted onto the soil surface if they pass in the foliage gaps.
Intercepted photons may then be absorbed or scattered in any direction. Scattered
photons may then either be intercepted again or leave the canopy.

The interception process can be seen as the intersection between the photon tra-
jectory � a line � and the plant organ. It thus only depends on the canopy structure,
i.e. the spatial distribution of the plant organs, and organ geometry, namely shape,
size and orientation [36]. If the detailed three-dimensional (3D) geometry is known,
light interception can be easily and accurately computed by using 3D computer plant
mock-up. Ray-tracing methods [13], Z-bu�er approach [13] or plant image processing
[41] can be used. Although accurate, this class of computation methods shows several
shortcomings. First, it does not allow one understanding which structural features
are the main determinants of light interception by plants. Second, although methods
exist to exhaustively measure the detailed 3D geometry � in particular 3D digitizing
[38] �, these techniques are very tedious and do not allow describing large sets of
large trees. Third if scattering is computed, the algorithm complexity dramatically
increases due to multiple interception-scattering events and the high number of traced
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photons needed for convergence. Fourth, even though the basic processes are com-
puted without any assumption, the simulation results are sensitive to measurement
errors in the detailed canopy structure and in the optical properties of plant organs.

For more than 50 years, more simple approaches have been proposed to estimate
light interception by plants [23]. The most common approach abstracts the plant
canopy as a turbid medium [36], i.e. a medium made of in�nitely small foliage parti-
cles randomly dispersed in the vegetation volume and thus having a uniform optical
density, i.e. transparency. In such medium, light penetration can be expressed by the
Beer-Lambert law, i.e. the probability that a photon crosses the vegetation volume
without any interception can be written as

p0 = exp(−G.LAD.L) . (1.1)

Hence, p0 is the probability of zero-interception and corresponds to the canopy poros-
ity. LAD is the leaf area density and G is the extinction coe�cient, namely the
projection coe�cient of plant elements on a plane perpendicular to the direction Ω
[36]. G depends on the angle between Ω and the normal of the plants elements. The
product G.LAD can be regarded as the optical density of the vegetation. Note that
leaves are usually the only elements taken into account because they represent the
solar collector of the plant. Finally L is the distance travelled by the photons in the
canopy. If scattering is disregarded which is the case in this study where we focus on
the e�ect of canopy structure on light interception, the intercepted light is propor-
tional to p = 1 − p0, i.e. the probability of light interception that de�nes the canopy
opacity.

For a photon direction Ω, the distance L is constant for horizontally homogeneous
vegetation canopies, e.g. grasslands. However for tree crowns, L depends on the point
where the photons enter the canopy. Usually, tree crowns are abstracted by envelopes
and beams are sent from a grid of points above the tree. The contribution of each
beam to light interception is then summed up to compute total light interception
probability in this direction. Finally the contribution of each direction Ω is summed
up by weighting each directional probability with the fraction of incident radiation
coming from direction Ω. Several light interception models for tree crowns are based
on these principles [8, 22]. However the assumption of uniform random distribution
of leaf elements is rarely veri�ed in actual tree crowns [46, 11, 38]. Indeed leaves are
grouped around shoots, with higher density at the crown periphery. This leads to an
overall clumped dispersion of the foliage, non-uniform LAD distribution and lesser
interception by crowns showing foliage clumping. The simplest way to deal with the
non-random location of leaf elements is to introduce a leaf dispersion parameter µ in
the Beer-Lambert equation

p0 = exp(−G.µ.LAD.L) . (1.2)

Parameter µ equals 1 for random distribution. It is lesser than 1 for clumped foliage,
i.e. crown porosity, p0, is higher, and µ could be greater than 1 if foliage would
show regular dispersion. Indeed the product µ.LAD can be regarded as the LAD of
equivalent random canopy showing the same porosity. Thus a clumped canopy shows
a higher porosity and therefore a lower equivalent LAD, i.e. µ < 1.
The parameter µ possibly changes with direction Ω [27] and botanical parameters
[26, 6]. However there is not yet a clear knowledge about the structural parameters
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determining the degree of foliage clumping, although Sinoquet et al. [40] have showed
that µ is related to the spatial variations of LAD.

Two other approaches have been proposed to deal with non-random and non-
uniform foliage. In the �rst one, the crown volume is divided into voxels, and a value
of LAD is assigned to each voxel [20, 10, 25]. This approach shows two shortcomings.
On the one hand, computed light interception depends on voxel size [21, 39]. On the
other hand, assigning LAD values to each voxel needs a huge amount of �eld mea-
surements [10]. The second approach is based on the botanical multiscale structure
of trees, and was applied to conifer species. Norman and Jarvis [28] assumed that
spruce crowns were made of whorls regularly distributed along the trunk, with shoots
randomly distributed in whorls and needles randomly dispersed in shoots. Oker-Blom
and Kellomaki [30] proposed a simpli�cation of Norman and Jarvis' approach, where
shoots were directly distributed at random in the tree crown of Scots pines. This kind
of model, called grouping model, better takes into account the foliage distribution
according to the plant organization at several scales. It allows better rendering of
foliage clumping without introducing a calibration parameter µ.

The objective of this study was to develop a general modeling framework for
computing light interception by single tree crowns. This framework includes most
of the previously proposed methods in a unifying formalism: 3D plant mock-ups vs.
turbid medium, mono- vs. multiscale approaches. This modeling framework is aimed
at better understanding the e�ects of the crown organization on light capture at the
whole tree scale, i.e. giving meaning to µ. The expected outcome of this study is to
de�ne ways of describing canopy structure as simple as possible and allowing accu-
rate estimation of light interception, without the need of introducing any empirical
dispersion parameter µ. In this paper, this approach was applied to a collection of
fruit trees, namely four peach and four mango trees.

2. Modelling framework. At a macroscopic level, the problem consists of es-
timating the amount of direct radiation intercepted by a vegetal component x (rep-
resenting either the entire plant crown or a sub-branching system) for each direction
Ω of incident light. Light interception is computed in terms of STAR, Silhouette to
Total Area Ratio:

STAR
△
=

PLA

TLA
, (2.1)

where PLA (m2) is the Projected Leaf Area on a plane perpendicular to the incident
direction Ω (i.e. the leaf area which intercepts light in direction Ω) and TLA (m2)
is the total leaf area [5, 31]. The STAR is thus the relative irradiance of leaf area.
To take into account the clumping of leaves in plant crowns, this de�nition can be
extended to the case where a canopy is decomposed into groups of leaves rather than
directly into leaves. Groups of leaves can be regarded as macroscopic plant compo-
nents, corresponding for instance to particular branching systems in the plant. In this
case, the notion of PLA must be rede�ned since it now refers to the projected area
of these coarser components, which are not entirely opaque. For this, we assume that
the shape of a component x can be globally characterized by its convex envelope. Ac-
cording to [18], the PLA of x, denoted PLAx, can then be de�ned from the projected
surface of the component envelope by introducing its opacity px in direction Ω [40]
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PLAx
△
= PEAx.px , (2.2)

where PEAx is the Projected Envelope Area of x in the direction Ω and px can be
regarded as the probability of photon interception in the projected envelope. Recip-
rocally, 1−px is the envelope porosity. In the case of such multiscale plant structures,
our original question thus amounts to estimating the opacity of the coarse components
that are identi�ed at di�erent scales. Intuitively, the opacity in a particular direc-
tion Ω of such components, composed themselves of sub-components (such as leaves
or smaller branching systems) with de�ned shapes is controlled by two independent
factors:

1. On the one hand, it depends on the opacity of the sub-components themselves
2. On the other hand, it depends on the spatial distribution of the subcom-

ponents, and more precisely, on how much the sub-component silhouettes
overlap when observed from direction Ω.

In the case of opaque subcomponents (e.g. opaque leaves in a tree crown) the opacity
of the composed object in a given direction Ω is solely a function of the directional
overlapping. In the case of porous sub-components, the opacity is the result of these
two factors applied to the smaller components. Possibly, the sub-components can
themselves be decomposed into smaller components with their own opacity.

In this section, we �rst brie�y recall how the structural organization of a plant can
be formalized within a multiscale framework [15, 3]. We then show how to compute
the porosity factors of these elements and use the resulting hierarchical structure to
compute light interception. We then show how sensitivity analysis of the model can
be carried out to determine the in�uence of each scale of the hierarchy in the light
interception.

2.1. Multiscale representation of plants. Plant 3D mock-ups are repre-
sented by sets of geometric components for which the shape, size, spatial co-ordinates
and orientation of each component are well de�ned (Fig. 2.1 a.). These informations
can be obtained either from direct measurements [38, 17] or from simulation models
of plant architecture [35, 12]. In both cases, the multiscale structural information
is described as a Multiscale Tree Graph (MTG) [15]. At each scale i (i = 1 . . . n),
the plant is regarded as a set of botanical components (e.g. branches, shoots, leaves)
arranged as a rooted tree-graph. Components at a scale i are made of components at
scale i+1 and together de�ne a partition of the set of components at scale i+1. Scales
1 corresponds to the whole tree and scale n to the set of leaves (a MTG includes at
least these two scales), (Fig. 2.1 d.) Each component is associated with a shape. At
the leaf scale (i = n), components (leaves) are represented with a set of polygons. At
the other scales (i 6= n), component shapes are convex hulls containing the shapes of
their subcomponents (Fig. 2.1).

2.2. Multiscale model of light interception. Using this framework, for each
component j at any scale i, both STARi,j and PLAi,j values can be derived from
equations 2.1 and 2.2:

STARi,j =
PLAi,j

TLAi,j

, (2.3)

PLAi,j = PEAi,j .pi,j , (2.4)
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Fig. 2.1. 4 scales decomposition of an arti�cial tree. Leaves are represented by a set of
geometric models (a.). Leafy modules are de�ned here by botanical branching order 2 (b.), 1 (c.)
and 0 (d.). Illustration from [3].

where PEAi,j is the projected envelope area of the component j at scale i and pi,j is
its envelope opacity. For leaves (i.e. components at scale n), PLAn,j and STARn,j

are simply the projected area of the leaf and the extinction coe�cient of the leaf, re-
spectively [36]. At other scales i (i 6= n), components j are porous objects containing
subcomponents at scale i + 1.

In the sequel, we shall show how such a multiscale organization of plants can be
used to compute recursively the opacity of a plant crown and to interpret the light
interception properties of the plant at di�erent scales.

At each scale i and for each component j at this scale, the envelop opacity pi,j can
be estimated by casting a set of regularly spaced beams in the envelope. Let Bi,j be
the set of beams intersecting with component j at scale i. The origin of beams b (b =
1 . . . Bi,j) can be obtained from the cell centers of a regular grid perpendicular to the
direction Ω and positioned above the tree. Each beam is a�ected with a cross-section
area, Ab, corresponding to the surface area of a grid unit element. Consequently we
can associate a volume Vb

i,j with each beam b

Vb
i,j = Lb

i,j .Ab , (2.5)

where Lb
i,j is the travelling distance of beam b in component j. Based on the beam

sampling we can de�ne estimators V̂i,j and P̂EAi,j of the volume and projected area
of the envelope of component j at scale i

V̂i,j
△
=

Bi,j∑

b=1

Vb
i,j and P̂EAi,j

△
=

Bi,j∑

b=1

PEAb
i,j = Bi,j .Ab . (2.6)

The beam sampling must be dense enough to verify that V̂i,j and P̂EAi,j provide
good estimates of Vi,j and PEAi,j . With such a beam sampling, an estimator of the
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Fig. 2.2. Beam
sampling illustration

using a 3-scale com-

ponent representation.

A component j at scale i

is discretized using a Ω-
oriented beam sampling
where each beam b has the
same cross-section area,
Ab, but a speci�c length
in its envelope, Lb

i,b
, and

therefore a speci�c vol-
ume, Vb

i,j . PEAi,j is the
projected envelope area
onto a plane orthogonal to
the direction Ω.

envelope opacity, pi,j , can be de�ned as the mean of beam opacities pb
i,j

p̂i,j
△
=

1

Bi,j

Bi,j∑

b=1

pb
i,j . (2.7)

At any scale (i < n), the model includes two options for computing opacity of a
component. The �rst one (called option A) takes into account the Actual geometry
of sub-components in the component envelope. The second one (option R) uses the
turbid medium analogy, i.e. assumes subcomponents to be Randomly distributed in
the envelope volume with uniform density.

Opacity computation in option A. The actual geometry of each subcomponent
k in any envelope j at scale i is taken into account. For each beam of the grid
positioned above the tree crown, the opacity pb

i+1,k of subcomponent k, de�ned as
its light interception probability, can be computed from the intersection between the
beam and the subcomponent. If the subcomponent is intersected by the beam, i.e.
pb

i+1,k > 0, the value of pb
i+1,k is 1 for a solid object, e.g. a leaf, and lesser than 1 for

a porous object. If the subcomponent k is not intersected by the beam pb
i+1,k = 0,

therefore the contribution pb
i,j of beam b to the opacity of envelope j is computed by

taking into account all subcomponents k, of scale i + 1, included in j

pb
i,j = 1 −

nj∏

k=1

[
1 − pb

i+1,k

]
. (2.8)

Note that the product is due to the sequence of subcomponents intersected by the
beam b but the restriction to these particular subcomponents is made through the
value of their beam opacities. Indeed, the above equation shows that pb

i,j equals 0 if
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all pb
i+1,k are equal to 0, and pb

i,j equals 1 as soon as a subcomponent k intersected by

beam b is opaque, pb
i+1,k = 1. For instance, the latter happens when subcomponents

are leaves, i.e. i + 1 = n. When i + 1 6= n the value of pb
i+1,k is in [0, 1] depending on

the options of �ner scales, see Fig. 2.3.

Opacity computation in option R. In option R, subcomponents are randomly and
uniformly distributed. The probability that the beam b is not intercepted by the
component j at scale i is computed from the product of gap fractions produced by
each subcomponent k, of scale i + 1, included in j [39]. The gap fraction for a beam
b due to the subcomponent k at scale i + 1 is de�ned as the fraction of Ab free of the
subcomponent projection, i.e.

Ab − PLAb
i+1,k

Ab

,

where PLAb
i+1,k is the portion of component k area projected onto the beam cross-

section area, i.e. the restriction of PLAi+1,k to the beam b. The probability of no
interception, assuming independence between events, is

p0
b
i,j =

nj∏

k=1

[
1 −

PLAb
i+1,k

Ab

]
. (2.9)

In Eq.(2.9), the product expresses the e�ect of the uniform random distribution of

leaves on the beam opacity in envelope j. Moreover, one can see that
PLAb

i+1,k

Ab
is

exactly the probability of beam interception by component k

pb
i+1,k =

PLAb
i+1,k

Ab

, (2.10)

this leads to

pb
i,j = 1 − p0

b
i,j = 1 −

nj∏

k=1

[
1 − pb

i+1,k

]
. (2.11)

Eq.(2.11) is exactly the same as Eq.(2.8) found in the case of actual distributions
of components k in the envelope j. However, they di�er by the interpretation of the
product : in option A, the product expresses the sequence of components k intersected
by the beam b, while in option R, it expresses the random position of components.
This analogy between both equations is further investigated in section 5.3.

In option R, we thus need to compute PLAb
i+1,k for each beam. To carry out

this computation, we use the assumption of uniform density of foliage which make it
possible to write

PLAb
i+1,k

Vb
i,j

=
PLAi+1,k

Vi,j

, (2.12)

as Vb
i,j = AbL

b
i,j , Eq.(2.10) and (2.12) can be combined to express opacity pb

i+1,k

pb
i+1,k =

PLAi+1,k V
b
i,j

Ab Vi,j

=
PEAi+1,k pi+1,k L

b
i,j

Vi,j

, (2.13)
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Fig. 2.3. Recursive pattern for computing the PLA of an element through its en-

velope opacity. The combined options of inter-scale distribution determine the path to follow in
this equation scheme. The recursion ends when last scale is reached, this scale must have a known
or �xed opacity. For instance in this study leaf are considered opaque, i.e. opacity = 1. Hence for
all-A scenario the value of every pb

i,j is either 0 or 1, for all i and j.

Eq.(2.11) can then be written

pb
i,j = 1 −

nj∏

k=1

[
1 −

PEAi+1,k pi+1,k L
b
i,j

Vi,j

]
. (2.14)

To summarize, we showed that the opacity of component j at scale i can be
expressed by a unique set of recursive equations that enables us to express PLAi,j for
each (i, j) as

PLAi,j = PEAi,j

1

Bi,j

Bi,j∑

b=1

pb
i,j . (2.15)

This makes it possible to evaluate STARi,j from Eq.(2.3) based on an estimate of
the plant total leaf area [45, 32]. The scheme described in Fig. 2.3 illustrates the
recursive procedure that uses Eq.(2.8) or Eq.(2.14) depending on the scenario. It can
be used with any number of scales and either option A or R can be independently used
at each scale.

2.3. Assessing light interception. Using this modeling framework, any par-
ticular scale can be added, removed or its spatial distribution switched from one
option to another, e.g. changing the actual position of leaves (option A) to the hy-
pothesis of random distribution of leaf area density (option R). This will be used to
analyze the in�uence of one speci�c scale in light interception. In case of a crown
�lled with leaves, i.e. the number of scales is two, option A corresponds to the actual
leaf distribution within the crown, e.g. as digitized in the �eld. Otherwise, option
R leads to the basic random distributionof leaf area in the tree crown, as used in
many turbid medium models [8, 22]. In case of more scales, scenario corresponding
to the selected combination of options A and R is encoded as a 6string of characters,
containing number of scales minus 1 characters. The �rst and last characters of the
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string refer to scale 2 and scale n, respectively. The option for scale 1 can only be A,
i.e. the actual tree crown. This is why scale 1 is not included in the string. For ex-
ample, let us consider a tree organized in three scales, e.g. crown, shoots and leaves.
A scenario AA would correspond to actual arrangement of shoots within the crown
and to actual arrangement of leaves within shoots. This corresponds to the real plant
structure and is assumed to be the true value. Another example illustrated in Fig. 2.4
is the scenario RR corresponding to the Oker-Blom and Kellomaki's model [30] where
leaves and shoots are randomly distributed in shoots and in the crown, respectively.
In addition, any inner scale (i ∈ [2, n− 1]) can be discarded to distribute components
at scale i directly in envelopes at scale i − 2. Discarded scales are denoted ��� in the
scenario string. For instance, in the example above, the scenario -R means that leaves
are directly randomly distributed in the tree crown. Finally, note that discarding a
scale and then using the actual position is equivalent to use the actual distribution
for the discarded scale, i.e. -A ≡ AA.

AA AR RA RR -R

Fig. 2.4. Example of distribution options for an object with 3 scales, namely crown,
shoot and leaves. Hence a 2-character string represents inter-scale distributions options. AA repre-
sents the actual distribution of leaves in the crown. With AR the actual position of shoots are used
but the opacity of their envelopes are computed with the turbid medium analogy whereas RA uses the
turbid medium analogy for shoots but with their real opacity taken into account. The RR distribution
corresponds to the model where leaves and shoots are randomly distributed in shoots and in the
crown, respectively, i.e. grouping model. Finally, -R uses the turbid medium analogy and supposes
a uniform distribution of leaves in the crown.

As presented in section 2.2, our goal is to estimate for each plant its global light
interception e�ciency in terms of STAR. This e�ciency is evaluated at plant scale,
i.e. i = 1 and j = 1, by integrating directional STAR values over the sky directions
Ω. In the following i and j indexed notations will thus be omitted and the Ω indexed
notation will indicate directional quantities whereas Ω-free notation will stand for
integrated values. Ω-integrated values for STAR and PEA are obtained by summing
up the directional values weighted by coe�cients, ωΩ, derived from the Standard
OverCast sky radiance distribution [37]

STAR
△
=

∑

Ω

STARΩ.ωΩ and PEA
△
=

∑

Ω

PEAΩ.ωΩ . (2.16)

STARΩ values are computed according to Eq.(2.1) from PLAΩ whose evaluation is
described in Fig. 2.3. Originally the leaf dispersion parameter, µ, introduced in Beer-
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Lambert equation as a LAD modi�er, expresses the departure of the actual crown
gap-fraction from the gap-fraction of a crown with random distribution of leaves and
equivalent leaf area density. Indeed, µ is 1 for random distribution of leaves whereas
leaf clumping leading to higher crown porosity yields a µ strictly lesser than 1. It can
be extended to compare two scenarii, expressing a relative dispersion coe�cient, µ,
of a test porosity, p0, against a reference one, p0<ref>. By analogy with the Beer-
Lambert formalism where p0<ref> would be expressed using Eq.(1.1) and p0 using
Eq.(1.2) the following relationship is de�ned [40]

p0 = p0<ref>
µ . (2.17)

Using the complementary relationship between opacity and porosity and equations
(2.1) and (2.2), an Ω-integrated µ value can be expressed as a function of STAR and
PEA

µ =
log

(
1 − STAR. TLA

PEA

)

log
(
1 −

STAR<ref>. TLA

PEA

) . (2.18)

It allows us studying the global or scale by scale spatial organization through the
computation of µ from speci�c scenario. For instance, in the example illustrated in
Fig. 2.4, the de�nition of µ as introduced by Nilson [27] corresponds to comparing
the situation AA to the reference situation -R and is therefore noted µ(AA/-R). The
STAR of these scenarii are noted STAR<AA> and STAR<-R>, respectively. The scale
by scale organization is given by scenarii which di�er by only one letter corresponding
to the studied scale. For instance the shoot distribution within the crown and the
leaves distribution in the shoots are given by the ratio of STAR<AA> to STAR<RA>

and STAR<AA> to STAR<AR>, respectively.

3. Plant database.

3.1. Plant material. Four 4-year old peach trees (variety August Red) were
digitized one month after bud break in May 2001, in CTIFL-Balandran in South-
East of France (43◦83′ N, 4◦35′ E). Two of them were trained as tight goblet (TG)
system, and the two other ones as wide double-Y (WDY). TG is an open center
(goblet-shaped) structure employing several primary sca�olds. Planting distances in
TG system were 6 × 3m. WDY derives from goblet, with larger planting distances,
7×4m, and four primary sca�olds arranged by pairs [14]. Tree height was about 2.5m.

Four 3-year old mango trees grown in a commercial farm were digitized in March
2001 in Saint-Paul, La Réunion Island (20◦53′ S, 55◦32′ E). Two of them belonged
to variety Lirfa, and the two other ones to variety José. A square planting system
was used with a 6-meter distance between trees and a north-west�south-east row
orientation. Tree height was about 1.5m. Full information on peach and mango trees
can be found in [42] and [44], respectively.

3.2. Three-dimensional plant digitizing and reconstruction. All trees
were 3D-digitized with a 3Space Fastrak electro-magnetic device (Polhemus inc.,
Colchester, VT, USA). The digitizer includes a magnetic �eld generator and a pointer
to be positioned by an operator at each point to be measured. The pointer includes
coils where electrical currents are induced when located in the magnetic �elds. The
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Fig. 3.1. Peach tree scale decomposition. Top : top view, bottom : side view and from
left to right : leaves, CYS, OYOS, Sca�old, Crown

Fig. 3.2. Mango tree scale decomposition. Top : top view, bottom : side view and from
left to right : leaves, CYS, Sca�old, Crown

spatial co-ordinates and orientation angles in 3D can be derived from the values of
induced currents [33]. Plant digitizing was driven by software Pol95 [1].

Mango trees were digitized at leaf scale according to Sinoquet et al.'s [41] method.
For each leaf, the pointer was located at the junction between lamina and petiole, with
pointer X − axis parallel to the midrib and pointer X − Y plane parallel to lamina.
With this con�guration, measured angles were midrib azimuth, midrib elevation and
rolling angle of lamina around the midrib. In addition, leaf length was measured
with a ruler. Fifty leaves were harvested for leaf area (A cm2) measurement with a
planimeter, and leaf length (L cm) was measured with a ruler. This sample was used
to set a relationship between A and L2:

A = k.L2 . (3.1)

Coe�cient k was constant for both varieties, with a value of 0.1826. Peach trees
were digitized at the leafy shoot scale according to Sinoquet and Rivet's method
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[38]. For each leafy shoot, the spatial bottom and top co-ordinates of the shoot were
recorded with the digitizer. For each shoot type in each cultivar, namely short and
long (> 5cm) shoots, 15 to 30 shoots were digitized at leaf scale, as described above.
These data were used to establish foliage reconstruction rules for all digitized shoots.
Reconstruction rules included allometric relationships at shoot and leaf scale, random
sampling in leaf angle distributions and additional hypotheses. The reconstruction
method has been fully presented and assessed in [42]. At the same time as digitizing,
the position of the digitized organ in the multiscale tree organization was recorded
using Godin et al.'s method [17]. For mango trees 4 scales were used : plant, sca�old,
current-year-shoot (CYS) i.e. leafy shoot, and leaf. One additional scale was used
for peach trees, i.e. one-year-old shoot (OYOS) between sca�old and CYS scales.
Of course reconstructed peach leaves were assigned to the corresponding digitized
shoot.Finally a database was obtained for each tree, as a collection of leaves explicitly
distributed in 3D space and related to the multiscale organization of the tree.

Table 3.1

Scale by scale component demography and their envelope volume, contained leaf area and LAD.
Abbreviations : OYOS = One Year Old Shoot; CYS = Current Year Shoot; LAD = Leaf Area
Density.

Scale Nb Elmt Volume(dm3) Leaf Area (dm2) LAD (dm−1)

P
ea
ch

1

Crown 1 11811.50 2773.85 0.24
Sca�old 4 2832.70 ± 1214.52 693.45 ± 232.08 0.253 ± 0.04
OYOS 86 14.02 ± 29.27 9.10 ± 14.85 1.31 ± 0.83
CYS 1966 0.97 ± 1.54 1.41 ± 1.95 1.90 ± 0.58
Leaf 14405 - 0.19 ± 0.05 -

P
ea
ch

2

Crown 1 12200.89 2889.69 0.24
Sca�old 5 1915.22 ± 507.09 577.74 ± 190.48 0.30 ± 0.04
OYOS 88 13.98 ± 22.88 9.99 ± 12.51 1.22 ± 0.72
CYS 1522 1.40 ± 2.06 1.90 ± 2.32 1.77 ± 0.53
Leaf 13709 - 0.21 ± 0.55 -

P
ea
ch

3

Crown 1 12442.29 3242.96 0.26
Sca�old 5 1934.32 ± 935.55 648.58 ± 266.30 0.34 ± 0.05
OYOS 93 15.51 ± 24.89 11.30 ± 15.24 1.35 ± 1.00
CYS 1583 1.52 ± 2.30 2.05 ± 2.78 1.77 ± 0.52
Leaf 15118 - 0.21 ± 0.55 -

P
ea
ch

4

Crown 1 15911.77 3144.29 0.20
Sca�old 6 2060.11 ± 773.34 524.04 ± 186.99 0.26 ± 0.04
OYOS 101 12.48 ± 20.19 8.30 ± 9.99 1.39 ± 1.10
CYS 1990 1.17 ± 1.91 1.58 ± 2.01 1.84 ± 0.57
Leaf 15589 - 0.20 ± 0.06 -

M
an
go

a1
9 Crown 1 1146.66 631.64 0.55

Sca�old 3 417.03 ± 68.42 210.54 ± 11.95 0.51 ± 0.07
CYS 139 6.07 ± 4.81 4.54 ± 2.64 1.06 ± 0.72
Leaf 1475 - 0.43 ± 0.17 -

M
an
go

b
7 Crown 1 2073.24 1221.87 0.59

Sca�old 3 793.35 ± 229.78 407.29 ± 126.59 0.51 ± 0.02
CYS 252 9.00 ± 6.47 4.85 ± 2.70 0.73 ± 0.52
Leaf 2759 - 0.44 ± 0.19 -

M
an
go

f2
1 Crown 1 1188.56 509.19 0.43

Sca�old 2 614.09 ± 93.89 254.60 ± 55.84 0.41 ± 0.03
CYS 147 4.80 ± 4.93 3.46 ± 2.40 0.77 ± 0.48
Leaf 1367 - 0.37 ± 0.18 -

M
an
go

g5 Crown 1 869.39 492.87 0.57
Sca�old 7 146.10 ± 68.07 70.41 ± 32.48 0.48 ± 0.05
CYS 99 8.27 ± 6.92 4.98 ± 3.19 0.83 ± 0.50
Leaf 1135 - 0.43 ± 0.19 -
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4. Results and clumping analysis. Ω-integrated values for STAR and µ ac-
cording to several hypothesis are shown in Tab. 4.1 and Tab. 4.2 for peach and mango
trees respectively. Actual STAR values (line 0) for peach trees did not show a large
range i.e. between 0.245 and 0.275 . This means that foliage irradiance was about
25% of the available light above the tree. For mango trees the range of STAR values
was greater, i.e. between 0.243 and 0.364 . These values are in the interval commonly
reported for fruit trees [47]. For both species, the classical assumption of random
distribution of leaves in crowns (row 1) led to large over-estimation of the STAR

values. Therefore light interception models based on this assumption are biased as
already reported by [46, 9, 11]. This con�rms that the actual foliage distribution
shows signi�cant departure from randomness. The values of the dispersion parameter
µ were between 0.55 and 0.61 and between 0.70 and 0.81 for peach and mango trees
respectively, expressing a clumped organization of the foliage and higher clumping for
peach trees than for mango trees.

The full grouping model (all-R, row 2) underestimated light interception (for all
trees, but Peach1). Indeed µ values above 1 means that the leaves in the actual canopy
were less overlapping than they would have been in the canopy generated from the
full grouping model. Consequently actual STAR values were comprised between these
two most usual modeling approaches. However the two species showed di�erent be-
havior : actual STAR of peach trees was overestimated by 30% with scenario - --R
whereas scenario all-R only underestimated actual STAR by 10%. In case of mango
trees, the overestimation given by scenario --R was around 12% and equal to the un-
derestimation given by scenario all-R.

A deeper analysis was made by comparing the actual STAR values to those ob-
tained by switching one scale option from A to R. This allows studying the dispersion
pattern at the switched scale. For instance, the leaf dispersion within CYS in peach
trees was assessed by comparing scenario AAAA to scenario AAAR. For peach trees
(Tab.4.1), only CYS in OYOS (row 4) showed a clear random dispersion (µ ≃ 1).
STAR<AAAR> and STAR<RAAA> (row 3 and 6 respectively) were slightly lesser than
the actual value, thus the distribution of leaves in CYS and sca�olds in crowns was
slightly regular (µ ≃ 1.11 and µ ≃ 1.15 respectively). Finally STAR<ARAA> (row 5)
was a bit greater than the actual value, showing a small clumping trend of OYOS in
sca�olds (µ ≃ 0.91). For mango trees (Tab.4.2), scenario AAR and ARA (row 3 and 4)
led to small under and overestimation of actual STAR expressing slight regularity and
clumpiness of leaves in CYS and CYS in sca�olds, respectively. By contrast, scenario
RAA (row 5) markedly underestimated actual STAR meaning that the actual distri-
bution of sca�olds in the crown was regular (µ ≃ 1.26). The dispersion pattern for
each scale was also assessed by comparing the STAR behavior values of full grouping
scenario (all-R) to those obtained by switching one scale option from R to A (row 7
to 10 in Tab.4.1 and row 6 to 8 in Tab.4.2 for peach and mango trees respectively).
This analysis con�rmed the dispersion previously found at each scale.

As sca�old scale was shown to be regular, we tested a scenario where this scale
was discarded (row 11 and 9 for peach and mango trees, respectively). Theoretically
this should lead to STAR values closer to the actual ones because the sca�old sub-
components are no more con�ned within the sca�old envelopes but distributed in the
full crown volume. It is expected to be a way to simulate the regularity of sca�olds
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Table 4.1

Ω-integrated STAR for Peach trees.

Peach1 Peach2 Peach3 Peach4

0 AAAA 0.2477 0.2715 0.2456 0.2754

1
- - -R 0.3389 0.3483 0.3239 0.3591

µ (AAAA/- - -R) 0.5482 0.6127 0.5734 0.6082

2
RRRR 0.2422 0.2347 0.2177 0.2504

µ (AAAA/RRRR) 1.0368 1.2582 1.2110 1.1599

3
AAAR 0.2372 0.2497 0.2312 0.2542

µ (AAAA/AAAR) 1.071 1.1445 1.1036 1.1331

4
AARA 0.2480 0.2697 0.2442 0.2719

µ (AAAA/AARA) 0.9987 1.01 1.0096 1.021

5
ARAA 0.2594 0.2890 0.2586 0.2927

µ (AAAA/ARAA) 0.9281 0.8971 0.9154 0.904

6
RAAA 0.2349 0.2412 0.2226 0.2585

µ (AAAA/RAAA) 1.0868 1.2071 1.1782 1.1257

7
RRRA 0.2518 0.2519 0.2300 0.2676

µ (RRRA/RRRR) 1.0643 1.1145 1.0884 1.1082

8
RRAR 0.2421 0.2352 0.2184 0.2514

µ (RRAR/RRRR) 0.9995 1.003 1.0048 1.0066

9
RARR 0.2261 0.2235 0.2100 0.2379

µ (RARR/RRRR) 0.8999 0.9304 0.9466 0.9274

10
ARRR 0.2487 0.2650 0.2416 0.2703

µ (ARRR/RRRR) 1.0432 1.2087 1.1782 1.1257

11
-RRR 0.2803 0.2789 0.2639 0.3078

µ (AAAA/-RRR) 0.8117 0.9554 0.8835 0.8280

12
- -RR 0.3061 0.3035 0.2898 0.3221

µ (AAAA/- -RR) 0.6871 0.8202 0.7386 0.7615

13
AA-R 0.2522 0.2578 0.2443 0.2651

µ (AAAA/AA-R) 0.9717 1.0882 1.0094 1.0627

distribution in crown. Indeed STAR values in scenario -RRR and -RR were greater
than values given by the full grouping model for peach and mango trees, respectively.
They were also greater than STAR values given by scenario ARRR and ARR, meaning
that disregarding the sca�old scale led to overestimate the actual regular dispersion of
sca�olds. For all trees the actual STAR value was in between the values given by full
grouping scenario and that disregarding the sca�old scale. For peach trees scenario
AA-R (row 13) gave STAR values very close to the actual ones. The pro�t of this
scenario will be discussed in the next section.

5. Discussion.

5.1. Requirements in canopy structure description for an accurate es-

timation of light interception. Exhaustive measurement of the canopy structure,
e.g. to get data for scenario all-A, is extremely tedious, especially for the peach trees
where the number of leaves was about 15,000 per tree. Conversely, the simplest sce-
nario -�R only uses a few data to describe the tree structure, namely crown shape and
volume and total leaf area. However the computed light interception was shown to be
largely overestimated. This con�rms that the actual tree foliage distribution in crowns
is not uniform and shows high clumping [11]. Consequently, the simulation models
using this scenario [29, 7] should include a calibration parameter µ. By contrast, the
full grouping scenario underestimated light interception for both species. Moreover
the Oker-Blom and Kellomaki's [30] model, i.e. --RR and -RR for peach and mango
trees, respectively, yielded STAR values close to the actual ones, but only for mango
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Table 4.2

Ω-integrated STAR for Mango trees.

Mango a19 Mango b7 Mango f21 Mango g5

0 AAA 0.2824 0.2434 0.3637 0.3235

1
- -R 0.3282 0.2717 0.4025 0.3564

µ (AAA/- -R) 0.7039 0.7315 0.8112 0.7982

2
RRR 0.2544 0.2193 0.3159 0.2811

µ (AAA/RRR) 1.2157 1.2552 1.2809 1.3077

3
AAR 0.2736 0.2347 0.3478 0.3084

µ (AAA/AAR) 1.064 1.0886 1.0859 1.1019

4
ARA 0.2915 0.2497 0.3643 0.3053

µ (AAA/ARA) 0.9366 0.9391 0.9964 1.1240

5
RAA 0.2507 0.2124 0.3191 0.2927

µ (AAA/RAA) 1.2465 1.3346 1.2596 1.2163

6
RRA 0.2608 0.2222 0.3252 0.2892

µ (RRA/RRR) 1.0458 1.0267 1.0495 1.0519

7
RAR 0.2444 0.2065 0.3076 0.2820

µ (RAR/RRR) 0.9335 0.8922 0.9576 1.0058

8
ARR 0.2828 0.2456 0.3519 0.2956

µ (ARR/RRR) 1.2195 1.2830 1.2047 1.0949

9
-RR 0.3018 0.2582 0.3670 0.3262

µ (AAA/-RR) 0.8683 0.8577 0.9829 0.9825

10
A-R 0.3068 0.2587 0.3846 0.3190

µ (AAA/A-R) 0.8363 0.8537 0.8949 1.0298

trees. As the Oker-Blom and Kellomaki's model can be regarded as a partial grouping
model (i.e. leaves randomly distributed in shoots and shoots directly distributed at
random in the tree), this questions the number of botanical scales that must be used
in grouping models. However the Oker-Blom and Kellomaki's model was reported to
be successful for conifer species [30], and our results show that this approach can be
also used for some, but not all, fruit tree species. In the case of peach trees, the group-
ing scenarii did not work satisfactorily, however the scenario AA-R gave nice results.
This means that good estimations of light interception can be obtained by measuring
the actual position of OYOS in the crown. In practice, this kind of measurement is
really tractable [42] as a peach tree usually includes only about one hundred OYOS
(see Tab.3.1). Moreover the OYOS scale corresponds to the management unit used
to train the tree (i.e. the fruit grower selects a given number of OYOS in the sunlit
zones of the tree and prunes the other ones).
Therefore an interesting use of the proposed modeling framework is to �nd out sce-
narii of canopy structure description as simple as possible that enables an accurate
estimation of light interception without arti�cially using leaf dispersion parameters µ

(especially because there is about no means to estimate µ).

5.2. Sensitivity analysis.

Measurement errors e�ect. Magnetic digitizing is prone to measurement errors
both on the location and orientation of organs. The error on spatial co-ordinates is
typicaly less than 1 mm in controlled environment [24] and is less than 1 cm for �eld
measurements [43]. The impact of such errors on STAR computation has already
been assessed on peach trees by Sonohat et al. [42]. In this case, measurements were
conducted at shoot scale and leaf position and shape were reconstructed using allomet-
ric rules. It was shown that the STAR estimation at shoot scale was inacurrate while
it was satisfactory at plant scale. In the case of mango trees, which were digitized at
leaf scale, we quanti�ed the error in STAR estimation by generating mock-ups where
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random errors were introduced in leaf spatial co-ordinates and orientation angles. We
designed two procedures for this. We �rst used a uniform distribution in the range
[−ε, ε] to modify the co-ordinates and the orientation of each leaf. Alternatively, we
used Student's distribution that yields a greater proportion of small errors. The im-
pact of these two distributions on STAR computation was evaluated on a set of 100
mock-ups with ε values de�ned so that the new position of each leaf is in a sphere
of radius 0.1, 0.2, 0.5, 1, 2 and 5 cm centered on its original position. Orientation
angles were modi�ed similarly with ε ranging from 5◦ to 45◦. Results showed that
positioning errors less than 1 cm had little e�ect on light interception capacities at
plant scale (Fig. 5.1 a.), and for 1 cm, corresponding to the �eld measurement error,
the STAR value error using scenario all-A was less than 5% regardless of the distri-
bution used. For measurement errors greater than 1 cm the foliage rapidly tended
to occupy a more important volume leading to a lower leaf area density and thus a
greater STAR. This e�ect was much more marked when errors were generated using
a uniform distribution (Fig. 5.1 a.). Note however that errors greater than 1 cm
should be avoided if measurements are carefully conducted. Orientation errors had
only neglectible e�ect on STAR values integrated over the sky-vault (less than 0.5%
for all ε values, data not shown).

a. b.

Fig. 5.1. In�uence of measurement errors on the STAR estimation. a. : e�ect of
increasing measurement error. Random error generated by a uniform distribution (dark grey) or
Student's distribution (light grey) is introduced on leaf spatial coordinates so that the new position
is in a sphere of radius 0.1, 0.2, 0.5, 1, 2 and 5 cm centered on its original position. b. : 1 cm
positioning error of leaves on several scenarii using the R option. Errors are generated using a
uniform distribution (dark grey) or Student's distribution (light grey). The STAR values from the
original tree are taken as the reference.

Positioning errors in plant organs may also a�ect the convex envelope of plant com-
ponents. To assess the impact of this phenomenon on the STAR computation using
scenarii with option R, we created a set of 5 mango mock-ups by introducing a 1 cm
error on leaf position with the previously described distributions. For each of these
trees, integrated STAR values were computed for scenarii AAA, AAR, ARR, RRR and --R
to assess the cumulative impact of option R. Results are shown in Fig. 5.1 b. with the
STAR value of the all-A scenario of the original tree taken as reference. An increase
in the STAR estimation error with the use of R option at di�erent scales is clearly
visible (the e�ect is slightly reduced for the Student's distribution), and is due to
the fact that porosity of a component results from the product of its subcomponents
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Fig. 5.2. In�uence
of beam sampling

lineic density on the

STAR estimation. The
bounding box upper face
surface S is considered
as unitary area and the
STAR value obtained
with a density of 300 is
taken as reference for
each scenario.

porosities, Eq.(2.8). Using other types of bounding envelopes like boxes, spheres or
ellipsoids induces a larger envelope volume [2] and thus leads to similar error e�ects.
If all-A scenario STAR value of the mock-up with leaf positioning errors is taken
as the reference for the multiscale organisation analysis, then, we still �nd the same
result trends.

Beam sampling e�ect. As mentioned in section 2.2, the density of the beam sam-
pling may in�uence STAR estimation. The plant is included in a bounding box such
that its upper face is orthogonal to the light direction, Ω. This face is subdivided into
cells of a regular grid whose centers de�ne the locations of the beams. This de�nes a
beam sampling density as B

S
, B being the total number of beams and S the area of

the upper face. In the case of our regular grid we control the sampling density by the
lineic density of the beams, d, de�ned as

d =

√
B

S
, (5.1)

representing the number of beams per unit lenght along the grid axes. We assessed
the e�ect of the sampling density by computing STAR values for several scenarii
using di�erent lineic densities: 20, 50, 100, 200 and 300, the latest being the one
used to conduct the multi-scale analysis of section 4. For each value of d, integrated
STAR values were computed for scenarii AAA, AAR, ARR, RRR and --R. Results show
that convergence was rapidly obtained with increasing density (the error was less than
0.5% for densities over 100), Fig. 5.2. Using a lineic density over 100 guarantees a good
STAR estimation regardless of the used scenario. Moreover, since the complexity of
our algorithm is quadratic in the beam sampling lineic density (see section 5.4 for
details), large gain in computation time is achieved by decreasing d from 300 to 100
with almost no loss of quality in the results.

5.3. A unifying approach. In section 2.2, we observed that, surprisingly, the
recursive equations (2.8) and (2.11) relating component porosities at di�erent scales
were actually identical despite the fact that they were derived from two di�erent
hypotheses. This raises the question as to whether these equations can be derived
from a single unifying framework. To answer this question, let us call {x1 . . . xn}
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the set of subcomponents of a component c, and Ib(c) indicates whether the beam b

intersects with the envelope of c (1 = yes, 0 = no). Let us also denote Xb(c) the random
variable such that Xb(c) = 1 if the beam b is intercepted by an elementary component
of c, i.e. it interacts with c, and Xb(c) = 0 otherwise. With these de�nitions the
porosity of a component c for the beam b is de�ned as

pb
0(c) = P (Xb(c) = 0|Ib(c) = 1) , (5.2)

reciprocally, its opacity is thus

pb(c) = 1 − p0
b(c) = P (Xb(c) = 1|Ib(c) = 1) . (5.3)

Let us now consider a beam b that intersects a component c, i.e. P (Ib(c) = 0) = 0,
thus the decomposition

P (Xb(c) = 0) = P (Xb(c) = 0|Ib(c) = 1)P (Ib(c) = 1)+P (Xb(c) = 0|Ib(c) = 0)P (Ib(c) = 0) ,

yields

pb
0(c) = P (Xb(c) = 0|Ib(c) = 1) = P (Xb(c) = 0) .

A beam b does not interact with a component c if and only if b does not interact
with any subcomponent of c. Since going through a subcomponent without being
intercepted does not modify the beam, all P (Xb(xi) = 0) are independent and thus
we have

P (Xb(c) = 0) = P (Xb(x1) = 0, . . . , Xb(xn) = 0)

=

n∏

k=1

P (Xb(xk) = 0) =

n∏

k=1

[1 − P (Xb(xk) = 1)] . (5.4)

Using the fact that the probability for a beam b to interact with a subcomponent that
it is not intersecting, P (Xb(xk) = 1|Ib(xk) = 0), is obviously 0, the decomposition of
P (Xb(xk) = 1) yields

P (Xb(xk) = 1) = P (Xb(xk) = 1|Ib(xk) = 1)P (Ib(xk) = 1) . (5.5)

Using expression Eq.(5.5) to replace P (Xb(xk) = 1) in the component porosity equa-
tion, Eq.(5.4), and given the complementary relationship between opacity and porosity
Eq.(5.3), the expression of opacity becomes

P (Xb(c) = 1|Ib(c) = 1) = 1 −
n∏

k=1

[1 − P (Xb(xk) = 1|Ib(xk) = 1)P (Ib(xk) = 1)] ,

(5.6)
which illustrates our previous remark stating that opacity is controlled by two factors,
�rst the opacity of the subcomponents : P (Xb(xk) = 1|Ib(xk) = 1), and second their
spatial distribution : P (Ib(xk) = 1). Indeed, when using option A, P (Ib(xk) = 1)
is either equal to 0, (the beam does not intersect the component) or 1, (the beam
intersects the component). Therefore this term acts as a �lter to disregard all sub-
components not intersected by the beam b. This is equivalent to Eq.(2.8) where the
opacity of not intercepted subcomponents is equal to 0.
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When using option R the spatial distribution of subcomponents can only be esti-
mated. The probability of intersecting a subcomponent can be expressed as

P (Ib(xk) = 1) =
PEAb(xk)

PEAb(c)
,

whereas the expression of porosity of the subcomponent for the beam b is

P (Xb(xk) = 1|Ib(xk) = 1) =
PLAb(xk)

PEAb(xk)
.

Since PEAb(c) is the beam cross-section, Ab, the product of these two quantities in
Eq.(5.6) yields the expression of the beam interception probability.

P (Xb(xk) = 1|Ib(xk) = 1)P (Ib(xk) = 1) =
PLAb(xk)

PEAb(xk)

PEAb(xk)

PEAb(c)

=
PLAb(xk)

Ab

,

which leads us to the second equation, Eq.(2.10), that was derived in case R. Conse-
quently, we showed that it was possible to derive equations for both cases A and R

from a unique expression, Eq.(5.6), that unify both situations.

5.4. Implementation issues and complexity. This software has been writ-
ten in Python and C++. It is a stand alone module part of the VPlants software
project (successor of AMAPmod [16]).

In a �rst step a 3D shape is associated with each component of the MTG at each
scale. The leaf geometry is de�ned using the PlantGL library [34] and convex hulls
are computed with the QuickHull algorithm [4] available in this library. The multiscale
computation of opacity is carried out for each direction Ω as follows. It starts with a
double Z-bu�er approach: two opposite orthographic cameras oriented along Ω direc-
tion are used to generate two images of each geometric component of the plant from
the same distance. Each pair of facing pixels from the two orthographic views repre-
sents the same beam b and its cross section area, Ab, is the area represented by a pixel
expressed in metric units. The Z-values of each pixel yield the beam in- and out-points
in the component. The travel distance of a beam within the envelope of component j

at scale i, Lb
i,j , is deduced from these two values. This length is null for components

associated with planar shape, e.g. leaves. Moreover, this double Z-bu�er approach
allows us to identify the beams intercepted by each component which is required for
the use of option A, i.e. when actual component positions are used. In this approach
convex envelopes are used since multiple in- and out-points are not taken into account,
hence non-convex envelopes will be treated as convex ones. This step also provides
the projected area of the component shape by multiplying Ab with the number of
pixels within the orthographic image. All these quantities are scenario-independent
and thus are computed only once for each direction Ω. The volume of a convex hull,
Vi,j , is computed separately using routines implemented in the PlantGL library [34].

Next the recursive scheme described in Fig.(2.3) is applied to compute the opacity
according to the used scenario. The two recursive procedures used to compute the
opacity of a component, pi,j , and the beam opacity of a component, pb

i,j , are described
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by Algorithms 1 and 2 respectively. The recursion starts from macroscopic compo-
nents towards microscopic ones and ends when leaves are reached. It is important to
note that in practice each value is computed once - the �rst time needed - and then
stored for future use to save computation time.

Algorithm 1: Opacity(c, Ω, s)

Input: component c, direction Ω, scenario s /* s = string in {A,R} */

Output: mean opacity of c

if c == leaf then
return 1

else
sum = 0;
foreach intercepted beam b do

sum+ = OpacityBeam( c, Ω, s, b)

return sum
size(intercepted beams)

Algorithm 2: OpacityBeam(c, Ω, s, b)

Input: component c, direction Ω, scenario s, beam b

Output: beam opacity of c

if c == leaf then
return 1

else

option = s[0] ; /* get the current scale option */

s = s[1..n] ; /* and remove it from scenario */

porosity = 1 ;
if option == A then

foreach subcomponent x do

if b ∩ x 6= ∅ then
porosity ∗ = OpacityBeam(x, Ω, s, b) ;

if option == R then

foreach subcomponent x do
px = Opacity( x, Ω, s ) ;

porosity ∗ = 1 − PEAx px L
b
c

Vc

return 1 − porosity

Leaves are considered as opaque components, thus their opacity does not need to be
computed. The test whether a beam intersects a leaf or not is considered as the atomic
operation. Therefore, the computation cost of one component opacity depends on the
number of intersected beams, i.e. the number of pixels of its envelope projection in
direction Ω, and the number of its subcomponents. In the worst case scenario, every
component is intersected by all beams. A very simple model allows us to evaluate the
computation cost of our algorithm. Let us denote the number of scales by k and let
us assume that the number of subcomponents, N , is identical for all components at
every scale. The total number of components is consequently

1 + N + N2 + . . . + Nk−1 = O(Nk−1) = O(n) , (5.7)
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where n = Nk−1 is the number of leaves, i.e. components of the last scale. Let us
de�ne a size ratio, δ, by comparing the size of a component to the (smaller) size of
its subcomponents. We also assume that the size ratio between two scale is constant
and lesser than 1, that is

∀i, j, l Vi+1,j = δ3Vi,l and PEAi+1,j = δ2PEAi,l . (5.8)

Let Bi be the number of beams intercepted by a component at scale i with B0 = B.
As a consequence of a constant size ratio, the number of intercepted beams at one
scale is related to the number of intercepted beams at the previous scale.

Bi+1 = δ2Bi = δ2iB . (5.9)

Consequently, the total cost γ is the sum of each component cost at every scale except
leaf scale

γ = 1 × NB + N × NBδ2 + N2 × NBδ4 + . . . + Nk−2 × NBδ2(k−2)

= O
(
Nk−1Bδ2(k−2)

)
= O

(
nBδ2(k−2)

)
, (5.10)

The worst case is reached if k = 2, thus the total cost is in O (nB). However,
when k > 2 since δ < 1 the gain in complexity due to the hierarchical structure is
proportional to δ2(k−2). For example, using the plant illustrated in Fig.2.1, adding 1
scale to the 2 basic scales will reduce the complexity by 1

9 (δ = 1
3 ) and for 2 additional

scales, the complexity will be reduced by 1
81 .

6. Conclusion. This paper presented a new framework to model e�ciently light
interception by isolated trees. The turbid medium approach, usually limited to large
canopies because of its statistical description of plants, has been adapted to isolated
trees. The modeling was based on a multiscale representation of plants and on a
porous envelope hypothesis. We de�ned recursive expressions to compute the opacity
of components with two types of spatial distribution hypotheses that can be chosen
at each scale independently. The combination of these options de�ned scenarii that
allowed us to analyze the in�uence of the plant architecture on light interception
through the generalization of a dispersion parameter µ which expresses the departure
of a plant foliage from randomness. This model was then assessed on 3D digitized
peach and mango trees. Peach trees were markedly more clumped than mango trees.
The two species showed di�erent clumping behaviors but with the same trend for
sca�old branches toward regular positioning. We showed that Oker-Blom and Kel-
lomaki's partial grouping model can be used for mango trees but not for peach trees
which shows a di�erent type of clumping that does not �t their original assumption.
Our model alleviate this problem by making it possible to use a variable number of
scales and can be thus applied to both situations. Moreover the true STAR values
were always comprise between the values from the full-grouping scenario and the par-
tial grouping one disregarding the sca�old scale. This suggests that the multiscale
organization is not the only factor involved in the light interception strategy of trees.

The proposed multiscale framework may be used to optimize plant architecture
measurement in the context of modeling light interception by plants. It also de�nes
a versatile and incremental procedure to compute light interception up to a desired
level of accuracy, ranging from coarse descriptions, i.e. using the turbid medium
hypothesis at plant scale, to detailed descriptions, e.g. obtained by 3D digitizing, with
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a series of intermediate options de�ned by the number of scales taken into account and
their relative positioning. The multiscale organization of components represented by
porous envelopes provides another advantage in terms of model �exibility, depending
on the availability of �eld measurements the envelopes and their positions can either
correspond to the actual �eld values or be infered from statistical assumptions.
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