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Abstract
Community detection is the problem of identifying community structure in graphs. Often the graph is

modeled as a sample from the Stochastic Block Model, in which each vertex belongs to a community. The
probability that two vertices are connected by an edge depends on the communities of those vertices. In this
paper, we consider a model of censored community detection with two communities, where most of the data
is missing as the status of only a small fraction of the potential edges is revealed. In this model, vertices in
the same community are connected with probability p while vertices in opposite communities are connected
with probability q. The connectivity status of a given pair of vertices {u, v} is revealed with probability α,
independently across all pairs, where α = t log(n)/n. We establish the information-theoretic threshold tc(p, q),
such that no algorithm succeeds in recovering the communities exactly when t < tc(p, q). We show that when
t > tc(p, q), a simple spectral algorithm based on a weighted, signed adjacency matrix succeeds in recovering
the communities exactly.

While spectral algorithms are shown to have near-optimal performance in the symmetric case, we show that
they may fail in the asymmetric case where the connection probabilities inside the two communities are allowed
to be different. In particular, we show the existence of a parameter regime where a simple two-phase algorithm
succeeds but any algorithm based on the top two eigenvectors of the weighted, signed adjacency matrix fails.

1 Introduction
The problem of detecting community structure is an important question in the study of networks. The canonical
formulation of this problem is made via the stochastic block model (SBM), where each vertex is a member of one
of K communities, and vertices create an edge independently based on their latent community assignments. The
objective is to recover the latent community assignments based on the observed network. One may be interested in
exact, partial, or weak recovery. When the average degree scales as Θ(log n), such that the graph is connected with
high probability, one is often interested in recovering the community assignments exactly. Previous literature gives
us precise characterization on when the exact recovery problem is efficiently solvable and when it is information
theoretically impossible [3, 5, 12, 15]. See the survey [1] for an overview.

Popular approaches for community detection in the stochastic block model include spectral algorithms and
semidefinite programming. Given the adjacency matrix representation of the graph, spectral algorithms use
properties of the eigenvalues and eigenvectors of the matrix in order to infer the communities [4, 7, 16, 17]. Other
approaches are based on the “non-backtracking” matrix of the graph [6, 12]. Semidefinite programming approaches
[9, 10, 14] are typically a relaxation of the maximum likelihood estimator, which is NP-hard to compute directly.

In this paper, we study the community detection problem when we only have partial knowledge about the
graph. The information about the status of an edge between each pair of vertices is censored independently,
i.e., an edge between a pair of vertices can be present, absent or censored. A precise description is given below
in Definition 2.1. This model is referred to as the Censored Stochastic Block Model (CSBM). Abbe, Bandeira,
Bracher, and Singer [2] were the first to address the exact recovery problem on CSBM when the within community
edge probability p and the between community edge probability q satisfy p+ q = 1. They show that the Maximum
Likelihood Estimator (MLE) achieves exact recovery up to the information theoretic threshold. However, the
MLE turns out to be equivalent to the Max-Cut problem and is thus NP-hard to compute. For this reason, [2]
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considered the Semidefinite Programming (SDP) relaxation which was shown to work in a certain regime. Later,
Hajek, Wu, and Xu [8, 10] proved that, under this set up, the SDP relaxation actually works up to the information
theoretic threshold.

The impressive line of work above leaves an important question open: what families of algorithms achieve
exact recovery for the CSBM up to the information theoretic threshold? Given that semidefinite programming is
less efficient than spectral approaches, the main question of this paper is:

Question: Are spectral algorithms information theoretically optimal for exact recovery of CSBMs?

It is important to note here the difference between purely spectral algorithms and algorithms that combine
spectral algorithms with additional clean-up procedures. The results on exact recovery for the standard block
model in [3, 15] used spectral algorithms as the first step in a two stage procedure. In the usual uncensored
stochastic block model, Abbe, Fan, Wang, and Zhong [4] recently showed that the spectral algorithm is optimal,
without need for a clean-up stage. It was not immediately clear whether the same would be true for the censored
version that we consider, since observations are ternary (present, absent, censored) rather than binary (present,
absent).

We are also interested in answering the spectral question in a more general setup than what was previously
considered. First, previous results focused on the case that p+ q = 1 which ensures that a present edge carries
the same relative information as an absent edge. We see that this condition can be avoided. Second, we are also
interested in cases where the edge probabilities within different communities are different. In our main results we
show that:

B spectral algorithms are optimal for the CSBM for all values of p, q above the information theoretic threshold,
and

B if the interconnection probabilities inside two communities are different, then spectral algorithms are
sub-optimal in a regime of parameters.

The latter result is not a sign of a computational-statistical gap as we find a simple two stage algorithm that
exactly recovers the communities in this case.

2 Model and main results
2.1 Model description. We start by defining the Censored Stochastic Block Model.

Definition 2.1. (Censored Stochastic Block Model (CSBM)) We have n vertices with labels given by
σ0 ∈ {±1}n := S. The vertices i with σ0(i) = +1 (resp. σ0(i) = −1) are said to be in Community 1
(resp. Community 2). The labels are generated independently, with

P(σ0(i) = +1) =
1

2
and P(σ0(i) = −1) =

1

2
.

Two vertices i 6= j are connected by an edge with probability p1 if σ0(i) = σ0(j) = +1, p2 if σ0(i) = σ0(j) = −1, and
q if σ0(i) 6= σ0(j). Self-loops do not occur. Each edge status is revealed independently with probability α = t logn/n
for a constant t > 0. The output is a graph with edge statuses given by {present, absent, censored}. We denote
this censored model by CSBM(p1, p2, q, α). In the symmetric case where p1 = p2 = p, we denote the model by
CSBM(p, q, α). For a visualization of the model, see Figure 1.

Objective. We observe a graph G from CSBM(p1, p2, q, t) with vertex labels removed (i.e., σ0 is unknown), and
edges labeled by {present, absent, censored}. An estimator σ̂ is said to achieve exact recovery if

lim
n→∞

P(∃s ∈ {±1} : σ̂ = sσ0) = 1.(2.1)

We say that exact recovery is possible if there exists some estimator σ̂ such that (2.1) holds.

Next, we provide formal statements of the main results, along with the key conceptual contributions.
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Figure 1: Blue and red vertices represent Community 1 and 2, respectively. Each pair
of vertices is connected with probability p1, p2, or q according to the communities of
the vertices. The black graph is the sample that we see; vertex labels are absent, and
edges may be present (solid line), absent (no line), or censored (dotted line).

2.2 Optimality of the spectral algorithm in the symmetric case. Consider the symmetric case
p1 = p2 = p and p 6= q. Throughout, we assume that p, q ∈ (0, 1) and t > 0 are fixed. We will establish
that the information-theoretic threshold for exact recovery is given by:

tc(p, q) :=
2(√

p−√q
)2

+
(√

1− q −
√

1− p
)2 .(2.2)

Our first result shows that if t < tc(p, q), then any estimator fails to achieve exact recovery with high probability.

Theorem 2.1. If t < tc(p, q), then any estimator σ̂ satisfies P(σ̂ = σ0) = o(1).
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Figure 2: Contour plot for the region where exact recovery is impossible, i.e., t < tc(p, q)
for t = 10, 20, 30. As t decreases the impossibility region expands.

Figure 2 illustrates the region t < tc(p, q). Next, we describe the success of a simple spectral algorithm for
t > tc(p, q). To this end, we need a weighted version of the signed adjacency matrix. Let

y = y(p, q) =
log
(

1−q
1−p

)
log
(
p
q

) ,(2.3)

and define the signed adjacency matrix as

Aij =


1 if {i, j} is present
−y if {i, j} is absent
0 if {i, j} is censored.

Note that y > 0 whenever p 6= q. Our next result shows that the spectral algorithm achieves exact recovery for
t > tc(p, q).
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Theorem 2.2. Let u1 be the top eigenvector of A and define σ̂Spec = sign(u1). If t > tc(p, q) and p > q, then
there exists η = η(p, q) > 0 and s ∈ {±1} such that, with probability 1− o(1),

s
√
nmin
i∈[n]

σ0(i)(u1)i ≥ η.

Consequently, σ̂Spec achieves exact recovery for t > tc(p, q). If p < q, all conclusions hold if we replace A by −A.

The estimator σ̂Spec does not require additional clean-up steps. For the non-censored SBM, Abbe et. al. [4]
established an analogous result using entrywise eigenvector perturbation analysis, which we will also use (see
Proposition 5.1). The key distinction of our algorithm to that of Abbe. et. al. [4] lies in the fact that the observed
graph admits a ternary encoding as opposed to a binary encoding. It is worthwhile to remark that the choice of y
is important for the spectral algorithm to succeed up to the information theoretic threshold, and in fact, (2.3) is
the only choice of y that works. Intuitively, y is the ratio of evidence provided by a present edge on a vertex’s
community as compared to an absent edge. More precisely, if we compute the log-likelihood ratio for a vertex to
be in one community or the other, then it turns out to be a linear function of the number of present and absent
edges to each community. In the symmetric case, the ratio of the coefficients corresponding to present and absent
edges to Community j turns out to be y for both j = 1, 2. When p+ q = 1, i.e., in the special case considered in
[2, 10], we have that y = 1, and the relative information provided by present and absent edges are equal. Therefore,
Theorem 2.2 shows that the spectral algorithm with y = 1 would succeed in exact recovery in the model of [2, 10].

We conclude this section by showing that the error rate of the spectral algorithm is close to that of the best
possible estimator. For an estimator σ̂, we define the error rate as

Err(σ̂) = E
[

min
s∈{−1,+1}

1

n

n∑
i=1

1{σ̂(i) 6=sσ0(i)}

]
.(2.4)

To define the best estimator, we use a genie-aided approach. Suppose that we want to find the label of u. Now,
in addition to the observed edge-labeled graph G, suppose a genie gives us (σ0(v))v∈[n]\{u}. The genie-based
estimator minimizes the probability of making an error given these observations. More precisely, the genie-based
estimator σ̂Best is given by

σ̂Best(u) := argmax
r∈{±1}

P(σ0(u) = r | G, (σ0(v))v∈[n]\{u}).(2.5)

The next result shows that the error rate of σ̂Spec is within a no(1) factor of the error rate of σ̂Best:

Theorem 2.3. For any fixed t > 0, the spectral and genie-aided estimators satisfy

Err(σ̂Spec) = no(1)Err(σ̂Best) +O(n−3) = n−(1+o(1))t/tc(p,q) +O(n−3).

Therefore, the expected number of misclassified vertex-labels by the spectral algorithm is at most no(1) times that
of the genie estimator. In particular, if t > tc(p, q), then this expected number is o(1) which is why exact recovery
is achievable by the spectral algorithm.

Remark 2.1. If p, q are unknown, then it is not difficult to estimate them. Indeed, if E, T respectively denote the
number of edges and triangles in the graph then E = (1 +o(1)) tn logn

4 (p+ q) and T = (1 +o(1)) t
3 log3 n

8

(
pq2 + 1

3p
3
)

with probability tending to 1. We can use these to find consistent estimator (p̂, q̂) of (p, q) and use the spectral
algorithm with ŷ = y(p̂, q̂). The conclusions of Theorem 2.2 and Theorem 2.3 still remain valid.

2.3 Beating the spectral algorithm Theorems 2.2 and 2.3 strongly support the success of the spectral
algorithm. We next provide results to show that there is room for improvement. First, Theorem 2.3 proves a no(1)

relative discrepancy between the error rates of the spectral and the genie estimators, and therefore, the expected
difference between misclassified vertices under these two algorithms may grow with n. We prove that with an
additional clean-up step, one can in fact get a 1 + o(1) relative discrepancy between the error rates. Second, we
consider the case where the connection probabilities within Community 1 (p1) and Community 2 (p2) differ. In
this case, we show that the spectral algorithm does not always work up to the information-theoretic threshold.
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Intuitively, if p1 6= p2, then the relative information provided by present and absent edges are different for vertices
in different communities. For this reason, it is not possible to find a common choice of encoding y which works
well for vertices in both communities. We establish the failure of the spectral algorithm rigorously for p1 = 1− p2

and q = 1/2. On the other hand, an algorithm based on degrees and an additional clean-up step turns out to be
near-optimal for any p1, p2, q.

We start by introducing the two-step estimator for which we need some notation. For a given vertex u and
σ ∈ S, let D = D(σ, u) = (Di(σ, u))4

i=1 be the degree profile where D1, D2 (resp. D3, D4) are the number of
present and absent edges to vertices in Community 1 (resp. Community 2). Note that D(σ, u) depends only on G
and (σ(v))v∈[n]\{u}. Define Γ(u, σ, p1, p2, q) by

Γ(u, σ, p1, p2, q) = D1(σ, u) log
p1

q
+D2(σ, u) log

1− p1

1− q
+D3(σ, u) log

q

p2
+D4(σ, u) log

1− q
1− p2

(2.6)

Definition 2.2. (Two-step estimator) Given an initial estimator σ̂, a two-step estimator X̂(σ̂) is computed
as follows:

X̂(σ̂, u) =

{
+1 if Γ(u, σ̂, p1, p2, q) ≥ 0,

−1 otherwise.
(2.7)

The function Γ(·) is designed to mimic the workings of the genie estimator. In fact, we will later show that
σ̂Best(u) = +1 if and only if Γ(u, σ0, p1, p2, q) ≥ 0 (see Proposition 6.1). Thus the two-step estimator treats the
initial estimator as a proxy of the true community assignment and then does the same procedure as the genie
estimator. The following result states that the two-step version of the spectral estimator has a sharper error rate
in the symmetric case.

Theorem 2.4. If p1 = p2 = p and p 6= q, then for any t > 0,

Err(X̂(σ̂Spec)) = (1 + o(1))Err(σ̂Best) + o(1/n).

Next, we show that, for p1 6= p2, the two-step estimator based on degrees in the observed graph has similar strong
recovery guarantees. Let deg(i) be the number of present edges incident to vertex i. Define the degree-based
estimator to be

σ̂Deg(i) = sign

(
deg(i)− t log(n)

4
(p1 + p2 + 2q)

)
.

Let c1 = (p1, 1− p1, q, 1− q), and c2 = (q, 1− q, p2, 1− p2) and define

tc(p1, p2, q) =

[
1− 1

2
min
x∈[0,1]

∑
i

(c1)xi (c2)1−x
i

]−1

.(2.8)

When p1 = p2 = p, then it is elementary to check that the minimum in (2.8) is attained for x = 1/2 and therefore

tc(p, p, q) = tc(p, q),(2.9)

where tc(p, q) is given by (2.2). We next provide success guarantees for X̂(σ̂Deg).

Theorem 2.5. If p1, p2, q ∈ (0, 1) are distinct, then for any t > 0,

Err(X̂(σ̂Deg)) = (1 + o(1))Err(σ̂Best) + o(1/n).

Furthermore, if t > tc(p1, p2, q), then X̂ (σ̂Deg) achieves exact recovery.

Remark 2.2. If p1, p2, and q are unknown, then one can estimate them as follows. First, classify each vertex
according to whether its degree is above average. This procedure will result in an estimator σ̂ with at most n1−ε

errors on average, i.e., Err(σ̂) = O(n−ε) for some ε > 0. Then we can estimate the parameters by counting revealed
edges and non-edges between and within the estimated communities.
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Figure 3: The estimator X̂(σ̂Deg) achieves exact recovery in the gray regions,
corresponding to t > tc(p, 1− p, 1/2). No spectral algorithm can achieve exact recovery
in a neighborhood of the dotted lines, represented schematically by the light gray
regions.

If p1 = p2, then σ̂Deg cannot achieve spectral recovery. In this sense, Theorem 2.4 and Theorem 2.5 are
complementary. We next describe the failure of the spectral algorithm for p1 = 1− p2 and q = 1/2. Let us start by
defining a version of the spectral algorithm which makes decisions based on arbitrary linear combinations of the
top two eigenvectors of some encoding matrix.

Definition 2.3. Given an encoding parameter y ∈ R, threshold r ∈ R and constants γ1, γ2 ∈ R, let A be the
signed adjacency matrix with entries Aij ∈ {−y, 0, 1}. Let u1 and u2 be the two top eigenvectors of A. Then the
spectral algorithm Spectral(y, r, γ1, γ2) outputs the estimator

σ̂(i) = sign(γ1(u1)i + γ2(u2)i − r).(2.10)

In other words, the spectral algorithm decides community assignments using a thresholding on a linear combination
of the top two eigenvectors of some encoding matrix. Only the top two eigenvectors are included since the
eigenvectors of A behave like noisy versions of the eigenvectors of the rank-2 matrix A?. The following result states
that even this more general algorithm fails in the antisymmetric CSBM for t sufficiently close to the recovery
threshold.

Theorem 2.6. Let p1 = p = 1− p2 and q = 1/2. There exists δ > 0 such that if t < tc(p, 1− p, 1/2) + δ, then, for
any choice of y, r, γ1, γ2, the algorithm Spectral(y, r, γ1, γ2) fails to achieve exact recovery with probability 1− o(1).

Theorems 2.5 and 2.6 together show that there is a range of values of t where the spectral algorithm fails in exact
recovery, but X̂(σ̂Deg) succeeds (see Figure 3). In other words, there is a strong separation between the spectral
algorithm and the two-step procedure based on degrees. One can now see the failure of the spectral algorithm from
a technical perspective. In this regime, the top two eigenvectors of the encoding matrix A are close to Au?1/λ?1 and
Au?2/λ

?
2 respectively where u?i is the i-th largest eigenvector of the expectation matrix. If we imagine replacing u1

and u2 in (2.10) by their approximations, then the decision rule for the label of a vertex u is given by the sign of∑
i ziDi − r0 for some coefficients {zi} and threshold r0, where Di denotes the degree profile of u. Moreover, due

to the choice of the encoding, the coefficients (z1, z2, z3, z4) satisfy z1
z2

= z3
z4

= y. The estimator that minimizes
the error probability can also be shown to decide communities based on the sign of

∑
i z
′
iDi > r′0, but in order

to satisfy the additional condition z′1
z′2

=
z′3
z′4

= y, one requires y(p1, q) = y(p2, q), or p1 = p2. For this reason, the
spectral algorithm is strictly less powerful than the best possible estimator and thus one cannot expect the spectral
algorithm to work all the way up to the information theoretic threshold if y(p1, q) 6= y(p2, q). Theorem 2.6 makes
this intuition precise for p1 = 1− p2.
Organization. The remainder of the paper is structured as follows. We start by setting up some preliminary
notation in Section 3. In Section 4, we prove impossibility for the exact recovery problem in Theorem 2.1.
Section 5 is devoted to entrywise perturbation analysis of the largest eigenvector of A and completing the proof of

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



Theorem 2.2. The error analysis for the spectral algorithm and the genie estimator will be provided in Section 6
and hence the proof of Theorem 2.3 will be completed. In Section 7, we analyze the two-step estimator for a
general class of initial estimators. This allows us to complete proofs of Theorems 2.4 and 2.5. Finally, we conclude
with a proof of Theorem 2.6 regarding failure of the spectral algorithm in Section 8. We provide proof ideas at the
beginnings of Sections 4-8.

3 Notation and preliminaries
Let [n] = {1, , 2, . . . , n}. We often use the Bachmann–Landau notation o(1), O(1) etc. For two sequences (an)n≥1

and (bn)n≥1, we write an � bn as a shorthand for limn→∞
an
bn

= 1. We write an ∼ bn if an and bn are asymptotically
equivalent, namely limn→∞

an
bn
→ c for some c 6= 0. Additionally, we write an ≈ bn if these sequences differ by

a polylogarithmic factor asymptotically, namely there exists some constant c such that an = O (bn logc(n)) and
bn = O (an logc(n)). For random variables (Xn)n≥1, we write Xn = oP(1) as a shorthand for Xn → 0 in probability.

For a vector x ∈ Rn, we define ‖x‖2 = (
∑n
i=1 x

2
i )

1/2 and ‖x‖∞ = maxi |xi|. For a matrix M ∈ Rn×d, we
use Mi· to refer to its i-th row, represented as a row vector. Given a matrix M , ‖M‖2 = max‖x‖2=1 ‖Mx‖2 is
the spectral norm, and ‖M‖2→∞ = maxi ‖Mi·‖2 is the matrix 2 → ∞ norm. We use the convention that log

denotes natural logarithm, and write logk(n) to mean (log(n))
k. Finally, DKL(p‖q) refers to the Kullback–Leibler

divergence of two Bernoulli random variables with parameters p and q:

DKL(p‖q) = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
.

Let n1(σ0) = |{v : σ0(v) = +1}| and n2(σ0) = |{v : σ0(v) = −1}|. Note that since n1(σ0), n2(σ0) are marginally
distributed as Bin

(
n, 1

2

)
, we have that for all ε ∈ (0, 1),

(3.1)
∣∣∣n1(σ0)− n

2

∣∣∣ ≤ εn and
∣∣∣n2(σ0)− n

2

∣∣∣ ≤ εn
with probability at least 1− 2 exp(−ε2n/6). We will often use (3.1) with ε = n−

1
3 . Additionally, let N(u) be the

number of vertices whose connections to u are revealed: N(u) := {v : {u, v} is revealed}. By [11, Corollary 2.4]
for c > 1

(3.2) P (N(i) ≥ logc(n)) ≤ exp (− logc(n)) .

for all sufficiently large n. We will use (3.2) with c = 5
4 or c = 2.

The following Poisson approximation will be used throughout.

Lemma 3.1. Let {Wi}mi=1 be i.i.d. from a distribution taking three values a, b, c and P(Wi = a) = αp,
P(Wi = b) = α(1− p), and P(Wi = c) = 1− α. Let Nx := #{i : Wi = x} for x = a, b, c. If m1,m2 = o(log3/2 n),
m = n

2 (1 +O(log−2 n)) and α = t log n/n, then

M(m,m1,m2, p) := P(Na = m1, Nb = m2) � P
( tp log n

2
;m1

)
P
( t(1− p) log n

2
;m2

)
,

where P (λ;m) is the probability that a Poisson(λ) random variable takes value m.

The proof follows using Stirling’s approximation; we provide the details in Appendix B.

4 Impossibility of exact recovery
In this section, we give the proof of Theorem 2.1. We first identify a sufficient condition under which any algorithm
fails to achieve exact recovery (Proposition 4.1). The condition captures the idea that there are some graph
instances that cannot be labeled correctly with confidence since there are multiple suitable labelings for these
instances. If these graph instances are likely to occur, then the overall failure probability can be lower-bounded.
Theorem 2.1 is then proven by finding a set of graphs that are difficult to label correctly.
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4.1 Sufficient condition for impossibility. Recall that S = {±1}n is the space of possible values of σ. We
write g as a generic notation to denote the observed value of the edge-labeled graph G consisting of present, absent
and censored edges. Also, let G be the space of all possible values of G. We write P(·|σ) to denote the probability
distribution of CSBM(p, q, t) when the community assignments are given by σ.

Since

P(σ̂ 6= σ0) =
∑
g∈G

P(σ̂ 6= σ0 | G = g)P(G = g),

the estimator that maximizes the posterior probability P(σ̂ = σ0 | G = g) for all g ∈ G also minimizes the error
probability P(σ̂ 6= σ0). This estimator is the Maximum A Posteriori (MAP) estimator. Thus, an optimal algorithm
is devised by choosing uniformly at random among all MAP estimates, and we denote the corresponding estimator by
σ̂MAP. Next, using the fact that σ0 is uniformly distributed on S, we must have P(σ0 = σ|G = g) ∝ P(G = g|σ0 = σ).
Then,

argmax
σ

P (σ0 = σ | G = g) = argmax
σ

P (G = g | σ0 = σ) ,(4.1)

i.e., the MAP estimator coincides with the Maximum Likelihood estimator.
In light of this equivalence, the following result identifies a condition where the MAP estimator fails with a

given probability.

Proposition 4.1. Fix δ > 0. Suppose that there is G′ ⊂ G with P(G ∈ G′|σ0) ≥ δ such that the following holds
for any g ∈ G′: There are k pairs of vertices {(ui, vi) : i ∈ [k]} with opposite community label such that if σ′0 is
obtained by swapping any one of the labels of ui and vi, then P(G = g|σ0) = P(G = g|σ′0). Then, conditionally on
σ0, the MAP estimator σ̂MAP fails in exact recovery with probability at least δ

(
1− 1

k

)
.

Proof. By our underlying condition, whenever g ∈ G′, the true assignment is such that swapping one of the
community assignment of one of the pairs among {(ui, vi) : i ∈ [k]} results in an equiprobable assignment. In that
case, the algorithm is incorrect with probability at least 1− 1

k , due to (4.1). Therefore,

P(σ̂MAP 6= σ0

∣∣ σ0) ≥ P(σ̂MAP 6= σ0

∣∣ G ∈ G′, σ0)P(G ∈ G′
∣∣ σ0) ≥ δ

(
1− 1

k

)
,(4.2)

and the proof follows.

Remark 4.1. Additionally, Proposition 4.1 holds when σ0 is an assignment with equal community sizes, i.e.,
n1(σ0) = n2(σ0). In this case, observe that we can treat the assignment σ0 as though it were chosen uniformly at
random from all σ satisfying n1(σ) = n2(σ). To see this, consider applying a uniformly chosen random permutation
to the vertices. The inference problem does not change; however, the MAP estimator again coincides with the
Maximum Likelihood estimator, and one can use an identical argument as above.

4.2 Proof of impossibility of exact recovery

Proof. (Proof of Theorem 2.1). Throughout the proof, we condition on σ0 ∈ S such that n1(σ0), n2(σ0) =
(1 + O(n−1/3))n2 , which occurs with probability at least 1− 2 exp(−n1/3/6) by (3.1). For convenience, we write
n1, n2 instead of n1(σ0), n2(σ0). We will show that with high probability, there exist k = ω(1) pairs of vertices
{(ui, vi) : i ∈ [k]} with opposite communities such that swapping their labels results in an equiprobable graph
instance. By Proposition 4.1, this would show that exact recovery fails with probability 1− o(1) for any algorithm.

For j = 1, 2, let Sj be sets of b2nj/ log2(n)c � bn/ log2(n)c randomly selected vertices from Community 1 and
Community 2, respectively. Let S = S1 ∪ S2. Next, let S′ be the set of all vertices in S whose connections to all
other vertices in S are censored. We claim that |S′| > 3n/2 log2(n) with probability 1− o(1). To see this, observe
that the expected number of revealed connections between vertices in S is at most α(2n/ log2(n))2 = 4tn/ log3(n),
so with high probability there are fewer than n/4 log2(n) such connections. Therefore with high probability there
are fewer than bn/2 log2(n)c vertices with at least one neighbor in S, from which the claim follows.

Now, let m = b√pqt log(n)/2c, m′ = b
√

(1− p)(1− q)t log(n)/2c, and m′′ = m+m′. Let p1 be the probability
that a vertex v in Community 1 has exactly m present edges and m′ absent edges to vertices in each community,
conditioned on v ∈ S′. By Lemma 3.1, we have

p1 = M(n1 − b2n1/ log2(n)c,m,m′, p)×M(n2 − b2n2/ log2(n)c,m,m′, q)
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=
n−t

4π2mm′
e2m+2m′

(
t2pq log2 n

4m2

)m(
t2(1− p)(1− q) log2 n

4m′2

)m′
≈ n−tn

√
pqt+
√

(1−p)(1−q)t

= n−(
√
p−√q)

2
t/2−(

√
1−p−

√
1−q)

2
t/2.

This implies that p1 = ω(log2(n)/n) because [(
√
p−√q)2 +(

√
1− p−

√
1− q)2]t/2 < 1 since t < tc(p, q). Repeating

the calculation for the case that v is in Community 2, we conclude that the probability p2 that a given vertex
v ∈ S′ has exactly m present edges and m′ absent edges to vertices in each community is ω

(
log2(n)/n

)
.

For v ∈ S′, let Y (v) be the indicator that v has exactly m present edges and m′ absent edges to each community.
Note that the random variables in the set {Y (v)}v∈S′ are mutually independent conditionally on S′. Finally,
observe that if u ∈ S′ ∩ S1 and v ∈ S′ ∩ S2 satisfy Y (u) = Y (v) = 1, then switching the community labels of u
and v results in an equiprobable outcome.

Let
Y1 =

∑
v∈S′∩S1

Y (v) and Y2 =
∑

v∈S′∩S2

Y (v).

It suffices to show that there is a function f(n) = ω(1) such that Y1, Y2 ≥ f(n) with probability 1 − o(1). We
prove the claim for Y1, and the proof for Y2 follows similary. Observe that conditioning on |S′ ∩ S1|,

E[Y1

∣∣ |S′ ∩ S1|] = |S′ ∩ S1| · p1.

Fix ε > 0. By Chebyshev’s inequality,

P
(
Y1 ≤ (1− ε)|S′ ∩ S1| · p1

∣∣ |S′ ∩ S1| = s
)
≤

Var
(
Y1

∣∣ |S′ ∩ S1| = s
)

ε2s2p2
1

≤ sp1(1− p1)

ε2s2p2
1

≤ 1

ε2sp1

.

Recall that |S′| > 3n
2 log2(n)

with probability 1−o(1). Therefore, using |S2| = bn/ log2 nc, we have |S′∩S1| > n
2 log2(n)

with probability 1− o(1). We conclude that

P
(
Y1 ≤ (1− ε) n

2 log2(n)
p1

)
≤ P

(
Y1 ≤ (1− ε)|S′ ∩ S1| · p1

∣∣∣ |S′ ∩ S1| >
n

2 log2(n)

)
+ o(1)

≤ 2 log2(n)

ε2p1n
+ o(1).

Recalling that p1 = ω(log2(n)/n), we have shown that there is a function f(n) = ω(1) such that P (Y1 ≤ f(n)) =
o(1). Similarly, using p2 = ω(log2(n)/n), it holds that P (Y2 ≤ f(n)) = o(1). Applying Proposition 4.1 with
δ = 1− o(1) and k = (f(n))

2 completes the proof.

Remark 4.2. We could generalize this to an argument that recovery is impossible whenever t < tc(p1, p2, q) by
arguing that there will be vertices with degree profiles of(

bpx1q1−xt log(n)/2c, b(1− p1)x(1− q)1−xt log(n)/2c, bp1−x
2 qxt log(n)/2c, b(1− p2)1−x(1− q)xt log(n)/2c

)
in both communities, where x takes on the value used in the computation of tc(p1, p2, q). The argument that this
holds is largely analogous to that in the proof above, although one needs to use the fact that the criterion used to
choose x implies that vertices in each community are approximately equally likely to have this community profile
and then bound both probabilities by bounding the weighted geometric means of their obvious formulations with
weights x and 1− x.
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5 Analysis of the spectral algorithm
Recall the signed adjacency matrix from Section 2.2. The key to establishing Theorem 2.2 is the method of entrywise
eigenvector analysis of [4]. Let us denote A? = E[A | σ0], and let (u?k, λ

?
k) denote the k-th eigenvector-eigenvalue

pair of A?, where (λ?k)k are arranged in non-decreasing order. Abbe et. al. [4] show that, under a set of general
conditions, uk ≈ Au?k/λ?k in the `∞-norm. Results of this kind were also derived recently by Lei [13]. Thus, if we
can show that the signs of Au?1/λ?1 recover the communities with high probability (up to a global flip), and the
magnitude of its entries are bounded away from zero, then the signs of u1 also recover the communities with high
probability. More precisely, using the methods of [4, Theorem 2.1], we will establish the following result:

Proposition 5.1. With probability 1−O
(
n−3

)
we have

min
s∈{±1}

∥∥∥∥uk − sAu?kλ?k

∥∥∥∥
∞
≤ C√

n log log n

for k ∈ {1, 2}, where C = C(p, q, t) is a constant depending only on p, q, and t.

In Section 5.1, we will provide a main result of [4], specialized to our setting. In Section 5.2, we prove Proposition
5.1. With this result in hand, we provide the proof of Theorem 2.2 in Section 5.3.

5.1 Prior work on entrywise eigenvector analysis. We start by reproducing [4, Theorem 2.1], specialized
to the case where A? is a rank-2 matrix and we wish to approximate a single eigenvector.

Theorem 5.1. ([4, Theorem 2.1]). Let A be a symmetric random matrix and A? = E[A]. Suppose that the
following conditions hold with some γ ∈ R and ϕ : R→ R:
(i) (Incoherence) ‖A?‖2→∞ ≤ γ∆?, where ∆? = (λ?1 − λ?2) ∧ |λ?1| and γ > 0.

(ii) (Row- and column-wise independence) For any m ∈ [n], the entries in the m-th row and column of A are
independent with others.

(iii) (Row concentration) Suppose ϕ(x) is continuous and non-decreasing in R+ with ϕ(0) = 0, ϕ(x)/x is
non-increasing in R+, and δ1 ∈ (0, 1). For any m ∈ [n] and w ∈ Rn,

P
(
|(A−A?)m·w| ≤ ∆?‖w‖∞ϕ

(
‖w‖2√
n‖w‖∞

))
≥ 1− δ1

n
.

(iv) (Spectral norm concentration) Let κ = |λ?1|/∆?. Suppose 32κmax{γ, ϕ(γ)} ≤ 1 and for some δ0 ∈ (0, 1),

P (‖A−A?‖2 ≤ γ∆?) ≥ 1− δ0.

Then with probability at least 1− δ0 − 2δ1,

min
s∈{±1}

∥∥∥∥uk − sAu?kλ?k

∥∥∥∥
∞

. κ (κ+ ϕ(1)) (γ + ϕ(γ)) ‖u?1‖∞ + γ
‖A?‖2→∞

∆?

for k ∈ {1, 2}, where . hides an absolute constant.

Next, we state the following two lemmas to verify the final two conditions in Theorem 5.1. The first is similar to
[10, Theorem 9].

Lemma 5.1. There exists c1 = c1(p, q, t) > 0 such that

P
(
‖A−A?‖2 ≥ c1

√
log(n)

)
≤ n−3.

The following lemma is similar to [4, Lemma 7].

Lemma 5.2. Let w ∈ Rn be a fixed vector, {Xi}ni=1 be independent random variables where P(Xi = 1) = pi,
P(Xi = −y) = qi, and P(Xi = 0) = 1− pi − qi. Let β ≥ 0. Then

P
(∣∣∣∣ n∑

i=1

wi (Xi − E[Xi])

∣∣∣∣ ≥ max{1, y}(2 + β)n

1 ∨ log
(√

n‖w‖∞
‖w‖2

) ‖w‖∞max
i
{pi + qi}

)
≤ 2 exp

(
−βnmax

i
{pi + qi}

)
.

The proofs of the above lemmas will be provided in Appendix A.
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5.2 Proof of eigenvector approximation result. We start by determining the eigenvalues and eigenvectors
of A? = E[A | σ0].

Lemma 5.3. If n1(σ0), n2(σ0) ≥ 1, then A? has rank 2. If p > q, then with probability at least 1− 2 exp
(
−n1/3/6

)
,

the eigenvalues of A? are given by

λ?1 =
(1 + o(1))t log n

2 log
(
p
q

) (DKL (p‖q) +DKL (q‖p)) , λ?2 =
(1 + o(1))t log n

2 log
(
p
q

) (DKL (p‖q)−DKL (q‖p))

and the corresponding eigenvectors u?1 and u?2 are respectively given by (u?1)i = 1+o(1)√
n

if σ0(i) = +1, (u?1)i = − 1+o(1)√
n

if σ0(i) = −1, and the other eigenvector has (u?2)i = 1√
n
for all i.

Proof. Recall the edges are revealed independently with probability α = t log n/n. Thus, for i, j such that
σ0(i) = σ0(j),

A?ij = α

(
p−

log
(

1−q
1−p
)

log
(
p
q

) (1− p)
)

=
t log n

n log
(
p
q

)DKL(p‖q),(5.1)

and similarly, for σ0(i) 6= σ0(j),

A?ij = α

(
q −

log
(

1−q
1−p
)

log
(
p
q

) (1− q)
)

= − t log n

n log
(
p
q

)DKL(q‖p).(5.2)

If n1(σ0) = n2(σ0) = n
2 , it follows that

λ?1 =
t log n

2 log
(
p
q

) (DKL (p‖q) +DKL (q‖p)) , λ?2 =
t log n

2 log
(
p
q

) (DKL (p‖q)−DKL (q‖p))

By (3.1) with e.g. ε = n−
1
3 , we have that n1(σ0), n2(σ0) = (1+o(1))n/2 with probability at least 1−2 exp(−n1/3/6).

We now consider what happens to the eigenvalues of A? when n1(σ0), n2(σ0) are perturbed.
More generally, let Z(a1, a2, b1, b2) denote an n× n block matrix with blocks of size b1n and b2n, where the

diagonal blocks take value a1 and the off-diagonal blocks take value a2. Let λ be an eigenvalue of Z(a1, a2, b1, b2)
and let λ′ be the corresponding eigenvalue of Z(a1, a2, b

′
1, b
′
2). Let E = Z(a1, a2, b

′
1, b
′
2) − Z(a1, a2, b1, b2). By

Weyl’s inequality,

|λ− λ′| ≤ ‖E‖2 ≤ ‖E‖F ≤
√

(a1 − a2)2 (|b1 − b′1|+ |b2 − b′2|)n = |a1 − a2|
√

2|b1 − b′1|n.

In particular, if λ = Θ(log(n)), a1, a2 = Θ( log(n)
n ), and |b′1 − b1| = o(n), then λ′ = (1 + o(1))λ. We conclude that

when n1(σ0), n2(σ0) = (1 + o(1))n/2, the eigenvalues of A? are the same as the even communities case up to a
1 + o(1) factor.

Regarding the eigenvector u?1, its entries are given by ± 1√
n
depending on community membership, in the case

of n1(σ0) = n2(σ0) = n/2. When n1(σ0), n2(σ0) = (1 + o(1))n/2, then determining the entries of the eigenvector
u?1,i ∈ {x1, x2} requires solving a system of the form{

n1(σ0)a1x1 + n2(σ0)a2x2 = λ1x1

n1(σ0)a2x1 + n2(σ0)a1x2 = λ1x2.

Since n1(σ0), n2(σ0) = (1 + o(1))n/2 and λ1 = (1 + o(1))λ?1, the coefficients of the system are perturbed by a
factor 1 + o(1) relative to the equal-sized communities case. Therefore, the eigenvector entries are also perturbed
within a 1 + o(1) factor.

Proof. (Proof of Proposition 5.1). We will apply Theorem 5.1 by verifying its conditions. In this proof, we avoid
writing the (1 + o(1)) terms for λ?1, λ?2 in Lemma 5.3 since that does not affect the asymptotic computations. We
give the proof first for the case p > q. By Lemma 5.3, it follows that

∆? = λ?1 − λ?2 =
DKL (q‖p)

log
(
p
q

) t log n and κ =
DKL (p‖q) +DKL (q‖p)

2DKL (q‖p)
.
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Let

γ =
c1 log

(
p
q

)
DKL(q‖p)t

√
log(n)

,

where c1 is the value from Lemma 5.1. Let

ϕ(x) =
max{1, y} (2t+ 4) log

(
p
q

)
tDKL(q‖p)

(
1 ∨ log

( 1

x

))−1

.

To check Condition (i), recall that ‖A?‖2→∞ = maxi ‖A?i·‖2. Thus, by (5.1) and (5.2),

‖A?‖2→∞ ≤
t log n

√
n log

(
p
q

) max{DKL(p‖q), DKL(q‖p)}.

On the other hand, γ∆? = c1
√

log(n). Condition (i) therefore holds for n large enough. Condition (ii) holds since
the entries {Aij : i ≤ j} are independent conditioned on the communities. The first requirement of Condition (iv)
is satisfied for n sufficiently large since γ → 0 as n→∞, limx→0 ϕ(x) = 0 and κ = Θ(1). The second requirement
is satisfied by Lemma 5.1, with δ0 = n−3. Finally, to verify Condition (iii), fix m, and apply Lemma 5.2 with
Xi = Ami, and setting β = 4

t . Note that pi equals αp or αq depending on whether σ0(i) = σ0(m) or not, and let
qi = α− pi which equals to either α(1− p) or α(1− q). Thus, maxi(pi + qi) = α. Then

P
(
|(A−A?)m · w| ≤

max{1, y}(2t+ 4) log(n)

1 ∨ log
(√

n‖w‖∞
‖w‖2

) ‖w‖∞
)
≥ 1− 2n−4.

Observing

max{1, y}(2t+ 4) log(n)

1 ∨ log
(√

n‖w‖∞
‖w‖2

) ‖w‖∞ = ∆?‖w‖∞ϕ
(
‖w‖2√
n‖w‖∞

)
,

Condition (iii) holds with δ1 = 2n−3. Applying Theorem 5.1, with probability at least 1− 5n−3,

min
s∈{±1}

∥∥∥∥u1 − s
Au?1
λ?2

∥∥∥∥
∞
≤ C√

n log log n
,

where C depends only on p, q, and t.
In the case p < q, we replace A by −A. Replacing all instances of log(p/q) by log(q/p), the proof follows

verbatim.

5.3 Success of the spectral algorithm. We will use the following concentration result which can be proved
analogously to the Chernoff bound. The proof of this lemma is provided in Appendix A.

Lemma 5.4. Let p, q, t be constants such that p > q and α = t log n/n. Suppose n1, n2 = (1 + o(1))n2 . Let {Wi}n1
i=1

be i.i.d. where P(Wi = 1) = αp, P(Wi = −y) = α(1 − p), and P(Wi = 0) = 1 − α and y is given by (2.3). Let
{Zi}n2

i=1 be i.i.d. where P(Zi = 1) = αq, P(Zi = −y) = α(1− q), and P(Zi = 0) = 1− α, independent of the Wi’s.
For any ε ≥ 0, we have the following:

logP
( n1∑
i=1

Wi −
n2∑
i=1

Zi ≤ ε log(n)

)
≤ log(n)

[
− λε− t

2

(
(
√
p−√q)2

+
(√

1− q −
√

1− p
)2
)

+ o(1)

]
.

Proof. (Proof of Theorem 2.2). Consider the case p > q. Let

Cn :=
{∣∣∣n1(σ0)− n

2

∣∣∣ ≤ n 2
3 ,
∣∣∣n2(σ0)− n

2

∣∣∣ ≤ n 2
3

}
.
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Note that P(Ccn) = o(1), and indeed is much smaller. Therefore, it is sufficient to analyze events conditioned on Cn.
For any labeling σ, define Ji(σ) := {j ∈ [n] \ {i} : σ(j) = +1}. Let s ∈ {±1} be such that ‖u1 − sAu?1/λ?1‖∞

is minimized. Then, by Proposition 5.1, with probability 1− o(1),

√
nmin
i∈[n]

sσ0(i)(u1)i ≥
√
nmin
i∈[n]

σ0(i)
(Au?1)i
λ?1

− C (log log n)
−1
,(5.3)

where we have used s2 = 1. We now show that σ0(i)
(Au?1)i
λ?1

is bounded away from zero. By Lemma 5.3, (u?1)i takes

values (1+o(1))√
n

or − (1+o(1))√
n

depending on σ0(i), conditioned on Cn. Thus, for each i,

σ0(i)
(Au?1)i
λ?1

=
2(1 + o(1)) log

(
p
q

)
t (DKL(p‖q) +DKL(q‖p))

√
n log(n)

( ∑
j∈Ji(σ0)

Aij −
∑

j /∈Ji(σ0)

Aij

)
.

Observe that for ε > 0,

P
(√

nσ0(i)
(Au?1)i
λ?1

≤
2ε log

(
p
q

)
t (DKL(p‖q) +DKL(q‖p))

∣∣∣ Cn)
= P

( ∑
j∈Ji(σ0)

Aij −
∑

j /∈Ji(σ0)

Aij ≤ ε log(n)
∣∣∣ Cn).(5.4)

By Lemma 5.4, if we have t > tc(p, q) with tc(p, q) given by (2.2), then there exists ε > 0 so that

P
( ∑
j∈Ji(σ0)

Aij −
∑

j /∈Ji(σ0)

Aij ≤ ε log(n)
∣∣∣ Cn) = o

( 1

n

)
.

By a union bound and using (5.3), we conclude that there exists η = η(p, q) > 0 such that with probability 1−o(1),

√
nmin
i∈[n]

sσ0(i)(u1)i ≥ η.(5.5)

In the case p < q, we replace A by −A, and the proof follows verbatim.

Remark 5.1. Note that Theorem 2.1 applies to the model considered by Hajek et. al. [10], where n1 = n2 = n
2

(due to Remark 4.1). Additionally, the success of the spectral algorithm (Theorem 2.2) holds for this model.
Therefore, Theorems 2.1 and 2.2 are directly comparable to [10] in the special case p+ q = 1.

6 Asymptotic error of the genie estimator
In this section, we complete the proof of Theorem 2.3. In order to analyze the genie estimator, we first use the
fact that the prior on σ0(u) is uniform, so that

σ̂Best(u) = argmax
r∈{±1}

P(G | σ0(u) = r, (σ0(v))v∈[n]\{u}).

In other words, the genie estimator may be interpreted as a Maximum Likelihood Estimator. Recall Γ(u, σ, p1, p2, q)
from (2.6) and the notation D = D(σ, u) = (Di(σ, u))4

i=1 for the degree profile from Section 2.3. We first derive an
expression for the genie estimator for general CSBM with possibly arbitrary choices of p1, p2. This result will also
be useful in the next section.

Proposition 6.1. For any p1, p2, q ∈ (0, 1), we have for all u ∈ [n]

σ̂Best(u) =

{
+1 if Γ(u, σ0, p1, p2, q) ≥ 0

−1 otherwise.
(6.1)
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The proof is provided in Appendix C. In other words, the genie estimator decides community assignments based
on the sign of a linear combination of the degree profiles. For p1 = p2 = p, it is not difficult to see that if y is
given by (2.3), then we get the following cleaner expression in terms of the signed adjacency matrix:

Γ(u, σ, p, p, q) =

( ∑
v∈Ju(σ)

Aij −
∑

v/∈Ju(σ)

Aij

)
log

p

q
,(6.2)

where Ju(σ) := {v ∈ [n] \ {u} : σ(v) = +1}. Thus, we see that in the symmetric case, the genie estimator decides
the communities based on the sign of

∑
v∈Ju(σ)Aij −

∑
v/∈Ju(σ)Aij . From the proof of Theorem 2.2, we see that

the spectral algorithm recovers σ0(u) successfully if
∑
v∈Ju(σ0)Aij −

∑
v/∈Ju(σ0)Aij ≥ ε log n when p > q and∑

v∈Ju(σ0)Aij −
∑
v/∈Ju(σ0)Aij ≤ −ε log n when p < q where ε = o(1) (see (5.4)). Thus it intuitively makes sense

that the error rates of σ̂Spec and σ̂Best should be close.
We proceed with an error analysis of the genie-based estimator in Section 6.1, which will be used to complete

the proof of Theorem 2.3 in Section 6.2

6.1 Error analysis of the genie-based estimator. Next we analyze the error rate of the genie-based
estimator σ̂Best. Recall the error rate Err(·) from (2.4) and tc(p1, p2, q) from (2.8).

Lemma 6.1. Err(σ̂Best) = n−(1+o(1))t/tc(p1,p2,q).

Proof. Let X := 1
n

∑
i∈[n] 1{σ̂Best(i) 6=σ0(i)}. Then Err(σ̂Best) = E[min{X, 1 − X}]. Note that, since 0 ≤ X ≤ 1

almost surely, we have

E[X]− E[min{X, 1−X}] ≤ P
(
X >

1

2

)
.

Therefore,

E[X]− P
(
X >

1

2

)
≤ Err(σ̂Best) = E[min{X, 1−X}] ≤ E[X].

It suffices to show that E[X] = n−(1+o(1))t/tc(p1,p2,q) and P(X > 1/2) = o (E[X]).

Computing E[X]. Fix u ∈ [n] and let us compute P(σ̂Best(u) 6= σ0(u)). Estimating σ0(u) is a binary Bayesian
hypothesis testing problem, where the prior is given by P(σ0(u) = +1) = P(σ0(u) = −1) = 1

2 . We are given the
observed edge-labeled graph G and {σ0(v) : v ∈ [n] \ {u}}, which satisfies (3.1) with ε = n−

1
3 with probability

at least 1− 2 exp(−n1/3/6) = 1− n−ω(1). The genie-based estimator performs a Maximum A Posteriori (MAP)
decoding rule based on the observed degree profiles D = D(σ0, u). Let D := {d : di ≤ log

5/4 n, ∀i ∈ [4]}. By (3.2),

P(σ̂Best(u) 6= σ0(u)) =
1

2

∑
d∈D

min
{
P(D = d | σ0(u) = +1),P(D = d | σ0(u) = −1)

}
+ n−ω(1).

Using Lemma 3.1,

P(σ̂Best(u) 6= σ0(u))

� 1

2

∑
d∈D

min{M(n1, d1, d2, p1)×M(n2, d3, d4, q),M(n1, d1, d2, q)×M(n2, d3, d4, p2)}+ n−ω(1)

�
∑
d∈D

min

{
P
( tp1 log n

2
; d1

)
P
( t(1− p1) log n

2
; d2

)
P
( tq log n

2
; d3

)
P
( t(1− q) log n

2
; d4

)
,

P
( tq log n

2
; d1

)
P
( t(1− q) log n

2
; d2

)
P
( tp2 log n

2
; d3

)
P
( t(1− p2) log n

2
; d4

)}
+ n−ω(1).

We can now use [5, Theorem 3] with c′1 = t
2 (p1, 1− p1, q, 1− q), and c′2 = t

2 (q, 1− q, p2, 1− p2) to conclude that

P(σ̂Best(u) 6= σ0(u)) = n−∆t(c
′
1,c
′
2)(1+o(1)) + n−ω(1),(6.3)
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where

∆t(c
′
1, c
′
2) := max

x∈[0,1]

∑
i

(
x(c′1)i + (1− x)(c′2)i − (c′1)xi (c′2)1−x

i

)
=

t

tc(p1, p2, q)
.(6.4)

Thus, we have shown that, for any u ∈ [n],

E[X] = P(σ̂Best(u) 6= σ0(u)) = n−(1+o(1))t/tc(p1,p2,q).(6.5)

Computing P(X > 1/2). Note that

E[X2] =
1

n2

∑
i∈[n]

P(σ̂Best(i) 6= σ0(i)) +
1

n2

∑
i,j∈[n]:i 6=j

P(σ̂Best(i) 6= σ0(i), σ̂Best(j) 6= σ0(j)).(6.6)

Fix any i 6= j and let F denote the minimum sigma-algebra with respect to which D(i, σ0) and N(i) are measurable.
Then the event {σ̂Best(i) 6= σ0(i)} is measurable with respect to F . Let B be the event that {i, j} is revealed or
there exists a v such that both {i, v} and {v, j} are revealed. Let us condition on F . Let σ̂′Best(j) be the genie
estimator computed on G \ (N(i) ∪ {i}). On the event Bc, we have that σ̂Best(j) = σ̂′Best(j), as D(j, σ0) remains
identical on G and G \ (N(i) ∪ {i}). Note that for all sufficiently large n, almost surely,

P(B | F )1{|N(i)|≤log
5/4 n} ≤ α(1 + log

5/4 n) ≤ log3 n

n
,

and therefore

P(σ̂Best(j) 6= σ0(j) | F )1{|N(i)|≤log
5/4 n} ≤

(
P(σ̂Best(j) 6= σ0(j),Bc | F ) + P(B | F )

)
1{|N(i)|≤log

5/4 n}

≤ P(σ̂′Best(j) 6= σ0(j) | F )1{|N(i)|≤log
5/4 n} +

log3 n

n

= n−(1+o(1))t/tc(p1,p2,q) +
log3 n

n
,

where the expression in the last step can be computed using identical arguments as (6.5). Also, P(|N(i)| >
log

5/4 n) ≤ e− log
5/4 n for all sufficiently large n. Therefore,

P(σ̂Best(i) 6= σ0(i), σ̂Best(j) 6= σ0(j))

≤ E[P(σ̂Best(j) 6= σ0(j) | F )1{|N(i)|≤log
5/4 n}1{σ̂Best(i) 6=σ0(i)}] + P(|N(i)| > log

5/4 n)

≤
(
n−(1+o(1))t/tc(p1,p2,q) +

log3 n

n

)
P(σ̂Best(i) 6= σ0(i)) + e− log

5/4 n

≤ n−δ−(1+o(1))t/tc(p1,p2,q),

for some fixed δ > 0. Using (6.6), we have that E[X2] = n−δ−(1+o(1))t/tc(p1,p2,q), and by Markov’s inequality,

P(X ≥ 1/2) = P(X2 ≥ 1/4) ≤ 4n−δ−(1+o(1))t/tc(p1,p2,q) = o(E[X]).

6.2 Comparing the spectral and genie estimators

Proof. (Proof of Theorem 2.3). We prove the claim for the case p > q; the case p < q follows by replacing A by
−A. By Lemma 6.1 and (2.9), we have Err(σ̂Best) = n−(1+o(1))t/tc(p,q). To analyze the error rate of the spectral
algorithm, fix ε > 0 and let

Bn :=

{
min

s∈{±1}

∥∥∥∥u1 − s
Au?1
λ?1

∥∥∥∥
∞
≤ ε√

n

}
and Cn :=

{∣∣∣n1(σ0)− n

2

∣∣∣ ≤ n 2
3 ,
∣∣∣n2(σ0)− n

2

∣∣∣ ≤ n 2
3

}
.
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Let s ∈ {±1} be the sign for which ‖u1 − sAu?1/λ?1‖∞ is minimized. By Lemma 5.1, P(Bn) = 1 − O(n−3). If
the spectral algorithm is not able to classify i correctly, then sσ0(i)(u1)i ≤ 0. This implies that, on Bn, we have√
nσ0(i)Au?1/λ

?
1 ≤ ε. Using (3.1) and (5.4), for any i ∈ [n],

P(σ̂Spec(i) 6= sσ0(i)) ≤ P((Bn ∩ Cn)c) + P
( ∑
j∈Ji(σ0)

Aij −
∑

j /∈Ji(σ0)

Aij ≤ ε log(n)
∣∣ Cn)

≤ O(n−3) + n−(1+o(1))t/tc(p,q),

(6.7)

where the final step uses Lemma 5.4. The proof follows by taking an average over i.

7 Analysis of the two-step estimator
In order to establish Theorems 2.4 and 2.5, we introduce the notion of a good estimator. Consider the exact
recovery problem on CSBM(p1, p2, q, t), possibly with p1 6= p2. We will show that, given a “good” initial estimator
σ̂, the clean-up procedure defined by X̂(σ̂) produces an estimator that recovers σ0 exactly when t > tc(p1, p2, q),
and otherwise compares favorably with the genie estimator. Recall the definition of N(u) = {v : Auv 6= 0}, and
define M(σ̂, σ0) to be the set of misclassified vertices under the optimal choice of the global flip, i.e. M(σ̂, σ0) is
the smaller of

{v : σ̂(v) 6= σ0(v)} and {v : −σ̂(v) 6= σ0(v)}.

Definition 7.1. We say that σ̂ is a good estimator if:

(i) There exists L ≥ 1 (fixed) such that, for all sufficiently large n,

P(|N(u) ∩M(σ̂, σ0)| ≤ L) ≥ 1− o(1/n) ∀u ∈ [n],(7.1)

i.e., any vertex can have at most O(1) many misclassified neighbors.

(ii) There exists a constant ε > 0 such that, for all u ∈ [n],

max
d:||d||1≤log

5/4(n)
P (N(u) ∩M(σ̂, σ0) = ∅|D(σ0, u) = d) = 1−O(n−ε),

i.e., vertices have a negligible probability of having a misclassified revealed neighbor/non-neighbor given the
correct degree profile.

Note that Definition 7.1 (ii) implies that there exists (εn)n≥1 ⊂ (0,∞) with limn→∞ εn = 0, such that

P
(
#{i : N(i) ∩M(σ̂, σ0) = ∅} ≥ (1− εn)n

)
→ 1,(7.2)

i.e, σ̂ classifies all but o(n) many vertices correctly.
Comparing the two-step estimator X̂(σ̂) from (2.7) to the genie-based estimator (6.1), we see that a good

estimator acts as a proxy for the true labels; just as the true labels are used to compute the genie-based estimator,
so the good estimator labels are used by the two-step estimator. The next result provides recovery guarantees for
good estimators.

Theorem 7.1. Suppose that σ̂ is a good estimator. If t > tc(p1, p2, q), then X̂(σ̂) achieves exact recovery.
Moreover, for any t > 0,

Err(X̂(σ̂)) = (1 + o(1))Err(σ̂Best) + o(1/n).(7.3)

Given Theorem 7.1, it suffices to show that σ̂Spec and σ̂Deg are good estimators in order to establish Theorems 2.4
and 2.5. In Section 7.1, we prove Theorem 7.1, and in Section 7.2 we prove Theorems 2.4 and 2.5.
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Remark 7.1. In the case where p1 = p2, the clean up step is essentially just a way of removing noise. σ̂Spec is
essentially just the primary eigenvector of A with some noise removed, which means that X̂(σ̂Spec) is a rounded
version of Aσ̂Spec, which can be viewed as the eigenvector with more noise removed. The result is an estimator
which is similar to the eigenvector but with less susceptibility for its guess of a vertex’s community to be influenced
by atypicalities in its neighbors’ degree profiles.

In the asymmetric case σ̂Deg is a significantly worse estimator because it does not take into account any
information on the communities of the vertices a target vertex’s edges are to. Nevertheless, it classifies vertices
with a sufficiently high accuracy for the two step approach to work. Namely, the initial estimate provides good
estimates of the vertices’ degree profiles, such that the clean-up step correctly selects the most likely community
for the vertices, given their initially estimated degree profiles.1

7.1 Error rate guarantees for good estimators. Suppose we are given a good estimator σ̂. Define
Vgood := {i : N(i) ∩ M(σ̂, σ0) = ∅}. That is, Vgood is the set of vertices whose neighbors are all correctly
classified by σ̂. We denote the rest as Vbad = [n]\Vgood. Note that if i ∈ Vgood, then the two step estimator produces
the same assignment for i as the genie estimator. The next lemma handles the case that i ∈ Vbad and the estimator
X̂(σ̂, i) is incorrect.

Lemma 7.1. Let σ̂ be a good estimator. For any i ∈ [n], we have

P(X̂(σ̂, i) 6= σ0(i), i ∈ Vbad) = o (P(σ̂Best(i) 6= σ0(i)) + 1/n) .

Proof. Fix a vertex i, and recall the degree profile notation D(σ, i) = (Dk(σ, i))4
k=1. Define D := {d ∈ Z4

+ : ‖d‖1 ≤
log

5/4 n}. By (3.2), P(D(σ0, i) /∈ D) = o(1/n). First, we claim that for any d, d′ ∈ D satisfying ‖d− d′‖1 ≤ L,

P (D(σ0, i) = d′)

P (D(σ0, i) = d)
≤ c0 log2L n,(7.4)

where c0 > 0 is a constant that depends only on p1, p2, q, t, and L. Indeed, by Lemma 3.1,

(1 + o(1)) min{A(d), B(d)} ≤ P(D(σ0, i) = d) ≤ (1 + o(1)) max{A(d), B(d)}

where

A(d) := P
( tp1 log n

2
; d1

)
P
( t(1− p1) log n

2
; d2

)
P
( tq log n

2
; d3

)
P
( t(1− q) log n

2
; d4

)
B(d) := P

( tq log n

2
; d1

)
P
( t(1− q) log n

2
; d2

)
P
( tp2 log n

2
; d3

)
P
( t(1− p2) log n

2
; d4

)
.

Using ‖d− d′‖1 ≤ L, (7.4) now follows. Next, we set up some notation to complete the proof. Define S0(i) ⊂ S to
be the set of σ such that |N(i) ∩M(σ, σ0)| ≤ L. By Definition 7.1 (i), we have that P(σ̂ /∈ S0(i)) = o(1/n). For
every d, let

σ(d, i) := argmax
r∈{±1}

P(σ0(i) = r | D(σ0, i) = d)

be the most likely community assignment of i given the observed degree profile d of i. We set σ(d, i) = +1 if
they are equally likely. Define B(d, L) := {d′ ∈ D : ‖d− d′‖1 ≤ L and σ(d′, i) 6= σ0(i)}. In other words, B(d, L)
is the set of degree profiles near d on which even the best estimator makes a mistake. Note that if we have
X̂(σ̂, i) 6= σ0(i), i ∈ Vbad, and σ̂ ∈ S0(i), then it must be the case that D(σ0, i) has a degree profile d such that
B(d, L) 6= ∅. Therefore, using Definition 7.1 (ii) and (7.4),

P(X̂(σ̂, i) 6= σ0(i), i ∈ Vbad)

≤ P(X̂(σ̂, i) 6= σ0(i), i ∈ Vbad, D(σ0, i) ∈ D, σ̂ ∈ S0(i)) + o(1/n)

≤
∑

d∈D:B(d,L)6=∅

P (i ∈ Vbad, D(σ0, i) = d) + o(1/n)

1We could have used a spectral algorithm for the first step, but it would be harder to compute without giving any real advantage.
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≤
∑

d∈D:B(d,L)6=∅

cn−εP (D(σ0, i) = d) + o(1/n)

= cn−εP(D(σ0, i) ∈ D and B(D(σ0, i), L) 6= ∅) + o(1/n)

≤ cn−ε
∑

d′:σ(d′,i) 6=σ0(i)

P(‖D(σ0, i)− d′‖1 ≤ L) + o(1/n)

≤ cn−ε
∑

d′:σ(d′,i) 6=σ0(i)

c0 log2L(n)P(D(σ0, i) = d′) + o(1/n)

= cc0n
−ε log2L(n)× P(σ̂Best(i) 6= σ0(i)) + o(1/n)

= o (P(σ̂Best(i) 6= σ0(i)) + 1/n)

Proof. (Proof of Theorem 7.1). Fix i ∈ [n]. Recall that Vgood := {i : N(i) ∩M(σ̂, σ0) = ∅}, and Vbad = [n] \ Vgood.
Using Lemma 7.1, we have

P(X̂(σ̂, i) 6= σ0(i)) = (1 + o(1))P(σ̂Best(i) 6= σ0(i)) + o(1/n).

Taking an average over i and using Err(X̂(σ̂)) ≤ 1
n

∑
i∈[n] P(X̂(σ̂, i) 6= σ0(i)) and Err(σ̂Best) = 1

n

∑
i∈[n] P(σ̂Best(i) 6=

σ0(i)) + o(1/n) (see the argument after (6.5)), the proof follows.

7.2 Good estimators

Proof. (Proof of Theorem 2.4). Due to Theorem 7.1, it suffices to show that σ̂Spec is a good estimator. We will
first verify Definition 7.1 (i). Let L ≥ 1 be fixed (to be chosen later). For any V ⊂ [n], let

DV (j) :=
∑

k∈V c:k∼j

Ajk −
∑

k∈V c:k 6∼j

Ajk.

By the previous analysis (cf. (6.7)),

P(σ̂Spec(j) misclassifies) ≤ P(D∅(j) ≤ ε log n) + o(1/n),(7.5)

where ε = o(1) but ε log n→∞. Additionally, if |V | ≤ L for some fixed L ≥ 0, then DV (j) ≤ ε log n+ O(L) ≤
2ε log n for large enough n. Thus,

P(|N(i) ∩M(σ̂Spec, σ0)| > L)

≤ P(|N(i)| > log
5/4 n) + E

[
P
(
|N(i) ∩M(σ̂Spec, σ0)| > L | N(i), |N(i)| ≤ log

5/4 n
)]

≤ e− log
5/4 n + E

[ ∑
j0,...,jL∈N(i)

P
(
j0, . . . , jL ∈ N(i) ∩M(σ̂Spec, σ0) | N(i), |N(i)| ≤ log

5/4 n
)]

≤ e− log
5/4 n +

(
log

5/4 n

L+ 1

)
E
[

max
j0,...,jL

P
(
j0, . . . , jL ∈ N(i) ∩M(σ̂Spec, σ0) | N(i), |N(i)| ≤ log

5/4 n
)]
,

where we have applied (3.2). Taking V = {j0, . . . , jL, i} yields

P
(
j0, . . . , jL ∈ N(i) ∩M(σ̂Spec, σ0) | N(i), |N(i)| ≤ log

5/4 n
)

≤ P
(
DV (jl) ≤ 2ε log n, ∀0 ≤ l ≤ L | N(i), |N(i)| ≤ log

5/4 n
)
.

Now, note that DV (jl) for different l depend on disjoint sets of random variables. Thus, Lemma 5.4 gives

P
(
DV (jl) ≤ 2ε log n, ∀0 ≤ l ≤ L | N(i), |N(i)| ≤ log

5/4 n
)
≤ n−c(L+1),
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for some constant c > 0. Therefore,

P(|N(i) ∩M(σ̂Spec, σ0)| > L) ≤ e− log
5/4 n + (log n)

5(L+1)/4n−c(L+1) = o(1/n),

which verifies Definition 7.1 (i) by taking L to be a large fixed constant. To verify Definition 7.1 (ii), we can repeat
the above argument for conditional probabilities with L = 0. Indeed, for any d with ‖d‖1 ≤ log

5/4 n,

P(|N(i) ∩M | ≥ 1 | D(σ0, i) = d) ≤ (log n)
5/4 · n−c,

and the proof follows.

Proof. (Proof of Theorem 2.5). Due to Theorem 7.1, it suffices to show that σ̂Deg is a good estimator. We have

E[deg(j) | σ0] =

{
t log(n)

2 (p1 + q) if σ0(j) = +1,
t log(n)

2 (p2 + q) if σ0(j) = −1.
(7.6)

Suppose p1 > p2 without loss of generality. We bound

P
(

deg(j) <
t log(n)

4
(p1 + p2 + 2q)

∣∣∣ σ0(j) = +1
)

= P
(

deg(j) <
(

1− p1 − p2

2(p1 + q)

)
E[deg(j) | σ0(j) = +1]

∣∣∣ σ0(j) = +1
)

≤ exp

(
− E[deg(j) | σ0(j) = +1]

2

( p1 − p2

2(p1 + q)

)2
)

= exp

(
− t log(n)(p1 + q)

4

( p1 − p2

2(p1 + q)

)2
)

= exp

(
− t log(n)(p1 − p2)2

16(p1 + q)

)
.

Similarly,

P
(

deg(j) ≥ t log(n)

4
(p1 + p2 + 2q)

∣∣∣ σ0(j) = −1
)

= P
(

deg(j) ≥
(

1 +
p1 − p2

2(p2 + q)

)
E[deg(j) | σ0(j) = −1]

∣∣∣ σ0(j) = −1
)

≤ exp

(
−

(
p1−p2

2(p2+q)

)2

2 + p1−p2
2(p2+q)

E[deg(j) | σ0(j) = −1]

)

= exp

(
− t log n(p2 + q)

2

(
p1−p2

2(p2+q)

)2
2 + p1−p2

2(p2+q)

)
= exp

(
− t log n(p1 − p2)2

4(p1 + 3p2 + 4q)

)
.

Therefore, we have shown that any given vertex j is misclassified with probability at most n−β , where β > 0 is a
constant. Fix i ∈ [n]. We wish to take a union bound over j ∈ N(i) in order to bound the probability that some
revealed neighbor of i is misclassified. However, if a vertex j is a neighbor of i, then its degree is inflated by 1.
Since the discrepancy is negligible at the log(n) scale, we may take β slightly smaller. Then, for any d such that
‖d‖1 ≤ log

5/4 n,
P
(
N(i) ∩M(σ̂Deg, σ0) 6= ∅

∣∣ D(σ0, i) = d
)
≤ log

5/4(n)n−β ≤ n−
β
2

for n large enough, satisfying Definition 7.1 (ii).
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Next, take L > 2
β . By a Union Bound,

P (|N(i) ∩M(σ̂Deg, σ0)| ≥ L) ≤
(

log
5/4(n)

L

)
n−βL + n−ω(1)

≤ log
5L/4(n)n−βL + n−ω(1) ≤ n− 3

2 ,

for n large enough, which verifies Definition 7.1 (i).

8 Failure of the spectral algorithm
Similarly to the proof of Theorem 2.2, we apply the entrywise approach to analyze the eigenvectors of A. Any linear
combination of u1 and u2 can then be approximated by A times a vector z that is constant on each community.
Then we can characterize all spectral algorithms as thresholding weighted degree profiles by a score that depends
on the vector z. Sufficiently close to the threshold, we exhibit certain degree profiles that are likely enough to
occur, for which there is no way to pick the encoding value y or the weights z in order to separate the communities.
Specifically, if we take the degree profile that is half way between the expected degree profiles for vertices in the
two communities, there will always be a way to perturb it such that vertices with that degree profile are likely to
exist in one community and the spectral algorithm classifies them as being in the other. Unlike in the symmetric
case, the class of spectral algorithms considered here does not have enough degrees of freedom to allow correct
separation of vertices with such degree profiles.

Proof. (Proof of Theorem 2.6). Throughout the proof, we will condition on σ0 satisfying
∣∣n1(σ0)− n

2

∣∣ ≤ n 2
3 and∣∣n2(σ0)− n

2

∣∣ ≤ n 2
3 .

Let u1 and u2 be the top two eigenvectors of A. By Proposition 5.1 we have that with probability 1−O(n−3),∥∥∥∥u1 − s1
Au?1
λ?1

∥∥∥∥
∞
≤ C√

n log log n
and

∥∥∥∥u2 − s2
Au?2
λ?2

∥∥∥∥
∞
≤ C√

n log log n
,

for some s1, s2 ∈ {−1, 1} and some constant C > 0. Then for any c1, c2 we also have∥∥∥∥c1u1 + c2u2 −A
(
s1c1
λ?1

u?1 +
s2c2
λ?2

u?2

)∥∥∥∥
∞
≤ C(|c1|+ |c2|)√

n log log n
.

By Lemma 5.3, the vector ( s1c1λ?1
u?1 + s2c2

λ?2
u?2) will assign all vertices in Community 1 some value z1 and all vertices

in Community 2 some other value z2. We can assume without loss of generality that z2
1 + z2

2 = 1. We conclude
that a spectral algorithm based on a linear combination of the top two eigenvectors will classify a vertex with
degree profile (d1, d2, d3, d4) as being in one community if

z1d1 − yz1d2 + z2d3 − yz2d4 > r + Ω (log(n)/ log(log(n)))

and the opposite community if

z1d1 − yz1d2 + z2d3 − yz2d4 < r − Ω (log(n)/ log(log(n)))

for some threshold r. To show that the spectral algorithm fails for t sufficiently close to the threshold, it suffices to
show that there is no choice of z1, z2 and y for which thresholding the score z1d1 − yz1d2 + z2d3 − yz2d4 separates
the communities successfully.

We will first show that

(8.1) r = (z1 − yz2)
√
p/8t log(n) + (z2 − yz1)

√
(1− p)/8t log(n) + o(log(n))

and both y and z1z2 are positive. We can then assume without loss of generality that z1, z2 > 0 and the algorithm
classifies a vertex as being in Community 1 if its score is larger than r + Ω(log(n)/ log(log(n))), and otherwise
classifies it as being in Community 2. We will then show that there exist constants δ > δ′ > 0 such that there are
vertices with degree profile

(8.2)
(√

p/8t log(n)− δ log(n),
√

(1− p)/8t log(n)− δ′ log(n),
√

(1− p)/8t log(n),
√
p/8t log(n)

)
Copyright © 2022 by SIAM

Unauthorized reproduction of this article is prohibited



in Community 1 and vertices with degree profile

(8.3)
(√

p/8t log(n),
√

(1− p)/8t log(n),
√

(1− p)/8t log(n)− δ′ log(n),
√
p/8t log(n)− δ log(n)

)
in Community 2. In order to classify the former vertices correctly, the spectral algorithm would need to have
y > δ/δ′ − o(1) and to classify the later vertices correctly the algorithm would need to have y < δ′/δ + o(1), but
for large n those cannot both be true.

It remains to establish the claims regarding the threshold value, and the existence of common degree profiles.
To this end, we compute the probability of a given degree profile for σ0(i) = +1 and σ0(i) = −1. Given constants
c1, c2, c3, and c4, set c′1 = c1 − t

√
p/8, c′2 = c2 − t

√
(1− p)/8, c′3 = c3 − t

√
(1− p)/8, c′4 = c4 − t

√
p/8, and

ε = min{
√
p/8t,

√
(1− p)/8t, c1, c2, c3, c4}. Computing the probability of given profiles using Lemma 3.1,

P (D(σ0, i) = log(n) (c1, c2, c3, c4)) = P (D(σ0, j) = log(n) (c4, c3, c2, c1))

� P
(
tp log n

2
; c1 log n

)
P

(
t(1− p) log n

2
; c2 log n

)
P

(
t log n

4
; c3 log n

)
P

(
t log n

4
; c4 log n

)
=

n−t( t log(n)
2 )(c1+c2+c3+c4) log(n)

(c1 log(n))!(c2 log(n))!(c3 log(n))!(c4 log(n))!
× pc1 log(n)(1− p)c2 log(n)(1/2)(c3+c4) log(n)

≈
n−t( et

2 )(c1+c2+c3+c4) log(n)

c
c1 log(n)
1 c

c2 log(n)
2 c

c3 log(n)
3 c

c4 log(n)
4

× pc1 log(n)(1− p)c2 log(n)(1/2)(c3+c4) log(n)

=
n−t
[
( e2t2p

8 )(c1+c4)( e2t2(1−p)
8 )(c2+c3)(2p)(c1−c4) (2(1− p))(c2−c3) ]log(n)/2

nc1 log(c1)nc2 log(c2)nc3 log(c3)nc4 log(c4)
.

(8.4)

To bound (8.4), we will use the fact that for any a, b > 0,

(8.5) a log(a) ≤ b log(b) + (a− b) log(eb) +
(a− b)2

2 min(a, b)
,

which follows from Taylor expansion and the fact that the second derivative of x log(x) is at most 1/min(a, b)
between a and b. Taking a = c1 and b = c1 − c′1 = t

√
p/8, in (8.5), we have

c1 log(c1) ≤ t
√
p

8
log

(
t

√
p

8

)
+ c′1 log

(
et

√
p

8

)
+
c′21
2ε

and therefore

1

nc1 log(c1)

(
et

√
p

8

)c1 log(n)

≥ exp

[
− log(n)

(
t

√
p

8
log

(
t

√
p

8

)
+ c′1 log

(
et

√
p

8

)
− c1 log

(
et

√
p

8

))]
n−

c′21
2ε

= exp

[
− log(n)

√
p

8

(
t

√
p

8
+ c′1 − c1

)
+ t log(n)

√
p

8

]
n−

c′21
2ε

= et
√

p
8 log(n)n−

c′21
2ε .

Similarly,

1

nc2 log(c2)

(
et

√
1− p

8

)c2 log(n)

≥ et
√

1−p
8 log(n)n−

c22
2ε

1

nc3 log(c3)

(
et

√
1− p

8

)c3 log(n)

≥ et
√

1−p
8 log(n)n−

c23
2ε

1

nc4 log(c4)

(
et

√
p

8

)c2 log(n)

≥ et
√

p
8 log(n)n−

c24
2ε .
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Next, for simplicity, let us denote t0 = tc(p, 1− p, 1/2), and we use the fact that the minimum is attained in (6.4)
for x = 1/2 when p1 = 1− p2 and q = 1/2. Substituting the above inequalities into (8.4), and denoting

Zn = n−((c′1)2+(c′2)2+(c′3)2+(c′4)2)/2ε × (2p)(c′1−c
′
4) log(n)/2 (2(1− p))(c′2−c

′
3) log(n)/2

,

we obtain

P (D(σ0, i) = log(n) (c1, c2, c3, c4)) ' n−tet
√
p/2 log(n)et

√
(1−p)/2 log(n) × Zn = n−t/t0 × Zn,(8.6)

where an ' bn means there is some constant c such that an = Ω(bn logc(n)). When t = t0, observe that
P (D(σ0, i) = log(n)(c1, c2, c3, c4)) cannot be less than Zn/n by more than a polylogarithmic factor. Let

c1 =

√
p

8
t0 + δ, c2 = c3 =

√
(1− p)

8
t0, c4 =

√
p

8
t0.

If δ > 0 is sufficiently small, with high probability there will be vertices with degree profiles of

log(n)(
√
p/8t0 + δ,

√
(1− p)/8t0,

√
(1− p)/8t0,

√
p/8t0)

in Community 1, since (8.6) is ω
(

1
n

)
. In fact, the number of such vertices will be Ω (nc) with high probability for

some c > 0. A similar argument shows that for δ > 0 small enough, there will additionally be vertices with degree
profiles of

log(n)(
√
p/8t0,

√
(1− p)/8t0 − δ,

√
(1− p)/8t0,

√
p/8t0)

log(n)(
√
p/8t0,

√
(1− p)/8t0,

√
(1− p)/8t0 + δ,

√
p/8t0)

log(n)(
√
p/8t0,

√
(1− p)/8t0,

√
(1− p)/8t0,

√
p/8t0 − δ)

in Community 1 and vertices with degree profiles of

log(n)(
√
p/8t0 − δ,

√
(1− p)/8t0,

√
(1− p)/8t0,

√
p/8t0)

log(n)(
√
p/8t0,

√
(1− p)/8t0 + δ,

√
(1− p)/8t0,

√
p/8t0)

log(n)(
√
p/8t0,

√
(1− p)/8t0,

√
(1− p)/8t0 − δ,

√
p/8t0)

log(n)(
√
p/8t0,

√
(1− p)/8t0,

√
(1− p)/8t0,

√
p/8t0 + δ)

in Community 2, when t = t0. If t = t0 + η for η > 0 sufficiently small, these degree profiles will still all exist with
high probability. To classify the vertices with the above degree profiles correctly, we must use the decision rule
given by (8.1), and both y and z1z2 must be positive. Finally, since 4p(1− p) < 1, there exist δ > δ′ > 0 such that
there are vertices with the required degree profiles (8.2) and (8.3), and thus the proof follows.

References
[1] E. Abbe. Community detection and stochastic block models: Recent developments. Journal of Machine

Learning Research, 18(177):1–86, 2018.

[2] E. Abbe, A. S. Bandeira, A. Bracher, and A. Singer. Decoding binary node labels from censored edge
measurements: Phase transition and efficient recovery. IEEE Transactions on Network Science and Engineering,
1(1):10–22, 2014.

[3] E. Abbe, A. S. Bandeira, and G. Hall. Exact recovery in the stochastic block model. IEEE Transactions on
Information Theory, 62(1):471–487, 2016.

[4] E. Abbe, J. Fan, K. Wang, and Y. Zhong. Entrywise eigenvector analysis of random matrices with low
expected rank. Annals of Statistics, 48(3):1452–1474, 2020.

[5] E. Abbe and C. Sandon. Community detection in general stochastic block models: Fundamental limits and
efficient algorithms for recovery. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science
(FOCS’15), pages 670–688, 2015.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



[6] C. Bordenave, M. Lelarge, and L. Massoulié. Non-backtracking spectrum of random graphs: community
detection and non-regular ramanujan graphs. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science (FOCS’15), pages 1347–1357. IEEE, 2015.

[7] P. Chin, A. Rao, and V. Vu. Stochastic block model and community detection in sparse graphs: A spectral
algorithm with optimal rate of recovery. In Conference on Learning Theory, pages 391–423. PMLR, 2015.

[8] B. Hajek, Y. Wu, and J. Xu. Exact recovery threshold in the binary censored block model. In 2015 IEEE
Information Theory Workshop-Fall (ITW), pages 99–103. IEEE, 2015.

[9] B. Hajek, Y. Wu, and J. Xu. Achieving exact cluster recovery threshold via semidefinite programming. IEEE
Transactions on Information Theory, 62(5):2788–2797, 2016.

[10] B. Hajek, Y. Wu, and J. Xu. Achieving exact cluster recovery threshold via semidefinite programming:
Extensions. IEEE Transactions on Information Theory, 62(10):5918–5937, 2016.

[11] S. Janson, T. Łuczak, and A. Rucinski. Random Graphs. Wiley, New York, 2000.

[12] F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, L. Zdeborová, and P. Zhang. Spectral redemption in
clustering sparse networks. Proceedings of the National Academy of Sciences, 110(52):20935–20940, 2013.

[13] L. Lei. Unified `2→∞ eigenspace perturbation theory for symmetric random matrices. arXiv preprint
arXiv:1909.04798, 2019.

[14] A. Montanari and S. Sen. Semidefinite programs on sparse random graphs and their application to community
detection. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages 814–827,
2016.

[15] E. Mossel, J. Neeman, and A. Sly. Consistency thresholds for the planted bisection model. Electronic Journal
of Probability, 21:1–24, 2016.

[16] M. E. Newman. Spectral methods for community detection and graph partitioning. Physical Review E,
88(4):042822, 2013.

[17] S.-Y. Yun and A. Proutiere. Accurate community detection in the stochastic block model via spectral
algorithms. arXiv preprint arXiv:1412.7335, 2014.

A Supporting results for spectral algorithm analysis
In this section, we complete the proofs of Lemmas 5.1, 5.2, and 5.4.

Proof. (Proof of Lemma 5.1). We use ideas from the proof of Theorem 9 in [10]. Throughout the proof, we
condition on the realization of σ0, without writing so explicitly. We first bound E [‖A−A?‖2]. Let A′ be an
independent copy of A. By Jensen’s inequality,

E [‖A−A?‖2] = E [‖A− E[A′]‖2] ≤ E [‖A−A′‖2] .

Let R be a matrix of iid Rademacher random variables, and let ◦ denote the elementwise product. Then

E [‖A−A′‖2] = E [‖(A−A′) ◦R‖2] ≤ 2E [‖A ◦R‖2] .

Let D be a matrix with the same distribution as A ◦R, so that E [‖A ◦R‖2] = E [‖D‖2]. Note that the entries of
D are independent, and the distribution of Dij depends on whether σ0(i) = σ0(j). Let B be the matrix where
Bij = 1 − y if Dij = y and Bij = y − 1 if Dij = −y, and is equal to zero otherwise. By definition, the matrix
D +B has entries in {−1, 0, 1}. For i 6= j, we have

P ((D +B)ij = 1) = P ((D +B)ij = −1) =
1

2
α, P ((D +B)ij = 0) = 1− α,
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regardless of the communities of i and j. The entries of D + B are independent. We decompose B into
B = B(p) +B(q), as follows. Set B(p)

ij = 0 whenever σ0(i) 6= σ0(j) or i = j. Otherwise,

B
(p)
ij =


1− y with probability 1

2α(1− p)
y − 1 with probability 1

2α(1− p)
0 otherwise.

Similarly, set B(q)
ij = 0 whenever σ0(i) = σ0(j). Otherwise,

B
(q)
ij =


1− y with probability 1

2α(1− q)
y − 1 with probability 1

2α(1− q)
0 otherwise.

Note that E
[
B

(p)
ij

]
= E

[
B

(q)
ij

]
= 0. Continuing,

E [‖A ◦R‖2] = E [‖D‖2]

= E
[∥∥∥D +B −B(p) −B(q)

∥∥∥
2

]
≤ E [‖D +B‖2] + E

[∥∥∥B(p)
∥∥∥

2

]
+ E

[∥∥∥B(q)
∥∥∥

2

]
.

Let B
(p)

and B
(q)

be distributed as follows, independent of all other variables. Set B
(p)

ij = 0 whenever σ0(i) = σ0(j)

(note that this is the opposite condition as for B(p)). Otherwise,

B
(p)

ij =


1− y with probability 1

2α(1− p)
y − 1 with probability 1

2α(1− p)
0 otherwise.

Similarly, set B
(q)

ij = 0 whenever σ0(i) 6= σ0(j) or i = j. Otherwise,

B
(q)

ij =


1− y with probability 1

2α(1− q)
y − 1 with probability 1

2α(1− q)
0 otherwise.

Note that these distributions are symmetric and E
[
B

(p)

ij

]
= E

[
B

(q)

ij

]
= 0 for all i, j. Applying Jensen’s inequality

again,

E [‖A ◦R‖2] ≤ E [‖D −B‖2] + E
[∥∥∥B(p) + E

[
B

(p)
]∥∥∥

2

]
+ E

[∥∥∥B(q) + E
[
B

(q)
]∥∥∥

2

]
≤ E [‖D −B‖2] + E

[∥∥∥B(p) +B
(p)
∥∥∥

2

]
+ E

[∥∥∥B(q) +B
(q)
∥∥∥

2

]
.

Let X(r) denote the zero-diagonal matrix whose non-diagonal entries are i.i.d according to µ(r) = r
2δ1 + r

2δ−1 +
(1− r)δ0. We have

E [‖D −B‖2] = E [‖X(α)‖2]

E
[∥∥∥B(p) +B

(p)
∥∥∥

2

]
= (1− y)E [‖X(α(1− p))‖2]

E
[∥∥∥B(q) +B

(q)
∥∥∥

2

]
= (1− y)E [‖X(α(1− q))‖2] .

For r ≥ c0 logn
n ,

E [‖X(r)‖2] ≤ c2
√
nr,
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for c2 depending only on c0 (see e.g. [10, Theorem 9]). Putting everything together,

E [‖A−A?‖2] ≤ 2
[
c2(t)

√
nα+ (1− x)c2 (t(1− p))

√
nα(1− p) + (1− x)c2 (t(1− q))

√
nα(1− q)

]
≤ c3(p, q, t)

√
log(n),

for some constant c3(p, q, t) depending only on p, q, and t. Applying Talagrand’s concentration inequality for
bounded Lipschitz functions as in the proof of [10, Theorem 9] concludes the proof.

Proof. (Proof of Lemma 5.2). We follow the proof of Lemma 7 in [4], deriving a Chernoff bound. Without loss of
generality we may assume ‖w‖∞ = 1. Let Sn =

∑n
i=1 wi(Xi − E[Xi]). We prove the upper tail inequality first.

For λ, r > 0,

P (Sn ≥ r) = P
(
eλSn ≥ eλr

)
≤ e−λrE

[
eλSn

]
= e−λr

n∏
i=1

E
[
eλwi(Xi−E[Xi])

]
.

Computing the moment generating function,

E
[
eλwi(Xi−E[Xi])

]
= e−λwi(pi−qiy)E

[
eλwiXi

]
= e−λwi(pi−qiy)

(
pie

λwi + qie
−λywi + 1− pi − qi

)
.

Taking the logarithm and applying log(1 + x) ≤ x for x > −1 and ex ≤ 1 + x+ ez

2 x
2 for |x| ≤ z,

log
(
E
[
eλwi(Xi−E[Xi])

])
= −λwi(pi − qiy) + log

(
pie

λwi + qie
−λywi + 1− pi − qi

)
≤ −λwi(pi − qiy) + pi

(
eλwi − 1

)
+ qi

(
e−λywi − 1

)
≤ −λwi(pi − qiy) + pi

(
λwi +

eλ‖w‖∞

2
(λwi)

2

)
+ qi

(
−λywi +

eλy‖w‖∞

2
(λywi)

2

)
=
λ2w2

i

2

(
pie

λ‖w‖∞ + qiy
2eλy‖w‖∞

)
≤ λ2w2

i max{1, y2} exp (λ ·max{1, y}‖w‖∞)

2
(pi + qi).

Therefore, using ‖w‖∞ = 1,

log (P (Sn ≥ r)) ≤ −λr +
λ2‖w‖22 max{1, y2} exp (λ ·max{1, y})

2
max
i
{pi + qi}.

Choose

λ =
1

max{1, y}

(
1 ∨ log

( √
n

‖w‖2

))
> 0.

We then have

exp (λ ·max{1, y}) = e ∨
√
n

‖w‖2
≤ e
√
n

‖w‖2
.

Note that ‖w‖2 ≤
√
n‖w‖∞ =

√
n. Using 1 ∨ log x ≤

√
x for x ≥ 1,

λ2‖w‖22 exp (λ ·max{1, y}) ≤ λ2e
√
n‖w‖2
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≤ 1

(max{1, y})2

(
1 ∨ log

( √
n

‖w‖2

))2

e
√
n‖w‖2

≤ en

max{1, y2}
.

Substituting,

log (P (Sn ≥ r)) ≤ −λr +
en

2
max
i
{pi + qi}.

Let r = λ−1(2 + β)n ·maxi{pi + qi}, so that

log (P (Sn ≥ r)) ≤ −(2 + β)n ·max
i
{pi + qi}+

en

2
max
i
{pi + qi}

≤ −βnmax
i
{pi + qi}.

By replacing w with −w we can obtain a lower tail bound. The proof is complete by a union bound.

Proof. (Proof of Lemma 5.4). The derivation is similar to Chernoff bound. Let λ < 0 to be determined later. By
Markov’s inequality,

P
( n1∑
i=1

Wi −
n2∑
i=1

Zi ≤ ε log(n)

)
= P

(
exp

(
λ

n1∑
i=1

Wi − λ
n2∑
i=1

Zi

)
≥ exp

(
λε log(n)

))

≤ n−λεE
[

exp

(
λ

n1∑
i=1

Wi − λ
n2∑
i=1

Zi

)]
.

Using log(1 + x) ≤ x for x > −1, we have

log
(
E
[
eλWi

])
= log

(
eλαp+ e−λyα(1− p) + 1− α

)
≤ eλαp+ e−λyα(1− p)− α
= α

(
eλp+ e−λy(1− p)− 1

)
.

Similarly,
log
(
E
[
e−λZi

])
≤ α

(
e−λq + eλy(1− q)− 1

)
.

Therefore, using n1, n2 = (1 + o(1))n2 ,

logP
( n1∑
i=1

Wi −
n2∑
i=1

Zi ≤ ε log(n)

)
≤ −λε log(n) + (1 + o(1))

n

2
α
(
eλp+ e−λy(1− p) + e−λq + eλy(1− q)− 2

)
= log(n)

[
− λε+

t

2

(
eλp+ e−λy(1− p) + e−λq + eλy(1− q)− 2

)
+ o(1)

]
.

Set λ = 1
2 log

(
q
p

)
< 0. Observe that eλ =

√
q
p , and

eλy =

(
q

p

) log( 1−q
1−p )

2 log( pq )
=

√
1− p
1− q

.

Therefore,

logP
( n

2∑
i=1

Wi −
n
2∑
i=1

Zi ≤ ε log(n)

)
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≤ log(n)

[
−λε+

t

2

(√
pq +

√
(1− p)(1− q) +

√
pq +

√
(1− p)(1− q)− 2

)
+ o(1)

]
= log(n)

[
−λε− t

2

(
(
√
p−√q)2

+
(√

1− q −
√

1− p
)2
)

+ o(1)

]
.

B Proof of Poisson approximation
Proof. (Proof of Lemma 3.1). To prove the claim, observe that under the assumptions on m,m1,m2, by Stirling’s
approximation and the fact that 1− e−x � x as x→ 0,

m!

(m−m1 −m2)!
� e−mmm+ 1

2

e−m+m1+m2(m−m1 −m2)m−m1−m2+ 1
2

= e−m1−m2
(m−m1 −m2)m1+m2

(1− m1+m2

m )m+ 1
2

� (m−m1 −m2)m1+m2

(1− m1+m2

m )
1
2

�
(
n

2

(
1 +O(log−2 n)

))m1+m2

�
(n

2

)m1+m2

,

where in the last step we have used m1,m2 = o(log3/2 n) and the fact that (1 + x)l � 1 + lx when lx→ 0. Also,

(1− α)m−m1−m2 � e−α(m−m1−m2) � e−t log(n)/2.

Thus,

P(Na = m1, Nb = m2) =
m!

m1!m2!(m−m1 −m2)!
(αp)m1(α(1− p))m2(1− α)m−m1−m2

� e−
t logn

2
( tp logn

2 )m1( t(1−p) logn
2 )m2

m1!m2!
,

and thus the proof follows.

C Proof of genie estimator characterization
Proof. (Proof of Proposition 6.1). Recall the definition of the degree profile above (2.6), and also, recall from (4.1)
that the MAP estimator equals the MLE under a uniform prior. Fix u ∈ [n], and let σ1, σ−1 ∈ S be such that
σ1(u) = +1, σ−1(u) = −1 and σ1(v) = σ−1(v) for all v ∈ [n] \ {u}. For a fixed edge-labeled graph g, suppose u has
degree profile D(σ1, u) = (d1(u), d2(u), d3(u), d4(u)). By definition, D(σ1, u) = D(σ−1, u).

P(G = g | σ0 = σ1)

= Z ×
(
n1(σ1)− 1

d1(u), d2(u)

)(
n2(σ1)

d3(u), d4(u)

)
(αp1)d1(u)(α(1− p1))d2(u)

(αq)d3(u)(α(1− q))d4(u)(1− α)n−1−
∑
i di(u),

where Z is not dependent on u. Similarly

P(G = g | σ0 = σ−1)

= Z ×
(

n1(σ−1)

d1(u), d2(u)

)(
n2(σ−1)− 1

d3(u), d4(u)

)
(αq)d1(u)(α(1− q))d2(u)
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(αp2)d3(u)(α(1− p2))d4(u)(1− α)n−1−
∑
i di(u).

Moreover, n1(σ−1) = n1(σ1)− 1 and n2(σ−1) = n2(σ1) + 1. Therefore, the binomial coefficients above are also
equal and

log
P(G = g | σ0 = σ1)

P(G = g | σ0 = σ−1)
= d1(u) log

p1

q
+ d2(u) log

1− p1

1− q
+ d3(u) log

q

p2
+ d4(u) log

1− q
1− p2

.

The genie estimator returns +1 if and only if the log likelihood ratio is non-negative. Hence, the proof of
Proposition 6.1 follows.
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