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9 IMPLICIT MASS-MATRIX PENALIZATION OF HAMILTONIAN DYNAMICS WITH
APPLICATION TO EXACT SAMPLING OF STIFF SYSTEMS

PETR PLECHÁČ∗ AND MATHIAS ROUSSET†

Abstract. An implicit mass-matrix penalization (IMMP) of Hamiltonian dynamics is proposed, and associated dynamical
integrators, as well as sampling Monte-Carlo schemes, are analyzed for systems with multiple time scales. The penalization
is based on an extended Hamiltonian with artificial constraints associated with some selected DOFs. The penalty parameters
enable arbitrary tuning of timescales for the selected DOFs. The IMMP dynamics is shown to be an interpolation between the
exact Hamiltonian dynamics and the dynamics with rigid constraints. This property translates in the associated numerical
integrator into a tunable trade-off between stability and dynamical modification. Moreover, a penalty that vanishes with the
time-step yields order two convergent schemes for the exact dynamics. Moreover, by construction, the resulting dynamics
preserves the canonical equilibrium distribution in position variables, up to a computable geometric correcting potential,
leading to Metropolis-like unbiased sampling algorithms. The algorithms can be implemented with a simple modification of
standard geometric integrators with algebraic constraints imposed on the selected DOFs, and has no additional complexity in
terms of enforcing the constraints and force evaluations. The properties of the IMMP method are demonstrated numerically
on the N-alkane model, showing that the time-step stability region of integrators and the sampling efficiency can be increased
with a gain that grows with the size of the system. This feature is mathematically analyzed for a harmonic atomic chain
model. When a large stiffness parameter is introduced, the IMMP method is shown to be asymptotically stable and to
converge towards the heuristically expected Markovian effective dynamics on the slow manifold.

Key words. Hamiltonian systems, NVT ensemble, stiff dynamics, Langevin dynamics, constrained dynamics, Hybrid
Monte Carlo.
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1. Introduction. This paper deals with numerical integration and sampling of Hamiltonian systems
with multiple timescales. The main motivation is to develop numerical integration methods for the dy-
namics which resolves certain selected fast degrees of freedom only ”statistically”, and that can be also
used to sample accurately the canonical equilibrium distribution. Furthermore, as an ultimate goal, one
also seeks good approximation of dynamical behavior, at least at large temporal scales.

Hamiltonian systems with multiple timescales typically appear in molecular dynamics (MD) simula-
tions, which have become, with the aid of increasing computational power, a standard tool in many fields
of physics, chemistry and biology. However, extending the simulations to physically relevant time-scales
remains a major challenge for various large molecular systems. Due to the complexity of implicit methods,
the time scales reachable by standard numerical methods are usually limited by the rapid oscillations of
some particular degrees of freedom. Since the sampling dynamics has to be integrated for long times, the
time-step restriction associated with fast oscillations/short time scales in molecular systems contributes to
the high computational cost of such methods. However, the physical necessity of resolving the fast degrees
of freedom in simulations is often ambiguous, and efficient treatment of the fast time scales has motivated
new interest in developing numerical schemes for the integration of such stiff systems.

The problem of integrating stiff forces is relevant both for the direct numerical simulation of the
Hamiltonian dynamics, as well as for the less restrictive problem of designing a sampling scheme with
respect to the canonical ensemble. Sampling from the canonical distribution can be achieved by Markov
chain Monte Carlo (MCMC) algorithms based on a priori knowledge of possible moves combined with a
Metropolis-Hastings acceptance/rejection corrector (a historical reference is [31]). For complex molecular
systems, however, such global moves remain unknown in general, and sampling methods consists generically
in using either a Hamiltonian dynamics integrator with a thermostat (e.g., a Langevin process), or its
overdamped limit, a drifted random walk (Brownian dynamics) (see [7] for a review and references on
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classical sampling methods). Brownian dynamics of systems with multiple time scales suffers from similar
stability restrictions (see [20, 41] for some practical issues related to Brownian dynamics simulations in
MD).

Broadly speaking, one may start by recognizing two approaches to the numerical treatment of stiff
systems:
(i) Semi-implicit, multi-step integrators and their variants (e.g., the textbooks [36, 14], or the review paper

[10] and references therein, [20] for Brownian dynamics), which attempt to resolve microscopic
highly oscillatory dynamical behavior.

(ii) Methods with direct constraints, where the highly oscillatory degrees of freedom are constrained to
their equilibrium value (e.g., [36, 28, 40, 19] and references therein).

In spite of their differences the common key feature of all these methods is to balance a trade-off between
stability restrictions and implicit time-stepping form, or in other words, between the computational effort
associated with small time steps, and the computational cost of solving implicit equations implied by the
stiffness.

Although constrained dynamics remove, in principle, the stiffness of the associated numerical scheme,
it introduces new difficulties and numerical problems. As an approximation to the original dynamics it
modifies important features of the system; most importantly, the original statistical distribution. The
principal goal of the proposed method is to replace direct constraints by implicit mass-matrix penalization
(IMMP), detailed in Section 3, which integrates fDOFs, but with a tunable mass penalty. The method
designed in this way achieves the two goals:
(i) from the dynamical point of view, the IMMP method amounts to an appropriate interpolation between

exact dynamics and constrained dynamics considered in the second family of the methods men-
tioned above. Moreover, a freely tunable trade-off between dynamical modification and stability
is obtained.

(ii) from the sampling point of view, the IMMP dynamics preserves the canonical equilibrium distribu-
tion, up to a time step error and an easily computable geometric correcting potential. This leads
to Metropolis Monte Carlo methods that sample exactly the canonical distribution. When us-
ing Metropolis schemes, the forces arising from the geometric correcting potential need not be
computed.

The idea of adjusting mass tensors in order to slow down fast degrees of freedom goes back to [3]. In this
paper, the author proposes to modify the mass tensor with respect to the Hessian of the potential energy
function in order to confine the frequency spectrum to low frequencies only. Two natural drawbacks of this
procedure arise from the costly computation of the second-order derivatives of the potential, and from the
bias introduced when the adjusted mass-tensor is adapted during the dynamics. Such an approach seems
inevitable when the fDOFs are unknown, but in many cases, the fast degrees of freedom are explicitly given
by the structure of the system (e.g., co-valent and angle bonds in molecular chains). To our knowledge,
mass tensor modification have been used in practical MD simulations by increasing the mass of some well-
chosen (e.g., light) atoms [26, 29]. The aim of this paper is to propose a more systematic mass-tensor
modification strategy.

The proposed method relies on the assumption that the system Hamiltonian is separable with quadratic
kinetic energy

H(p, q) =
1

2
pTM−1p+ V (q) , (1.1)

and that the “fast” degrees of freedom (ξ1, .., ξn) are explicitly defined, smooth functions of the system
position

q = (q1, . . . , qd) 7→ (ξ1(q), ..., ξn(q)) . (1.2)

We emphasize that the knowledge of “fast forces” is not required, and the variables ξ can be chosen
arbitrarily. If the fDOFs are not identified the method retains its approximation properties while not
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performing efficiently. The fDOFs are penalized with a mass-tensor modification given by

Mν(q) = M + ν2∇qξ Mz ∇T
q ξ , (1.3)

where ν denotes the penalty intensity, and Mz a “virtual” mass matrix associated with the fDOFs. The
modification does not impact motions orthogonal to the fDOFs. The position dependence of the mass-
penalization introduces a geometric bias. This bias is corrected by introducing an effective potential

Vfix,ν(q) =
1

2β
ln (det (Mν(q))) , (1.4)

which will turn out to be a ν−1-perturbation of the usual Fixman corrector (see [19]) associated with the
sub-manifold defined by constraining the fDOFs ξ. The key point is then to use an implicit representation
of the mass penalty with the aid of the extended Hamiltonian





HIMMP(p, pz, q, z) =
1

2
pTM−1p+

1

2
pTz M

−1
z pz + V (q) + Vfix,ν(q) ,

ξ(q) =
z

ν
. (Cν)

(1.5)

The auxiliary degrees of freedom z are endowed with the “virtual” mass-matrix Mz. The constraints (Cν)
are applied in order to identify the auxiliary variables and the fDOFs ξ with a coupling intensity tuned
by ν. The typical time scale of the fDOFs is thus enforced by the penalty ν. The system is coupled to
a thermostat through a Langevin equation (2.3), which yields a stochastically perturbed dynamics that
samples the equilibrium canonical distribution. We then obtain the following desirable properties:

1. The associated canonical equilibrium distribution in position is independent of the penalty ν.
2. The limit of vanishing penalization (ν = 0) is the original full dynamics, enabling the construction

of dynamically consistent numerical schemes.
3. The limit of infinite penalization is a standard effective constrained dynamics on the ”slow” man-

ifold associated with stiff constraints on ξ.
4. Numerical integrators can be obtained through a simple modification of standard integrators for

effective dynamics with constraints yielding equivalent computational complexity.
The dynamics associated with the IMMP Hamiltonian (1.5) is detailed in (3.5), see Section 3. The

numerical discretization (using a leapfrog/Verlet splitting with constraints, usually called “RATTLE” for
fully constrained dynamics) is given by (4.1). When considering sampling, the time-step error of the
numerical flow can be corrected with a Metropolis step (the so-called Generalized Hybrid Monte-Carlo
method, see references in Section 4) to obtain exact sampling. When this correction is introduced, the
gradient of the Fixman potential (1.4) need not be computed. These numerical aspects of the method are
presented in Section 4. By including a penalty, the proposed method modifies the original Hamiltonian.
However, the mass penalty can be also thought of as depending on the time step ν = ν(δt) leading to order
two consistent schemes.

In Section 6, we introduce a small stiffness parameter ǫ encoding the fastest DOFs, and show that
the penalty intensity can be scaled as ν = ν̄/ǫ in order to obtain asymptotically stable dynamics in the
limit ǫ → 0. We prove that the dynamics converge towards the expected Markovian effective dynamics on
the slow manifold. We also present analysis of the corresponding asymptotic preserving properties of the
proposed scheme.

High-dimensional systems usually contain a large variety of timescales, and are therefore challenging
test cases. The N -alkane model is numerically studied in Section 5 and systematically compared to Verlet
scheme and constrained integration, with separate studies for dynamical and sampling issues. In the
case of butane, bond angles are penalized. Dynamical interpolation between exact dynamics and rigidly
constrained dynamics is demonstrated, with the associated gain in the time step stability. On the other
hand, exact sampling with possible gain in the mixing time for Metropolized sampling methods is analyzed.
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Furthermore, for the N -alkane model with large N , torsion angles are penalized, a large mass-penalty of
order O(N), i.e., ν = ν̄N , where N is the system size is considered. For dynamics, it induces a gain in
the time step stability region that grows with N , while numerical evidence is given that some macroscopic
timescales, e.g., low frequencies of the chain length dynamics, remain of order O(1). For sampling, it
induces a similar gain for mixing time in terms of iteration steps, and measured with autocorrelation of
the chain length evolution. Rigorous proofs with explicit scalings of this behavior are provided for the case
of a linear atomic chain with quadratic (harmonic) interactions in Section 7, and consistence of the IMMP
macroscopic dynamics towards a stochastic wave equation when the re-scaled penalty vanishes ν̄ → 0 is
demonstrated.

Acknowledgments: The research of M.R. was partially supported by the EPSRC grant GR/S70883/01
while he was visiting Mathematics Institute, University of Warwick. The research of P.P. was partially
supported by the National Science Foundation under the grant NSF-DMS-0813893 and by the Office of
Advanced Scientific Computing Research, U.S. Department of Energy; the work was partly done at the
ORNL, which is managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725.

2. Langevin processes and sampling of canonical distribution. We consider a Hamiltonian
system in the phase-space Rd × Rd with the Hamiltonian H in the form

H(p, q) =
1

2
pTM−1p+ V (q) , (2.1)

We use generic matrix notation, for instance, the Euclidean scalar product of two vectors p1, p2 ∈ RN

is denoted by pT1 p2, and the gradients of mappings from Rd to Rn with respect to standard bases are
represented by matrices

(∇T
q ξ)ij = (∇qξ)ji =

∂ξi
∂qj

, i = 1, . . . , n , j = 1, . . . , d .

When the system is thermostatted, i.e., kept at the constant temperature, the long time distribution
of the system in the phase-space is given by the canonical equilibrium measure at the inverse temperature
β (also called the NVT distribution) given by

µ(dp dq) =
1

Z
e−βH(p,q)dp dq , Z =

∫

Rd×Rd

e−βH(p,q)dp dq , (2.2)

with the normalization constant Z < ∞. The standard dynamics used to model thermostatted systems
are given by Langevin processes.

Definition 2.1 (Langevin process). A Langevin process at the inverse temperature β with the Hamil-
tonian H(q, p), (p, q) ∈ Rd × Rd, the d × d dissipation matrix γ, and the fluctuation matrix σ is given by
the stochastic differential equations

{
q̇ = ∇pH

ṗ = −∇qH − γq̇ + σẆ ,
(2.3)

where Ẇ is a standard white noise (Wiener process), and σ ∈ Rd ×Rd satisfies the fluctuation-dissipation
identity

σσT =
2

β
γ .

For any γ, the process is reversible with respect to the stationary canonical distribution (2.2). Furthermore,
if γ is strictly positive definite, the process is ergodic.
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Throughout the paper, stochastic integrands have finite variation thus the stochastic integration (e.g.,
Itô or Stratonovitch) need not be specified. Furthermore, the usual global Lipschitz conditions (see [32])
on H and ξ are assumed, ensuring well-posedness of the considered stochastic differential equations. The
analysis presented in the paper can be generalized to a position dependent dissipation matrix γ = γ(q).

The mapping ξ : Rd → Rn, defines n ≤ d degrees of freedom, given by smooth functions taking values
in a neighborhood of 0. We assume that the mapping ξ is regular (i.e., with a non-degenerate Jacobian)
in an open δ-neighborhood Oδ = {q | ‖ξ(q)‖ < δ} of ξ−1(0), hence defining a smooth sub-manifold of Rd

denoted Mz = ξ−1(z) for z in a neighborhood of the origin. The dependence of the potential V with
respect to the degrees of freedom ξ is expected to be “stiff” in the second variable. In Section 6 we will
introduce the stiffness parameter ǫ. In that section we shall assume that such parameter dependence can
be explicitly identified, and that the potential energy V can be written in the form

V (q) = U(q,
ξ(q)

ǫ
) , (2.4)

where the function U : Rd × Rn → R satisfies the coercivity condition limz→+∞ U(q, z) = +∞. The fast
degrees of freedom ξ of states at a given energy then remain in a closed neighborhood of the origin as the
stiffness parameter ǫ → 0. In this limit the system is confined to the sub-manifold M0 which is usually
called the “slow manifold”.

3. The implicit mass-matrix penalization method. In this section we focus on properties of
the IMMP method. The multiscale structure of the potential V need not be known in order to apply
the method. Thus, in this section, we consider the potential V in the form where we do not impose the
structural assumption (2.4) on the potential function V : Rd → R.

3.1. Description of the method. The new, penalized mass-matrix of the system is the position
dependent tensor defined in (1.3). The associated modified impulses are denoted

pν = Mν(q)M
−1p . (3.1)

When ν becomes large, the velocities are bound to remain tangent to the manifolds {q|ξ(q) = z}, and
orthogonal motions are arbitrarily slown down. Conversely, when ν = 0, one recovers the original highly
oscillatory system. Since the modification in Mν depends on the position q, new geometry is introduced
and an additional correction (1.4) in the potential energy is required in order to preserve original statistics
in the position variable. This correction is in fact close to the standard Fixman corrector for ν large (see
(6.5)). Defining G(q) as the n× n Gram matrix associated with the fast degrees of freedom

G(q) = ∇T
q ξ M

−1∇qξ , (3.2)

one has the following property of the correcting potential.
Proposition 3.1. Up to an additive constant, we have

Vfix,ν(q) =
1

2β
ln det

(
G(q) +

1

ν2
M−1

z

)
, (3.3)

and thus (up to additive constants)

lim
ν→+∞

Vfix,ν = Vfix =
1

2β
ln det (G(q)) , and lim

ν→0
Vfix,ν = 0 .

Proof. Using the identity for a non-diagonal matrix J of dimension n1 × n2:

det (Id n1 + JJT ) = det (Id n2 + JT J) ,
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one observes

det (Mν) = det (M) det (ν2Mz) det (G+
1

ν2
M−1

z )

from which the expression for the corrected Fixman potential follows.
The associated modified Hamiltonian is then given by

Hν(pν , q) =
1

2
pTν Mν

−1pν + V (q) + Vfix,ν(q) , (3.4)

and H0 = H is the original Hamiltonian (1.1).
Sampling such a system can be done using the standard Langevin stochastic perturbation as detailed

in Definition 2.1. However, the direct discretization of the equation of motion given by Hν (e.g., by an
explicit scheme) is bound to be unstable from non-linear instabilities when the fast degrees of freedom are
not affine functions. In order to construct stable schemes one may rather use an implicit formulation of the
Hamiltonian (3.4), in conjunction with a solver which enforces the constraints. To obtain such a formulation
we extend the state space with n new variables (z1, .., zn), and associated moments (pz1 , .., pzn). The
auxiliary mass-matrix for the new degrees of freedom is then given by Mz. The new extended Hamiltonian
of the system HIMMP, defined by (1.5), is now defined in Rd+n×Rd+n, where n position constraints denoted
by (Cν) are included. This construction implies n hidden constraints on momenta. The equivalence of the
two Hamiltonians (3.4) and (1.5) formulations is stated as a simple separate lemma.

Lemma 3.2. The equations of motion associated with the penalized mass-matrix Hamiltonian (3.4) or
the extended Hamiltonian with constraints (1.5) are identical.

Proof. The Lagrangian associated with HIMMP is given by

LIMMP(q̇, ż, q, z) =
1

2
q̇TMq̇ +

1

2
żTMzż − V (q)− Vfix,ν(q) ,

and includes hidden constraints on velocities ż = ν∇T
q ξ q̇ implied by the constraints (Cν) on position

variables. Replacing ż and z in LIMMP by their expressions as functions of q̇ and q, one obtains the
Lagrangian associated with Hν .

The stochastically perturbed equations of motion of the Langevin type associated with (1.5) define the
dynamics with implicit mass-matrix penalization.

Definition 3.3 (IMMP). The implicit Langevin process associated with Hamiltonian HIMMP and
constraints (Cν) is defined by the following equations of motion





q̇ = M−1p

ż = M−1
z pz

ṗ = −∇qV (q)−∇qVfix,ν(q)− γq̇ + σẆ −∇qξ λ̇

ṗz = −γzż + σzẆz +
λ̇

ν

ξ(q) =
z

ν
, (Cν)

(3.5)

The process Ẇ (resp. Ẇz ) is a standard multi-dimensional white noise, γ (resp. γz) a d× d (resp. n×n)
non-negative symmetric dissipation matrix, σ (resp. σz) is the fluctuation matrix satisfying σσT = 2

βγ

(resp. σzσ
T
z = 2

β γz). The processes λ ∈ Rn are Lagrange multipliers associated with the constraints (Cν)
and adapted with the white noise.

This process is naturally equivalent to the explicit mass-penalized Langevin process in Rd × Rd as-
sociated with Mν . Moreover, when the penalization vanishes (ν → 0), the evolution law of the process
{pt, qt}t≥0 or {(pν)t, qt}t≥0 converges towards the original dynamics.
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Proposition 3.4. The stochastic process with constraints (3.5) is well-posed and equivalent to the
Langevin diffusion in Rd ×Rd (see Definition 2.1), with the mass-penalized Hamiltonian Hν (3.4), and the
dissipation matrix given by

γν(q) = γ + ν2∇qξ γz∇T
q ξ .

Furthermore, the process is reversible and ergodic with respect to the canonical distribution (3.8) (with
marginal in position variables given by the original potential, i.e., up to the normalization, e−βV (q)dq) .

Proof. Imposing the constraints implies ∇T
q ξ M

−1p = 1
νM

−1
z pz. Thus by the definition of pν we have

pν = p+ ν∇qξ pz .

Since the position process {qt}t≥0 is of finite variation, a short computation shows that for each coordinate
i = 1, .., d

ṗiν = ṗi + ν∂qiξ ṗz + ν2q̇T∇q(∂qiξ) pz . (3.6)

Furthermore,

−∂qi

(
1

2
pTν M

−1
ν pν

)
= ∂qi

(
1

2
q̇Mν q̇

)
= ν2q̇T∇q(∂qiξ)Mz∇T

q ξ q̇ ,

and thus

ṗν = ṗ+ ν∇qξ ṗz −∇q

(
1

2
pTν M

−1
ν pν

)
.

Substituting the expressions for ṗ and ṗz from (3.5) into (3.6) we obtain

ṗν = −1

2
pTν ∇qM

−1
ν pν −∇qV (q)−∇qVfix,ν(q) − γq̇ − ν∇qξ γz ż + σẆ + ν∇qξ σzẆz , (3.7)

which yields the result.

3.2. Exact sampling in position variables. By construction, statistics of positions q of the mass
penalized Hamiltonian are independent of the penalization, leading to the exact canonical statistics in
position variables.

Proposition 3.5 (Exact statistics). The canonical distribution associated with the mass-penalized
Hamiltonian (3.4) is given by

µν(dpν dq) =
1

Zν
e−βHν(pν ,q)dpν dq . (3.8)

Its marginal probability distribution in q is

1

Zν

∫
e−βHν(pν ,q)dpν =

e−βV (q)dq∫
e−βV (q) dq

which is the original canonical distribution (2.2) in the position variables, and is independent of the mass
penalization parameter ν.

Proof. The normalization of Gaussian integrals in the pν variables yields

∫
e−β 1

2p
T
ν Mν

−1pνdpν =

(
2π

β

)d/2√
det (Mν) ,

which is cancelled out by the Fixman corrector Vfix,ν and the result follows.
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3.3. Interpolation between exact and constrained dynamics. In this section, the IMMP dy-
namics is shown to be an interpolation between exact dynamics (ν = 0), and constrained dynamics
(ν = +∞).

Proposition 3.6 (Small penalty). When ν → 0 the evolution law of the processes {pt, qt}t≥0 or
{(pν)t, qt}t≥0 defined by the implicit equations (3.5) converges (in the sense of probability distributions on
continuous paths endowed with the uniform convergence) towards the process solving the original Langevin
dynamics (2.3).

Proof. The stochastic differential equation defined by q̇ = M−1
ν pν and (3.7) has smooth coefficients

which depend on ν in a continuous fashion (ν 7→ Mν and ν 7→ Vfix,ν are continuous). Standard results on
weak convergence ([16]) of stochastic processes imply the result as stated.

When the mass penalty tends to infinity, the IMMP process converges to a constrained process on the
manifold Mzt=0 = {q | ξ(q) = zt=0}.

Proposition 3.7 (Large penalty). Consider a family of initial conditions indexed by ν and satisfying

sup
ν

|ν (ξ(qt=0)− zt=0)| < +∞ ,

and assume that the Gram matrix G is invertible in a neighborhood of Mzt=0 . Then when ν → +∞ the
IMMP Langevin stochastic process (3.5) converges in distribution towards the decoupled limiting processes
with constraints





q̇ = M−1p ,

ṗ = −∇qV −∇qVfix − γq̇ + σẆ −∇qξλ̇ ,

ξ(q) = zt=0 , (C)

ż = M−1
z pz ,

ṗz = −γz ż + σzẆz .

(3.9)

where {λt}t≥0 are adapted stochastic processes defining the Lagrange multipliers associated with the con-
straints (C).

Furthermore, the process {qt, pt}t≥0 defines an effective dynamics with constraints (see also Defini-
tion 6.2) on the sub-manifold Mzt=0 . It is reversible with respect to its stationary canonical distribution
given, up to the normalization, by the “stiff” Boltzmann distribution

e−β(H(p,q)+Vfix(q))σT∗Mzt=0
(dp dq)

with the q-marginal e−βV (q) δξ(q)=0(dq). When γ and γz are strictly positive definite the process is ergodic.
Proof. By a simple translation, it is sufficient to show the proposition for zt=0 = 0. Satisfying

the constraint (Cν) in (3.5) implies a hidden constraint in the momentum space, ∇qξM
−1p = 1

νM
−1
z pz.

Differentiating this expression with respect to time and replacing the result in (3.5) yields an explicit
formula for the Lagrange multipliers

λ̇ = (G+
1

ν2
M−1

z )−1

[
Hess (ξ)

(
M−1p,M−1p

)
+∇qξM

−1fq −
1

ν
M−1

z fz

]
, (3.10)

with forces (fq, fz)

fq = −∇qV −∇qVfix,ν − γM−1p+ σẆ ,

fz = −γzM
−1
z pz + σzẆz ,

and the Hessian Hess (ξ) of the mapping ξ acting on the velocities M−1p. This calculation shows that (3.5)
is in fact a standard stochastic differential equation with smooth coefficients, and thus has a unique strong
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solution. The coefficients of these stochastic differential equations are continuous in the limit 1
ν → 0, at

least in a δ-neighborhood of M0 in which G is invertible. The formally computed limiting process is given
by (3.9) with the Lagrange multipliers solving

λ̇ = G−1
(
Hess (ξ)

(
M−1p,M−1p

)
+∇T

q ξ M−1fq
)
.

By construction, this limiting process satisfies the constraint ξ(q) = 0. Its coefficients are Lipschitz and
the process is well-posed. As a result of those properties, the rigorous proof of weak convergence follows
classical arguments, see [16], that are divided into three steps
(i) We truncate the process (3.5) to a compact neighborhood of M0.
(ii) The continuity of the Markov generator with respect to 1

ν implies tightness for the associated 1
ν -

sequences of truncated processes with the limit being uniquely defined by (3.9).
(iii) The limiting process remains on M0, which implies weak convergence of the sequence without trun-

cation.
The process (3.9) is thus a Langevin process with constraints, exhibiting reversibility properties with respect
to the associated Boltzmann canonical measure and is ergodic when γ is strictly positive definite (see the
summary in Appendix B). Note that the q-marginal is geometrically corrected by the Fixman potential
term.

We conclude this section by discussing some consequences for numerical computations.
Remark 3.8. Proposition 3.6 and 3.7 imply that the IMMP scheme is a tunable interpolation between

the exact stochastic dynamics (2.3), and the stochastic dynamics with constraints (3.9). If one prefers to
interpolate with rigidly constrained dynamics (i.e., without the Fixman correction, see also Section 6 for
a detailed discussion on “stiff”, as opposed to “rigid”, constrained dynamics), one removes the Fixman
correction in the force evaluation.

4. Numerical integration. The key ingredient for achieving efficient numerical simulation is to use
an integrator that enforces the constraints associated with the implicit formulation of the mass penalized
dynamics (3.5). The implicit structure of (3.5) leads to numerical schemes that are potentially asymp-
totically stable in stiff cases (Section 6). On the other hand, when the penalization ν vanishes with the
time-step the scheme becomes consistent with respect to the original exact dynamics (2.3). One may then
consider the mass-penalization introduced here as a special method of pre-conditioning for a stiff ODE
system with an “implicit”, in the time evolution sense, structure. Here, the “implicit” structure amounts
to solving the imposed constraints ξ(q) = z/ν in (3.5).

It lies outside the scope of this paper to review standard numerical methods for constrained mechanical
systems, we refer to [14] as a classical textbook, and to the series ([40, 25, 15, 21, 8]) as a sample of
works on practical developments of numerical methods. The IMMP method is presented with the classical
leapfrog/Verlet scheme that enforces constraints, usually called RATTLE in (4.1). It can be implemented
by a simple modification of standard schemes constraining fDOFs. The scheme is second order, reversible
and symplectic. This choice is largely a presentation matter, for practical purposes one can refer to one’s
favorite numerical integrator for Hamiltonian systems with or without stochastic perturbations.

For accurate sampling of the equilibrium distribution, one can also add a Metropolis acceptance, re-
jection time-step corrector at each time step of the deterministic integrator. If the underlying integrator
is reversible and preserves the phase-space measure, this extension leads to a scheme which exactly pre-
serves canonical distributions. The Metropolis correction is used in Hybrid Monte-Carlo (HMC) methods,
which are sampling algorithms relying on the underlying dynamics of the system to generate moves in
the configuration space, which are accepted or rejected according to the Metropolis rule. The Metropolis
acceptance/rejection step can be used at each integration time step of the Langevin process, usually re-
ferred to as Generalized Hybrid Monte Carlo (GHMC) introduced in [22]. However, the necessity of the
momentum flip when a rejection occurs destroys the dynamical features of the Langevin process when the
rate of rejection does not vanish, and makes the latter rather behave similarly to an overdamped dynam-
ics. Note also that for usual schemes integrating the Hamiltonian dynamics, the average acceptance ratio
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often decreases when the dimension of the system increases ([24]). Many improvements and modifications
([11, 22, 2, 23]) of the HMC algorithm have been developed since its introduction in [12] for simulations
applied to quantum statistical field theories. Subsequently it has been also employed to a wide range of
simulations in macromolecular systems, e.g., [9, 38].

We implement numerical discretization of the Langevin process with constraints (3.5) obtained by
splitting the Hamiltonian part and the Gaussian fluctuation/dissipation perturbation. Note that by using
a Metropolis acceptance/rejection rule (HMC), or simply by weighting statistical averages, the forces
associated with the Fixman corrector need not be computed when one is interested in sampling only.

4.1. The IMMP integrator. We recall that we consider the IMMP dynamics (3.5), which consists
of the following elements

1. the Hamiltonian HIMMP defined in (1.5), which defines the deterministic dynamics of the IMMP.
2. the dissipation matrix diag (γ, γz), and the inverse temperature β, which defines the features of

the stochastic thermostat.

Scheme 4.1 (Dynamical integrator).

Step 1: Integrate the Hamiltonian part with:





pn+1/2 = pn − δt

2
(∇qV +∇qVfix,ν)(qn)−∇qξ(qn)λn+1/2

pzn+1/2 = pzn +
1

ν
λn+1/2

{
qn+1 = qn + δtM−1pn+1/2

zn+1 = zn + δtM−1
z pzn+1/2

ξ(qn+1) =
zn+1

ν
(C1/2) (4.1)





pn+1 = pn+1/2 −
δt

2
(∇qV +∇qVfix,ν)(qn+1)−∇qξ(qn+1)λn+1

pzn+1 = pzn+1 +
1

ν
λn+1

∇T
q ξ(qn+1)M

−1pn+1 =
1

ν
M−1

z pzn+1 (C1) .

Step 2: Integrate if necessary the Gaussian fluctuation/dissipation part with a mid-point Euler scheme with
constraints (see Appendix C).

Here again, one can remove the Fixman correction forces ∇qVfix,ν in force evaluation in order to
interpolate with usual rigid constraints dynamics.

Note a useful variant of the integrator, which occurs when the potential dependence with respect to the
penalized variables is known explicitly V (q) = U(q, ξ(q)). In such a case, the expressions (4.1) is replaced



Sampling highly oscillatory systems. 11

by





pn+1/2 = pn − δt

2
(∇1U +∇qVfix,ν)(qn)−∇qξ(qn)λn+1/2

pzn+1/2 = pzn − δt

2ν
∇2U(qn) +

1

ν
λn+1/2

{
qn+1 = qn + δtM−1pn+1/2

zn+1 = zn + δtM−1
z pzn+1/2

ξ(qn+1) =
zn+1

ν
(C1/2) (4.2)





pn+1 = pn+1/2 −
δt

2
(∇1U +∇qVfix,ν)(qn+1)−∇qξ(qn+1)λn+1

pzn+1 = pzn+1 −
δt

2ν
∇2U(qn+1) +

1

ν
λn+1

∇T
q ξ(qn+1)M

−1pn+1 =
1

ν
M−1

z pzn+1 (C1) .

where in the above, ∇1 and ∇2 denote the derivatives with respect two the first and the second variables,
respectively. This variant consists in applying a part of the force to the auxiliary variables instead of
directly to the system. For penalized degrees of freedom that move far from their equilibrium value, e.g.,
torsion angles, see Section 5, this may increase the stability of the algorithm enforcing the constraints. In
the same way for slow/fast systems (see Section 6.2), the scheme (4.2) will lead to asymptotic stability in
the large stiffness limit.

4.2. Exact sampling and Monte-Carlo scheme. To obtain exact sampling by correcting time
step errors and, if necessary, the geometric bias, a Metropolis acceptance/rejection is added. A domain
of phase-space Dδt ⊂ R2d × R2n where the integrator (4.1) with constraints has a unique solution is also
considered. In practice this set is simply the set of configurations for which the algorithm used to enforce
constraints in (4.1) (e.g., a Newton algorithm) converges in a given number of steps. In practice, the
(equilibrium) probability for the system of lying outside Dδt goes to zero exponentially fast with the time
step, and the latter is taken such that this probability is negligible.

Scheme 4.2 (Leapfrog/Verlet algorithm with Metropolis correction for Langevin IMMP (3.5)).
Step 1: Compute (qn+1, zn+1, pn+1, p

z
n+1) with the integrator (4.1), and set

∆Hn+1 = HIMMP(qn+1, zn+1, pn+1, p
z
n+1)−HIMMP(qn, zn, pn, p

z
n) .

If (qn+1, zn+1, pn+1, p
z
n+1) does not belong to Dδt, set ∆Hn+1 = +∞.

Step 2: Accept the step with the probability min(1, e−β∆Hn+1), otherwise reject, flip momenta, and set

(qn+1, zn+1, pn+1, p
z
n+1) = (qn, zn,−pn,−pzn) .

Step 3: Integrate the Gaussian fluctuation/dissipation part with a mid-point Euler scheme (for details see
Appendix C).

Remark 4.1. A useful variant, when using HMC strategies, consists in modifying the Hamiltonian
HIMMP (1.5) in the integrator (importance sampling) by neglecting the Fixman corrector





H̃IMMP(p, pz, q, z) =
1

2
pTM−1p+

1

2
pTz M

−1
z pz + Ṽ (q)

ξ(q) =
z

ν
(Cν),

(4.3)

where Ṽ is a potential that may be chosen arbitrarily (typically Ṽ = V ). Indeed, only the underlying phase
space structure, which does not depend on Ṽ , is necessary in HMC methods. The correct potential V +Vfix,ν
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has to be used in the Metropolis step only, or alternatively by weighting ensemble averages, in order to
ensure exact canonical sampling. Thus potentially costly evaluations of the gradient of the Fixman corrector
Vfix,ν can be avoided. This numerically constructed Markov chain preserves the canonical distribution.

Proposition 4.2 (Exact sampling). The Monte-Carlo algorithm generated from (3.5) as described in
Scheme 4.2 generates a Markov chain that leaves invariant the canonical distribution (3.8) (conditioned in
the constraints stability domain Dδt of (4.1)). The marginal in position variables of the distribution (3.8)
is the original distribution e−βV (q)dq which is independent of the mass-penalization ν.

Proof. The statement follows from reversibility and measure preserving properties of Verlet schemes
(see [14]), from the Hybrid Monte Carlo rule ([13, 24]), and from the construction of the mass-penalized
Hamiltonian (Proposition 3.4).

4.3. Interpolation between exact and constrained dynamics. First we study the limit towards
the leapfrog/Verlet scheme.

Proposition 4.3 (Small penalty limit). Assume that the IMMP integrator (4.1) or (4.2) is locally
well-defined, and that ν → 0. Then the latter two (computed with or without the Fixman correcting forces
∇qVfix,ν) converge at order O(ν2) towards the leapfrog/Verlet scheme for the exact dynamics.

Proof. Consider the auxiliary variables in the scaling (z̄, p̄z) = ( zν ,
pz

ν ), and the following shift of
Lagrange multipliers in (4.2), or equivalently in (4.1)

λ → −ν2λ+
δt

2
∇2U,

then the scheme (4.2) becomes





pn+1/2 = pn − δt

2
(∇qU +∇qVfix,ν)(qn) + ν2∇qξ(qn)λn+1/2

p̄zn+1/2 = p̄zn − λn+1/2{
qn+1 = qn + δtM−1pn+1/2

z̄n+1 = z̄n + δtM−1
z p̄zn+1/2

ξ(qn+1) = z̄n+1 (C1/2) (4.4)




pn+1 = pn+1/2 −
δt

2
(∇1U +∇qVfix,ν)(qn+1) + ν2∇qξ(qn+1)λn+1

p̄zn+1 = p̄zn+1 − λn+1

∇T
q ξ(qn+1)M

−1pn+1 = M−1
z p̄zn+1 (C1) ,

which converges at order O(ν2) to a decoupled scheme where the (q, p) variables evolve according to the
usual leapfrog/Verlet scheme, and the auxiliary variables (z̄, p̄z) are enforced by the constraints ξ(q) = z̄.
Now from (1.3), Vfix,ν is of order O(ν2) which completes the proof.

One can now construct schemes consistent with respect to the exact dynamics by letting the penalty ν =
ν̄δtk go to zero with the time step, for some k > 0. Indeed, Proposition 3.6 shows that the mass-penalized
dynamics (3.5) converges towards the exact original dynamics for ν = 0 at order O(ν2). Consequently most
of the usual numerical schemes will be consistent at their own approximation order but bounded above by
2k. The order of convergence refers to the maximal integer k such that the convergence of trajectories with
respect to the uniform norm occurs at the rate O(δtk). Neglecting the order of the fluctuation/dissipation
part (Step 2 of Scheme 4.1), we deduce the following consistence property.

Proposition 4.4 (Time-step consistency with exact dynamics). Assume that the integrator (4.1) or
(4.2) are locally well-defined, and that ν = ν̄δt. Then the IMMP numerical scheme (4.1) or (4.2) (computed
with or without the Fixman correcting forces ∇qVfix,ν), is of the order 2 and consistent with respect to the
original exact deterministic dynamics (2.3) (i.e., with γ = 0, σ = 0).



Sampling highly oscillatory systems. 13

Proof. Following the proof of Proposition 4.3 we have, by the implicit function theorem, locally, the
RATTLE scheme is a standard leapfrog scheme (see [14, 36]), and the associated local mapping depends
continuously on ν2 when ν → 0. Therefore the usual calculation of the order of the leapfrog scheme (see
[14]) holds uniformly with respect to ν, and (4.1) or (4.2) are of order 2 consistent uniformly in ν. Now,
the IMMP Hamiltonian (4.2) is a ν2 perturbation of the exact Hamiltonian, and the result then follows
from applying a simple Gronwall argument.

Similarly, we also obtain the limit towards the constrained/RATTLE scheme.
Proposition 4.5 (Large penalty limit). Assume that the integrators (4.1) or (4.2) are locally well-

defined, and that ν → +∞ with z0
ν → z̄0. Then the IMMP numerical scheme (4.1) or (4.2) (computed with

or without the Fixman correcting forces ∇qVfix,ν) converges at order 1
ν2 towards the constrained/RATTLE

scheme for the rigid constraints ξ(qn+1) = z̄0 (also computed with or without the associated geometric
correcting Fixman forces ∇qVfix defined by (3.3)).

Proof. Following similar steps as in the proof of Proposition 4.3, with auxiliary variables in the scaling
(z̄, p̄z) = ( zν ,

pz

ν ), and the following shift of Lagrange multipliers:

λ → λ+
δt

2
∇2U,

we obtain convergence at the order ν−2 to a decoupled scheme where the (q, p) variables evolve according
to the usual constrained/RATTLE scheme. Now from (3.3), Vfix,ν is a perturbation of Vfix of order ν−2

which completes the proof.
Remark 4.6. We conclude this section with a practical recipe for tuning the mass matrix penalty.

Identifying a suitable value of ν can be done, for instance, by computing the time averaged energy error
(5.1) in a dynamical simulation, or the Metropolis acceptance ratio (5.2) in a sampling simulation, which
gives a precise quantification of the time-step error. Then increasing the penalty ν can save computational
time as long as it leads to a reduction of the time-step error. Indeed, this means that the selected fDOFs
are limiting the time-step stability region. Prescribing the time-step error, a maximal time-step δtmax

associated with the largest penalty νmax that is able to improve stability can be obtained in this way.
Finally, one can set, for example, ν = νmax

δtmax
δt in Scheme 4.1 to obtain an order two convergent scheme

with an increased stability region.

5. Numerical simulations for the N-alkane model. The IMMP method is numerically tested on
the united atom N -alkane model. The united atom model is a coarse-grained description of linear alkane
isomers in which the hydrogen atoms are not resolved and the molecule is modeled by a chain of particles
interacting with effective potentials, see, e.g., [30]. The integrator studied in the present section is described
in Section 3 and Section 4, and is systematically compared with the exact dynamics, which is numerically
integrated by a simple Leapfrog/Verlet scheme with or without a thermostat, and with the constrained
dynamics numerically integrated by the RATTLE scheme with or without a thermostat. Constraints are
resolved using a simple Newton algorithm with a Gaussian linear solver. The Fixman forces are not resolved
in the dynamical part, and thus the dynamics interpolates for a large penalty with the “rigidly” constrained
dynamics. However, they are used in the Metropolis rule when sampling is considered.

The Metropolis/HMC step for the dynamics integrator as described by Scheme 4.2 is added only when
sampling is studied.

Verlet ν = 0.5 ν = 1.0 ν = 1.3 ν = 1.9 RATTLE

δtdync .024 (1) .032 (1) .046 (1) .059 (1) .077 (1) .093 (2)

δtsampl
c .013 (1) .014 (1) .022 (1) .028 (1) .035 (1) .049 (1)

Table 5.1
Critical time steps t

dyn
c and δt

sampl
c of the butane deterministic dynamics and of the sampling schemes, respectively.

Note the interpolation property from constrained dynamics to exact dynamics.
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Figure 5.1. Oscillations of the butane end-to-end length, for the Verlet integrator, the IMMP integrator, and the
constrained integrator. Simulations are computed with a prescribed initial energy. Note the interpolation property of the
IMMP scheme. This figure is associated to the frequency analysis in Figure 5.2.

5.1. The N-alkane model. The model consists of a chain ofN atoms with position vectors q(i) ∈ R3,
hence the vector of DOFs is q = (q(1), . . . , q(N)) ∈ R3N . The mass of particles is normalized to be m(i) = 1
for all i = 1, . . . , N . The interaction potential V consists of three short-range potentials that involve
2-body, 3-body, and 4-body terms

V (q) =
∑

i,j∈Ibond

Vbond(q
(i), q(j)) +

∑

i,j,k∈Iangle

Vangle(q
(i), q(j), q(k)) +

∑

i,j,k,l∈Itorsion

Vtorsion(q
(i), q(j), q(k), q(l)) .

In the presented simulations we focus on short-range interactions as they are primarily responsible for
the stiffness of the system. Thus we omit the long-range Coulomb or Lenard-Jones interaction potentials.

2-body interactions. The pair-wise bond potential Vbond depends on the distance r(i) = |q(i+1) − q(i)|,
i = 1, . . . , N−1 of the bonded particles (q(i), q(i+1)) in the linear chain. Typically this potential is assumed
to be harmonic with the equilibrium distance r(i) = r0. In all simulations considered here the bonds are
treated as rigid bonds of the constant length r0 = 1. Thus defining the constrained DOFs

ξbond(q) = (r(1), . . . , r(N−1)) = (1, . . . , 1) .

3-body interactions. The interaction of three consecutive particles (q(i), q(i+1), q(i+2)) in the chain is defined
by the potential Vangle(θ

(i)), i = 1, . . . , N−2 that depends on the angle between the vectors (q(i+2)−q(i+1))
and (q(i+1) − q(i)). In the simulated model we assume the bending angle potential

Vangle(θ) =
A0

2
sin2(θ − π

2
) .
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Figure 5.2. Frequency distribution of the end-to-end length oscillations of the butane Verlet dynamics and of the
IMMP dynamics, cf. Figure 5.1. Note the two main frequencies (slow torsion and fast bond angles oscillations), and the
slow components due to fluttering of resonances.

Depending on simulation the bending angles can be mass-penalized or directly constrained leading to the
definition of penalized DOFs

ξangle(q) = (θ(1), . . . , θ(N−2)) =
za
ν

in the case of mass-penalization,

ξangle(q) = (θ(1), . . . , θ(N−2)) = 0 in the case of rigid constraints,

where za ∈ RN−2 are the auxiliary variables of the IMMP method.

4-body interactions. The last contribution Vtorsion(φ
(i)) to the interaction potential depends on the torsion

(dihedral) angles φ(i), i = 1, . . . , N − 3 which are defined as angles between two planes span{(q(i+3) −
q(i+2)), (q(i+2) − q(i+1))} and span{(q(i+2) − q(i+1)), (q(i+1) − q(i))}. We use a simple choice of the torsion
potential

Vtorsion(φ) = −B0 cos(φ) .

The torsion DOFs are mass-penalized with the auxiliary variable zb ∈ RN−3

ξtorsion(q) = (φ(1), . . . , φ(N−3)) =
zb
ν
.

System of units. For the purpose of computational tests we have chosen the system of units in which the
mass of united atoms is m(1) = · · · = m(N) = m0 = 1, the equilibrium bond lengths are r(1) = · · · =
r(N−1) = r0 = 1 and the inverse temperature β = 1/kT = 1 at the ambient temperature T = 300K. The
time step δt = 0.01 in these units corresponds to the physical time step δt̃ =

√
βm0r0 = 3 fs. Following

physically relevant parameters (see, for example, [33, 30]) with an artificially slightly stiffer bending angle
potential leads to the angle potential constant A0 = 500 and the torsion potential constant B0 = 20.
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Figure 5.3. Interpolation of short trajectories of the butane length with IMMP dynamics, from constrained to Verlet
dynamics. The marked trajectory corresponds to ν = 5.5. The Verlet dynamics is the oscillating limit.

Applying direct constraints to bonds or bending angles in the presented formulation of the IMMP
method consists in replacing the auxiliary variables z associated with fully constrained DOFs by 0. As
described in Proposition 3.7 on the large penalty limit (see also Appendix A and Section 6 for the limit
of stiff distributions), the associated dynamics is the standard “rigid” constrained dynamics. Then for
sampling, the Fixman geometric corrector (1.4) is computed and accounts for the geometric bias of all the
constrained DOFs including bonds. Note that the physical relevance of the geometric bias due to bonds
is ambiguous since the quantum resolution may need to be introduced for the bond interactions. Such a
change can be easily incorporated by computing the Fixman corrector potential associated with the bonds
only and subtracting it from the Fixman corrector potential related to all the constrained DOFs.

5.2. Efficiency criteria. The efficiency of the IMMP method as compared to the Verlet/Leapfrog
integrator is quantified from two different viewpoints.

Dynamics. To compare computational efficiency of numerical schemes, a notion of critical time step has
to be introduced. The critical time step δtdync is defined implicitly through the formula

∫
β

3N −Nc
[Hn+1 −Hn]

+µν(p
n
ν , q

n) = α , (5.1)

where Nc denotes the number of rigidly constrained DOFs, [·]+ is the positive part, Hn is the energy of the
numerical scheme at the n-th step, and µν is the Boltzmann distribution associated with the Hamiltonian
at hand as defined in (3.8). The quantity α is a prescribed typical non-dimensional error of the energy
per degrees of freedom as compared to the inverse temperature β. At least when α is small, this defines
uniquely δtdync . Thus for a given α, the larger δtdync is, the less costly the method is in terms of force
evaluations per integration time step.

The critical time step δtdync is compared for the IMMP method and the Verlet/Leapfrog scheme. To
achieve a fair comparison, it has then to be checked that the IMMP penalty, which introduces a dynamical
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Figure 5.4. Convergence in terms of the ℓ2 pathwise error of the short time butane length IMMP dynamics compared
to Verlet dynamics and constrained dynamics, with orders of convergence O(ν2) and O(ν−2).

modification, does not modify the relevant slow frequencies and slow varying components of the system
on large time intervals. This can be done by comparing the distortion of the frequency distribution of a
long trajectory. In the numerical tests we analyze for t ∈ [0, T ] the trajectory of the end-to-end molecule
length t 7→ L(t), and we define the frequency density as the normalized square modulus of its Fourier
transform d(ω) = |L̂(ω)|2/Zf where Zf is the normalization making d(ω) a probability density function,

and L̂(ω) =
∫ T

0
L(t) exp(iωt) dt. We plot the cumulative distribution function

D(ω) =

∫ ω

0

d(ω′) dω′ .

Hence, in the figures dominant frequencies correspond to jumps in the associated cumulative distribution.
Of course, this comparison remains still largely qualitative.

Sampling. When using a Metropolis correction step in the numerical simulation, as in Scheme 4.2, the
critical time step is correlated to the rejection rate of the Metropolis step, since the larger the former is,
the more rejections will occur. Thus for sampling methods, the time step δtsampl

c is tuned in order to
achieve a given rate of rejection ρ satisfying

∫
exp

(
−β[Hn+1 −Hn]

+
)
µν(p

n
ν , q

n) = 1− ρ, (5.2)

where exp (−β[Hn+1 −Hn]
+) is the Metropolis weight that appears in Generalized Hybrid Monte-Carlo

methods, as defined in Scheme 4.2. Then, computational efficiency is defined by comparing δtsampl
c with

the mixing time in terms of physical time of the resulting Markov Chain. Equivalently, and more directly,
the results are presented as the mixing time in terms of iteration steps. Such comparison requires choosing
an appropriate notion of the mixing time. At least when the momenta are overdamped (i.e., γ → +∞),
the chain becomes reversible, and the mixing time can be rigorously defined using the spectral gap of the
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Figure 5.5. Left: Equilibrium PDF of the end-to-end length of the butane molecule with the GHMC scheme, using
Verlet, IMMP (penalty ν), and constrained/RATTLE integrators. Note that the constrained integrator does not sample the
correct measure. Right: The autocorrelation function in terms of iteration steps for the GHMC scheme comparing the IMMP
and the Verlet integrator. The decrease in the ℓ2-decorrelation time (5.3) is by the factor 1.8.

underlying Markov kernel. In the present work, the decorrelation time of relevant observables is used.
Assuming the initial state q0 of the system is at equilibrium, the normalized autocorrelation function
associated with a given position observable q 7→ φ(q) is

Cn(φ) :=
E[φ(qn)φ(q0)]

E[φ(q0)2]
,

and it can be computed in large time simulations using path averages. Then ℓ2-decorrelation time ncorr,
calculated in terms of iteration steps, is given by the formula

ncorr = 2

+∞∑

n=0

Cn(φ)
2 . (5.3)

This quantity corresponds to the approximate number of steps of the chain for the observable φ to decor-
relate from its past values.

5.3. Numerical results. For comparisons we choose an often studied observable defined as the end-
to-end distance of the alkane chain.

I. The butane model (N = 4). The bonds between atoms are rigidly constrained, and bond angles are
treated using the IMMP method with Scheme 4.1.

Dynamical behavior. The dynamics of the butane model is studied using deterministic dynamics with a
prescribed initial energy. As shown in Figure 5.1, the IMMP dynamics with different penalty ν yield an
interpolation from the mixed torsion/bond angles oscillations of the exact dynamics, to the simple torsion
oscillation of the constrained dynamics. Depending on the frequency introduced by the mass penalization,
some fluttering resonance can be observed in Figure 5.1 between the torsion and the bond angles.
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Behavior observed in Figure 5.1 is related to the frequency density of the end-to-end length oscillations
which are depicted in Figure 5.2. The bond angles oscillation frequency appears to slow down with the
IMMP penalization and is eventually setting to a single frequency of the constrained dynamics. Note the
slow modes introduced by the resonances.

The dynamical interpolation of the IMMP from the exact dynamics to the constrained dynamics is
demonstrated on short time trajectories in Figure 5.3. The associated convergence orders, O(ν2) and
O(ν−2), respectively, are captured in Figure 5.4. The time step stability is studied in Table 5.1. The
IMMP method enables an increase of the critical time step of the Verlet scheme, following the interpolation
property.

Sampling behavior. Exact sampling of the equilibrium distribution on a very large time scale, whatever
the value of the IMMP penalization, is shown in Figure 5.5. The distribution of the butane length for
constrained bond angles is clearly distorted. The mixing time to equilibrium is also studied. The autocor-
relation function of the length evolution in terms of iteration steps is plotted in Figure 5.5, and the faster
convergence of the IMMP method is demonstrated. The ℓ2-decorrelation time (5.3) is decreased by the
factor 1.8 using the IMMP method.

0 50 100 150
8.5

9.0

9.5

10.0

N=15 Length Evolution
nu=0.75

Physical Time
0 50 100 150

8.5

9.0

9.5

10.0

N=15 Length Evolution
Leapfrog/Verlet

Physical Time

Figure 5.6. The trajectory of the N = 15-alkane dynamics for the Verlet scheme and the IMMP scheme. Note that
the IMMP penalty does not modify substantially the low frequencies/slowly varying components. The frequency analysis is
presented in Figure 5.7

II. The alkane model (N = 5, . . . , 20). In this test the bonds and bending angles between atoms are
rigidly constrained, and torsion angles are treated using the IMMP method. Note that the rigid constraints
on torsions would lead to a rigid molecule, losing completely the evolution of the molecule length. The
IMMP penalty is increased with the system size using the linear scaling ν = ν̄N . In Section 7 we present a
mathematical justification of this scaling for linear systems. In principle, introducing inertia in the torsion
angles adds weights on the diagonal of the mass-tensor in the internal coordinates of the molecule. This can
reduce the lowest eigenvalues of the mass-tensor, and can explain the reduction of the multi-scale nature
of the system that are observed in the simulations below.
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Figure 5.7. Spectral densities of the end-to-end length of the alkane for N = 5, 10, 15, 20. Note that the IMMP penalty
does not modify substantially the low frequencies/slowly varying components.

Dynamical behavior. The frequency of oscillations of the alkane length in Figure 5.6, and in the spectral
analysis in Figure 5.7 are not substantially modified by the IMMP penalization. One can observe a small
group of fast oscillations in the middle of the Verlet dynamics plot in Figure 5.6 which is not present in
the IMMP case. This translates in the top of the spectral plots in Figure 5.7 where a cut-off of the fastest
oscillatory scales for the IMMP case occurs.

The critical time steps δtdync with respect to the system size are depicted in Figure 5.8. The gain in
time stepping increases more than linearly with the system size N . This behavior, however, depends on
the initial scaling ν = ν̄N of the IMMP penalty.

Sampling behavior. Exact sampling of the equilibrium distribution on very large time scales (whatever the
value of the IMMP penalization) is shown for N = 10 in Figure 5.9, with the auto-correlation of the latter
observable with the gain in mixing time of the IMMP dynamics. The precise ratio of the ℓ2-decorrelation
time between the IMMP integrator and the Verlet one is given in Figure 5.11 for different system sizes. It
increases again more than linearly in N , in fact exponentially for this particular system. The associated
critical time steps δtsampl

c are in Figure 5.10. We observe that the critical time step increases with large
N which demonstrates that in the present case, the IMMP method heals the decrease of the Metropolis
rejection rate of for large systems (see also [24]).

Conclusions. The presented numerical studies demonstrate that for integrating the dynamics, the IMMP
allows for relaxation of the time-step stability restrictions. In the case of sampling methods the IMMP
method decreases the decorrelation time measured in terms of Monte-Carlo iteration steps leading to more
efficient sampling algorithm. In both cases the improvements are increasing with system size N .

6. The infinite stiffness limit. Throughout this section, one introduces a potential function with an
explicit dependence with respect to the fast variables (q, z) 7→ U(q, z) together with a stiffness parameter
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Figure 5.8. Critical time steps, with error bars, δtdync of the Verlet and IMMP dynamics with respect to the system size.

ǫ. The potential energy V can then be written in the form

V (q) = U(q,
ξ(q)

ǫ
) , with a confining assumption inf

q∈Rd
U(q, z) ≥ K(z) ,

where K(z) > c log |z| as |z| → ∞. The functions ξ are then indeed “fast” degrees of freedom (fDOFs) in
the limit ǫ → 0, the system being confined to the slow sub-manifold M0 = {q | ξ(q) = 0}.

We prove, that under appropriate scaling of the mass penalty νǫ = ν̄
ǫ , the IMMP method is asymp-

totically stable in the stiff limit, converging towards standard effective dynamics on the slow manifold
M0.

6.1. Thermostatted stiff systems. The canonical distribution becomes

µǫ(dp dq) =
1

Zǫ
e−β( 1

2p
TM−1p+U(q, ξ(q)

ǫ
))dp dq . (6.1)

In the infinite stiffness limit (ǫ → 0) the measure concentrates on the slow manifold M0. The limit is
computed using the co-area formula (see Appendix A for relevant definitions of surface measures). In order
to characterize the limiting measure we introduce the effective potential

Veff(q) = − 1

β
ln

∫
e−βU(q,z) dz . (6.2)

Lemma 6.1. In the infinite stiffness limit (ǫ → 0), the highly oscillatory canonical distribution (6.1)
converges µǫ⇀µ0 (in distribution) towards µ0(dp dq), which is supported on M0, and defined as

µ0(dp dq) =
1

Z0
e−β( 1

2 p
TM−1p+Veff (q)) dp δξ(q)=0(dq) . (6.3)
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Figure 5.9. Left: Equilibrium PDF of the end-to-end length of the alkane chain with the GHMC scheme, using Verlet
and IMMP integrator (penalty ν). Right: The autocorrelation function in terms of iteration steps for the GHMC scheme
comparing the IMMP and the Verlet integrator. The system size is N = 10

Its marginal distribution in position is given, up to the normalization, by

e−βVeff(q)δξ(q)=0(dq) . (6.4)

Proof. It is sufficient to consider distributions in the position variable q only. Let Uδ be a δ-
neighborhood ofM0 where dq = ǫnδξ(q)=ǫz(dq) dz. We construct a decomposition ϕ = ϕ1+ϕ2 of continuous

bounded observables such that suppϕ1 ⊂ Uδ and suppϕ2 ∩ Uδ/2 = ∅. Using the confining property of
U(q, ·) we obtain

∫
ϕ(q)e−βU(q, ξ(q)

ǫ
)dq = ǫn

∫
ϕ1(q)e

−βU(q,z)δξ(q)=ǫz(dq) dz +O(e−βK(δ/2ǫ)) .

By continuity of ǫ 7→
∫
ϕ1(q)e

−βU(q,z)δξ(q)=ǫz(dq) and by the dominated convergence theorem

∫
ϕ1(q)e

−βU(q,z)δξ(q)=ǫz(dq) dz →
∫

ϕ1(q)e
−βVeff (q)δξ(q)=0(dq) =

∫
ϕ(q)e−βVeff (q)δξ(q)=0(dq) ,

and the result follows after normalization.
The infinite stiffness limit (ǫ → 0) of highly oscillatory dynamics has been studied in a series of papers

[37, 39, 27, 5, 34, 35]. The limiting dynamics can be fully characterized in special cases. For example, when
the highly oscillatory potential is linear and non-resonant (at least almost everywhere on the trajectory,
see [39]), it can be described through adiabatic effective potentials. See also [10, 6] for a recent work on
some related numerical issues. However, when the system is thermostatted, one can postulate an “ad hoc”
effective dynamics ([35]) exhibiting the appropriate limiting canonical distribution given by (6.4). Such
dynamics can be obtained by constraining the system to the slow manifold M0, and adding a correcting



Sampling highly oscillatory systems. 23

4 6 8 10 12 14 16 18 20 22 24

0.01

0.02

0.03

0.04

0.05

0.06

Sampling: Critical Time Step

N = System Size

Verlet    

nu =0.12(N−3)      

Figure 5.10. Critical time steps, with error bars, δtsampl
c of the Verlet and IMMP dynamics with respect to the system

size. Note that the IMMP penalty heals the degeneracy of the rejection rate for large systems.

entropic potential, sometimes called Fixman corrector from [19], which is due to the geometry of M0, and
is given by

Vfix(q) =
1

2β
ln (detG(q)) , (6.5)

where G(q) is the n× n Gram matrix defined in (3.2).
In general, since the effective potential (6.2) is not explicit, one may need to couple the system with

virtual fast degrees of freedom to enforce the appropriate effective dynamics associated with (6.2). The
resulting extended Hamiltonian is then defined on the state space T ∗ (M0 × Rn) (the cotangent bundle)
and is given by





Heff(p, pz, q, z) =
1

2
pTM−1p+

1

2
pTz M

−1
z pz + U(q, z) + Vfix(q)

ξ(q) = 0 . (C)
(6.6)

Definition 6.2 (Effective Langevin process with constraints). The constrained Langevin process
associated with Hamiltonian (6.6) is defined by the following stochastic differential equations





q̇ = M−1p

ż = M−1
z pz

ṗ = −∇1U(q, z)−∇qVfix(q)− γq̇ + σẆ −∇2ξ λ̇

ṗz = −∇2U(q, z)− γz ż + σzẆz

ξ(q) = 0 , (C)

(6.7)
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where ∇1 and ∇2 are respectively derivatives with respect to the first and second variable of the function
U(q, z), Ẇ (resp. Ẇz ) is the standard multi-dimensional white noise, γ (resp. γz) a d× d (resp. n× n)
symmetric positive semi-definite dissipation matrix, σ (resp. σz) is the fluctuation matrix satisfying σσT =
2
β γ (resp. σzσ

T
z = 2

βγz). The processes λ ∈ Rn are Lagrange multipliers associated with the constraints

(C) and adapted with respect to the white noise.

We formulate reversibility of this process as a separate lemma.

Lemma 6.3. The process defined in (6.7) is reversible with respect to the associated canonical distri-
bution whose marginal distribution in (q, p) variables is

µeff(dp dq) =
1

Zeff
e−β( 1

2p
TM−1p+Veff (q)+Vfix(q))σT∗M0(dp dq) (6.8)

with the q-marginal

e−βVeff (q) δξ(q)=0(dq) .

When γ and γz are strictly positive definite, the process is ergodic.

Proof. The process (6.7) is a Langevin process with mechanical constraints, exhibiting reversibility
properties with respect to the associated Boltzmann canonical measure (see the summary in Appendix B).
Then the q-marginal is obtained by remarking that the integration of any function of 1

2p
TM−1p+ 1

2p
T
z M

−1
z pz

with respect to dpz σT∗

q M0(dp) results in a constant independent of q.

The properties of thermostatted highly oscillatory systems are summarized in Table 6.1.
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Finite stiffness Infinite stiffness limit Infinite stiffness
ǫ > 0 ǫ → 0 ǫ = 0

Dynamics Highly Adiabatic Effective with
oscillatory (if non-resonant) constraints

+ fluct./diss. + non-Markov fluct./diss. + fluct./diss.
Statistics Canonical Positions on M0, Canonical on T ∗M0,

free velocities. geometric corrector.
Numerics Leapfrog/Verlet Time-step Leapfrog/Verlet with

+ fluct./diss. restrictions (δt = o(ǫ)) constraints
+ fluct./diss.

Table 6.1
Stiff Hamiltonian systems and associated commonly used numerical methods (M0 denotes the slow manifold). Two

different schemes are required for the stiff system and its effective Markovian approximation.

6.2. Stability of the IMMP dynamics. We assume that the mass-matrix penalty parameter ν ≡ νǫ
grows to infinity in such a way that limǫ→0 ǫνǫ = ν̄.

The original Hamiltonian with the stiffness parameter is expressed explicitly as

Hǫ(p, q) =
1

2
pTM−1p+ U(q,

ξ(q)

ǫ
) , (6.9)

and including the mass-matrix penalization one gets

Hνǫ(pνǫ , q) =
1

2
pTνǫM

−1
νǫ pνǫ + U(q,

ξ(q)

ǫ
) + Vfix,νǫ(q) , (6.10)

or in its implicit formulation





HIMMP(q, z, p, pz) =
1

2
pTM−1p+

1

2
pTz M

−1
z pz + U(q,

z

νǫǫ
) + Vfix,νǫ(q) ,

ξ(q) =
1

νǫ
z . (Cνǫ)

(6.11)

One immediately sees that HIMMP is non-singular when ǫ → 0 and converges to the effective Hamiltonian
on the slow manifold,





Heff,ν̄(q, z, p, pz) =
1

2
pTM−1p+

1

2
pTz M

−1
z pz + U(q,

z

ν̄
) + Vfix(q)

ξ(q) = 0 . (C) .
(6.12)

The expression (6.11) represents a minor generalization of Heff in (6.6), but it leads to the same canonical
marginal distribution µeff(dp dq) in (p, q) variables as given by (6.8). The continuity in ǫ of HIMMP implies
stability of the associated dynamics and their numerical integrators. We first derive the limits of the
original and penalized canonical distribution.

Proposition 6.4 (Limits of canonical distributions). Consider the canonical distributions µνǫ(dp dq
associated with the mass penalized Hamiltonian (6.10), but considered with respect to the variables (p ≡
MM−1

νǫ pνǫ , q). In the sense of weak convergence of measures we have µνǫ⇀µeff as ǫ → 0 with µeff defined
by (6.8).

Proof. The first convergence is proved in Lemma 6.1. For the second one, the following notation will
be used

δq,ǫz(dq) = δξ(q)=ǫz(dq) , and δp,ǫpz
(dp) = δpTM−1∇ξ(q)=ǫM−1

z pz
(dp) .
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To prove the convergence towards µeff we consider a δ-neighborhood Uδ of M0 where

dp dq =
ǫ2n

detMz
δq,ǫz(dq) dz δp,ǫpz

(dp) dpz ,

and a decomposition of the bounded observable (in (p, q) variables) ϕ = ϕ1 + ϕ2 such that suppϕ1 ⊂ Uδ

and suppϕ2 ∩ Uδ/2 = ∅. Thus, keeping in mind that pνǫ = MνǫM
−1p, and using the confining property of

the potential U(q, ·) we obtain

∫
ϕ(p, q)e−βHνǫdpνǫ dq =

∫
ϕ1(p, q)e

−βHνǫdpνǫ dq +O(e−βK(δ/ǫ)) ≡ Iǫ +O(e−βK(δ/2ǫ)) . (6.13)

Applying the change of variables pνǫ = MνǫM
−1p yields

dpνǫ = det (MνǫM
−1) dp = ν2nǫ detMz det (G+

1

ν2ǫ
M−1

z ) dp ,

and setting ǫM−1
z pz = ∇qξ M

−1p and ǫz = ξ(q) we get

Hνǫ(pνǫ , q) =
1

2
pTM−1p+ ν2ǫ ǫ

2pTz M
−1
z pz + U(q,

z

νǫǫ
) + Vfix,νǫ(q) = HIMMP(q, z, p, pz) .

Thus substituting back to (6.13) we obtain

Iǫ = (νǫǫ)
2n

∫
ϕ1e

−βHIMMP(q,z,p,pz)det (G+
1

ν2ǫ
M−1

z ) δp,ǫpz
(dp) dpz δq,ǫz(dq) dz ,

and thus

Iǫ −−−→
ǫ→0

ν̄2n
∫

ϕ1e
−βHeff,ν̄(q,z,p,pz)det (G) δp,ǫpz

(dp) dpz δξ(q)=0(dq) dz .

Using the co-area formula we obtain

det (G) δ∇ξ(q)M−1p=0(dp)δξ(q)=0(dq) = σT∗M0(dp dq) ,

which leads to the final result after integration of the (pz, z) variables and normalization.
Remark 6.5. Due to the fast oscillations, the distribution of impulses in the limiting distribution

µ0 in (6.3) is uncorrelated, whereas after the mass-matrix penalization, the limiting distribution (3.8) has
almost surely co-tangent impulses (i.e., satisfying the constraints ∇qξM

−1p = 0). This explains the role
of the corrected potential energy Vfix taking into account the curvature of M0.

In the next step we inspect the infinite stiffness asymptotic of the penalized dynamics.

Proposition 6.6 (Infinite stiffness limit). When ǫ → 0 with ν ≡ νǫ ∼ ν̄
ǫ and V (q, ξ(q)) = U(q, ξ(q)

ǫ ),
the IMMP Langevin stochastic process (3.5) converges weakly towards the following coupled limiting pro-
cesses with constraints





q̇ = M−1p ,

ṗ = −∇1U(q,
z

ν̄
)−∇qVfix(q)− γq̇ + σẆ −∇qξλ̇ ,

ξ(q) = 0 , (C)

ż = M−1
z pz ,

ṗz = − 1

ν̄
∇2U(q,

z

ν̄
)− γz ż + σzẆz .

(6.14)
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where ∇1 and ∇2 are respectively derivatives with respect to the first and second variable of the function
U(q, z), and {λt}t≥0 are adapted stochastic processes defining the Lagrange multipliers associated with the
constraints (C).

The process {qt, pt}t≥0 defines an effective dynamics with constraints (Definition 6.2) for thermostatted
highly oscillatory systems. It is reversible with respect to its stationary canonical distribution given by µeff

(6.8), and is ergodic when (γ, γz) are strictly positive definite.

Proof. The proof is similar to the proof of Proposition 3.7. Here we have

∇qU = ∇1U +
1

ǫ
∇qξ∇T

2 U ,

and (3.5) translates, up to a change of Lagrange multipliers, into





q̇ = M−1p

ż = M−1
z pz

ṗ = −∇1U −∇qVfix,ν(q)− γq̇ + σẆ −∇qξ λ̇

ṗz = − 1

νǫǫ
∇2U − γz ż + σzẆz +

λ̇

νǫ

ξ(q) =
z

νǫ
, (Cνǫ) .

(6.15)

The rest follows the proof of Proposition 3.7.

Remark 6.7. When ν̄ → +∞, by a classical averaging argument (see, e.g., [27]), one can check that
the limiting dynamics are the effective dynamics pointed out in [35]





q̇ = M−1p

ṗ = −∇qUeff(q)−∇qVfix − γq̇ + σẆ −∇qξ λ̇

ξ(q) = 0 . (C)

(6.16)

with the stationary canonical distribution (6.8).

6.3. Stability of the IMMP integrator. The numerical scheme (Scheme 4.1 proposed for the
IMMP method (3.5)) is also stable in the limit of infinite stiffness ǫ → 0. Recall that we consider a
reversible, measure preserving numerical flow Φνǫ

δt (p, pz, q, z) associated with Hamiltonian (6.11) HIMMP

with constraints (modified potentials could similarly be considered).

Proposition 6.8 (Asymptotic stability). In the limit ǫνǫ → ν̄, the numerical flow Φνǫ
δt associated

with the leapfrog/Verlet integrator with constraints for the IMMP Hamiltonian (6.11) converges towards
the numerical flow Φν̄

δt, which is the leapfrog/Verlet integrator with geometric constraints associated with
effective Hamiltonian (6.12) on the slow manifold.

Proof. The statement is a direct consequence of the implicit function theorem and the continuity of
the leapfrog integrator with constraints (4.1) with respect to the parameter ν̄ = ǫνǫ. Indeed, considering
the shift of Lagrange multipliers λ → λ + 1

ǫ∇2U and taking the limit ǫ → 0 we obtain the appropriate
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leapfrog scheme





pn+1/2 = pn − δt

2
∇1U(qn,

zn
ν̄
)−∇qξ(qn)λn+1/2

pzn+1/2 = pzn − δt

2ν̄
∇2U(qn,

zn
ν̄
)

qn+1 = qn + δtM−1pn+1/2

zn+1 = zn + δtM−1
z pzn+1/2

ξ(qn+1) = 0 (C1/2)

pn+1 = pn+1/2 −
δt

2
∇1U(qn+1,

zn+1

ν̄
)−∇qξ(qn+1)λn+1

pzn+1 = pzn+1 −
δt

2ν̄
∇2U(qn+1,

zn+1

ν̄
)

∇qξ(qn+1)M
−1pn+1 = 0 . (C1)

By convergence of the Hamiltonian (6.11) to (6.12), similar asymptotic stability properties holds when
a Metropolis step is introduced.

The results and properties discussed in this section are summarized in Table 6.2.

Zero mass Positive Infinite
penalization mass-penalization stiffness limit

ν = 0 ǫ, ν > 0 ǫ → 0, ν
ǫ → ν̄

Dynamics Highly oscillatory IMMP Effective with
+ fluct./diss. + fluct./diss. constraints+ fluct./diss.

Statistics Canonical Canonical with Canonical on
correlated velocities T ∗M0

Numerics IMMP + fluct./diss.
Table 6.2

The IMMP dynamics and the Verlet numerical integration are both asymptotically stable in the infinite stiffness regime
if ν

ǫ
→ ν̄ < +∞. If the mass-penalization vanishes (ν = 0) one recovers the original physical stiff system. The canonical

distribution is always exact in the position variable. Notice that due to the penalized mass-matrix (ν > 0) the statistics have
correlated velocities.

7. Numerical analysis of a harmonic particle chain. In this section we present rigorous analysis
for a special case of the linear chain with harmonic interactions. The analysis supports scaling properties
of the IMMP, with respect to the size of the chain, observed in numerical simulations of the general linear
alkane chains. We consider the thermodynamic limit N → +∞ where N is the size of the system. It is
shown that the macroscopic dynamics of the IMMP method behaves continuously (uniformly with N , and
in the L2 norm for the position profile) with respect to the re-scaled mass penalty parameter ν̄.

At the same time, the time-step stability of the IMMP numerical scheme (4.3) is compared with the
standard Verlet scheme, and the critical time step is shown to be increased by a factor ν̄N .

From the spectral point of view, the IMMP method behaves in this linear case as a low-pass filter. This
proves, in this simplified case, the ability of IMMP method to respect macroscopic dynamical equivalence,
while saving computational time up to a factor of order O(N).

7.1. Conservation of macroscopic dynamics. The model we consider consists of a chain of par-
ticles which interact through the harmonic (quadratic) potential vint(r) = r2/2. Each particle is also
individually submitted to a macroscopic confining exterior (quadratic) potential vext(r). After converting
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to the non-dimensional form the typical quantities involved in the model enable us to write a scaling at
the mass-transport level where the dynamics of the chain is described by the Hamiltonian

HN (q, p) =
1

2
pT p+

N−1∑

i=1

vint(∇d
i q) +

N∑

i=1

vext(qi) , (7.1)

and by a coupling with an exterior thermal bath at the re-scaled inverse temperature βN = βN−1. In the
expression (7.1) the functions r ∈ R 7→ vint(r) ∈ R and q 7→ vext(q) ∈ R are the smooth interaction potential
and the exterior potential, respectively. The linear operator ∇d : RN → RN−1, having the components

∇d
i q =

qi+1 − qi
1/N

, i = 1, . . . , N − 1 ,

represents the discrete gradient associated to the chain with the Neumann boundary conditions. Its
transpose operator is denoted (∇d)T : RN−1 → RN . The discrete Laplace operator is then defined as
∆d = −(∇d)T∇d. The particles are represented by their re-scaled positions q = (q1, ..., qN ), so that the
typical position and deviation of q is formally of order 1 with respect to N . This can be seen by considering
particles in the chain as indexed by x = i

N ∈ [0, 1]. We choose to work with such scaling in N that it
prescribes the macroscopic timescale of the chain profile at order one with respect to N .

Following our general construction we obtain the mass-penalized Hamiltonian

HνN (pνN , q) =
1

2
pTνNM−1

νN pνN +

N∑

i=1

vint(∇d
i q) +

N∑

i=1

vext(qi) . (7.2)

We chose the penalizing matrix to be the identity matrix Mz = Id , hence the penalized mass-tensor
becomes MνN = Id − ν̄2∆d, and the fluctuation/dissipation tensor is taken proportional to the identity
matrix. The system of stochastically perturbed equations of motions then becomes

{
q̇ = (Id − ν̄2∆d)

−1p

ṗ = ∆d q − v′ext(q)− γq̇ + σ
√
NẆ ,

(7.3)

with fluctuation/dissipation identity σ2 = 2β−1γ. The associated canonical equilibrium distribution is
then given by the re-scaled inverse temperature βN = βN−1.

In order to treat the limit N → ∞, we introduce the ℓ2-norm in the position space

‖q‖2ℓ2 :=
1

N

N∑

i=1

q2i =
1

N
qT q ,

as well as the h−1-norm in the momentum space

‖p‖2h−1
=

∥∥∥∥∥(−∆d)
−1/2(p− 1

N

N∑

i=1

pi)

∥∥∥∥∥

2

ℓ2

+

(
1

N

N∑

i=1

pi

)2

.

In the above expression, 1
N

∑N
i=1 pi can be seen as the orthogonal projection in ℓ2 on the one dimensional

kernel of the Neumann discrete Laplacian ∆d. The quadratic form ‖q‖20 + ‖p‖2−1 endows the phase-space
with a Hilbert space structure.

Proposition 7.1 (Convergence of the macroscopic dynamics). Assume that the exterior potential
vext is bounded and that its derivative satisfies the Lipschitz condition

‖v′ext(q2)− v′ext(q1)‖h−1
≤ Lv ‖q2 − q1‖ℓ2 ,
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where Lv is independent of N . For any T > 0, let t 7→ (pν̄(t), qν̄(t)) be the solution, for t ∈ [0, T ], of the
evolution equation (7.3) with the initial condition

(pν̄(0), qν̄(0)) = (M−1/2
νN p0(0), q0(0)) ,

where (p0(0), q0(0)) is distributed according to the original equilibrium canonical distribution (associated
with (7.1) and βN = βN−1). Then for all t ∈ [0, T ] one has the uniform convergence

lim
ν̄→0

lim sup
N→+∞

E

[∥∥qν̄(t)− qν̄=0(t)
∥∥2
ℓ2

]
= 0 .

Proof. We write X = (q, p), and introduce the norm

‖X‖ν̄ = ‖q‖ℓ2 +
∥∥∥M−1/2

νN p
∥∥∥
h−1

.

The system (7.3) becomes a stochastic differential equation in the form

dX ν̄
t = Aν̄X

ν̄
t + F (X ν̄

t ) + ΣdWt , (7.4)

where by definition

Aν̄ =

(
0 (Id − ν̄2∆d)

−1

∆d 0

)
, F (X) =

(
0

−v′ext(q)− γp

)
, Σ =

(
0√
Nσ

)
.

Duhamel formula gives an implicit expression for differences of solutions of (7.4) with the same noise

X ν̄
t −X0

t =
(
eAν̄t − eA0t

)
X0

0 +

∫ t

0

(
eAν̄(t−s) − eA0(t−s)

)
(F (X0

s ) ds+Σ dWs)

+etAν̄ (X ν̄
0 −X0

0 ) +

∫ t

0

eAν̄(t−s)(F (X ν̄
s )− F (X0

s ))ds . (7.5)

We estimate the individual terms on the right hand side in (7.5). We define P as the coordinate transfor-
mation associated with the orthonormal spectral decomposition

−∆d = P−1diag (δ0, . . . , δN−1)P ,

where PPT = Id . The eigenvalues of the discrete Neumann Laplacian are given, for k = 0, . . . , N − 1, by

δk = 4N2 sin2
(
kπ

2N

)
∼

N→∞
k2π2 . (7.6)

Denoting the spectral coordinates

X̂ = (q̂, p̂) = (N−1/2Pp,N−1/2Pq)

we have

‖X‖2ν̄ = p̂20 +

N−1∑

k=1

δk
1 + ν̄2δk

p̂2k +

N−1∑

k=0

q̂2k .

The spectral decomposition leads to a block diagonal form of the operator eAν̄t with diagonal 2× 2 blocks
in the spectral basis

e
cAν̄

(0)
t =

(
1 t
0 1

)
,
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as well as for k = 1, . . . , N − 1

e
cAν̄

(k)

=

(
0 (1 + ν̄2δk)

−1

δk 0

)
,

where Âν̄

(k)
is the 2 × 2 block associated with the coordinates (q̂k, p̂k). Since Âν̄

(k)
conserves the k-mode

energy δk(q̂k)
2 + (1 + ν̄2δk)

−1(p̂k)
2, one can check that for any N ≥ 1 the operator norm

|||eAν̄t|||2ν̄ ≤ 2 + 2t2 .

Similarly, since in the sense of symmetric matrices M
−1/2
νN ≤ Id , we have the bound

∥∥F (X ν̄)− F (X0)
∥∥
ν̄
≤
∥∥∥M−1/2

νN

(
v′ext(q

ν̄)− v′ext(q
0) + γ(pν̄ − p0)

)∥∥∥
h−1

≤ (LF + γ)
∥∥X ν̄ −X0

∥∥
ν̄
.

Using independence of Brownian increments we compute

E

[∥∥∥∥
∫ t

0

(
eAν̄(t−s) − eA0(t−s)

)
Σ dWs

∥∥∥∥
2

ν̄

]
=

∫ t

0

N∑

i=1

∥∥∥(eAν̄(t−s) − eA0(t−s))Σ.,i

∥∥∥
2

ν̄
ds .

Applying Gronwall lemma in (7.5) and collecting all terms we obtain

E

[∥∥X ν̄
t −X0

t

∥∥2
ν̄

]
≤ CT

(
E

[∥∥X ν̄
0 −X0

0

∥∥2
ν̄
+mT

])
, (7.7)

where CT is independent of N , and with X0 being distributed canonically mT is given

mT = sup
t∈[0,T ]

(
E

[∥∥(eAν̄t − eA0t
)
X0
∥∥2
ν̄

]
+ E

[∥∥(eAν̄t − eA0t
)
F (X0)

∥∥2
ν̄

]
+

N∑

i=1

∥∥(eAν̄t − eA0t
)
Σ.,i

∥∥2
ν̄

)
.

For a given random vector X such that E
[
‖X‖20

]
< +∞, Parseval identity and the inequality ‖·‖ν̄ ≤ ‖·‖0

imply

E

[∥∥(eAν̄t − eA0t
)
X
∥∥2
ν̄

]
=

N−1∑

k=1

E

[∥∥∥
(
e

cAν̄t − e
cA0t
)
X̂
∥∥∥
2

k,ν̄

]
≤ 2

N−1∑

k=1

E

[∥∥∥X̂
∥∥∥
2

k,0

]
, (7.8)

where ‖·‖k,ν̄ is the restriction to the k-th mode (q̂k, p̂k). Then one has, by orthogonality of P ,

N∑

i=1

E

[∥∥∥Σ̂.,i

∥∥∥
2

k,0

]
= σ2

N∑

i=1

P 2
k,i

1

δk
≤ σ2

δk
.

Up to normalization, the distribution of X0 has the density e−
β
N

P

d
i=1 vext(q

0
i ) with respect to the Gaussian

distribution with the covariance matrix β−1Id for momenta variables, and the covariance matrix (β∆d)
−1

for positions. Thus we have the bound

E

[∥∥∥X̂0
∥∥∥
2

k,0

]
≤ 2e4β‖vext‖∞

1

δkβ
,

as well as

lim
N→∞

E

[∥∥∥F̂ (X0)
∥∥∥
2

k,0

]
≤ e4β‖vext‖∞E

[∥∥∥F ◦ F ◦ F−1(Ĝ0)
∥∥∥
2

k,0

]
,
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where F denotes the Fourier series expansion on [0, 1] with Neumann conditions, and (Ĝ0
k)k≥1 are canonical

centered Gaussian i.i.d. variables with the covariance matrix β−1

(
1 0
0 1

k2π2

)
. By the Lipschitz assumption

the series is bounded

+∞∑

k=1

E

[∥∥∥F ◦ F ◦ F−1(Ĝ0)
∥∥∥
2

k,0

]
≤ (Lv + γ)E

[∥∥∥Ĝ0
∥∥∥
2

0

]
=

+∞∑

k=1

2(Lv + γ)

βk2π2
.

Since limν→0 |||ecAν̄
(k)

t − e
cA0

(k)
t||| = 0, one can take the limit N → +∞ and use the uniform convergence of

the series in (7.8) to obtain limν̄→0 limN→+∞ mT = 0 in (7.7). The convergence of the initial condition

limν̄→0 limN→+∞ E
∥∥X ν̄

0 −X0
0

∥∥2
ν̄
follows by using similar arguments. The proof is complete.

7.2. Relaxation of time-step stability restriction. To demonstrate improved stability properties
of time integration algorithms we consider the IMMP scheme (4.1) associated with the mass-matrix penal-
ized Hamiltonian (7.2). Note that when the constraints are linear, the leapfrog scheme (RATTLE) applied
to an implicit Hamiltonian is identical to the usual leapfrog scheme for the associated explicit Hamiltonian

(7.2). We restrict the rigorous analysis to the quadratic interaction potential (vint(r) =
r2

2 ), zero exterior
potential (vext = 0), and to the mass-matrix penalization operator (Id − ν̄2∆d). The leapfrog scheme is
defined as





pn+1/2 = pn +
δt

2
(−∆d)qn

qn+1 = qn + δtM−1
νN pn+1

pn+1 = pn+1/2 +
δt

2
(−∆d)qn+1 .

Denoting the spectral variables for k = 1, . . . , N − 1





v̂k =

(
δk

1 + ν̄2δk

)1/2 √
NPp

x̂k =

(
1 + ν̄2δk

δk

)1/2 √
NPq ,

(7.9)

we write
(
v̂kn+1

x̂k
n+1

)
= Lk

(
v̂kn
x̂k
n

)
,

where

Lk =

(
1− h2

k

2 −hk +
h3
k

4

hk 1− h2
k

2

)
, and hk = δt

δ
1/2
k

(1 + ν̄2δk)
1/2

.

Since det (Lk) = 1, the standard CFL stability condition is equivalent to

|Tr (Lk)| ≤ 2

which is fulfilled if and only if hk ≤ 2 for all k ≤ N − 1. Thus we arrive at the following bound on the time
step

δt ≤ 2 min
0≤k<N

(
1 + ν̄2δk

δk

)1/2

.
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Summarizing the above calculations and recalling (7.6) we have the following characterization of the
stability properties.

Proposition 7.2. Suppose vext = 0 and consider a harmonic interaction potential vint(r) =
r2

2 with
the mass-matrix penalization MνN = Id − ν̄2∆d. The leapfrog/Verlet integration of the IMMP harmonic
Hamiltonian (7.1) is stable in the spectral sense if and only if

δt ≤


4ν̄2 +

1

N2 sin2
(
(N − 1)π

2N

)




1/2

. (7.10)

Since we work with a Metropolis correction of the hybrid Monte-Carlo type, we are also interested in
the limiting behavior of the energy variation compared to the temperature, i.e.,

βN (H(pn+1, qn+1)−H(pn, qn)) ,

when (pn, qn) are distributed according to the canonical distribution. This quantity gives the average
acceptance rate of the Metropolis correction. The result we present here is similar to [4] where the authors
analyze infinite dimensional sampling with the standard Metropolis-Hastings Markov chains.

Proposition 7.3. Suppose vext = 0 and consider a harmonic interaction potential vint(r) =
r2

2 with the
mass-matrix penalization MνN = Id − ν̄2∆d. Suppose the state variable X = (pνN , q) is a random variable
distributed according to the canonical distribution associated with the mass-matrix penalized Hamiltonian
(7.1). Then the energy variation βN∆H after one step of the leapfrog integration scheme converges in
distribution, up to normalization and centering, to the Gaussian random variable

βN∆H −mN

σN

Law−−−−−→
N→+∞

N (0, 1) ,

with the mean and variance in the infinite size asymptotics for the IMMP method ν̄ > 0 and δt ≡ δtN = o(1)

mN ∼
N→+∞

Nδt6N
32ν̄6

, and σ2
N ∼

N→+∞

Nδt6N
16ν̄6

,

and for the Verlet integration of exact dynamics with δt ≡ δtN = o(1/N)

mN ∼
N→+∞

5

8
N7δt6N , and σ2

N ∼
N→+∞

5

4
N7δt6N .

Proof. We start with a canonically distributed state X = (q, p), which is, by assumption on the form
of the interaction potential, a Gaussian random vector. After changing to the spectral coordinates (7.9)
we have the spectral representation of the Hamiltonian

βNH = β

N−1∑

k=1

δ
1/2
k

2(1 + ν̄2δk)1/2
(
(v̂k)2 + (x̂k)2

)
,

and introducing Gaussian random vectors U and V with the identity covariance matrix we can write

x̂k = β−1/2 (1 + ν̄2δk)
1/4

δ
1/4
k

Uk , and v̂k = β−1/2 (1 + ν̄2δk)
1/4

δ
1/4
k

Vk .

We then compute explicitly the change of the Hamiltonian after one step of the leapfrog integration

βN∆H =
N−1∑

k=1

1

2

(
Uk

Vk

)T

(LT
kLk − Id )

(
Uk

Vk

)
. (7.11)
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Since det (LT
kLk) = 1 the matrix LT

kLk − Id has two positive eigenvalues (λk − 1, 1/λk − 1) which satisfy

λk + 1/λk − 2 = Tr (LT
kLk − Id ) =

h6
k

16
,

(λk − 1)2 + (1/λk − 1)2 = Tr (LT
kLk)

2 − 2Tr (LT
kLk) =

h12
k

256
+

h6
k

8
.

Combing with (7.11) we find

mN ≡ E[βN∆H ] =

N−1∑

k=1

h6
k

25
, and σ2

N ≡ Var[βN∆H ] =

N−1∑

k=1

h6
k

24
+

h12
k

29
.

Moreover, the Lindenberg or simply Lyapunov condition in the general central limit theorem (see [18]) is
verified since we work with a sum of χ2 random variables, thus concluding the first part of the proof.

Recalling

hk = δt
sin( k

N
π
2 )

( 1
4N2 + ν̄2 sin2( k

N
π
2 ))

1/2
,

we compute the convergent Riemann sums for p = 6 and p = 12. For the case ν̄ 6= 0 we have

lim
N→∞

1

N

N−1∑

k=1

hp
k =

δtp

ν̄p
.

If ν̄ = 0 we obtain

lim
N→∞

1

Np+1

N−1∑

k=1

hp
k = lim

N→∞

δtp

N

N−1∑

k=1

2p sinp
(

k

2N
π

)

= δtp2p
∫ 1

0

sinp
(π
2
x
)
dx .

Thus for p = 6 we have that the series sums to 20δt6. Then the asymptotic behavior follows from the
assumption δt12N ≪ δt6N , and similarly δt12N N12 ≪ δt6NN6 in the case ν̄ = 0.

Remark 7.4. The two propositions proved in this section characterize the restrictions imposed by
the stability of the resulting scheme. In Proposition 7.2, stability in the large system size limit, N → +∞,
is equivalent to the inequality (7.10). In this case the restriction of the time-step size is imposed by the
numerical integrator. On the other hand the stability for the scheme which uses a Metropolis corrector is
linked to the acceptance rate of the Metropolis step. In Proposition 7.2, stability in the large system size
limit is equivalent to the non-vanishing Metropolis acceptance rate, which is equivalent to bounded from
above average energy variation mN and bounded variance σN of the energy variation. In either case, the
IMMP method (ν̄ > 0) induces a relative increase of order N for the boundary of numerical stability as
compared to the exact dynamics ν̄ = 0 integrated with the Verlet scheme.

Appendix A. Surface measures. Let Rd be endowed with the scalar product given by the positive
definite matrix M , and consider Mz a family of sub-manifolds of co-dimension n implicitly defined by n
independent functions Mz = {x ∈ M| ξ1(q) = z1, .., ξn(q) = zn} for z in a neighborhood of the origin. For
each z in a neighborhood of the origin the conditional measure δξ(q)=z(dq) is a measure on Mz defined in
such a way that it satisfies the chain rule for conditional expectations with respect to the Lebesgue measure
dq, i.e.,

dq = δξ(q)=z(dq) dz . (A.1)
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The surface measure σT∗

q Mz
(dp) is the Hausdorff measure induced by the metric M−1 on the co-tangent

space T ∗
q Mz =

{
p | ∇T

q ξ(q)M
−1p = 0

}
; and in the same way, σMz

(dq) is the Hausdorff measure induced
by the metric M on the sub-manifold Mz. It is important to note that, although this is not explicit in the
notation, σ is defined with respect to the mass-tensor M of the mechanical system. The Liouville measure
σT∗Mz

(dp dq) on the co-tangent bundle T ∗Mz is the volume form induced on

T ∗Mz =
{
(p, q) | ∇T

q ξ(q)M
−1p = 0 , ξ(q) = z

}

by the usual symplectic form dp ∧ dq. It can be described in terms of surface measures as follows

σT∗Mz
(dp dq) = σT∗

q Mz
(dp)σMz

(dq) .

Finally, the co-area formula (see [17] for a general reference) defines the relative probability density
between δξ(q)=z(dq) and σMz

(dq).
Proposition A.1 (Co-area formula). Given the invertible Gram matrix associated with the constraints

ξ(q) = z in a neighborhood of Mz = {q | ξ(q) = z}

G(q) = ∇T
q ξ M

−1∇qξ ,

one has

δξ(q)=z(dq) =
1√

detG(q)
σMz

(dq) .

Appendix B. Langevin processes. Defining the Poisson bracket

{ϕ1, ϕ2} = ∇T
p ϕ1∇qϕ2 −∇T

p ϕ2∇qϕ1 ,

and the dissipation tensor

d(q) = σq ,

where σ is the fluctuation matrix in Definition 2.1, the Markov generator of the Langevin process in
Definition 2.1 is

L = { · , H}+ 1

β

{
d,
{
dT , ·

}
e−βH

}
eβH .

The generator L satisfies
∫

ϕ1 L(ϕ2)e
−βH dp dq =

∫
L∗(ϕ1)ϕ2 e

−βH dp dq ,

where

L∗ = { · ,−H}+ 1

β

{
d,
{
dT , ·

}
e−βH

}
eβH .

The generator L∗ defines a Langevin process with the time-reversed Hamiltonian (−H). Reversibility of the
process implies that the canonical measure is stationary. Furthermore, if the initial state of the system is a
canonically distributed random variable, the probability distribution of a trajectory after the time-reversal
is given by a Langevin process with the generator L∗. When H has the form H(p, q) = 1

2p
TM−1p+ V (q),

reversal of impulses (p → −p) leads to time-reversed dynamics, and a process with generator L∗ can be
constructed by the following simple steps:
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1. Reverse momenta (p → −p).
2. Draw a random path with generator L.
3. Reverse again momenta (p → −p).

When holonomic constraints, for instance, of the form

Ξ(p, q) = ζ ⇔
{
pTM−1∇qξ =0

ξ(q) =z

are introduced, it is useful to define the Poisson bracket on the co-tangent bundle T ∗Mz

{ϕ1, ϕ2}Mz
= {ϕ1, ϕ2} −

∑

a,b

{ϕ1,Ξ
a}Γ−1

a,b

{
Ξb, ϕ2

}
,

where Γ is the symplectic Gram matrix of the full constraints

Γa,b =
{
Ξa,Ξb

}
.

As a basic result of symplectic geometry (see [1]), one recovers the divergence formula with respect to the
bracket { · , · }Mz

and the Liouville measure σT∗Mz
(dp dq)

∫
{ · , · }Mz

σT∗Mz
(dp dq) = 0 .

Given a constrained Langevin process in a stochastic differential equation form

q̇ = ∇pH ,

ṗ = −∇qH − γq̇ + σẆ −∇qξ λ̇ ,

where λ are Lagrange multipliers associated with the constraints ξ(q) = 0, adapted with respect to the
noise Ẇ , the process {pt, qt}t≥0 obeys hidden velocity constraints and is characterized by the stochastic
differential equations

q̇ = ∇pH +∇pΞ Λ̇ ,

ṗ = −∇qH − γq̇ + σẆ −∇qΞ Λ̇ ,

where Λ are Lagrange multipliers associated with the full constraints Ξ(p, q) = 0. The Markov generator
of this process can be written in the form

LMz
= { · , H}Mz

+
1

β

{
d,
{
dT , ·

}
Mz

e−βH
}
Mz

eβH ,

demonstrating the reversibility with respect to the constrained canonical measure e−βHσT∗Mz
(dp dq).

Appendix C. Exact sampling of fluctuation/dissipation perturbations. In this section, we
recall how to perform exact sampling of fluctuation/dissipation perturbations. Since we only work with
impulses, we refer to the system by using the impulse variables p only. Note that throughout the paper, we
also use extended variables (p, pz), however, the presentation that follows covers general cases. The kinetic
energy of the system is 1

2p
TMp. We impose constraints pTM−1∇qξ = 0 on impulses, thus p ∈ T ∗

q M and
hence the associated orthogonal projector on T ∗

q M is

P = Id −∇qξ G
−1∇T

q ξ M−1 .
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The stochastic differential equations of motion on impulses that are integrated on a time-step interval are

{
ṗ = −γM−1p+ σẆ −∇qξ λ̇ ,

pTM−1∇qξ = 0 , (Cp)
(C.1)

with the usual fluctuation/dissipation relation σσT = 2β−1γ. The Gaussian distribution of impulses

1

Z
e−

β
2 pTM−1pσT∗

q M(dp) (C.2)

is invariant under the dynamics (C.1).
Proposition C.1 (Exact sampling of stochastic perturbation). Given the mass matrix M , suppose

either δt or γ are small enough so that the condition

δt

2
M−1 ≤ γ (C.3)

holds in the sense of symmetric semi-definite matrices. Let U be a centered and normalized Gaussian
vector. Consider the mid-point Euler scheme with constraints





pn+1 = pn − δt

2
γM−1(pn + pn+1) +

√
δtσU −∇qξ λn+1

pTn+1M
−1∇qξ = 0 , (Cp)

(C.4)

where λn+1 is the Lagrange multiplier associated with the constraint (Cp). The Markov kernel defined by
the transition pn → pn+1 is reversible with respect to the Gaussian distribution (C.2).

Proof. After calculating the Lagrange multiplier the expression (C.4) can be written as

pn+1 = pn − δt

2
PγPTM−1(pn + pn+1) +

√
δtPσU .

Consider the new variable p̃ = β1/2M−1/2p, and define the symmetric matrix

L ≡ δt

2
M−1/2PγPTM−1/2 ,

as well as K, such that KKT = L. In terms of these new variables we obtain from (C.4)

p̃n+1 = (Id + L)−1(Id − L) p̃n + 2(Id + L)−1K U . (C.5)

Moreover, the product measure σT∗

q M0(dpn)σT∗

q M0(dpn+1) is the measure induced on the linear subspace

of constraints by the scalar product M−1 and the Lebesgue measure dpn dpn+1. Thus in the variables
(p̃n, p̃n+1) this measure becomes, up to a constant, the measure induced by the usual Euclidean structure.
As a consequence the log density of the random variable (p̃n, p̃n+1) defined by (C.5) with respect to this
latter measure is equal to

−1

2
|p̃n|2 −

1

8

(
p̃n+1 − (Id + L)−1(Id − L) p̃n

)T
L−1(Id + L)2

(
p̃n+1 − (Id + L)−1(Id − L) p̃n

)

= −1

8
p̃Tn+1L

−1(Id + L)2 p̃n+1 −
1

8
p̃TnL

−1(Id + L)2 p̃n ,

which is indeed symmetric between p̃n and p̃n+1. Hence we have shown the reversibility of the induced
Markov kernel and consequently stationarity of the canonical Gaussian distribution.
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